IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ エヌ・ティ・ティ・コミュニケーションズ株式会社の特許一覧

特許7427746情報処理装置、情報処理方法および情報処理プログラム
<>
  • 特許-情報処理装置、情報処理方法および情報処理プログラム 図1
  • 特許-情報処理装置、情報処理方法および情報処理プログラム 図2
  • 特許-情報処理装置、情報処理方法および情報処理プログラム 図3
  • 特許-情報処理装置、情報処理方法および情報処理プログラム 図4
  • 特許-情報処理装置、情報処理方法および情報処理プログラム 図5
  • 特許-情報処理装置、情報処理方法および情報処理プログラム 図6
  • 特許-情報処理装置、情報処理方法および情報処理プログラム 図7
  • 特許-情報処理装置、情報処理方法および情報処理プログラム 図8
  • 特許-情報処理装置、情報処理方法および情報処理プログラム 図9
  • 特許-情報処理装置、情報処理方法および情報処理プログラム 図10
  • 特許-情報処理装置、情報処理方法および情報処理プログラム 図11
  • 特許-情報処理装置、情報処理方法および情報処理プログラム 図12
  • 特許-情報処理装置、情報処理方法および情報処理プログラム 図13
  • 特許-情報処理装置、情報処理方法および情報処理プログラム 図14
  • 特許-情報処理装置、情報処理方法および情報処理プログラム 図15
  • 特許-情報処理装置、情報処理方法および情報処理プログラム 図16
  • 特許-情報処理装置、情報処理方法および情報処理プログラム 図17
  • 特許-情報処理装置、情報処理方法および情報処理プログラム 図18
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B1)
(11)【特許番号】
(24)【登録日】2024-01-26
(45)【発行日】2024-02-05
(54)【発明の名称】情報処理装置、情報処理方法および情報処理プログラム
(51)【国際特許分類】
   G06N 20/00 20190101AFI20240129BHJP
   G05B 23/02 20060101ALI20240129BHJP
   G06F 11/07 20060101ALI20240129BHJP
【FI】
G06N20/00
G05B23/02 301N
G05B23/02 301V
G06F11/07 140Q
【請求項の数】 8
(21)【出願番号】P 2022171830
(22)【出願日】2022-10-26
【審査請求日】2022-10-26
(73)【特許権者】
【識別番号】399035766
【氏名又は名称】エヌ・ティ・ティ・コミュニケーションズ株式会社
(74)【代理人】
【識別番号】110002147
【氏名又は名称】弁理士法人酒井国際特許事務所
(72)【発明者】
【氏名】藤原 大悟
(72)【発明者】
【氏名】泉谷 知範
(72)【発明者】
【氏名】伊藤 浩二
【審査官】牛丸 太希
(56)【参考文献】
【文献】特開2021-006431(JP,A)
【文献】国際公開第2021/065559(WO,A1)
【文献】特開2021-042948(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G05B 23/00-23/02
G06F 11/00-11/36
G06N 3/00-99/00
(57)【特許請求の範囲】
【請求項1】
操作対象の自動運転の精度に関するデータが所定の条件を満たす場合に、前記操作対象の操作対象の自動運転の稼働についての判定をする判定部と、
前記判定部の判定結果に基づき、前記操作対象の自動運転を停止する停止部と、
を有し、
前記判定部は、前記所定の条件として、前記操作対象の運転に関する履歴データを用いた複数の学習モデルに基づき推論される複数の推奨値の分散が所定の範囲に含まれない場合に前記自動運転の停止の判定をする、
ことを特徴とする情報処理装置。
【請求項2】
前記判定部は、前記所定の条件として、前記操作対象の運転の状況を表す説明変数についての異常検知の結果に基づき、前記説明変数に所定の変化が発生する場合に前記自動運転の停止の判定をする、
ことを特徴とする請求項1に記載の情報処理装置。
【請求項3】
前記判定部は、前記所定の条件として、前記操作対象の運転に関する履歴データを用いた学習モデルに基づき推論される推奨値が、最大最小閾値の範囲に含まれない場合に前記自動運転の停止の判定をする、
ことを特徴とする請求項1に記載の情報処理装置。
【請求項4】
前記判定部は、前記所定の条件として、前記操作対象の運転に関する履歴データを用いた学習モデルに基づき推論される推奨値の変化率が、差分変化量閾値の範囲に含まれない場合に前記自動運転の停止の判定をする、
ことを特徴とする請求項1に記載の情報処理装置。
【請求項5】
前記判定部は、前記操作対象の運転に関する履歴データを用いた学習モデルに基づき推論される推奨値が事後分布を有する場合、前記所定の条件として、前記推奨値の予測分散が所定の範囲に含まれない場合に前記自動運転の停止の判定をする、
ことを特徴とする請求項1に記載の情報処理装置。
【請求項6】
前記判定部は、前記所定の条件として、前記操作対象の評価指標が所定の範囲に含まれない場合に前記自動運転の停止の判定をする、
ことを特徴とする請求項1に記載の情報処理装置。
【請求項7】
情報処理装置により実行される情報処理方法であって、
操作対象の自動運転の精度に関するデータが所定の条件を満たす場合に、前記操作対象の自動運転の稼働についての判定をする判定工程と、
前記判定工程の判定結果に基づき、前記操作対象の自動運転を停止する停止工程と、
を含み、
前記判定工程は、前記所定の条件として、前記操作対象の運転に関する履歴データを用いた複数の学習モデルに基づき推論される複数の推奨値の分散が所定の範囲に含まれない場合に前記自動運転の停止の判定をする、
ことを特徴とする情報処理方法。
【請求項8】
操作対象の自動運転の精度に関するデータが所定の条件を満たす場合に、前記操作対象の自動運転の稼働についての判定をする判定ステップと、
前記判定ステップの判定結果に基づき、前記操作対象の自動運転を停止する停止ステップと、
をコンピュータに実行させ
前記判定ステップは、前記所定の条件として、前記操作対象の運転に関する履歴データを用いた複数の学習モデルに基づき推論される複数の推奨値の分散が所定の範囲に含まれない場合に前記自動運転の停止の判定をする、
ことを特徴とする情報処理プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、情報処理装置、情報処理方法および情報処理プログラムに関する。
【背景技術】
【0002】
人間の行動に関する情報を用いて、人間による行動を模倣する機械学習モデルを作る、模倣学習という技術が知られている。そして、前述の模倣学習の実現方法として、例えば、教師あり学習が知られている。さらに、教師あり学習の1つの手法として、観測されたデータを大量に蓄積しておき、蓄積されたデータの中から要求点の近傍のデータを抽出し、当該抽出したデータを用いてモデルの逐次学習を行うJust-In-Time(JIT)法という技術が知られている(例えば、非特許文献1を参照)。
