(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-01-29
(45)【発行日】2024-02-06
(54)【発明の名称】個別患者データ及び治療脳ネットワークマップを用いた有効性及び/または治療パラメータ推薦
(51)【国際特許分類】
A61B 5/372 20210101AFI20240130BHJP
A61B 5/055 20060101ALI20240130BHJP
A61B 5/05 20210101ALI20240130BHJP
G01T 1/161 20060101ALI20240130BHJP
【FI】
A61B5/372
A61B5/055 390
A61B5/055 380
A61B5/05
G01T1/161 A
G01T1/161 B
(21)【出願番号】P 2020525846
(86)(22)【出願日】2018-11-09
(86)【国際出願番号】 US2018060186
(87)【国際公開番号】W WO2019094836
(87)【国際公開日】2019-05-16
【審査請求日】2021-11-09
(32)【優先日】2017-11-10
(33)【優先権主張国・地域又は機関】US
【前置審査】
(73)【特許権者】
【識別番号】519211513
【氏名又は名称】エルビス・コーポレイション
【氏名又は名称原語表記】LVIS Corporation
【住所又は居所原語表記】2600 E Bayshore Road, Palo Alto, CA 94303, United States of America
(74)【代理人】
【識別番号】100114890
【氏名又は名称】アインゼル・フェリックス=ラインハルト
(74)【代理人】
【識別番号】100098501
【氏名又は名称】森田 拓
(74)【代理人】
【識別番号】100116403
【氏名又は名称】前川 純一
(74)【代理人】
【識別番号】100134315
【氏名又は名称】永島 秀郎
(74)【代理人】
【識別番号】100162880
【氏名又は名称】上島 類
(72)【発明者】
【氏名】ジョンナン・ファン
(72)【発明者】
【氏名】ジンヒョン・リー
【審査官】北島 拓馬
(56)【参考文献】
【文献】米国特許出願公開第2011/0119212(US,A1)
【文献】特表2002-502270(JP,A)
【文献】米国特許出願公開第2016/0019693(US,A1)
【文献】米国特許出願公開第2016/0375248(US,A1)
【文献】米国特許出願公開第2014/0243714(US,A1)
【文献】米国特許出願公開第2014/0128762(US,A1)
【文献】米国特許出願公開第2011/0218950(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 5/05 - 5/0538
A61B 5/055
A61B 5/24 - 5/398
A61B 9/00 -10/06
G01T 1/161- 1/166
G06Q 50/22
G16H 10/00 -80/00
(57)【特許請求の範囲】
【請求項1】
プロセッサで、患者の脳に関する個別患者データを受け取るステップであって、前記個別患者データは、神経学的事象によって影響を受ける脳の領域を示す、ステップと、
前記プロセッサで、機能的磁気共鳴画像法(fMRI)、陽電子放出断層撮影法(PET)、単一光子放出断層撮影法(SPECT)、またはそれらの組み合わせから、データを受け取るステップと、
前記プロセッサにより、治療に関する治療脳ネットワーク反応マップを生成するステップであって、前記治療脳ネットワーク反応マップは前記治療に対する脳反応を示し、前記データをテンプレートの脳に対応付けるステップを含むステップと、
前記プロセッサが、前記個別患者データと前記治療脳ネットワーク反応マップとの、畳み込みカーネルを用いた比較に基づいて、前記患者に対する前記治療の有効性を予測するステップと、
を備え、
前記治療の有効性を予測するステップは、
統計的予測モデルにより、前記個別患者データ及び前記治療脳ネットワーク反応マップから特徴量を抽出するステップと、
前記統計的予測モデルにより、前記個別患者データから抽出した特徴量と、前記治療脳ネットワーク反応マップから抽出した特徴量とを比較するステップと、
前記統計的予測モデルを用いて前記治療の有効性を予測するステップと、
を含む、
方法。
【請求項2】
前記特徴量は、前記個別患者データの前記領域と前記治療脳ネットワーク反応マップとの重なり領域を含み、
前記重なり領域がより大きいときに、予測される前記有効性がより大きい、
請求項1に記載の方法。
【請求項3】
前記統計的予測モデルにより前記特徴量を抽出するステップは、前記個別患者データ及び前記治療脳ネットワーク反応マップから特徴量を抽出するために畳み込みカーネルを用いるステップを含む、請求項1に記載の方法。
【請求項4】
前記畳み込みカーネルの値は、前記治療のための前記統計的予測モデルの訓練中に学習される、請求項3に記載の方法。
【請求項5】
前記個別患者データ及び前記治療脳ネットワーク反応マップに各畳み込みカーネルを繰り返し乗算するステップと、
結果を複数の特徴マップにおけるピクセルとして保持するステップと、
をさらに備える、請求項3に記載の方法。
【請求項6】
前記統計的予測モデルにより前記特徴量を抽出するステップは、前記特徴マップに、積層畳み込み、正規化線形関数、及びプーリング層を含む深層畳み込みニューラルネットワークを適用するステップをさらに備える、請求項
5に記載の方法。
【請求項7】
前記プロセッサが、前記統計的予測モデルおよび各々が前記治療のためのパラメータの異なるセットに対応する複数の治療脳ネットワーク反応マップを用いて前記治療のためのパラメータを予測するステップ、をさらに含む、請求項1から6までのいずれか1項に記載の方法。
【請求項8】
前記個別患者データは、てんかん性スパイク、または発作の発生及び伝搬における脳領域と前記脳領域の間の経路とを示す発作ネットワーク画像のデータを含む、請求項1から7までのいずれか1項に記載の方法。
【請求項9】
前記個別患者データを、脳波図(EEG)または脳磁図(MEG)から受け取り、
前記治療脳ネットワーク反応マップを、機能的磁気共鳴画像法(fMRI)システム、陽電子放出断層撮影法(PET)システム、及び/または単一光子放出断層撮影法(SPECT)システムから受け取る、
請求項1から8までのいずれか1項に記載の方法。
【請求項10】
前記個別患者データは、グループ平均化スパイク及び信号源推定、スパイクICA分析及び信号源推定、発作ネットワーク分析、脳領域上へ投影されたデータ、神経状態に関与する特定された脳領域、発作脳領域間の計算された経路、またはそれらの組み合わせ、を含む、請求項1から9までのいずれか1項に記載の方法。
【請求項11】
前記プロセッサが、前記比較するステップにより予測された前記治療の前記有効性を示す予測スコアを提供するステップをさらに備える、請求項1から10までのいずれか1項に記載の方法。
