(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-01-29
(45)【発行日】2024-02-06
(54)【発明の名称】超音波検査装置及び超音波検査方法
(51)【国際特許分類】
G01N 29/06 20060101AFI20240130BHJP
G01N 29/26 20060101ALI20240130BHJP
【FI】
G01N29/06
G01N29/26
(21)【出願番号】P 2020143278
(22)【出願日】2020-08-27
【審査請求日】2023-02-14
(73)【特許権者】
【識別番号】000233044
【氏名又は名称】株式会社日立パワーソリューションズ
(74)【代理人】
【識別番号】110001807
【氏名又は名称】弁理士法人磯野国際特許商標事務所
(72)【発明者】
【氏名】鈴木 睦三
(72)【発明者】
【氏名】高麗 友輔
【審査官】小野寺 麻美子
(56)【参考文献】
【文献】米国特許出願公開第2014/0216158(US,A1)
【文献】特開2012-013447(JP,A)
【文献】特開2009-097942(JP,A)
【文献】米国特許出願公開第2019/0339234(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 29/00 - G01N 29/52
G01B 17/00 - G01B 17/08
(57)【特許請求の範囲】
【請求項1】
流体を介して被検査体に超音波ビームを入射することにより前記被検査体の検査を行う超音波検査装置であって、
前記被検査体への前記超音波ビームの走査及び計測を行う走査計測装置と、前記走査計測装置の駆動を制御する制御装置とを備え、
前記走査計測装置は、
前記超音波ビームを放出する送信プローブと、超音波ビームを受信する偏心配置受信プローブとを備え、
前記送信プローブの送信音軸と前記偏心配置受信プローブの受信音軸との偏心距離がゼロよりも大きくなるように前記偏心配置受信プローブが配置され、
前記送信プローブ及び前記偏心配置受信プローブは、x軸の方向又はy軸の方向に走査を行い、
前記x軸及び前記y軸がつくるxy平面に対して前記送信音軸が垂直になるように前記送信プローブが配置され、
前記制御装置は、
前記偏心配置受信プローブが受信した前記超音波ビームの信号の位相情報を抽出する位相抽出部と、
抽出した前記位相情報の、走査位置に関する位相変化量を算出する位相変化量算出部とを備えた
超音波検査装置。
【請求項2】
前記偏心距離が、前記超音波ビームの、前記被検査体の欠陥部での散乱により生じる散乱波を受信可能な距離に設定された
ことを特徴とする請求項1に記載の超音波検査装置。
【請求項3】
前記被検査体の欠陥部への入射時の前記偏心配置受信プローブでの受信信号強度が前記被検査体の健全部への入射時の前記受信信号強度よりも大きくなるように、前記偏心距離が設定された
ことを特徴とする請求項1又は2に記載の超音波検査装置。
【請求項4】
前記偏心距離が、前記被検査体の健全部への照射時にノイズ以外の受信信号が検出されない距離に設定された
ことを特徴とする請求項1又は2に記載の超音波検査装置。
【請求項5】
前記送信プローブ又は前記偏心配置受信プローブの少なくとも一方の位置を調整する偏心距離調整部を備える
ことを特徴とする請求項1又は2に記載の超音波検査装置。
【請求項6】
前記偏心配置受信プローブの焦点距離は、前記送信プローブの焦点距離よりも長い
ことを特徴とする請求項1又は2に記載の超音波検査装置。
【請求項7】
前記偏心配置受信プローブの焦点は、前記送信プローブの焦点よりも、前記送信プローブの側に存在する
ことを特徴とする請求項1又は2に記載の超音波検査装置。
【請求項8】
前記偏心配置受信プローブの前記被検査体でのビーム入射面積は、前記送信プローブの前記被検査体でのビーム入射面積よりも大きい
ことを特徴とする請求項1又は2に記載の超音波検査装置。
【請求項9】
前記走査計測装置は、前記送信音軸と前記受信音軸との為す角度θが0°<θ<90°を満たすように、前記偏心配置受信プローブの傾きを調整する設置角度調整部を備える
ことを特徴とする請求項1又は2に記載の超音波検査装置。
【請求項10】
前記偏心配置受信プローブは、複数の単位プローブを含む
ことを特徴とする請求項1又は2に記載の超音波検査装置。
【請求項11】
前記制御装置は、前記複数の単位プローブのうち、照射された前記超音波ビームの、前記被検査体の欠陥部での散乱により生じる散乱波を受信した前記単位プローブの受信信号に基づいて、前記被検査体での欠陥部に関する情報を判定する欠陥情報判定部を備える
ことを特徴とする請求項10に記載の超音波検査装置。
【請求項12】
前記走査計測装置は、前記偏心距離がゼロの位置に配置された同軸配置受信プローブを備える
ことを特徴とする請求項1又は2に記載の超音波検査装置。
【請求項13】
流体を介して被検査体に超音波ビームを入射することにより前記被検査体の検査を行う超音波検査装置であって、
前記被検査体への前記超音波ビームの走査及び計測を行う走査計測装置と、前記走査計測装置の駆動を制御する制御装置とを備え、
前記走査計測装置は、
前記超音波ビームを放出する送信プローブと、超音波ビームを受信する偏心配置受信プローブとを備え、
前記送信プローブの送信音軸と前記偏心配置受信プローブの受信音軸との偏心距離がゼロよりも大きくなるように前記偏心配置受信プローブが配置され、