【0003】
また、近年では運転データ等を入力とする学習モデルを用いて、操作対象となる設備や工場、プラント等の自動運転を行う技術が知られている。例えば、従来技術として、取得したデータを入力とする学習モデルを用いることで、機器の制御において実環境を対象とした最適制御を簡易かつ精度よく実行する技術が知られている(例えば、特許文献1を参照)。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2019-067238号公報
【非特許文献】
【0005】
【文献】山本 茂、「Just-In-Time予測制御:蓄積データに基づく予測制御」、計測と制御 第 52 巻 第 10 号 2013 年 10 月号(https://www.jstage.jst.go.jp/article/sicejl/52/10/52_878/_pdf/-char/ja)
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、従来技術では、操作対象の自動運転の精度が変化した場合における手動運転への切り替えのタイミングの判断が困難である、という問題があった。
【0007】
具体的には、従来技術は、学習モデルに基づき推論される推奨値をユーザ(操作対象の操作や運転等を行うオペレータ等)に提示し、提示された推奨値に基づき操作対象に対してユーザが操作を行う。そのため、推奨値の精度が悪化した際には、ユーザ自身がその判定を行うことが可能であった。しかしながら、ユーザを介さない自動運転時には、推奨値の精度判定を行うことが難しく、自動運転の精度が低下した場合でも適切なタイミングで手動運転への切り替えを判断することが難しい場合があった。
【課題を解決するための手段】
【0008】
そこで、上記の課題を解決し目的を達成するために、本発明の情報処理装置は、操作対象の自動運転の精度に関するデータが所定の条件を満たす場合に、前記操作対象の自動運転の稼働についての判定をする判定部と、前記判定部の判定結果に基づき、前記操作対象の自動運転を停止する停止部と、を有することを特徴とする。
【発明の効果】
【0009】
本発明は、操作対象の自動運転の精度が変化した場合における手動運転への切り替えのタイミングの判断を容易とする、という効果を奏する。
【図面の簡単な説明】
【0010】
図1図1は、実施形態に係る情報処理の概要の一例を示す図である。
図2図2は、実施形態に係る学習モデルの推論の一例を示す図である。
図3図3は、実施形態に係る情報処理装置の装置構成の一例を示す図である。
図4図4は、実施形態に係る情報処理の全体概要の一例を示す図である。
図5図5は、実施形態に係る自動運転管理画面の一例を示す図である。
図6図6は、実施形態に係る自動運転管理画面の一例を示す図である。
図7図7は、実施形態に係る自動運転管理画面の一例を示す図である。
図8図8は、実施形態に係る自動運転管理画面の一例を示す図である。
図9図9は、実施形態に係る異常検知アルゴリズムの概要を示す図である。
図10図10は、実施形態に係る異常検知アルゴリズムの概要を示す図である。
図11図11は、実施形態1に係る情報処理のフローチャートの一例を示す図である。
図12図12は、実施形態2に係る情報処理のフローチャートの一例を示す図である。
図13図13は、実施形態3に係る情報処理のフローチャートの一例を示す図である。
図14図14は、実施形態4に係る情報処理のフローチャートの一例を示す図である。
図15図15は、実施形態5に係る情報処理のフローチャートの一例を示す図である。
図16図16は、実施形態6に係る情報処理のフローチャートの一例を示す図である。
図17図17は、従来技術における情報処理の概要の一例を示す図である。
図18図18は、実施形態に係る情報処理装置が実現されるコンピュータの一例を示す図である。
【発明を実施するための形態】
【0011】
以下、図面を参照しながら、本実施形態を実施するための形態(以下、「実施形態」)について説明する。なお、本実施形態は、以下に記載する内容に限定されない。
【0012】
〔1.概要〕
まず、本実施形態における情報処理装置100による情報処理の概要を、図1を用いて説明する。本実施形態において情報処理装置100は、操作対象10の運転データDb(例えば、温度、圧力、流量、原料投入量、生成量等)と類似、または関係する過去の履歴データDa(例えば、温度、圧力、流量、原料投入量、生成量等、ユーザによる操作履歴等)を用いて学習モデル20を学習する(図1の(1)を参照)。
【0013】
次に、ユーザU(操作対象10を操作するオペレータ)は、情報処理装置100に対して、自動運転の条件を入力する(図1の(2)を参照)。情報処理装置100の自動運転制御部138は、ユーザUが入力する自動運転の条件と、運転データDbを入力とする前述の学習モデル20に基づき推論される推奨値RDを用いて、操作対象10に対して自動運転(以降は、操作対象10に対する自動運転を単に「自動運転」と表記)を実施する(図1の(3)および(4)を参照)。
【0014】
そして、情報処理装置100は、自動運転時に操作対象10の自動運転の精度に関するデータ(例えば、推奨値、説明変数、操作対象の評価指標等)を取得し、自動運転の精度の変化を判定する。その結果、自動運転の精度が所定の許容範囲を下回っていると判定される場合、情報処理装置100は、自動運転を停止する(図1の(5)を参照)。続けて、情報処理装置100は、ユーザUに対して自動運転が停止したことを表示する(図1の(6)を参照)。そして、ユーザUは、情報処理装置100からの表示に基づき、自動運転停止後の操作対象10を手動により操作する(図1の(7)を参照)。
【0015】
〔1-1.学習モデルによる推奨値の推論〕
続いて、図1で説明した学習モデル20について、更に説明を行う。図2に示すように、情報処理装置100は、操作対象10aから運転データDbを受け付ける。次に、情報処理装置100は、受け付けた運転データDbと類似する履歴データDaを用いて推奨値RDを推論するための学習モデル20の学習(訓練)を行う。
【0016】
そして、情報処理装置100は、学習(訓練)済みの学習モデル20に基づき推奨値RDの推論を行う。具体的には、情報処理装置100は、操作対象10aに対して実際にユーザUが行った操作等の情報である履歴データDaを用いて学習モデル20を学習することで、模倣学習を行う。その結果、情報処理装置100は、学習モデル20に運転データDbを入力することにより推論される推奨値RDを用いて、操作対象10bに対しての自動運転を実現する。
【0017】
例えば、操作対象10がプラントの場合、学習モデル20は、特定の工程における過去にユーザUが投入した原材料の投入量を学習する。そして、学習モデル20は、現在の運転データから、推奨値RDとして原材料の投入量を出力する。ユーザUは、学習モデル20に基づき推論される推奨値RDに従って原材料の投入量を設定することで、過去のユーザ(例えば、ユーザUやユーザU以外のオペレータ)の操作を模倣することができる。
【0018】
〔2.情報処理装置の構成〕