【請求項12】
少なくとも1つのプロセッサと、
命令がエンコードされたコンピュータ可読媒体と、
を備えるシステムであって、
前記命令が前記少なくとも1つのプロセッサによって実行されることにより、
患者の脳に関する個別患者データ及び治療脳ネットワーク反応マップを提供し、及び
前記個別患者データと前記治療脳ネットワーク反応マップとの、畳み込みカーネルを用いた比較に基づいて、前記患者に対す
る治療の有効性を予測し、
前記個別患者データは、神経学的事象によって影響を受ける1つ以上の脳の領域を示し、
前記治療脳ネットワーク反応マップは
前記治療に対する脳反応を示し、
前記治療脳ネットワーク反応マップは、前記治療によって影響を受ける脳の領域の活性化の頻度、前記治療によって影響を受ける前記脳の領域の平均信号値、またはそれらの組み合わせを示し、
前記治療の有効性を予測するために、前記システムは、
統計的予測モデルにより、前記個別患者データ及び前記治療脳ネットワーク反応マップから特徴量を抽出し、
前記統計的予測モデルにより、前記個別患者データから抽出した特徴量と、前記治療脳ネットワーク反応マップから抽出した特徴量とを比較し、
前記統計的予測モデルを用いて前記治療の有効性を予測する、
システム。
【請求項13】
前記統計的予測モデルは、前記個別患者データ及び前記治療脳ネットワーク反応マップから特徴量を抽出するように構成された畳み込みカーネルを備える、請求項12に記載のシステム。
【請求項14】
前記畳み込みカーネルの値は、前記治療のための前記統計的予測モデルの訓練中に学習される、請求項13に記載のシステム。
【請求項15】
前記命令により、さらに、
前記個別患者データ及び前記治療脳ネットワーク反応マップに各畳み込みカーネルを繰り返し乗算し、及び
結果を複数の特徴マップにおけるピクセルとして保持する、
請求項13または14に記載のシステム。
【請求項16】
前記システムはさらに前記複数の特徴マップからさらなる特徴量を抽出するように構成された、積層畳み込み、正規化線形関数、及びプーリング層を含む深層畳み込みニューラルネットワークが実装されている、請求項15に記載のシステム。
【請求項17】
前記命令により、さらに、前記統計的予測モデルおよび各々が前記治療のためのパラメータの異なるセットに対応する複数の治療脳ネットワーク反応マップを用いて前記治療のためのパラメータを予測する、請求項12から16までのいずれか1項に記載のシステム。
【請求項18】
前記個別患者データは、発作の発生源を示すてんかん信号源画像のデータを含む、請求項12から17までのいずれか1項に記載のシステム。
【請求項19】
前記個別患者データを提供するように構成された、前記少なくとも1つのプロセッサに接続された脳波図(EEG)システム、または前記少なくとも1つのプロセッサに接続された脳磁図(MEG)システムと、
前記少なくとも1つのプロセッサに接続され、前記治療脳ネットワーク反応マップを提供するように構成された、機能的磁気共鳴画像法(fMRI)システムと、
をさらに備える、請求項12から18までのいずれか1項に記載のシステム。
【発明の詳細な説明】
【関連出願の相互参照】
【0001】
本願は、2017年11月10日に出願された米国仮出願第62/584,669号に基づく優先権を主張しており、目的に応じて、その全体が参照されることにより本明細書に援用される。
【技術分野】
【0002】
本明細書に記載される例は、一般に神経治療に関し、神経刺激療法といった治療の有効性及び/またはパラメータを予測する例が記載される。
【背景技術】
【0003】
神経刺激は、てんかん、うつ病、パーキンソン病、アルツハイマー病を含む神経疾患に対する有望な治療法として期待されている。しかし、現在のところ、インプラント前に治療の有効性を予測する方法はない。その上、神経疾患は個人差があるため(例えば、てんかん患者間では発作を引き起こす脳の異常部位が異なる)、個々の患者に最も効果的な刺激設定を特定するために、神経刺激パラメータの調整を繰り返す必要がある。この長く単調なパラメータ調整作業は、医療コストを大幅に増加させ、医師と患者の双方にフラストレーションを与えている。また、多くの否定的な事例はパラメータ調整を早期に終了した結果であるため、パラメータ調整作業は神経刺激療法の全体的な有効性を低下させている。
【発明の概要】
【0004】
本明細書には種々の方法の例が記載される。例示的な方法は、患者の神経状態に関する個別患者データを取得すること、治療に関する治療脳ネットワーク反応マップを取得すること、及び神経状態のデータと脳ネットワーク反応マップとの比較に基づいて、患者に対する治療の有効性を予測することを含み得る。
【0005】
いくつかの例において、治療の有効性を予測することは、治療のための統計的予測モデルへの入力として、個別患者データ及び治療脳ネットワーク反応マップを提供すること、及び統計的予測モデルを用いて治療の有効性を予測することを含み得る。
【0006】
いくつかの例において、統計的予測モデルは、神経状態に関する個別患者データ及び脳ネットワーク反応マップから特徴量を抽出するように構成された特徴量抽出技術を含み得る。
【0007】
いくつかの例において、特徴量は、個別患者データと脳ネットワーク反応マップとの重なり領域を含み得る。
【0008】
いくつかの例において、統計的予測モデルは、神経状態の個別患者データ及び治療脳ネットワーク反応マップから特徴量を抽出するように構成された畳み込みカーネルを備え得る。
【0009】
いくつかの例において、畳み込みカーネルにおける値は、治療のための統計的予測モデルの訓練中に学習される。
【0010】
いくつかの例において、方法は、個別患者データ及び治療脳ネットワーク反応マップに各畳み込みカーネルを繰り返し乗算すること、及び結果を複数の特徴マップにおけるピクセルとして保持することを含み得る。
【0011】
いくつかの例において、統計的予測モデルは、特徴マップからさらなる特徴量を抽出するように構成された、積層畳み込み、正規化線形関数、及びプーリング層を含む深層畳み込みニューラルネットワークを備え得る。
【0012】
いくつかの例において、方法は、特徴マップからのさらなる特徴量に基づいて有効性を予測することを含み得る。
【0013】
いくつかの例において、方法は、統計的予測モデルを用いて治療のためのパラメータを予測することを含み得る。
【0014】
いくつかの例において、治療は迷走神経刺激を含み、神経状態は発作を含み得る。
【0015】
いくつかの例において、神経状態の個別患者データは、てんかん性スパイク、または発作の発生及び伝搬における脳領域と当該脳領域の間の経路とを示す発作ネットワーク画像のデータを含む。
【0016】
いくつかの例において、神経状態の個別患者データを取得することは、脳波図(EEG)または脳磁図(MEG)を使用することを含み、治療脳ネットワーク反応マップを取得することは、機能的磁気共鳴画像法(fMRI)、陽電子放出断層撮影法(PET)、及び/または単一光子放出断層撮影法(SPECT)を使用することを含む。
【0017】