更に、前記偏心距離がゼロの位置に配置された同軸配置受信プローブを備え、
前記制御装置は、
前記偏心配置受信プローブが受信した前記超音波ビームの信号の位相情報を抽出する位相抽出部と、
抽出した前記位相情報の、走査位置に関する位相変化量を算出する位相変化量算出部と、
前記同軸配置受信プローブで受信した直達波の振幅に基づいて生成した、前記被検査体の内部の欠陥部の位置を示す第1画像と、
走査位置に関する位相変化量に基づいて前記位相変化量算出部が生成した、前記被検査体の内部の欠陥部の輪郭を示す第2画像と、
を合成する画像合成部
と、を備え
た
超音波検査装置。
【請求項14】
前記送信プローブは、前記超音波ビームを放出するとともに、前記被検査体からの反射波を受信する送受信プローブである
ことを特徴とする請求項1又は2に記載の超音波検査装置。
【請求項15】
流体を介して被検査体に超音波ビームを入射することにより前記被検査体の検査を行う超音波検査装置であって、
前記被検査体への前記超音波ビームの走査及び計測を行う走査計測装置と、前記走査計測装置の駆動を制御する制御装置とを備え、
前記走査計測装置は、
前記超音波ビームを放出する送信プローブと、超音波ビームを受信する偏心配置受信プローブとを備え、
前記送信プローブは、前記超音波ビームを放出するとともに、前記被検査体からの反射波を受信する送受信プローブであり、
前記送信プローブの送信音軸と前記偏心配置受信プローブの受信音軸との偏心距離がゼロよりも大きくなるように前記偏心配置受信プローブが配置され、
前記制御装置は、
前記偏心配置受信プローブが受信した前記超音波ビームの信号の位相情報を抽出する位相抽出部と、
抽出した前記位相情報の、走査位置に関する位相変化量を算出する位相変化量算出部と、
前記送受信プローブで受信した直達波の振幅に基づいて生成した、前記被検査体の内部の欠陥部の位置を示す第1画像と、
走査位置に関する位相変化量に基づいて前記位相変化量算出部が生成した、前記被検査体の内部の欠陥部の輪郭を示す第2画像と、
を合成する画像合成部
と、を備え
た
超音波検査装置。
【請求項16】
前記流体は気体である
ことを特徴とする請求項1又は2に記載の超音波検査装置。
【請求項17】
流体を介して被検査体に超音波ビームを入射することにより前記被検査体の検査を行う超音波検査方法であって、
送信プローブ及び偏心配置受信プローブは、x軸の方向又はy軸の方向に走査を行い、
前記x軸及び前記y軸がつくるxy平面に対して前記送信プローブの送信音軸が垂直になるように前記送信プローブが配置され、
前記送信プローブから超音波ビームを放出する放出ステップと、
前
記送信音軸とは異なる位置に受信音軸を有する
前記偏心配置受信プローブにおいて、前記超音波ビームを受信する受信ステップと、
前記偏心配置受信プローブが受信した前記超音波ビームの信号の位相情報を抽出する位相抽出ステップと、
抽出した前記位相情報の、走査位置に関する位相変化量を算出する位相変化量算出ステップとを含む
ことを特徴とする超音波検査方法。
【請求項18】
前記位相変化量算出ステップで生成された前記位相情報の前記走査位置に関する前記位相変化量が、予め設定されている閾値以上か否かを判定することで、前記被検査体の欠陥部の形状を表示する形状表示ステップを含む
ことを特徴とする請求項17に記載の超音波検査方法。
【請求項19】
前記流体は気体である
ことを特徴とする請求項17又は18に記載の超音波検査方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、超音波検査装置及び超音波検査方法に関する。
【背景技術】
【0002】
超音波ビームを用いた被検査体の欠陥部の検査方法が知られている。例えば、被検査体の内部に空気等の音響インピーダンスが小さな欠陥部(空洞等)がある場合、被検査体の内部で音響インピーダンスのギャップが生じるため、超音波ビームの透過量が小さくなる。従って、超音波ビームの透過量を計測することで、被検査体内部の欠陥部を検出できる。
【0003】
超音波検査装置について特許文献1に記載の技術が知られている。特許文献1に記載の超音波検査装置では、連続する所定個数の負の矩形波からなる矩形波バースト信号を被検体に空気を介して対向配設された送信超音波探触子に印加する。被検体に空気を介して対向配設され受信超音波探触子で被検体を伝搬した超音波を透過波信号に変換する。この透過波信号の信号レベルに基づき被検体の欠陥の有無を判定する。また、送信超音波探触子及び受信超音波探触子は、振動子及び当該振動子の超音波の送受信側に取付られた前面板の音響インピーダンスを、被検体に当接して使用する接触型超音波探触子に比較して低く設定している。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2008-128965号公報(特に要約書)
【発明の概要】
【発明が解決しようとする課題】
【0005】
特許文献1に記載の超音波検査装置では、被検査体中の微小な欠陥部を観測する際に、観測された欠陥部画像の解像度が低下するという課題がある。即ち、欠陥部に対応する画像の輪郭がぼやけるという課題がある。これは、超音波ビームの一部が欠陥部に遮断された場合でも、受信信号に変化が生じるためである。この課題は、特に、検出しようとする欠陥部のサイズが、超音波ビームの大きさ(ビーム径)と同程度か、あるいは、より小さな大きさの場合に特に顕著になる。