ここから、本実施形態に係る情報処理装置100の構成について、図3を用いて説明する。図3に示すように、情報処理装置100は、通信部110と、記憶部120と、制御部130と、を有する。なお、図示していないが、情報処理装置100は、各種操作を受け付ける入力部(例えば、キーボードやマウス等)や、各種情報を表示するための表示部(例えば、ディスプレイ等)を備えてもよい。続いて、以下に各部の詳細な機能について記載する。
【0019】
(通信部110)
通信部110は、NIC(Network Interface Card)等で実現され、LAN(Local Area Network)やインターネット等の電気通信回線を介して通信を制御する。そして、通信部110は、必要に応じてネットワークと有線または無線で接続され、双方向に情報の送受信を行うことができる。なお、本実施形態においては、外部の装置等(例えば、操作対象10等)との通信は、通信部110を介して実施される前提とする。
【0020】
(記憶部120)
記憶部120は、制御部130による各種処理に必要なデータおよびプログラムを格納する。また、記憶部120は、履歴データ記憶部121と、モデル記憶部122と、推奨値記憶部123と、を有する。そして、記憶部120は、RAM(Random Access Memory)、フラッシュメモリ(Flash Memory)等の半導体メモリ素子、または、ハードディスク、光ディスク等の記憶装置等で実現する。
【0021】
(履歴データ記憶部121)
履歴データ記憶部121は、操作対象10の過去の運転に関する情報として、履歴データを記憶する。例えば、履歴データ記憶部121が記憶する履歴データには、操作対象10の過去の説明変数(例えば、時刻、温度、圧力、二酸化炭素濃度等のセンサデータ)や、目的変数(例えば、ユーザによる操作履歴)を記憶し、運転データDbと説明変数が類似する履歴データDaが含まれる。また、前述した情報はあくまで一例であり、履歴データ記憶部121は、履歴データの範疇であれば限定無く記憶できる。
【0022】
(モデル記憶部122)
モデル記憶部122は、操作対象10の履歴データDaを用いて学習させる学習モデル20を記憶する。
【0023】
(推奨値記憶部123)
推奨値記憶部123は、学習モデル20によって推論される推奨値RDを記憶する。
【0024】
(制御部130)
制御部130は、取得部131と、学習部132と、更新部133と、推論部134と、判定部135と、停止部136と、表示部137と、自動運転制御部138と、を有する。そして、制御部130は、各種の処理手順等を規定したプログラムや処理データを一時的に格納するための内部メモリを有し、CPU(Central Processing Unit)やMPU(Micro Processing Unit)等の電子回路、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)等の集積回路によって実現される。
【0025】
(取得部131)
取得部131は、操作対象10の運転に関するデータを取得する。具体的には、取得部131は、操作対象10の運転に関するデータとして、操作対象10の運転データDb(例えば、操作対象10が収集するセンサデータのうち説明変数として用いているもの等)を取得する。
【0026】
さらに、取得部131は、操作対象10の運転に関するデータとして、履歴検索用キー(現在の操作対象10のセンサデータで、以降は単に「履歴検索用キー」と記載)を用いて、操作対象10の運転実施時点における運転データDbと類似の履歴データDa(類似するセンサデータおよびユーザによる操作履歴を含む)を、履歴データ記憶部121から取得する。なお、取得部131は、前述した情報以外にも、操作対象10の運転に関するデータの範疇であれば、限定無く情報を取得できる。
【0027】
(学習部132)
学習部132は、取得部131が取得する操作対象10の履歴データDaを用いて、説明変数(センサデータ)および目的変数(ユーザによる操作履歴)を学習データとして学習モデル20の学習(訓練)を行う。例えば、学習部132は、操作対象10がプラントである場合、特定の状況において過去にユーザUが投入した原材料の投入量等を履歴データDaとして用いて、学習モデル20を学習できる。
【0028】
また、学習モデル20がアンサンブルモデルの場合は、学習部132は、バギングや、ブースティングや、スタッキング等の手法で学習を行ってよい。
【0029】
(更新部133)
更新部133は、学習部132の学習に基づき学習モデル20を更新する。さらに、更新部133は複数の学習モデル20について、学習部132の学習に基づき更新を行う。なお、本実施形態においては、学習モデル20はアンサンブルモデルであり、情報処理装置100は複数の学習モデル20を有する前提として、説明を行う。
【0030】
(推論部134)
推論部134は、取得部131が操作対象10から取得する運転データDb(例えば、説明変数等)を入力とする学習モデル20に基づき、推奨値RDを推論する。なお、学習モデル20が複数存在するアンサンブルモデルの場合に、推論部134は、推論される推奨値RDを複数の学習モデル20の多数決や平均等によって推論してよい。
【0031】
(判定部135)
判定部135は、操作対象10の自動運転の精度に関するデータが所定の条件を満たす場合に、操作対象10の自動運転の稼働についての判定をする。具体的には、判定部135は、操作対象10の自動運転の精度に関するデータとして、説明変数、推奨値RD、予測分散、操作対象の評価指標を用いて、判定を行う。なお、判定部135の行う判定の詳細については、以降の項目において、実施形態ごとに説明を行う。
【0032】
(停止部136)
停止部136は、判定部135の判定結果に基づき、操作対象10の自動運転を停止する。具体的には、停止部136は、後述の自動運転制御部138が行う自動運転を停止する。
【0033】
(表示部137)
表示部137は、停止部136が操作対象10の自動運転を停止した場合に、ユーザUに対して操作対象10の自動運転が停止したことを表示する。なお、表示部137は、ユーザUに当該情報を表示する方法として、例えば、テキストや音声等、ユーザUが知覚できる方法を用いてよい。
【0034】
また、表示部137は、停止部136による自動運転の自動停止が行われない場合にも、ユーザUに対して自動運転の精度低下に基づく自動運転停止に関する情報を表示してよい。例えば、表示部137は、「自動運転の精度低下のため、自動運転の停止を推奨」、等といった内容の表示を行ってよい。
【0035】
(自動運転制御部138)
自動運転制御部138は、運転データDb(説明変数)を入力とする学習モデル20に基づき推論する推奨値RDを用いて、操作対象10に対して自動運転を実施する。
【0036】
〔3.実施形態に係る情報処理の全体像〕
ここから、本実施形態における情報処理装置100が行う情報処理の全体像について、図4を用いて説明する。図4では、情報処理装置100が、操作対象10の自動運転の精度に関するデータに基づいて、後述する実施形態1から実施形態6の方法を用いて、自動運転の精度低下による自動運転の停止の判定を行う手順を説明する。なお、情報処理装置100は、実施形態1から実施形態6について、それぞれ単独で実施してもよいし、任意の実施形態を組み合わせて実施してもよい。
【0037】
取得部131は、履歴検索用キーを用いて履歴データ記憶部121から、操作対象10の運転データDbと類似または関係する過去の履歴データDaを取得する(図4の(1)を参照)。続けて、学習部132は、取得した履歴データDaを用いて学習モデル20を学習する(図4の(2)を参照)。