いくつかの例において、神経状態の個別患者データを取得することは、グループ平均化スパイク及び信号源推定を使用すること、スパイクICA分析及び信号源推定を使用すること、発作ネットワーク分析を使用すること、またはそれらの組み合わせを含む。
【0018】
いくつかの例において、個別患者データを取得することは、脳領域上にデータを投影すること、神経状態に関与する脳領域を特定すること、発作脳領域間の経路を計算すること、またはそれらの組み合わせを含む。
【0019】
いくつかの例において、治療脳ネットワーク反応マップは、特定のパラメータのセットを使用する治療に対する脳の反応に対応する。
【0020】
本明細書に種々のシステムの例が記載される。例示的なシステムは、少なくとも1つのプロセッサと、命令がエンコードされたコンピュータ可読媒体とを備え得る。当該命令が少なくとも1つのプロセッサによって実行されることにより、治療のための統計的予測モデルへの入力として、患者の神経状態の画像データ及び治療脳ネットワーク反応マップを提供し、統計的予測モデルを用いて治療の有効性を予測する。
【0021】
いくつかの例において、統計的予測モデルは、神経状態の個別患者データ及び治療脳ネットワーク反応マップから特徴量を抽出するように構成された畳み込みカーネルを備え得る。
【0022】
いくつかの例において、畳み込みカーネルにおける値は、治療のための統計的予測モデルの訓練中に学習される。
【0023】
いくつかの例において、システムはさらに、命令により、個別患者データ及び治療脳ネットワーク反応マップに各畳み込みカーネルを繰り返し乗算し、結果を複数の特徴マップにおけるピクセルとして保持し得る。
【0024】
いくつかの例において、統計的予測モデルは、特徴マップからさらなる特徴量を抽出するように構成された、積層畳み込み、正規化線形関数、及びプーリング層を含む深層畳み込みニューラルネットワークを備え得る。
【0025】
いくつかの例において、システムはさらに、命令により、特徴マップからのさらなる特徴量に基づいて有効性を予測し得る。
【0026】
いくつかの例において、システムはさらに、命令により、統計的予測モデルを用いて治療のためのパラメータを予測し得る。
【0027】
いくつかの例において、治療は迷走神経刺激を含み得、神経状態は発作を含み得る。
【0028】
いくつかの例において、神経状態のデータは、発作の発生源を示すてんかん信号源画像のデータを含む。
【0029】
いくつかの例において、システムは、画像データを提供するように構成された、少なくとも1つのプロセッサに接続された脳波図(EEG)システムまたは少なくとも1つのプロセッサに接続された脳磁図(MEG)システムと、少なくとも1つのプロセッサに接続されて治療脳ネットワーク反応マップを提供するように構成された機能的磁気共鳴画像法(fMRI)システムとをさらに備え得る。
【図面の簡単な説明】
【0030】
【
図1】本明細書に記載の例に従って構成されたシステムの概略図
【
図2】本明細書に記載の例による統計的予測モデルプロセス200を説明する図
【
図3】本明細書に記載の例による統計的予測モデルプロセス300を説明する図
【
図4】本明細書に記載の例による画像セット400を説明する図
【
図5】本明細書に記載の例によるてんかん性スパイクまたは発作ネットワーク分析の概略図
【
図6】本明細書に記載の例に従って構成された、神経刺激有効性予測のための画素単位で特徴量を抽出するモデルを説明する図
【発明を実施するための形態】
【0031】
記載された実施形態の十分な理解を提供するために、特定の詳細が以下に説明される。しかしながら、実施形態がこれらの特定の詳細なしに実施可能であることは、当業者には明らかであろう。いくつかの例では、記載された実施形態を不必要に不明瞭にすることを避けるために、周知の脳イメージング技術及びシステム、回路、制御信号、タイミングプロトコル、及び/またはソフトウェアの動作は、詳細に示されていない。
【0032】
本明細書に記載されるシステム及び方法の例は、治療(例えば、神経刺激、薬物、細胞治療、遺伝子治療)の有効性を予測し得る。このことは、不必要な治療(例えば、神経刺激インプラント手術)を避けることに役立ち得る。本明細書に記載されたシステム及び方法の例は、手術前または手術後に、個々の患者に対して最も効果的な治療パラメータ(例えば、刺激パラメータ)を予測することで、長い単調な刺激パラメータ調整プロセスを回避することができる。
【0033】
本明細書に記載される例は、脳信号源イメージング(brain source imaging)及び/または脳ネットワーク解析に基づく統計的予測モデルを利用し得る。頭皮で記録された電位時系列の代わりに、信号源が推定された脳波図(EEG)及び脳磁図(MEG)を用いたイメージングのような脳信号源イメージングが利用され得る。これにより、いくつかの例では、記録された脳活動の、頭皮上ではなく脳上または脳内部での評価が可能になる。脳ネットワーク解析は、神経疾患に関与する複数の脳領域及びこれらの領域間の経路が推定可能であるように利用されてもよい。いくつかの例では、治療(例えば、神経刺激装置)によって誘発させた脳ネットワーク反応マップもまた、予測のために取得される。脳ネットワーク反応マップは、神経刺激メカニズムの情報を含み、予測精度をさらに向上させることができる。治療脳ネットワーク反応マップは、機能的磁気共鳴画像法(fMRI)、陽電子放出断層撮影法(PET)、及び/または単一光子放出断層撮影法(SPECT)といった全脳イメージング技術などの技術によって取得することができるが、これらに限定されない。
【0034】
本明細書に記載される例は、有効性及び/またはパラメータ予測サービスを提供する。1つまたは複数の患者の脳波記録が受信されてもよい。患者のてんかん性スパイク及び/または発作ネットワークが分析され、病態画像(例えば、てんかん性スパイクまたは発作ネットワーク画像)と、代表的な治療fMRI脳ネットワーク反応マップとを比較する特徴量に基づいて、統計的予測モデルを適用して治療効果を予測してもよい。その後、予測された有効性および提案されたパラメータが提供されてもよい。このサービスにより、治療のための長い神経刺激パラメータ調整プロセスを排除及び/または低減することができ、治療の成功率を改善することができ、不必要なインプランテーションまたは他の侵襲(interventions)を回避することができる。
【0035】