本開示が解決しようとする課題は、欠陥部の検出性能、例えば表示画像の解像度に優れた超音波検査装置及び超音波検査方法の提供である。
【課題を解決するための手段】
【0006】
本開示に係る超音波検査装置は、流体を介して被検査体に超音波ビームを入射することにより前記被検査体の検査を行う超音波検査装置であって、前記被検査体への前記超音波ビームの走査及び計測を行う走査計測装置と、前記走査計測装置の駆動を制御する制御装置とを備え、前記走査計測装置は、前記超音波ビームを放出する送信プローブと、超音波ビームを受信する偏心配置受信プローブとを備え、前記送信プローブの送信音軸と前記偏心配置受信プローブの受信音軸との偏心距離がゼロよりも大きくなるように前記偏心配置受信プローブが配置され、前記送信プローブ及び前記偏心配置受信プローブは、x軸の方向又はy軸の方向に走査を行い、前記x軸及び前記y軸がつくるxy平面に対して前記送信音軸が垂直になるように前記送信プローブが配置され、前記制御装置は、前記偏心配置受信プローブが受信した前記超音波ビームの信号の位相情報を抽出する位相抽出部と、抽出した前記位相情報の、走査位置に関する位相変化量を算出する位相変化量算出部とを備えた。その他の解決手段は発明を実施するための形態において後記する。
【発明の効果】
【0007】
本開示によれば、欠陥部の検出性能、例えば表示画像の解像度に優れた超音波検査装置及び超音波検査方法を提供できる。
【図面の簡単な説明】
【0008】
【
図1】第1実施形態の超音波検査装置の構成を示す図である。
【
図2A】送信音軸、受信音軸及び偏心距離を説明する図であり、送信音軸及び受信音軸が鉛直方向に延びる場合である。
【
図2B】送信音軸、受信音軸及び偏心距離を説明する図であり、送信音軸及び受信音軸が傾斜して延びる場合である。
【
図3】送信プローブの構造を示す断面模式図である。
【
図4A】偏心配置受信プローブからの受信波形であり、被検査体Eの健全部Nでの受信波形を示す図である。
【
図4B】偏心配置受信プローブからの受信波形であり、被検査体Eの欠陥部Dでの受信波形を示す図である。
【
図5】信号強度データのプロットの例を示す図である。
【
図6A】本実施形態における超音波ビームの伝搬経路であって、健全部に超音波ビームが入射した場合を示す図である。
【
図6B】本実施形態における超音波ビームの伝搬経路であって、欠陥部に超音波ビームが入射した場合を示す図である。
【
図7A】従来の超音波検査方法での超音波ビームの伝搬経路を示す図であり、健全部への入射時を示す図である。
【
図7B】従来の超音波検査方法での超音波ビームの伝搬経路を示す図であり、欠陥部への入射時を示す図である。
【
図8】従来の超音波検査方法での信号強度データのプロットを示す図である。
【
図9A】被検査体内での欠陥部と超音波ビームとの相互作用を示す図であり、直達する超音波ビームを受信する様子を示す図である。
【
図9B】被検査体内での欠陥部と超音波ビームとの相互作用を示す図であり、散乱波を受信する様子を示す図である。
【
図11】x軸方向の各走査位置での偏心配置受信プローブの受信信号の変化を模式的に示した図である。
【
図12A】超音波ビームが欠陥部に入射しない走査位置を示す図である。
【
図12B】超音波ビームが欠陥部に入射するが送信音軸が欠陥部に入らない走査位置を示す図である。
【
図12C】超音波ビームが欠陥部に入射し、かつ、送信音軸が欠陥部に入る走査位置を示す図である。
【
図13】制御装置のハードウェア構成を示す図である。
【
図14】第1実施形態の超音波検査方法を示すフローチャートである。
【
図15】第2実施形態での超音波検査装置の構成を示す図である。
【
図16】第2実施形態での超音波検査装置の機能ブロック図である。
【
図17】第3実施形態の超音波検査装置の構成を示す図である。
【
図18】第4実施形態の超音波検査装置の構成を示す図である。
【
図19】第5実施形態での超音波検査装置の構成を示す図である。
【
図20】第5実施形態での超音波検査装置の機能ブロック図である。
【
図21】第6実施形態に係る超音波検査装置における送信プローブと、偏心配置受信プローブとの関係を示す図である。
【
図22】送信プローブにおけるビーム入射面積及び偏心配置受信プローブにおけるビーム入射面積の関係を説明する図である。
【
図23】第7実施形態に係る偏心配置受信プローブの例を示す図である。
【
図24】第8実施形態に係る超音波検査装置の走査計測装置の構成を示す図である。
【
図25】第8実施形態による効果が生じる理由を説明する図である。
【
図26】第9実施形態に係る超音波検査装置の構成を示す図である。
【
図27】第9実施形態に係る超音波検査装置の機能ブロック図である。
【
図28】第10実施形態における偏心配置受信プローブの配置を示す図である。
【
図29】第11実施形態における偏心配置受信プローブの配置を示す図であり、単位プローブを傾斜して配置した図である。
【
図30】第11実施形態における偏心配置受信プローブの配置を示す図であり、単位プローブを鉛直方向に配置した図である。
【
図31】第12実施形態の超音波検査装置の構成を示す図である。
【
図32】第13実施形態の超音波検査装置の構成を示す図である。
【
図33】第14実施形態の超音波検査装置の構成を示す図である。
【発明を実施するための形態】