【0038】
更新部133は、複数の学習モデル20(学習モデル20aと、学習モデル20bと、学習モデル20c)を更新する(図4の(3)を参照)。なお、図4では学習モデル20は3つ表記しているが、3つに限定されず必要に応じて異なる数の学習モデル20があってよい。
【0039】
推論部134は、複数の学習済みの学習モデル20に基づいて複数の推論を行う(図4の(4)を参照)。そして、推論部134は、取得部131が取得する運転データDb(説明変数)を入力として(図4の(5)を参照)、学習モデル20に基づき推奨値RDを推論する(図4の(6)を参照)。なお、本実施形態において、推論部134は、複数の学習モデル20を用いて複数の推奨値RDを推論する場合に、複数モデルによる多数決や平均等によって算出してよい。
【0040】
ここから、判定部135による各種判定基準に基づく運転精度の判定について説明する。判定部135は、異常検知アルゴリズム(例えば、PCA(Principal Component Analysis)等を利用したもの)を用いて、運転データDb(説明変数)に所定の変化が生じているか否かを判定する(図4の(7)を参照)。なお、図4の(7)の処理は、実施形態1として以降の項目で説明する。
【0041】
判定部135は、推論部134によって推論される推奨値RDが、所定の範囲(例えば、最大最小閾値等)に存在するか否かを判定する(図4の(8)を参照)。なお、図4の(8)の処理は、実施形態2として以降の項目で説明する。
【0042】
判定部135は、推論部134によって推論される推奨値RDについて所定の期間における変化率を算出し、前述の変化率が所定の範囲(例えば、差分変化量閾値等)に存在するか否かを判定する(図4の(9)を参照)。なお、図4の(9)の処理は、実施形態3として以降の項目で説明する。
【0043】
判定部135は、複数の学習モデル20のそれぞれの推奨値RDについて分散に基づいて比較を行い、前述の分散が所定の閾値(例えば、アンサンブルモデルの分散閾値等)を超えるか否かを判定する(図4の(10)を参照)。なお、図4の(10)の処理は、実施形態4として以降の項目で説明する。
【0044】
判定部135は、推論部134によって推論される推奨値RDが事後分布を有する場合に、推奨値RDの事後分布の予測分散が所定の閾値(例えば、予測分散閾値等)を超えるか否かを判定する(図4の(11)を参照)。なお、図4の(11)の処理は、実施形態5として以降の項目で説明する。
【0045】
判定部135は、操作対象10の評価指標(図4の(12)を参照)が所定の閾値(例えば、評価指標閾値等)を超えるか否かを判定する(図4の(13)を参照)。なお、図4の(13)の処理は、実施形態6として以降の項目で説明する。
【0046】
そして、判定部135は、各種判定基準に基づき運転精度が低下していると判定する場合に、更に自動運転の停止の判定を行う(図4の(14)の「運転精度の低下有り」を参照)。なお、判定部135は、前述した判定基準の単独もしくは複数組み合わせて、所定の条件を満たすかどうかを判定してよい。
【0047】
停止部136は、前述の判定部135の判定に基づいて、自動運転の停止を実施する(図4の(15)を参照)。続けて、表示部137は、停止部136による自動運転の停止に基づいて、ユーザUに自動運転が停止したことを表示する(図4の(16)を参照)。そして、ユーザUは、自動運転が停止した操作対象10を手動で操作する(図4の(17)を参照)。
【0048】
他方で、判定部135が前述した判定基準に基づいて運転精度が低下していないと判定する場合に(図4の(14)の「運転精度の低下無し」を参照)、自動運転制御部138は、自動運転を継続する(図4の(18)を参照)。
【0049】
ここから、図5から図8を用いて、図4の(16)で前述したユーザUに自動運転の停止について通知する方法の一例を説明する。まず、図5を用いて、ユーザUの操作する端末装置等に表示するシステム画面を説明する。なお、本項目で説明するシステム画面はあくまで一例であり、表示形式、表示内容、画面の配置、構成、組み合わせ等は限定されず、必要に応じて変更してよい。
【0050】
図5の画面SAは、自動運転における運転に関するデータの変動について視覚化した情報を表している。画面SAには、自動運転により逐次変動するデータを時系列方向に連続して表示される。一方で画面SBには、自動運転における運転に関するデータの一覧が表示される。なお、画面SAに表示される項目は、情報処理装置100が自動的に選択してもよいし、ユーザUが自身で選択してもよい。ユーザUが自身で選択する場合は、画面SBに表示されている項目に基づき画面SAの表示が切り替えられてよい。
【0051】
図5の表示SC1には、自動運転の稼働状況に関する情報が表示される。例えば、図5の場合、表示部137は、自動運転が稼働中の場合、表示SC1に「自動運転稼働中」のテキストを表示する。そして、停止部136が自動運転を停止した場合には、表示部137は、図6の表示SC2に「自動運転停止中」のテキストを表示する。なお、前述したテキスト内容についてはあくまで一例であり、表示部137は、ユーザUに運転状況を表示するために必要に応じてその他のテキスト、画像、音声等のユーザが五感で知覚できる出力方法を用いることができる。
【0052】
また、ここまで停止部136による自動運転の自動停止について説明をしてきたが、ユーザUが表示部137の表示する自動運転の精度が低下についての情報を受け付ける場合、ユーザU自身の操作によって自動運転を停止させてもよい。例えば、図7の表示SC3および図8の表示SC4に示す通り、ユーザUは、表示部137が表示するテキスト付近に存在する「停止」と「稼働開始」のダイアログを操作して、自動運転の停止と再開を切り替えてもよい。
【0053】
〔4.実施形態1:説明変数の異常検知による判定〕
ここから、前述してきた運転精度の判定方法について、実施形態1から実施形態6として、それぞれ「概要」と、「情報処理装置100の構成」と、「処理手順」と、という順番で説明する。なお、情報処理装置100は、実施形態1から実施形態6について、それぞれ単独で実施してもよいし、複数の実施形態を組み合わせて実施してもよい。例えば、情報処理装置100は、実施形態ごとの単独の判定結果や、複数の実施形態における複数の判定結果に基づいて、自動運転の停止を判定してもよい。
【0054】
まず、実施形態1として「説明変数の異常検知による判定」について説明する。推論部134は、操作対象10が収集する運転データDb(説明変数)を入力とする学習モデル20に基づき推論を行うことで、推奨値RDを算出する。そして、自動運転制御部138は、推論された推奨値RDを用いて、操作対象10に対して自動運転を実施する。しかし、操作対象10の運転状況は経時的に変化する場合があり、それに伴い自動運転の精度が低下する場合がある。なお、前述した内容は、実施形態1から実施形態6まで共通であるため、以降の記載は省略する。
【0055】
前述したように、操作対象10の自動運転の精度低下発生時に、学習モデル20に対する入力である運転データDb(説明変数)に変化(異常)が生じる場合がある。そこで、実施形態1の判定部135は、異常検知アルゴリズム(例えば、PCA等を利用したもの)を用いて運転データDb(説明変数)の変化を評価し、自動運転の停止を判定する。