本明細書に記載される例は、単にてんかんのタイプまたはスパイク信号源(spike sources)を用いて予測することに止まらず、むしろ、脳波病態画像およびfMRI脳ネットワーク反応マップの両方が統計的予測モデルで利用されてもよい。ここで、病態画像(例えばスパイク及び/または発作ネットワーク画像)は、患者の病態(例えば発作)の原因及び/または進展を示してもよく、fMRIマップは、治療(例えば迷走神経刺激(VNS))によって誘発される治癒活動(therapeutic activity)を示してもよい。両者を比較することにより、VNSが発作の発生及び/または伝播にどのように影響を与えるかを分析して、予測精度を大幅に改善することができる。いくつかの例では、病態画像(例えば、脳波スパイク及び/または発作ネットワーク画像)とfMRI脳ネットワーク反応マップとから最適な特徴量を自動的に学習するために、ディープニューラルネットワークが適用されてもよい。脳波とfMRIマップの画素ごとの比較などの単純な特徴量を利用することもできるが、脳波とfMRIマップで異なる脳領域の重み付けを行うことで、正確な予測を行うことができる。DNNは、自動的に特徴量を抽出する機会を提供する。これは、手動で設計された特徴量よりもさらに適切であり得る。いくつかの例では、治療(例えばVNS)の効果予測のために患者から臨床ルーチン状態データ(例えば、てんかん脳波記録)のみが必要とされてもよい。これにより、患者は追加の検査を受けなくてよい場合がある。一般に、劇的な脳損傷を伴わない多くの患者には、治療に対する類似の脳ネットワーク反応を利用することができ、治療脳ネットワーク反応マップは本モデルにおいて固定化され得る。
【0036】
本明細書に記載される例は、患者の脳状態データと治療の脳ネットワークマップとの比較を利用して、治療の有効性を予測する、及び/または神経学的疾患の治療で使用するパラメータを予測することができる。いくつかの例では、統計的予測モデルを用いて比較及び/または予測が行われる。本明細書に記載される比較及び統計的予測モデルは、ハードウェア、ソフトウェア、またはそれらの組み合わせで実装されてもよい。例えば、比較及び/または統計的予測モデルの実装にソフトウェアが使用されてもよい。ソフトウェアは、1つまたは複数のコンピューティングシステム上でプログラムされてもよい。例えば、1つまたは複数のプロセッサは、治療のための1つまたは複数の統計的予測モデル用の実行可能な命令をエンコードし得るコンピュータ可読媒体に接続されてもよい。
【0037】
図1は、本明細書に記載される例に従って構成されたシステムの概略図である。システム100は、個別患者データ102、治療脳ネットワークマップ104、コンピューティングシステム106、プロセッサ108、治療のための統計的予測モデル用の実行可能な命令110、メモリ112、ディスプレイ114、ネットワークインタフェース116、及び治療デバイス118を含む。他の例では、追加の、より少ない、及び/または他の構成要素が使用されてもよい。
【0038】
本明細書に記載される例は、
図1の個別患者データ102のような患者の神経状態のデータ(例えば、神経学的事象に関連する画像データ)を利用することができる。様々な神経学的事象のいずれかに関連する個別患者データが利用されてもよく、神経学的事象は発作(例えば、てんかん発作)、パーキンソン病、アルツハイマー病、またはうつ病を含むが、これらに限定されない。例えば、個別患者データは、発作の発生源を例示するてんかん性スパイク信号源画像、及び/または、発作に関与する複数の脳領域及びこれらの領域間の経路(例えば、発作活動のシーケンス)を例示する発作ネットワーク画像に関連付けられてもよい。個別患者データは、例えば、脳波図(EEG)及び/または脳磁図(MEG)の信号源推定(source localization)及び/または脳ネットワーク解析を用いて得ることができる。一般に、EEGは、非侵襲的または侵襲的な電極を用いて脳の電気的活動を検出する機能的神経イメージング方法を指す。一般に、MEGは、脳の周りの電磁場の変化を測定して脳活動をマッピングする機能的神経イメージング方法を指す。信号源推定画像は、一般に、脳の外側で測定された複数の脳電気信号を用いて、脳上及び/または脳内の電気的活動を特定することを指す。脳ネットワーク解析は、一般に、数学的及び統計的アルゴリズムを使用して、脳の電気的活動(発作など)に関与する複数の脳領域およびこれらの領域間の経路(発作活動のシーケンスなど)を特定することを指す。
【0039】
個別患者データは、1次元の時系列、2次元または3次元の画像に対応していてもよい。いくつかの例では、ある1組の個別患者データ102が、例えば、神経学的事象が起きている脳の画像に対応して使用されてもよい。いくつかの例では、複数の組の個別患者データ102が、例えば、神経学的事象が起きている脳の複数の画像に対応して使用されてもよい。一般に、使用される個別患者データ102は、治療される患者由来であってもよい。
【0040】
図1及び
図5を参照して、脳波てんかん性スパイクを用いて個別患者データ102を生成する例を説明する。
図5は、本明細書に記載される例によるてんかん性スパイクまたは発作ネットワーク解析の概略図である。
図5に示されたプロセス及びデータは、いくつかの例では、
図1のシステムによって収集及び/または操作されてもよい。EEGは、一般に、頭皮から脳の電気的活動を記録するために使用される方法を意味する。当該方法は、てんかんの診断において、例えば、てんかん性スパイク及び発作を検出するために使用可能である。てんかん脳波モニタリングセッションの間、複数の電極を使用して、てんかん患者の脳信号を継続的にモニタリングしてもよい。
図5は、多チャネル脳波記録、EEG501のための電極を装着した患者の概略図を含む。一般に、電極に関して任意の数または配置を用いることができる。脳波記録により、
図5に示すてんかん性スパイク502及び/または発作データ511のようなデータが生成されてもよい。また、いくつかの例では、他のまたは異なる脳波データが生成されてもよい。異常なてんかん性スパイク502は、例えば、専門のEEG判読者によってマークされてもよい。これらのてんかん性スパイク502は、発作の発生に関連する場合があり、これらのスパイクの発生源は、異常な脳領域を示している場合がある。てんかん脳波分析では、まず、てんかん性スパイクのピーク(または他の位置)における頭皮電位マップが計算され得る。次に、電気的脳信号逆伝播モデルに基づいて、脳上または脳内のスパイクの発生源を特定することができる。複数の脳波信号源推定アルゴリズムが使用可能であり、例えば、最小ノルム最小二乗法(MNLS)、動的統計パラメトリックマッピング(dSPM)、低解像度脳電磁断層撮影(LORETA)、標準化LORETA(sLORETA)、exact LORETA(eLORETA)などの線形分散アルゴリズム、及び非線形最小二乗、ビームフォーミング、多重信号分類(MUSIC)法といった双極子信号源推定アルゴリズムが用いられる。
【0041】
一例では、未加工の脳波記録は、まず、帯域通過フィルタ(例えば、0.1~70Hzの帯域通過フィルタ)及びノッチフィルタ(例えば、60Hzのノッチフィルタ)でフィルタリングされ、不要なノイズが除去されてもよい。次に、心電図の同時記録を分析して、脳波記録における心臓アーチファクトの同定を助けてもよい。心臓アーチファクトは、信号空間投影(SSP)または独立成分分析(ICA)のようなアルゴリズムを使用して除去及び/または低減されてもよい。前処理の後、てんかん性スパイクは、脳波記録から専門のEEG判読者によって手動で、またはソフトウェア(例えば、Persyst P13、BESA epilepsy)を使用して自動的に識別されてもよい。いくつかの例では、専門のEEG判読者は、ソフトウェアで検出されたスパイクの選択を評価及び検証してもよい。