【0009】
以下、図面を参照しながら本開示を実施するための形態(実施形態と称する)を説明する。ただし、本開示は以下の実施形態に限られず、例えば異なる実施形態同士を組み合わせたり、本開示の効果を著しく損なわない範囲で任意に変形したりできる。また、同じ部材については同じ符号を付すものとし、重複する説明は省略する。更に、同じ機能を有するものは同じ名称を付すものとする。図示の内容は、あくまで模式的なものであり、図示の都合上、本開示の効果を著しく損なわない範囲で実際の構成から変更することがある。
【0010】
(第1実施形態)
図1は、第1実施形態の超音波検査装置Zの構成を示す図である。
図1では、走査計測装置1は、断面模式図で示している。
図1には、紙面左右方向としてのx軸、紙面直交方向としてのy軸、紙面上下方向としてのz軸を含む直交3軸の座標系が示される。
【0011】
超音波検査装置Zは、流体Fを介して被検査体Eに超音波ビームU(
図3)を入射することで被検査体Eの検査を行うものである。流体Fは例えば水等の液体W(
図17)、空気等の気体Gであり、被検査体Eは流体F中に存在する。第1実施形態では、流体Fとして空気(気体Gの一例)が使用される。従って、走査計測装置1の筐体101の内部は空気で満たされた空洞となっている。
図1に示すように、超音波検査装置Zは、走査計測装置1と、制御装置2と、表示装置3とを備える。表示装置3は制御装置2に接続される。
【0012】
走査計測装置1は、被検査体Eへの超音波ビームUの走査及び計測を行うものであり、筐体101に固定された試料台102を備え、試料台102には被検査体Eが載置される。被検査体Eは、任意の材料で構成されている。被検査体Eは例えば固体材料であり、より具体には例えば金属、ガラス、樹脂材料、あるいはCFRP(炭素繊維強化プラスチック、Carbon-Fiber Reinforced Plastics)等の複合材料等である。また、
図1の例において、被検査体Eは内部に欠陥部Dを有している。欠陥部Dは、空洞等である。欠陥部Dの例は、空洞、本来あるべき材料と異なる異物材等である。被検査体Eにおいて、欠陥部D以外の部分を健全部Nと称する。
【0013】
欠陥部Dと健全部Nとは、構成する材料が異なるため、両者の間では音響インピーダンスが異なり、超音波ビームUの伝搬特性が変化する。超音波検査装置Zは、この変化を観測して、欠陥部Dを検出する。
【0014】
走査計測装置1は、超音波ビームUを放出する送信プローブ110と、偏心配置受信プローブ120とを有する。送信プローブ110は、送信プローブ走査部103を介して筐体101に設置され、超音波ビームUを放出する。偏心配置受信プローブ120は、被検査体Eに関して送信プローブ110の反対側に設置されて超音波ビームUを受信する受信プローブ121である。偏心配置受信プローブ120は、送信プローブ110の送信音軸AX1とは異なる位置に受信音軸AX2を有する。送信音軸AX1と受信音軸AX2との距離が偏心距離Lである。偏心配置受信プローブ120は、受信プローブ走査部104を介して筐体101に設置される。
【0015】
なお、本明細書においては、超音波ビームUを受信する受信プローブ121のうち、偏心距離Lがゼロより大きい位置に配置されたものを偏心配置受信プローブ120と定義し、偏心距離Lがゼロの位置に配置されたものを同軸配置受信プローブ140(
図2A等)と定義する。言い換えると、受信プローブ121は、偏心配置受信プローブ120と同軸配置受信プローブ140とを包括する用語であり、偏心距離Lによらず、超音波を受信するプローブを表す名称である。
【0016】
ここで、「送信プローブ110の反対側」とは、被検査体Eにより区切られる2つの空間のうち、送信プローブ110が位置する空間と反対側(z軸方向において反対側)の空間という意味であり、x、y座標が同一の反対側(つまり、xy平面に関して面対称の位置)という意味ではない。
図1に示す通り、送信音軸AX1と、受信音軸AX2とが、偏心距離Lだけずれるよう、送信プローブ110及び偏心配置受信プローブ120が設置される。なお、送信音軸AX1、受信音軸AX2、偏心距離Lの具体的内容については後記する。
【0017】
受信プローブ走査部104が移動することにより、偏心配置受信プローブ120は試料台102をx軸及びy軸方向に走査する。送信プローブ110と偏心配置受信プローブ120とは、被検査体Eをはさんでx軸方向、又は、y軸方向に対して偏心距離Lを保ちながら走査する(太両矢印)。
【0018】
なお、走査計測装置1では、いずれも詳細は後記するが、偏心距離Lは以下のように設定されている。即ち、偏心距離Lが、超音波ビームUの、被検査体Eの欠陥部Dでの散乱により生じる散乱波U1を受信可能な距離に設定されている。又は、被検査体Eの欠陥部Dへの入射時の偏心配置受信プローブ120での受信信号強度が被検査体Eの健全部Nへの入射時の受信信号強度よりも大きくなるように、偏心距離Lが設定されている。又は、偏心距離Lが、被検査体Eの健全部Nへの照射時にノイズ以外の受信信号が検出されない距離に設定されている。
【0019】