【0056】
〔4-1.実施形態1の情報処理装置の構成〕
実施形態1における情報処理装置100の装置構成は、前述の実施形態と同様である。したがって、本項目では差異として判定部135の付加的機能のみ説明し、それ以外の詳細な説明は省略する。
【0057】
(判定部135)
実施形態1における判定部135は、異常検知アルゴリズムを用いて、運転データDb(説明変数)に生じる変化を判定する。具体的には、判定部135は、所定の条件として、操作対象10の運転の状況を表す運転データDb(説明変数)についての異常検知の結果に基づき、運転データDb(説明変数)に所定の変化が発生する場合に自動運転の停止の判定をする。なお、判定部135は、教師無し機械学習(例えば、PCA等を利用したもの)を利用した異常検知アルゴリズムに基づいて、判定を行ってよい。
【0058】
例えば、判定部135は、PCA(主成分分析)で縮約写像した空間においてKDE(カーネル密度推定)等を実施し、密度が低い部分にデータが現れた場合(例えば、尤度が低い場合等)を異常発生と判定してよい。また、他の例として、判定部135は、マハラノビス距離で知られる距離指標を用いて、異常発生と判定してよい。さらに、他の例として判定部135は、PCAで縮約した空間上で計算されるT^2統計量およびQ統計量を用いて異常発生を判定してよい。
【0059】
ここから、PCAに基づく異常検知アルゴリズムを用いた異常検知の一例を説明する。判定部135は、図9に示す通り、学習対象データの内、大多数を占める正常データが存在する領域(多様体)を縮約で求め、そこから所定の距離が離れている場合に異常が発生していると判定してよい(例えば、図9の値aおよび値bを参照)。なお、図9に示す、マハラノビス距離dは、以下の数式(1)で示される。なお、数式(1)における、Σは「分散共分散行列」で、xは「変数」で、μは「xの平均」であるとする。
【0060】
【数1】
【0061】
具体的には、図10において、T^2統計量は縮約した次元内(正常データが主要に存在している次元内)での距離を示しており、判定部135は、前述の距離に基づき異常値の判定を行う(例えば、図10の値aを参照)。他方で、Q統計量は縮約から漏れた次元(正常データが主要に存在してない次元内に飛び出ている値)の距離を示しており、判定部135は前述の距離に基づき異常値の判定を行う(例えば、図10の値bを参照)。
【0062】
他方で、判定部135は、尤度による判定として、確率密度の高いデータの主要領域から所定の距離が離れている場合に異常が発生していると判定してよい。また、判定部135は、PCAに基づく異常検知に限定されず、その他の方法を用いて異常の発生を判定してよい。例えば、生成モデルを用いる方法として、判定部135は、ニューラルネットワークを用いた縮約手法であるオートエンコーダや、GAN(Generative Adversarial Network)等を用いて、異常の発生を判定してよい。
【0063】
前述のオートエンコーダを用いる方法では、判定部135は、「入力→縮約→入力再構成」のうち再構成の誤差について、「学習後の再現性が低い場合、学習に用いた大多数の通常データと所定の距離が離れている異常サンプルを用いた学習が行われている」という前提に基づいて、異常度を判定してよい。他方、GANを用いる使う方法では、判定部135は、学習済みのdiscriminator(GANの生成物と、真のデータを正誤判定するモデル)を用いて、真のデータと判定されなければ異常が発生していると判定してよい。
【0064】
一例として、プラントプロセスデータを用いる場合、プラントが収集するセンサー値を、例えば時間窓で「センサー数×窓幅」次元をもつ多次元データとして処理して、それを入力とし通常の状態とどれだけ所定の距離が離れているかを、判定部135が前述した方法を用いて判定してよい。
【0065】
〔4-2.実施形態1の処理手順〕
次に、実施形態1における情報処理装置100の情報処理方法の手順について、図11を用いて説明する。まず、操作対象10は、運転データDb(説明変数)を収集する(ステップS101)。次に、判定部135は、異常検知アルゴリズム(例えば、PCA等を利用したもの)を用いて、運転データDb(説明変数)に生じる状態変化を判定する(ステップS102)。
【0066】
判定部135は、運転データDb(説明変数)に生じる変化が所定の範囲に含まれないと判定する(ステップS103のNo)。その場合、判定部135は、自動運転を停止する判定を行う(ステップS104)。そして、停止部136は、判定部135の判定に基づき自動運転を停止する(ステップS105)。続けて、表示部137は、ユーザUに自動運転が停止したことを表示し(ステップS106)、工程が終了する。
【0067】
他方、判定部135は、運転データDb(説明変数)に生じる状態変化が所定の範囲に含まれると判定する(ステップS103のYes)。その場合は工程を戻り、処理が継続する。
【0068】
〔5.実施形態2:推奨値による判定〕
次に、実施形態2として「推奨値による判定」について説明する。操作対象10の自動運転の精度低下発生時に、推奨値RDが変動する場合がある。そこで、実施形態2の判定部135は、推奨値RDが所定の範囲(例えば、最大最小閾値等)に存在するか否かに基づいて、自動運転の停止を判定する。
【0069】
〔5-1.実施形態2の情報処理装置の構成〕
実施形態2における情報処理装置100の装置構成は、前述の実施形態と同様である。したがって、本項目では差異として判定部135の付加的機能のみ説明し、それ以外の詳細な説明は省略する。
【0070】
(判定部135)
実施形態2における判定部135は、所定の条件として、操作対象10の運転に関する履歴データDaを用いた学習モデル20に基づき推論される推奨値RDが、最大最小閾値の範囲に含まれない場合に自動運転の停止の判定をする。なお、判定部135は、最大最小閾値の範囲について必要に応じて任意の範囲を設定してよい。また、判定部135は、その他の判定方法として、例えば、従来の操作量(真値)を学習データとしてモデルを学習して異常検知を行う方法や、discriminatorまたは異常検知アルゴリズムを用いて従来の操作量(真値)か推奨値RDかを識別する分類を行う方法、等を用いてもよい。
【0071】
〔5-2.実施形態2の処理手順〕
次に、実施形態2における情報処理装置100の情報処理方法の手順について、図12を用いて説明する。まず、操作対象10は、運転データDbを収集する(ステップS201)。次に、取得部131は、履歴検索用キーを用いて、操作対象10の運転実施時点における運転データDbと類似の履歴データDaを履歴データ記憶部121から取得する(ステップS202)。
【0072】
学習部132は、取得部131が取得した類似の履歴データDaを用いて学習モデル20の学習を実施する(ステップS203)。続けて、更新部133は、学習モデル20を更新する(ステップS204)。そして、推論部134は、運転データDb(説明変数)を入力とする更新された学習モデル20に基づき推奨値RDを推論する(ステップS205)。
【0073】