【0042】
2つの異なるタイプのスパイク信号源推定分析を、各患者に対して選択されたスパイクに適用してもよい。第1の分析では、
図5の操作503に示すように、個々のスパイクは、スパイクのピークで最大の振幅を有するEEGチャネルによって分類される。例えば、特定のスパイクがT3チャネルで最大の振幅を示す場合、それはT3スパイクとしてマークされる。他の分類方法が、追加的に、または代わりに使用されてもよい。その後、各カテゴリ内のスパイクは、平均化スパイク504を提供するために平均化されてもよい。信号源推定分析505は、平均化スパイク504に対して実行されてもよい。次に、1つまたは複数の平均化スパイク信号源506が特定され、個別患者データ102の全部または一部として使用されてもよい。スパイク信号源は、一般に、1つまたは複数の発作の原因に寄与する可能性のある脳及び/または脳ネットワークの1つまたは複数の領域の特定を示す。
図1の実行可能命令110は、分類(例えば、
図5の操作503)及び/または信号源推定(例えば、
図5の操作505)を実行するための実行可能命令を含んでもよい。
【0043】
スパイクを平均化することに代えて、または加えて、第2の分析では、独立成分分析(ICA)が適用されて、独立したスパイク信号源が推定され得る。ICAは、
図5の操作507として示されている。各被験者について識別されたスパイクは、まず、空間的ICAを用いて分析される。複数のICA成分508は、識別可能な空間的及び時間的な副成分(subcomponents)を有し、各副成分は、独立したスパイク電位マップを表す。次に、対応するICAマップがスパイクに起因するのか、またはノイズに起因するのかを検証するため、時間にわたるICA重みが可視化される(例えば、
図1のディスプレイ114などを用いて表示される)。例えば、ICA成分0及び1は、ほとんどのスパイクエポックについてスパイク放電中に高いピークを示すことがあり、一方、時間にわたって変化するICA成分2の重みは、ノイズがあるパターンを示す。したがって、ICA成分0及び1のみが独立したスパイク信号源であり、ICA成分2はノイズである。ICA分析の後、ICA空間マップは、対応するスパイクネットワーク510を特定するように、
図5の操作509として示される信号源推定アルゴリズムに供給されてもよい。このようなスパイクネットワーク510のデータは、
図1の個別患者データ102の全部又は一部として使用されてもよい。
図1の実行可能命令110は、ICA分析(例えば、
図5の操作507)及び/または信号源推定及びスパイクネットワーク分析(例えば、
図5の操作510)を実行するための実行可能命令を含んでもよい。
【0044】
いくつかの例では、代替的にまたは追加的に、発作ネットワーク分析が、脳波を用いて
図1の個別患者データ102のような個別患者データを生成するように使用されてもよい。多チャネルの脳波記録501からの脳波記録は、
図5の発作脳波511として示されている。発作脳波511の1つまたは複数の発作は、手動及び/または専門のEEG判読者によって、またはソフトウェア(例えば、Persyst P13、BESA epilepsy)によって自動的にアノテーションされてもよい。長い発作脳波において発作が出現すると、ICAを使用する方法に関して示され説明された方法と類似の方法で抽出及び前処理されてもよい。例えば、帯域通過フィルタリング、ノッチフィルタリング、ノイズ及び/またはアーチファクト抑制が使用されてもよい。前処理された発作脳波511は、グループ平均化及び/またはICAを使用する方法に関して説明された方法と類似の信号源推定方法を使用して、脳上で信号源推定されてもよい。脳空間における信号源推定された発作データ512の系列が得られる。信号源推定された発作データは、特定の脳領域と脳活動(例えば発作活動)との時間的な関連付けを含んでもよい。
【0045】
発作ネットワーク分析は、1つまたは複数の、信号源推定された発作データ512(例えば、特定の時間における脳の全部または一部を表す、1つまたは複数の収集データ)を用いて実行されてもよい。分析中に、発作が開始して伝搬した脳領域が特定されてもよい。この特定アルゴリズムは、まず、信号源推定された空間における脳ボクセルについて、時間にわたる分散を計算し、次に、分散マップ513を提供するように、脳ボクセルにわたる局所的な分散の最大を探索してもよい。分散マップ513は、特定の脳の位置及び/または領域における脳信号の分散を提供してもよい。発作中に関与する脳領域、例えば発作脳領域514は、分散マップ513において局所的な最大である領域として計算可能である。例えば、隣接する脳領域にわたって最大の分散を有する領域が、発作脳領域の中心であると判断されてもよい。
【0046】
より一般化されたシナリオでは、信号源推定された発作の出現は、まず、重複するエポックに分割されてもよく(重複窓分析)、発作の各エポック中に関与する脳領域を特定するように、同様に分散の局所的最大の計算が実行されてもよい。次に、全ての発作エポックにわたって一貫して関与する脳領域が、分割された発作エポックから推定される全ての脳領域にわたって平均するか、または統計検定を行うことによって特定可能である。
【0047】
発作脳領域として特定される各脳領域に対して、脳波信号源が推定された時系列データが抽出されてもよい。例えば、
図5の発作脳領域の時系列データ515は、発作脳領域514に対応する信号源推定された発作データ512から抽出されてもよい。従って、発作脳領域の時系列データ515は、発作中に活動する脳の領域に関連付けられる脳波データに対応していてもよい。これらの脳領域間の経路が、当該時系列データとともに分析されてもよい。例えば、結合性解析が1つまたは複数の発作経路、例えば発作経路516を特定するために使用されてもよい。発作経路は、発作事象を生成、持続、及び/または終了することに関与する複数の脳領域間の結合を示してもよい。使用され得る発作経路の分析方法は、相関、コヒーレンス、虚部コヒーレンス、位相ロッキング値、自己侵襲(auto-aggressive)モデリング、及び/または部分有向コヒーレンスを含む。また、他の分析方法が使用されてもよい。
図1の実行可能命令110は、信号源推定(例えば、
図5の信号源推定された発作データ512を提供する)及び/または分散計算、最大探索、時系列抽出、及び/または結合性解析(例えば、
図5の分散マップ513、発作脳領域514、発作脳領域の時系列データ515、及び/または発作経路516を提供する)を実行するための実行可能命令を含んでもよい。
図5の発作脳領域514、発作経路516、発作脳領域の時系列515、及び/または
図5を参照して示された、または説明された他のデータは、
図1の個別患者データ102の全部または一部として使用されてもよい。
【0048】