走査計測装置1は、送信音軸AX1と受信音軸AX2との偏心距離Lがゼロよりも大きくなるように、送信プローブ110又は偏心配置受信プローブ120の少なくとも一方の位置を調整する偏心距離調整部105を備える。偏心距離調整部105(偏心距離調整機構)は、筐体101に設置されている受信プローブ走査部104に備えられる。そして、偏心距離調整部105には偏心配置受信プローブ120が備えられる。偏心距離調整部105により、受信プローブ走査部104の位置から独立して偏心配置受信プローブ120を移動でき、受信音軸AX2と送信音軸AX1とのずれが偏心距離Lになるように設定できる。なお、偏心距離調整部105は送信プローブ走査部103側に設けてもよい。即ち、受信音軸AX2と送信音軸AX1とのずれが偏心距離Lになるように設定できれば良いのであるから、偏心距離調整部105を受信プローブ121側に設けても、送信プローブ110側に設けてもよい。
【0020】
走査計測装置1には、制御装置2が接続されている。制御装置2は、走査計測装置1の駆動を制御するものであり、送信プローブ走査部103及び受信プローブ走査部104に指示することで、送信プローブ110及び偏心配置受信プローブ120の移動(走査)を制御する。送信プローブ走査部103及び受信プローブ走査部104がx軸及びy軸方向に同期して移動することにより、送信プローブ110及び偏心配置受信プローブ120は被検査体Eをx軸及びy軸方向に走査する。更に、制御装置2は、送信プローブ110から超音波ビームUを放出し、偏心配置受信プローブ120から取得した信号に基づいて波形解析を行う。
【0021】
なお、本実施形態では、被検査体Eが試料台102を介して筐体101に固定された状態、つまり、被検査体Eは筐体101に対し固定された状態で、送信プローブ110と偏心配置受信プローブ120とを走査する例が示される。これとは逆に、送信プローブ110と偏心配置受信プローブ120とが筐体101に対して固定され、被検査体Eが移動することで、走査が行われる構成としてもよい。
【0022】
送信プローブ110と被検査体Eとの間、及び偏心配置受信プローブ120と被検査体Eとの間には、図示の例では気体G(流体Fの一例。液体W(
図17)でもよい)が介在する。このため、送信プローブ110及び偏心配置受信プローブ120を被検査体Eに非接触で検査できるため、xy面内方向の相対位置をスムーズかつ高速に変えることが可能である。即ち、送信プローブ110及び偏心配置受信プローブ120と被検査体Eとの間に流体Fを介在させることにより、スムーズな走査が可能になる。
【0023】
送信プローブ110は、収束型の送信プローブ110である。一方で、偏心配置受信プローブ120は、収束性が送信プローブ110よりも緩いプローブを用いる。本実施形態では、偏心配置受信プローブ120には探触子面が平面である非収束型のプローブが使用される。このような、非収束型の偏心配置受信プローブ120を用いることで、幅広い範囲について欠陥部Dの情報を収集することができる。
【0024】
本実施形態では、送信プローブ110に対して、
図1のx軸方向に偏心距離Lだけ偏心配置受信プローブ120がずらされて配置されているが、
図1のy軸方向にずらされた状態で偏心配置受信プローブ120が配置されてもよい。又は、x軸方向にL1、y軸方向にL2(即ち、送信プローブ110のxy平面での位置を原点とすると、(L1,L2)の位置)に偏心配置受信プローブ120が配置されてもよい。
【0025】
図2Aは、送信音軸AX1、受信音軸AX2及び偏心距離Lを説明する図であり、送信音軸AX1及び受信音軸AX2が鉛直方向に延びる場合である。
図2Bは、送信音軸AX1、受信音軸AX2及び偏心距離Lを説明する図であり、送信音軸AX1及び受信音軸AX2が傾斜して延びる場合である。
【0026】
音軸とは、超音波ビームUの中心軸と定義される。ここで、送信音軸AX1は、送信プローブ110が放出する超音波ビームUの伝搬経路の音軸と定義される。言い換えると、送信音軸AX1は、送信プローブ110が放出する超音波ビームUの伝搬経路の中心軸である。送信音軸AX1は、
図2Bに示すように、被検査体Eの界面による屈折を含めることとする。つまり、
図2Bに示すように、送信プローブ110から放出された超音波ビームUが、被検査体Eの界面で屈折する場合は、その超音波ビームUの伝搬経路の中心(音軸)が送信音軸AX1となる。
【0027】
また、受信音軸AX2は、偏心配置受信プローブ120が超音波ビームUを放出すると想定した場合の仮想超音波ビームの伝搬経路の音軸と定義される。言い換えると、受信音軸AX2は、偏心配置受信プローブ120が超音波ビームUを放出すると想定した場合の仮想超音波ビームの中心軸である。
【0028】
具体例として、探触子面が平面状である非収束型の受信プローブの場合を述べる。この場合、受信音軸AX2の方向は探触子面の法線方向であり、探触子面の中心点を通る軸が受信音軸AX2になる。探触子面が長方形の場合は、その中心点は長方形の対角線の交点と定義する。
【0029】
受信音軸AX2の方向が探触子面の法線方向である理由は、その受信プローブ121から放射する仮想的な超音波ビームUが探触子面の法線方向に出射するからである。超音波ビームUを受信する場合も、探触子面の法線方向で入射する超音波ビームUを感度よく受信できる。
【0030】
偏心距離Lとは、送信音軸AX1と、受信音軸AX2とのずれの距離で定義される。従って、
図2Bに示すように、送信プローブ110から放出された超音波ビームUが屈折する場合、偏心距離Lは、屈折している送信音軸AX1と、受信音軸AX2とのずれの距離で定義される。本実施形態の超音波検査装置Zは、このように定義される偏心距離Lが、ゼロより大きな距離となるよう、偏心距離調整部105(