判定部135は、推論された推奨値RDが所定の範囲(例えば、最大最小閾値等)に含まれないと判定する(ステップS206のNo)。その場合、判定部135は、自動運転を停止する判定を行う(ステップS207)。そして、停止部136は、判定部135の判定に基づき自動運転を停止する(ステップS208)。続けて、表示部137は、ユーザUに自動運転が停止したことを表示し(ステップS209)、工程が終了する。
【0074】
他方、判定部135は、推論された推奨値RDが所定の範囲(例えば、最大最小閾値等)に含まれると判定する(ステップS206のYes)。その場合は工程を戻り、処理が継続する。
【0075】
〔6.実施形態3:推奨値の変化率による判定〕
次に、実施形態3として「推奨値の変化率による判定」について説明する。操作対象10の自動運転の精度低下発生時に、推奨値RDについても変動する場合がある。そこで、実施形態3の判定部135は、推奨値RDの所定の期間における変化率が所定の範囲(例えば、差分変化量閾値等)に存在するか否かに基づいて、自動運転の停止を判定する。
【0076】
〔6-1.実施形態3の情報処理装置の構成〕
実施形態3における情報処理装置100の装置構成は、前述の実施形態と同様である。したがって、本項目では差異として判定部135の付加的機能のみ説明し、それ以外の詳細な説明は省略する。
【0077】
(判定部135)
実施形態3における判定部135は、所定の条件として、操作対象10の運転に関する履歴データDaを用いた学習モデル20に基づき推論される推奨値RDの変化率が、差分変化量閾値の範囲に含まれない場合に自動運転の停止の判定をする。なお、判定部135は、差分変化量閾値の範囲について必要に応じて任意の範囲を設定してよい。また、判定部135は、その他の判定方法として、例えば、従来の操作量(真値)を学習データとしてモデルを学習して異常検知を行う方法や、discriminatorまたは異常検知アルゴリズムを用いて従来の操作量(真値)か推奨値RDかを識別する分類を行う方法、等を用いてもよい。
【0078】
〔6-2.実施形態3の処理手順〕
次に、実施形態3における情報処理装置100の情報処理方法の手順について、図13を用いて説明する。まず、操作対象10は、運転データDbを収集する(ステップS301)。次に、取得部131は、履歴検索用キーを用いて、操作対象10の運転実施時点における運転データDbと類似の履歴データDaを履歴データ記憶部121から取得する(ステップS302)。
【0079】
学習部132は、取得部131が取得した類似の履歴データDaを用いて学習モデル20の学習を実施する(ステップS303)。続けて、更新部133は、学習モデル20を更新する(ステップS304)。そして、推論部134は、運転データDb(説明変数)を入力とする更新された学習モデル20に基づき推奨値RDを推論する(ステップS305)。
【0080】
判定部135は、推論された推奨値RDの所定の期間における変化率が所定の範囲(例えば、差分変化量閾値等)に含まれないと判定する(ステップS306のNo)。その場合、判定部135は、自動運転を停止する判定をする(ステップS307)。そして、停止部136は、判定部135の判定に基づき自動運転を停止する(ステップS308)。続けて、表示部137は、ユーザUに自動運転が停止したことを表示し(ステップS309)、工程が終了する。
【0081】
他方、判定部135は、推論された推奨値RDの所定の期間における変化率が所定の範囲(例えば、差分変化量閾値等)に含まれると判定する(ステップS306のYes)。その場合は工程を戻り、処理が継続する。
【0082】
〔7.実施形態4:アンサンブル分散閾値による判定〕
次に、実施形態4として「アンサンブル分散閾値による判定」について説明する。操作対象10の自動運転の精度低下発生時に、更新された複数の学習モデル20に基づき推論される複数の推奨値RDの分散が大きくなる場合がある。そこで、実施形態4の判定部135は、複数の学習モデル20に基づき推論される複数の推奨値RDの分散について、前述の分散が所定の閾値(例えば、アンサンブルモデルの分散閾値等)を超えるか否かに基づいて、自動運転の停止を判定する。
【0083】
〔7-1.実施形態4の情報処理装置の構成〕
実施形態4における情報処理装置100の装置構成は、前述の実施形態と同様である。したがって、本項目では差異として判定部135の付加的機能のみ説明し、それ以外の詳細な説明は省略する。
【0084】
(判定部135)
実施形態4における判定部135は、所定の条件として、操作対象10の運転に関する履歴データDaを用いた複数の学習モデル20に基づき推論される複数の推奨値RDの分散が所定の範囲に含まれない場合に自動運転の停止の判定をする。なお、判定部135は、前述の所定の範囲について必要に応じて任意の範囲を設定してよい。
【0085】
〔7-2.実施形態4の処理手順〕
次に、実施形態4における情報処理装置100の情報処理方法の手順について、図14を用いて説明する。なお、本項目では学習モデル20および学習モデル20に基づき推論される推奨値RDが複数存在する前提で説明を行う。また、実施形態4以外の実施形態(実施形態1から実施形態3および後述の実施形態5と実施形態6)についても、複数の学習モデル20および推奨値RDが存在していてもよい。
【0086】
まず、操作対象10は、運転データDbを収集する(ステップS401)。次に、取得部131は、履歴検索用キーを用いて、操作対象10の運転実施時点における運転データDbと類似の履歴データDaを履歴データ記憶部121から取得する(ステップS402)。
【0087】
学習部132は、取得部131が取得した類似の履歴データDaを用いて学習モデル20の学習を実施する(ステップS403)。続けて、更新部133は、複数の学習モデル20を更新する(ステップS404)。そして、推論部134は、運転データDb(説明変数)を入力とする更新された学習モデル20に基づき推奨値RDを推論する(ステップS405)。
【0088】
判定部135は、学習モデル20の分散が所定の範囲に含まれない、言い換えると複数の学習モデル20に基づき推論される複数の推奨値RDの分散について、前述の分散が所定の閾値(例えば、アンサンブルモデルの分散閾値等)を超えると判定する(ステップS406のNo)。その場合、判定部135は、自動運転を停止する判定をする(ステップS407)。そして、停止部136は、判定部135の判定に基づき自動運転を停止する(ステップS408)。続けて、表示部137は、ユーザUに自動運転が停止したことを表示し(ステップS409)、工程が終了する。
【0089】
他方、判定部135は、学習モデル20の分散が所定の範囲に含まれる、言い換えると複数の学習モデル20に基づき推論される複数の推奨値RDの分散について、前述の分散が所定の閾値(例えば、アンサンブルモデルの分散閾値等)を超えない判定する(ステップS406のYes)。その場合は工程を戻り、処理が継続する。
【0090】
〔8.実施形態5:推奨値の予測分散による判定〕
次に、実施形態5として「推奨値の予測分散による判定」について説明する。操作対象10の自動運転の精度低下発生時に、推論部134が推論する推奨値RDが事後分布を有している場合、推奨値RDの予測分散が大きくなる場合がある。そこで、実施形態5の判定部135は、前述の推奨値RDの事後分布の予測分散が所定の閾値(例えば、予測分散閾値等)を超えるか否かに基づいて、自動運転の停止を判定する。