スパイク信号源推定及び発作ネットワーク分析の結果が含む指標(metrics)に加えて、または代えて、他の指標が使用されてもよい。他の指標には、スパイク伝搬ネットワークマップ、ICAベースのスパイク信号源推定マップが含まれるが、これらに限定されない。当該他の指標は、個別患者データ102の全部または一部として、または代わりに使用されてもよい。
【0049】
本明細書に記載される例は、
図1の治療脳ネットワークマップ104のような1つまたは複数の脳ネットワーク反応マップを利用してもよい。本明細書に記載される脳ネットワーク反応マップは、治療パラメータの特定のセットを利用する治療に対する脳反応の画像データを示してもよい。治療脳ネットワークマップ104のような脳ネットワーク反応マップは、機能的磁気共鳴画像法(fMRI)、陽電子放出断層撮影法(PET)、及び/または単一光子放出断層撮影法(SPECT)を用いて得られてもよい。fMRIは、一般に、血中酸素濃度の変化を用いて脳活動を間接的に測定する方法を言う。治療脳ネットワーク反応マップは、2次元または3次元であってもよく、いくつかの例では、個別患者データ102に対応付けられてもよい(例えば、てんかん性スパイクまたは発作ネットワーク画像に対応付けられてもよい)。任意の数の治療脳ネットワークマップが使用可能である。一般に、治療のためのパラメータの異なるセットに対応する複数の脳ネットワークマップが使用されてもよい(例えば、パラメータの1つのセットが1つの脳ネットワークマップを生成するために使用されてもよく、パラメータの別のセットが別の脳ネットワークマップを生成するために使用されてもよい)。いくつかの例では、治療脳ネットワークマップ104などの1つまたは複数の脳ネットワークマップは、患者(例えば、個別患者データ102に関連付けられた患者と同じ患者)由来であってもよい。しかしながら、いくつかの例では、1つまたは複数の脳ネットワークマップは、治療対象の患者以外の他の患者(例えば、個別患者データ102が、その脳活動に由来する患者以外の患者)からのデータに、全体的に及び/または部分的に由来してもよい。いくつかの例では、1つまたは複数の脳ネットワークマップは、患者のグループからのマップまたは特定の患者について測定されたマップの、平均または他の組み合わせを意味する。例えば、1つの脳ネットワークマップは、同じ治療パラメータ(例えば、周波数、振幅、持続時間)を使用する異なる患者からの複数の脳ネットワークマップの組み合わせ(例えば平均)である脳ネットワークマップであってもよい。神経刺激療法を利用するいくつかの例では、患者がインプラントされていない場合、他の患者からの脳ネットワークマップまたはその組み合わせが使用されてもよい。患者がインプラントされている場合、当該患者に関連付けられた脳ネットワークマップが使用されるか、または他の脳ネットワークマップと組み合わせて使用されてもよい。治療脳ネットワークマップ104などの脳ネットワーク反応マップは、一般に、治療によって影響を受ける脳の領域を示す。
【0050】
治療脳ネットワークマップを得るために使用されるfMRIの例について、以下に説明する。一般に、機能的磁気共鳴画像法(fMRI)は、血中酸素レベルの変化を利用して全脳活動のモニタリングを可能にする方法である。本明細書では、fMRIを利用して、神経刺激(例えば迷走神経刺激)のような1つまたは複数の治療法によって誘発される治癒脳活動を記録してもよい。神経刺激装置を有する患者において、神経刺激装置は、調査中のパラメータ設定のうちの1つにプログラムされてもよく、その後、当該患者がMRIスキャナを用いてスキャンされてもよい。画像の前処理中に、fMRIは、体動補正され、標準的なテンプレートの脳に対応させられる。設計される治療(例えば神経刺激)に関連する脳活動は、一般化線形モデル(GLM)または他の同等のfMRI分析方法を用いて、統計的に分析される。複数の被験者がスキャンされ、標的集団グループの平均的な反応が決定されて、治療脳ネットワークマップ104のような本明細書に記載された脳ネットワークマップの1つまたは複数として使用されてもよい。
【0051】
平均化されたfMRIマップに加えて、またはその代わりに、他の潜在的な指標が、治療(例えば、神経刺激)の治療機能を定量化するために使用されてもよい。例えば、これらの指標には、神経刺激中のfMRIにおいて各領域が活性化する頻度を定量化すること、及び個々のfMRIマップのグループt検定統計マップが含まれるが、これらに限定されない。
【0052】
脳ネットワークマップは、一般に、多数の治療法のいずれかに関連して提供されてもよい。治療法は、神経刺激療法(例えば、迷走神経刺激(VNS)、反応性神経刺激(RNS)、経頭蓋磁気刺激(TMS)、及び深部脳刺激(DBS))、薬物療法、及び/または会話または体験的療法を含むが、これらに限定されない、一般に、神経刺激は、神経疾患及び精神疾患を治療するための療法を意味する場合がある。神経刺激療法において、直接的または間接的に脳ネットワークを活性化または抑制するために、電気刺激が利用されてもよい。いくつかの例では、脳ネットワークマップは、刺激の特定のパラメータのセットに関連して(例えば、神経刺激の特定の刺激周波数および振幅について、または薬物療法の特定の用量および頻度について)提供されてもよい。迷走神経刺激(VNS)は、一般に、神経刺激の一種を意味する。VNSでは、刺激装置を皮膚の下に埋め込み、左迷走神経を通して電気パルスを送る。VNSは、薬剤耐性てんかん、うつ病、及び他の多くの神経疾患及び精神疾患に使用可能である。いくつかの例は、VNSに関連して本明細書に記載されている場合があるが、他の治療法が追加的にまたは代替的に使用されてもよいことが理解されるべきである。
【0053】
個別患者データ102及び/または治療脳ネットワークマップ104は、コンピューティングシステム106にアクセス可能なメモリに格納されてもよく、及び/または(例えば、有線または無線通信を使用して)コンピューティングシステム106に送信されてもよい。コンピューティングシステム106は、比較及び/または治療のための統計的予測モデルに基づいて、治療の有効性及び/または治療で使用するためのパラメータを予測するように構成されてもよい。
【0054】
本明細書に記載された例は、コンピューティングシステムを利用可能であり、当該コンピューティングシステムは、一般に、比較及び/または治療のための統計的予測モデルを実施するためのハードウェア及び/またはソフトウェアを含んでもよい。例えば、コンピューティングシステム106は、1つまたは複数のプロセッサ108を含んでもよい。プロセッサ108は、例えば、1つまたは複数の中央処理装置(CPU)、グラフィカル処理装置(GPU)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、または他のプロセッサ回路を使用して実施されてもよい。プロセッサ108は、メモリ112と通信可能である。メモリ112は、一般に、任意のコンピュータ可読媒体(例えば、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、フラッシュ、ソリッドステートドライブなど)によって実施されてもよい。単一のメモリ112が示されているが、任意の数のメモリが使用可能であり、それらは単一のコンピューティングシステム106内でプロセッサ108と統合されてもよく、及び/または別のコンピューティングシステム内に配置されてプロセッサ108と通信してもよい。