図1)によって送信プローブ110及び偏心配置受信プローブ120が調整される。これにより、送信プローブ110から放出され、欠陥部D(
図1)の周囲を透過した超音波ビームU(
図3)を減らし、受信プローブ121での欠陥部Dに由来する信号変化を検出し易くできる。
【0031】
ただし、本実施形態では、好ましい例として、上記のように、偏心配置受信プローブ120は、欠陥部Dでの超音波ビームUの散乱により生じた散乱波U1(
図6B)を受信する。欠陥部Dの存在により散乱波U1が生成するため、散乱波U1の検出により、欠陥部Dの検出精度を更に向上できる。以下の例では、説明の簡略化のために、散乱波U1を受信可能な位置に設置された偏心配置受信プローブ120を例に挙げて、本実施形態を説明する。
【0032】
図2Aは、送信プローブ110を被検査体Eの表面における法線方向に配置した場合を示している。
図2A及び
図2Bにおいて、送信音軸AX1を実線の矢印で示している。また、受信音軸AX2を一点鎖線の矢印で示している。なお、
図2A及び
図2Bにおいて、破線で示す受信プローブ121の位置が偏心距離Lがゼロの位置であり、送信音軸AX1と受信音軸AX2とが一致する受信プローブ121は同軸配置受信プローブ140である。また、実線で示す受信プローブ121はゼロより大きな偏心距離Lの位置に配置されている偏心配置受信プローブ120である。送信音軸AX1が水平面(
図1のxy平面)に対して垂直になるように送信プローブ110が設置される場合、超音波ビームUの伝搬経路は屈折しない。つまり、送信音軸AX1は屈折しない。
【0033】
図2Bは、送信プローブ110を被検査体Eの表面における法線方向から角度αだけ傾けて配置した場合を示す図である。
図2Bでも
図2Aと同様、送信音軸AX1を実線の矢印で示し、受信音軸AX2を一点鎖線の矢印で示している。
図2Bに示す例の場合、前記したように、被検査体Eと流体Fとの界面で、超音波ビームUの伝搬経路が屈折角βで屈折する。そのため、送信音軸AX1は、
図2Bの実線矢印で示すように折れ曲がる(屈折する)。この場合、破線で示した同軸配置受信プローブ140の位置は、送信音軸AX1上に位置するため偏心距離Lがゼロの位置である。そして、前記したように、超音波ビームUが屈折する場合であっても、偏心配置受信プローブ120は、送信音軸AX1と受信音軸AX2との距離がLになるように、配置される。なお、
図1に示す例では、送信プローブ110を被検査体Eの表面における法線方向に設置しているので、偏心距離Lは、
図2Aに示すようなものとなる。
【0034】
偏心距離Lは、被検査体Eの健全部Nでの受信信号よりも、欠陥部Dでの信号強度の方が大きくなるような位置に設定する。この点については後記する。
【0035】
図3は、送信プローブ110の構造を示す断面模式図である。
図3では、簡略化のために、放出される超音波ビームUの外郭のみを図示しているが、実際には、探触子面114の全域にわたり、探触子面114の法線ベクトル方向に多数の超音波ビームUが放出される。
【0036】
送信プローブ110は、超音波ビームUを収束するように構成される。これにより、被検査体E中の微小な欠陥部Dを高精度に検出できる。微小な欠陥部Dを検出できる理由は後記する。送信プローブ110は、送信プローブ筐体115を備え、送信プローブ筐体115の内部に、バッキング112と、振動子111と、整合層113とを備える。振動子111には電極(図示せず)が取り付けられており、電極はリード線118により、コネクタ116に接続されている。さらに、コネクタ116はリード線117により電源装置(図示しない)及び制御装置2に接続される。
本明細書において、送信プローブ110又は受信プローブ121の探触子面114とは、整合層113を備える場合は整合層113の表面と定義し、整合層113を備えない場合は振動子111の表面と定義する。即ち、探触子面114は、送信プローブ110の場合は、超音波ビームUを放出する面であり、受信プローブ121の場合は、超音波ビームUを受信する面である。
【0037】
図4Aは、偏心配置受信プローブ120からの受信波形であり、被検査体Eの健全部Nでの受信波形を示す図である。
図4Bは、偏心配置受信プローブ120からの受信波形であり、被検査体Eの欠陥部Dでの受信波形を示す図である。
図4Bは、被検査体E内に設けられた幅2mm幅の空洞(欠陥部D)のxy座標位置に送信プローブ110を配置したときの受信信号を示す。なお、
図4A及び
図4Bにおいて、時間はバースト波が送信プローブ110に印加されてからの経過時間を示し、被検査体Eとして厚さ2mmのステンレス板を用いた。送信プローブ110には周波数800KHzのバースト波を印加した。より具体的には、10波の正弦波で構成されるバースト波を一定周期で被検査体Eに印加した。
【0038】
図4Aでは、有意な信号は観測されていないが、
図4Bでは、バースト波が送信プローブ110に印加されてから90マイクロ秒後に有意な信号が観測されている。この有意な信号が観測されるまでの90マイクロ秒の遅れは、超音波ビームUの放出から偏心配置受信プローブ120への散乱波U1の到達までに時間がかかるためである。具体的には、空中の音速が340(m/s)であるのに対し、被検査体Eを構成するステンレス中では6000(m/s)程度であるため、90マイクロ秒の遅れが発生する。
【0039】