【0091】
〔8-1.実施形態5の情報処理装置の構成〕
実施形態5における情報処理装置100の装置構成は、前述の実施形態と同様である。したがって、本項目では差異として判定部135の付加的機能のみ説明し、それ以外の詳細な説明は省略する。
【0092】
(判定部135)
実施形態5における判定部135は、操作対象10の運転に関する履歴データDaを用いた学習モデル20に基づき推論される推奨値RDが事後分布を有する場合、所定の条件として、推奨値RDの予測分散が所定の範囲に含まれない場合に自動運転の停止の判定をする。なお、判定部135は、前述の所定の範囲について必要に応じて任意の範囲を設定してよい。
【0093】
〔8-2.実施形態5の処理手順〕
次に、実施形態5における情報処理装置100の情報処理方法の手順について、図15を用いて説明する。なお、実施形態5の処理手順において、推論される推奨値RDは事後分布を有する前提で説明を行う。
【0094】
まず、操作対象10は、運転データDbを収集する(ステップS501)。次に、取得部131は、履歴検索用キーを用いて、操作対象10の運転実施時点における運転データDbと類似の履歴データDaを履歴データ記憶部121から取得する(ステップS502)。
【0095】
学習部132は、取得部131が取得した類似の履歴データDaを用いて学習モデル20の学習を実施する(ステップS503)。続けて、更新部133は、学習モデル20を更新する(ステップS504)。そして、推論部134は、運転データDb(説明変数)を入力とする更新された学習モデル20に基づき推奨値RDを推論する(ステップS505)。
【0096】
判定部135は、推奨値RDの事後分布の予測分散が所定の範囲に含まれない、言い換えると推奨値RDの事後分布の予測分散が所定の閾値(例えば、予測分散閾値等)を超えると判定する(ステップS506のNo)。その場合、判定部135は、自動運転を停止する判定をする(ステップS507)。そして、停止部136は、判定部135の判定に基づき自動運転を停止する(ステップS508)。続けて、表示部137は、ユーザUに自動運転が停止したことを表示し(ステップS509)、工程が終了する。
【0097】
他方、判定部135は、推奨値RDの事後分布の予測分散が所定の範囲に含まれる、言い換えると推奨値RDの事後分布の予測分散が所定の閾値(例えば、予測分散閾値等)を超えない判定する(ステップS506のYes)。その場合は工程を戻り、処理が継続する。
【0098】
〔9.実施形態6:操作対象の評価指標による判定〕
次に、実施形態6として「操作対象の評価指標による判定」について説明する。操作対象10の自動運転の精度低下発生時に、操作対象10の評価指標(例えば、操作対象10の生産量、安定度等)が変動する場合がある。そこで、実施形態6の判定部135は、操作対象10の評価指標が所定の閾値(例えば、評価指標閾値等)を超えるか否かに基づいて、自動運転の停止を判定する。
【0099】
〔9-1.実施形態6の情報処理装置の構成〕
実施形態6における情報処理装置100の装置構成は、前述の実施形態と同様である。したがって、本項目では差異として判定部135の付加的機能のみ説明し、それ以外の詳細な説明は省略する。
【0100】
(判定部135)
実施形態6における判定部135は、所定の条件として、操作対象10の評価指標が所定の範囲に含まれない場合に自動運転の停止の判定をする。なお、判定部135は、前述の所定の範囲について必要に応じて任意の範囲を設定してよい。
【0101】
〔9-2.実施形態6の処理手順〕
次に、実施形態6における情報処理装置100の情報処理方法の手順について、図16を用いて説明する。まず、操作対象10は、運転データDbを収集する(ステップS601)。次に、取得部131は、履歴検索用キーを用いて、操作対象10の運転実施時点における運転データDbと類似の履歴データDaを履歴データ記憶部121から取得する(ステップS602)。
【0102】
学習部132は、取得部131が取得した類似の履歴データDaを用いて学習モデル20の学習を実施する(ステップS603)。続けて、更新部133は、学習モデル20を更新する(ステップS604)。そして、推論部134は、運転データDb(説明変数)を入力とする更新された学習モデル20に基づき推奨値RDを推論する(ステップS605)。その後、自動運転制御部138は、推論される推奨値RDを用いて自動運転を実施する(ステップS606)。
【0103】
判定部135は、自動運転の結果得られる操作対象10の評価指標が所定の範囲に含まれない、言い換えると操作対象10の評価指標が所定の閾値(例えば、評価指標閾値等)を超えると判定する(ステップS607のNo)。その場合、判定部135は、自動運転を停止する判定をする(ステップS608)。そして、停止部136は、判定部135の判定に基づき自動運転を停止する(ステップS609)。続けて、表示部137は、ユーザUに自動運転が停止したことを表示し(ステップS610)、工程が終了する。
【0104】
他方、判定部135は、操作対象10の評価指標が所定の範囲に含まれる、言い換えると操作対象10の評価指標が所定の閾値(例えば、評価指標閾値等)を超えないと判定する(ステップS607のYes)。その場合は工程を戻り、処理が継続する。
【0105】
〔10.効果〕
従来技術では、ユーザUは、運転データDbを入力とする学習モデル20に基づき推論される推奨値RDを用いて、操作対象10を手動で操作する。ここで、図17を用いて、従来技術による推奨値RDの提示と、ユーザUによる操作対象10の手動操作について説明を行う。
【0106】
図17では、従来技術における情報処理装置1は、操作対象10の運転データDb(例えば、温度、圧力、流量、原料投入量、生成量等)と類似または関係する過去の履歴データDa(例えば、温度、圧力、流量、原料投入量、生成量等、ユーザによる操作履歴等)を用いて学習モデル20を学習する(図17の(1)を参照)。次に、情報処理装置1は、運転データDbを入力とする(図17の(2)を参照)、前述の学習モデル20に基づき推論される推奨値RDをガイダンス画面30に表示し、ユーザUに対してレコメンドする(図17の(3)を参照)。そして、ユーザUは、情報処理装置1からの表示に基づき、手動で操作対象10を操作する(図17の(4)を参照)。
【0107】
前述したように、従来技術では、ユーザUが提示される推奨値RDに基づいて操作対象10を手動操作するため、推奨値RDの精度が変化した際でも、ユーザU自身が運転の継続または停止判断を行うことが可能であった。しかしながら、ユーザUを介さない自動運転時に推奨値RDの精度判定を行うことが難しく、推奨値RDの精度が変化した場合でも適切なタイミングで手動運転への切り替えを判断することが難しい場合があった。
【0108】
そこで、本実施形態における情報処理装置100は、操作対象10の自動運転の精度に関するデータが所定の条件を満たす場合に、操作対象10の自動運転の稼働についての判定を行い、判定部135の判定結果に基づき、操作対象10の自動運転を停止する。そのため、本実施形態によれば情報処理装置100は、下記の効果を奏する。
【0109】