【0055】
メモリ112には、個別患者データ102と治療脳ネットワークマップ104との比較のための実行可能な命令がエンコードされてもよい。本明細書に記載された比較の例は、個別患者データ102が示す脳活動と、治療脳ネットワークマップ104を生成するために使用されるパラメータでの治療によって影響を受ける脳領域と、の間の重なりを評価することを含む。一般に、多くの治療において、個別患者データ102に示されるような影響を受けた脳の領域と、治療脳ネットワークマップ104に示されるような治療によってアクセスされた脳の領域との重なりは、治療脳ネットワークマップ104に使用されるパラメータでの治療が、個別患者データ102を有する患者を治療する上で有効な場合があることを示す。
【0056】
いくつかの例では、比較のための実行可能な命令は、治療のための統計的予測モデル用の実行可能な命令110を含んでもよい。いくつかの例では、治療のための統計的予測モデル用の実行可能な命令110は、深層人工ニューラルネットワークを実施するための命令を含む。当該ニューラルネットワークは、神経状態の画像データ(例えば、個別患者データ102)及び1つまたは複数の脳ネットワーク反応マップ(例えば、治療脳ネットワークマップ104)から特徴量を抽出するように構成された畳み込みカーネルを有する。畳み込みカーネルの値は、いくつかの例では、治療のための統計的予測モデルの訓練中に学習されてもよい。
【0057】
治療のための統計的予測モデル用の実行可能な命令110は、各畳み込みカーネルを個別患者画像データ及び治療脳ネットワーク反応マップに繰り返し乗算して、結果を複数の特徴マップにおけるピクセルとして保持する命令を含んでもよい。統計的予測モデルは、特徴マップからさらに特徴量を抽出するように構成される積層された畳み込み層、正規化線形関数、及びプーリング層からなる深層畳み込みニューラルネットワークを含んでもよい。治療のための統計的予測モデル用の実行可能な命令110は、特徴マップからのさらなる特徴量に基づいて治療の有効性を予測するための命令を含んでもよい。
【0058】
いくつかの例では、治療のための統計的予測モデル用の実行可能な命令110は、統計的予測モデルを用いて治療のためのパラメータを予測するための命令を含んでもよい。例えば、コンピューティングシステム106に入力された治療脳ネットワークマップは、異なるパラメータでの治療の使用に関連する脳ネットワークマップを含んでもよい。統計的予測モデルは、それに応じて、治療のためのパラメータ(例えば、振幅、周波数、持続時間、投与量など)を推奨してもよい。治療のための統計的予測モデル用の実行可能な命令110に従って動作するコンピューティングシステムの出力は、治療の有効性及び/または推奨されるパラメータであってもよい。例えば、統計的予測モデルが治療は有効であると予測する場合、推奨パラメータが出力されてもよい。統計的予測モデルが治療は有効ではないと予測する場合には、「非有効」と出力されてもよい。統計的予測モデルを用いて、複数の個別患者が評価されてもよい。このようにして、コンピューティングシステム106は、従来のシステムを用いて可能な場合または医師による患者記録の無支援での評価によって可能な場合よりも、患者集団全体にわたる治療の有効性及びパラメータ設定のより迅速かつ正確な予測を容易にすることができる。
【0059】
いくつかの例では、システム100は、ディスプレイ114を含んでもよい。ディスプレイ114は、コンピューティングシステム106と(例えば、有線及び/または無線接続を使用して)通信してもよく、またはコンピューティングシステム106と一体化されてもよい。ディスプレイ114は、コンピューティングシステム106によって実施される比較及び/または統計モデルに基づいて、治療の予測された有効性及び/または治療のための推奨されたパラメータを表示してもよい。任意の数または種類のディスプレイがあってもよく、1つまたは複数のLED、LCD、プラズマ、または他のディスプレイ装置を含む。
【0060】
いくつかの例では、システム100は、ネットワークインタフェース116を含んでもよい。ネットワークインタフェース116は、任意のネットワーク(例えば、LAN、WAN、インターネット)への通信インタフェースを提供してもよい。ネットワークインタフェース116は、有線及び/または無線インタフェース(例えば、Wi-Fi(登録商標)、BlueTooth、HDMI(登録商標)、USBなど)を用いて実施されてもよい。ネットワークインタフェース116は、コンピューティングシステム106によって実施される比較及び/または統計モデルに基づいて、治療の予測された有効性及び/または治療のための推奨パラメータに関するデータを通信してもよい。
【0061】
いくつかの例では、システム100は、1つまたは複数の治療デバイス118を含んでもよい。治療デバイス118は、例えば、神経刺激が可能なシステム(例えば、迷走神経刺激システム)を使用して実施されてもよい。治療デバイス118は、例えば、薬物療法の投与を行うことが可能なシステム(例えば、注射装置、ピルディスペンサーなど)を用いて実施されてもよい。治療デバイス118は、治療を実施し、及び/またはコンピューティングシステム106によって推奨される治療パラメータを利用するように、プログラムまたは構成されてもよい。治療デバイス118は、いくつかの例では、ネットワークインタフェース116を用いてコンピューティングシステム106と通信してもよい。
【0062】
図2は、本明細書に記載される例による統計的予測モデルプロセス200を示す。統計的予測モデルプロセス200は、個別患者データ202、治療脳ネットワークマップ204,206,208、特徴マップ210、並びに畳み込み、正規化線形関数及びプーリング層212を含む。
図1の治療のための統計的予測モデル用の実行可能命令110は、
図2に示す統計的予測モデル処理200を実施するために、いくつかの例で使用されてもよい。
【0063】
図示のように、個別患者データ202(個別患者データ202は、
図1の個別患者データ102によって実施されてもよく、及び/または個別患者データ102を実施するように使用されてもよい)が入力として提供される。本明細書で議論されるように、個別患者データは、一般に、患者の脳の状態の画像に関連していてもよい。個別患者データは、例えば、発作が発生する脳領域、発作が伝播する領域、または他の神経学的事象を示してもよい。個別患者データ202は、脳波スパイクまたは発作ネットワーク画像に関連するデータであってもよい。また、
図2の治療脳ネットワークマップ204,206,208といった、多数の脳ネットワークマップが入力として提供されてもよい。
図2の脳ネットワークマップは、いくつかの例では、