図5は、信号強度データのプロットの例を示す図である。この例では、幅2mmの欠陥部Dに対し、送信プローブ110と偏心配置受信プローブ120とをx軸方向に走査し、x軸位置での受信信号(
図4Bに示す受信信号)から抽出した信号強度データ(走査位置毎の信号振幅)をプロットしている。本実施形態では、信号強度データの抽出は、
図4Bに示す受信信号のPeak To Peak値、即ち、適切な時間領域での最大値と最小値との差の抽出により行った。信号強度データの抽出方法の他の例として、
図4Bに示す受信信号が、短時間フーリエ変換などの信号処理により周波数成分に変換され、適切な周波数成分の強度が抽出されてもよい。さらには、信号強度データとして、適切な参照波を基準として、相関関数が計算されてもよい。このようにして信号強度データが、送信プローブ110の各走査位置に対応して取得される。
【0040】
図5に示した信号強度データのプロットにおいて、2mm幅の空洞(欠陥部D)は、
図5の符号D1に対応する。被検査体Eの健全部N(符号D1以外の部分)ではノイズレベルの信号であるのに対し、内部に欠陥部Dがある位置(符号D1)では、受信信号が有意に大きくなっていることがわかる。
【0041】
そこで、偏心距離調整部105は、欠陥部Dへの入射時の偏心配置受信プローブ120での受信信号強度が健全部Nへの入射時の受信信号強度よりも大きくなるように、偏心距離Lを調整することが好ましい。このようにすることで、受信信号強度に基づいて、欠陥部Dを検出できる。このような偏心距離Lは、例えば、散乱波U1(
図6B)を受信可能な位置に配置した偏心配置受信プローブ120の受信音軸AX2と送信プローブ110の送信音軸AX1との距離である。偏心距離調整部105は、例えば、いずれも図示しないが、アクチュエータ、モータ等により構成される。
【0042】
また、偏心距離調整部105は、偏心距離Lを、健全部Nへの照射時にノイズ以外の受信信号が検出されない距離に調整することが好ましい。即ち、偏心距離調整部105は、被検査体Eの健全部Nでは有意の受信信号が出ないように偏心距離Lを設定することが好ましい。このようにすることで、SN比を増大させ、ノイズ以外の受信信号が検出された場所を欠陥部Dを判断でき、欠陥部Dを検出できる。
【0043】
偏心距離Lは、例えば、被検査体Eと同じ材料で構成され、かつ、内部に欠陥部Dを有する標準試料を使用して決定できる。そして、標準試料の欠陥部Dへの超音波ビームUの照射し、超音波ビームU又は散乱波U1を受信可能な位置に基づき、偏心距離Lを決定できる。
【0044】
送信プローブ110をx軸方向のみの1次元で走査した場合は、表示装置3には
図5に示す信号強度データのグラフが表示される。送信プローブ110の走査方向がx軸方向及びy軸方向の2次元の場合については、信号強度データをプロットすることで、欠陥部Dの位置が2次元画像として示され、それが表示装置3に表示される。
【0045】
図6Aは、本実施形態における超音波ビームUの伝搬経路であって、健全部Nに超音波ビームUが入射した場合を示す図である。
図6Bは、本実施形態における超音波ビームUの伝搬経路であって、欠陥部Dに超音波ビームUが入射した場合を示す図である。
【0046】
図6A及び
図6Bに示されるように、送信プローブ110から放出された超音波ビームUは被検査体Eに入射する。
図6Aに示すように、健全部Nに超音波ビームUが入射した場合、超音波ビームUは送信音軸AX1に向かって収束するように通過する。そのため、偏心距離Lを保って配置されている偏心配置受信プローブ120では受信信号が観測されない。これに対し、
図6Bに示すように、欠陥部Dに超音波ビームUが入射された場合、欠陥部Dで超音波ビームUが散乱され、その散乱波U1が偏心設置された偏心配置受信プローブ120で受信される。そのため、有意な受信信号が観測される。
【0047】
このように、被検査体Eにおける欠陥部Dにより散乱された散乱波U1が偏心配置受信プローブ120で観測される。そのため、健全部Nでの受信信号よりも欠陥部Dでの受信信号の方が大きくなる。即ち、信号が大きな位置に欠陥部Dがあると判定される。従って、偏心距離調整部105は、偏心距離Lを、照射された超音波ビームUの、被検査体Eの欠陥部Dでの散乱により生じる散乱波U1を受信可能な距離に調整することが好ましい。このようにすることで、欠陥部Dに特有の散乱波U1を検出でき、欠陥部Dの検出精度を向上できる。
【0048】
偏心距離Lは、送信プローブ110から放出された超音波ビームUを受信せず、散乱波U1のみを選択的に受信できる長さになることが好ましい。これにより、SN比を増大させて、欠陥部Dの検出性能、特に検出感度を向上できる。ここで、「検出感度が高い」とは、従来法よりも小さな欠陥部Dを検出可能ということである。即ち、検出可能な欠陥部Dのサイズの下限が従来法よりも小さいことである。
【0049】
ここで、比較例として、従来の超音波検査の手法を説明する。
【0050】
図7Aは、従来の超音波検査方法での超音波ビームUの伝搬経路を示す図であり、健全部Nへの入射時を示す図である。
図7Bは、従来の超音波検査方法での超音波ビームUの伝搬経路を示す図であり、欠陥部Dへの入射時を示す図である。従来の超音波検査方法では、例えば特許文献1に記載されているように、送信音軸AX1と受信音軸AX2とが一致するように、送信プローブ110及び受信プローブ121としての同軸配置受信プローブ140が配置される。
【0051】