情報処理装置100は、操作対象10の自動運転の精度が変化した場合における手動運転への切り替えのタイミングの判断を容易とする、という効果を奏する。
【0110】
さらに、情報処理装置100は、操作対象10の運転に関するデータに基づいて、動的に自動運転の継続可否を判定することにより、ユーザUの経験や熟練度、スキル等に左右されずに自動運転の停止を行うことで、安全な自動運転の停止が可能となる、という効果を奏する。
【0111】
〔11.ハードウェア構成〕
図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示のように構成されていることを要しない。すなわち、各装置の分散・統合の具体的形態は図示のものに限られず、その全部または一部を、各種の負荷や使用状況等に応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。さらに、各装置にて行われる各処理機能は、その全部または任意の一部が、CPUおよび当該CPUにて解析実行されるプログラムにて実現され、あるいは、ワイヤードロジックによるハードウェアとして実現され得る。
【0112】
また、本実施形態において説明した各処理のうち、自動的に行われるものとして説明した処理の全部または一部を公知の方法で手動的に行うこともできる。この他、図面中で示した処理手順、制御手順、具体的名称、各種のデータやパラメータを含む情報については、特記する場合を除いて任意に変更することができる。
【0113】
[プログラム]
一実施形態として、情報処理装置100は、パッケージソフトウェアやオンラインソフトウェアとして、前述した情報処理方法を実行する情報処理プログラムを、所望のコンピュータにインストールさせることによって実装できる。例えば、上記の情報処理プログラムを情報処理装置に実行させることにより、情報処理装置100として機能させることができる。ここで言う情報処理装置には、デスクトップ型またはノート型のパーソナルコンピュータが含まれる。また、その他にも、情報処理装置にはスマートフォン、携帯電話機等の移動体通信端末、さらには、PDA(Personal Digital Assistant)等のスレート端末等がその範疇に含まれる。
【0114】
図18は、情報処理装置100が実現されるコンピュータの一例を示す図である。コンピュータ1000は、例えば、メモリ1010、CPU1020を有する。また、コンピュータ1000は、ハードディスクドライブインタフェース1030、ディスクドライブインタフェース1040、シリアルポートインタフェース1050、ビデオアダプタ1060、ネットワークインタフェース1070を有する。これらの各部は、バス1080によって接続される。
【0115】
メモリ1010は、ROM(Read Only Memory)1011およびRAM1012を含む。ROM1011は、例えば、BIOS(Basic Input Output System)等のブートプログラムを記憶する。ハードディスクドライブインタフェース1030は、ハードディスクドライブ1090に接続される。ディスクドライブインタフェース1040は、ディスクドライブ1100に接続される。例えば磁気ディスクや光ディスク等の着脱可能な記憶媒体が、ディスクドライブ1100に挿入される。シリアルポートインタフェース1050は、例えばマウス1110、キーボード1120に接続される。ビデオアダプタ1060は、例えばディスプレイ1130に接続される。
【0116】
ハードディスクドライブ1090は、例えば、OS1091、アプリケーションプログラム1092、プログラムモジュール1093、プログラムデータ1094を記憶する。すなわち、情報処理装置100の各処理を規定するプログラムは、コンピュータにより実行可能なコードが記述されたプログラムモジュール1093として実装される。プログラムモジュール1093は、例えばハードディスクドライブ1090に記憶される。例えば、情報処理装置100における機能構成と同様の処理を実行するためのプログラムモジュール1093が、ハードディスクドライブ1090に記憶される。なお、ハードディスクドライブ1090は、SSD(Solid State Drive)により代替されてもよい。
【0117】
また、前述した実施形態の処理で用いられる設定データは、プログラムデータ1094として、例えばメモリ1010やハードディスクドライブ1090に記憶される。そして、CPU1020は、メモリ1010やハードディスクドライブ1090に記憶されたプログラムモジュール1093やプログラムデータ1094を必要に応じてRAM1012に読み出して、前述した実施形態の処理を実行する。
【0118】
なお、プログラムモジュール1093やプログラムデータ1094は、ハードディスクドライブ1090に記憶される場合に限らず、例えば着脱可能な記憶媒体に記憶され、ディスクドライブ1100等を介してCPU1020によって読み出されてもよい。あるいは、プログラムモジュール1093およびプログラムデータ1094は、ネットワーク(LAN、WAN(Wide Area Network)等)を介して接続された他のコンピュータに記憶されてもよい。そして、プログラムモジュール1093およびプログラムデータ1094は、他のコンピュータから、ネットワークインタフェース1070を介してCPU1020によって読み出されてもよい。
【0119】
〔12.その他〕
以上、本実施形態について説明したが、本実施形態は、開示の一部をなす記述および図面により限定されることはない。すなわち、本実施形態に基づいて当業者等によりなされる他の実施形態、実施例および運用技術等は全て本実施形態の範疇に含まれる。
【符号の説明】
【0120】
1 情報処理装置
10 操作対象
10a 操作対象
10b 操作対象
20 学習モデル
30 ガイダンス画面
100 情報処理装置
110 通信部
120 記憶部
121 履歴データ記憶部
122 モデル記憶部
123 推奨値記憶部
130 制御部
131 取得部
132 学習部
133 更新部
134 推論部
135 判定部
136 停止部
137 表示部
138 自動運転制御部
U ユーザ
Da 履歴データ
Db 運転データ
RD 推奨値
SA 画面
SB 画面
SC1 表示
SC2 表示
SC3 表示
SC4 表示
1000 コンピュータ
1010 メモリ
1011 ROM
1012 RAM
1020 CPU
1030 ハードディスクドライブインタフェース
1040 ディスクドライブインタフェース
1050 シリアルポートインタフェース
1060 ビデオアダプタ
1070 ネットワークインタフェース
1080 バス
1090 ハードディスクドライブ
1091 OS
1092 アプリケーションプログラム
1093 プログラムモジュール
1094 プログラムデータ
1100 ディスクドライブ
1110 マウス
1120 キーボード
【要約】
【課題】操作対象の自動運転の精度が変化した場合における手動運転への切り替えのタイミングの判断を容易にする。
【解決手段】情報処理装置100は、操作対象の自動運転の精度に関するデータが所定の条件を満たす場合に、操作対象の自動運転の稼働についての判定を行い、判定結果に基づき、操作対象の自動運転を停止する。
【選択図】図1
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18