図1の治療脳ネットワークマップ104を実施するために使用されてもよく、及び/または治療脳ネットワークマップ104によって実施されてもよい。脳ネットワークマップの各々は、異なるパラメータ値(例えば、周波数、振幅、持続時間)における特定の治療(例えば、神経刺激)の効果を表してもよい。個別患者データ202と治療脳ネットワークマップが比較されてもよい。例えば、畳み込みカーネルの一群が、個別患者データ202と治療脳ネットワークマップを比較するために使用されてもよく、その結果、特徴マップ210が得られる。カーネルのパラメータは、統計的予測モデルの訓練中に学習されてもよい。畳み込みカーネルは、個別患者データ(例えば、てんかん信号源画像)と治療脳ネットワーク反応マップとの間で特徴量を自動的に抽出するために使用される。各畳み込みカーネルが入力データ及び/または治療脳ネットワークマップと繰り返し乗算されることで2つが比較されてもよく、その結果は、特徴マップ210のような複数の特徴マップのピクセルとして保持されてもよい。
【0064】
次に、深層畳み込みニューラルネットワークを使用して、当該比較をさらに分析することができる(例えば、特徴マップ210をさらに分析することができる)。深層ニューラルネットワークは、一般に、高度に複雑な人工知能タスクのために10から数百の層を有する場合がある一種の人工ニューラルネットワーク統計モデルを意味する。他の例では、他のモデルが使用されてもよい。深層畳み込みニューラルネットワークは、複数の畳み込みブロックを利用してもよく、各畳み込みブロックは、畳み込み、RLU、及びプーリング層212によって示されるように、マルチカーネル畳み込み、正規化線形関数、及び(最大/平均)プーリングなどの複数の演算を含む。これらの層の順序は、必ずしもこの順序に従う必要はない。これらの層は、前もって生成された特徴マップからさらに特徴量を抽出するように設計される。最終畳み込みブロック、すなわち
図2の「畳み込みブロックP」、が得られるまで、複数の畳み込みブロックが利用されてもよい。
【0065】
図3は、本明細書に記載される例による統計的予測モデルプロセス300を例示する。
図3は、
図2のプロセスからの入力、例えばニューラルネットワークの最終畳み込みブロックからの入力を受け取ってもよい。
図3は、フラット化されたデータ302、全結合層304、正規化線形関数305、及び予測スコア306を図示している。全結合層304及び正規化線形関数305の複数のブロックが存在してもよい。治療のための統計的予測モデル用の実行可能な命令110は、
図3の統計的予測モデルプロセス300の全部または一部を実施するために使用されてもよい。
【0066】
フラット化されたデータ302は、
図2の最終畳み込みブロックの出力をフラット化することによって生成されてもよい。全結合層304は、特徴量の数を予測カテゴリの数に縮小するために使用されてもよい。例えば、各治療は、使用する異なるパラメータ値のセットを有してもよい。各パラメータセットは、1つの予測カテゴリを表してもよく、加えて、治療の全体的な有効性のためのカテゴリがあってもよい。
図3に示すように、パラメータセット1~Kが評価されてもよい。
【0067】
全結合層の出力を[0,1]に正規化するためにソフトマックス層が適用されてもよい。予測スコア306を提供するために、各パラメータセットについてスコアが計算されてもよい。特定の基準(例えば最高)を満たすパラメータセットが、予測の出力として見なされてもよい。
【0068】
図4は、本明細書に記載される例による画像セット400を示す。視覚的に、個別患者データに関連付けられた画像402が示されている。画像402は、例えば、脳波スパイクまたは発作ネットワーク画像であってもよい。発作ネットワーク画像は、発作の発生源及びその伝播する脳領域を描写してもよい。治療脳ネットワークマップ404及び治療脳ネットワークマップ406は、特定のパラメータレベルで特定の治療を受けている他の患者からのfMRI画像であってもよい。これらのデータセットの畳み込みによって、例えば特徴マップ408及び特徴マップ410のような特徴マップが生成されてもよい。特徴マップは、個別患者データと治療脳ネットワークマップとの比較に関する情報を含む。
【0069】
いくつかの例では、他の機械学習技術(例えば、非深層ニューラルネットワークモデル)もまた、または代わりに、治療の有効性及び最適なパラメータを予測するための統計的予測モデルを形成するために使用されてもよい。深層ニューラルネットワークモデルの例とは異なり、特徴量は、いくつかの例では手動で設計されてもよい。神経刺激療法の有効性及び最適な治療パラメータを予測するために適用できる例示的な特徴量を以下に説明するが、他の特徴量が使用されてもよい。また、これらの特徴量は、深層ニューラルネットワークモデルがfMRI画像と脳波画像を比較する際に学習されてもよい。
【0070】
そのような特徴量の一つは、脳波スパイクまたは発作ネットワーク画像と、fMRI活性化画像と、の間の重なり領域である。
図6は、本明細書に記載される例に従って構成された脳領域の概略図である。発作ネットワーク画像は、領域601として図示されている。これらの領域は、例えば、
図5の発作脳領域514及び/または発作経路516であってもよい。fMRI活性化画像は、領域602として図示されている。領域602は、本明細書に記載される治療脳ネットワークマップにおいて活性化される領域である(当該領域は、本明細書において特定された患者の発作領域に関していても、関していなくてもよい)。脳波スパイクまたは発作ネットワーク画像601(例えば、個別患者データ102)とfMRI活性化画像602(例えば、治療脳ネットワークマップ104)との間の、
図6の領域603で示される重なり領域は、特定のパラメータ(例えば、20Hzまたは30Hzの刺激)で刺激装置がより良く機能するかどうかを決定するための統計的予測モデルにおける特徴ベクトル604として利用することができる。例えば、
図6の左上に、発作ネットワーク601がfMRI活性化画像602の活性領域内に完全に含まれている領域がある。従って、その領域は100%と表示されてもよい。右下には、発作ネットワークとfMRI活性化画像との間に40%の重なりがある領域がある。また、左下には、発作ネットワーク601とfMRI活性化画像との間に0%の重なりがある領域がさらに存在する。従って、特徴ベクトル604は、[100%、40%、0%]として与えられてもよい。一例では、脳波スパイクまたは発作ネットワーク画像が、30Hzと比較して20HzのfMRI活性化画像と大きな重なりを有する場合、この患者に対しては、20Hzの神経刺激が、30Hzの刺激よりも好ましいとして予測されてもよい。
【0071】
一般に、重なり領域特徴量は、任意の個別患者データ102と治療脳ネットワークマップ104との間で計算することができる。
【0072】
以上より、特定の実施形態が例示の目的で本明細書に記載されているが、特許請求の範囲に記載された技術の範囲を維持しつつ、様々な修正が可能であることが理解されるであろう。