図7Aに示すように、被検査体Eの健全部Nに超音波ビームUが入射された場合、超音波ビームUが被検査体Eを通過して同軸配置受信プローブ140に到達する。従って、受信信号が大きくなる。一方、
図7Bに示すように、欠陥部Dに超音波ビームUが入射された場合、欠陥部Dにより超音波ビームUの透過が阻止されるために受信信号が減少する。このように受信信号の減少により欠陥部Dを検出する。これは、特許文献1に示されている通りである。
【0052】
ここで、
図7A及び
図7Bに示すように、欠陥部Dにおいて超音波ビームUの透過が阻止されることによって受信信号が減少し、欠陥部Dを検出する方法を、ここででは「阻止法」と呼ぶことにする。一方、本実施形態のように、欠陥部Dでの散乱波U1を検出する検査方法を「散乱法」と呼ぶことにする。
【0053】
図8は、従来の超音波検査方法での信号強度データのプロットを示す図である。この図は、発明者らが、
図7A及び
図7Bに示す阻止法による超音波検査方法、即ち、送信音軸AX1と受信音軸AX2を一致させた配置で、上記の
図5で用いられた被検査体Eと同じ欠陥部Dを有する被検査体Eを検査した信号強度グラフである。
図8において、符号D1の部分が欠陥部Dに相当する部分である。
【0054】
図8では、欠陥部Dの中心位置(位置が0mm)で信号の減少が認められるが、その減少量は小さい。これは、超音波ビームUの大きさよりも小さな欠陥部Dでは、その周囲を透過する超音波ビームUが多いことに起因すると考えられる。このため、送信音軸AX1と受信音軸AX2とを一致させた阻止法では、欠陥部Dに由来する信号変化を検出し難く、検出感度が低い。
【0055】
これに対し、送信音軸AX1と受信音軸AX2とをずらすことで、偏心配置受信プローブ120が受信する信号強度のうち、超音波ビームUの大きさよりも小さな欠陥部Dの周囲を透過する超音波ビームUの信号を小さくできる。これにより、欠陥部Dに起因する信号強度を減少量を相対的に大きくし、欠陥部Dの検出性能、特に検出感度を向上できる。中でも、上記の
図5に示すように、本実施形態に好適な散乱法による構成によれば、阻止法による
図8の結果と比べると、欠陥部Dの位置を明確に検出できることがわかる。つまり、比較例である
図8に示す受信結果と、
図5に示す本実施形態による手法の受信結果とを比較すると、
図5に示す本実施形態による手法の方が、高いSN比が得られる。
【0056】
このように、本実施形態の散乱法が高いSN比を得られる理由について、
図9A及び
図9Bを参照して説明する。
【0057】
図9Aは、被検査体E内での欠陥部Dと超音波ビームUとの相互作用を示す図であり、直達する超音波ビームU(以下、「直達波U3」という)を受信する様子を示す図である。直達波U3については後記する。
図9Bは、被検査体E内での欠陥部Dと超音波ビームUとの相互作用を示す図であり、散乱波U1を受信する様子を示す図である。ここでは、欠陥部Dの大きさが超音波ビームUの幅(以下、ビーム幅BWと称する)よりも小さい場合を考察する。ここでのビーム幅BWとは、欠陥部Dに到達した時の超音波ビームUの幅である。
【0058】
また、
図9A及び
図9Bは、欠陥部D近傍の微小領域での超音波ビームUの形状を模式的に示しているので超音波ビームUを平行に描いてあるが、実際には収束させた超音波ビームUである。さらに、
図9A及び
図9Bでの受信プローブ121の位置は、わかりやすく説明するために概念的な位置を記入したものであり、受信プローブ121の位置と形状は正確にスケールされていない。即ち、欠陥部Dと超音波ビームUとの形状の拡大スケールで考えると、
図9A及び
図9Bに示す位置よりも、図面上下方向で離れた位置に受信プローブ121は位置する。ここで、受信プローブ121は、
図9Aでは同軸配置受信プローブ140であり、
図9Bでは偏心配置受信プローブ120を意味する。
【0059】
超音波ビームUは、収束させて入射させても欠陥部D近傍ではある有限の幅を持つ。これを、欠陥部Dの位置でのビーム幅BWとする。ちなみに、
図9A及び
図9Bでは、欠陥部Dの位置でのビーム幅BWが欠陥部Dの大きさよりも広い場合を示している。
【0060】
図9Aは、送信音軸AX1と受信音軸AX2とを一致させた阻止法の場合を示す図である。欠陥部Dがビーム幅BWよりも小さい場合、一部の超音波ビームUは阻止されるので受信信号は減少するが、ゼロにはならない。例えば、欠陥部Dの断面積がビーム幅BWで規定されるビーム断面積の20%の場合、受信信号は概ね20%の減少に止まるので、欠陥部Dの検出が困難である。つまり、
図9Aに示すような場合、欠陥部Dが存在する箇所では、受信信号が20%減少するにとどまる(
図8参照)。
【0061】
図9Bは、本実施形態の好適な手法の場合、即ち散乱法の場合を示す図である。散乱法では、欠陥部Dに超音波ビームUが当たらない場合、超音波ビームUは偏心配置受信プローブ120に入射しないので、受信信号はゼロである。そして、
図9Bに示すように、超音波ビームUの一部が欠陥部Dに当たった場合でも、散乱波U1が偏心配置受信プローブ120で観測されるので、阻止法と比べて欠陥部Dの検出が容易である。つまり、欠陥部Dが存在しなければ受信信号はゼロとなり、微小でも欠陥部Dが存在すれば受信信号は非ゼロとなる。そのため、SN比を高くすることが可能になる(
図5参照)。
【0062】
このように、本実施形態による手法(散乱法)によれば、ビーム幅BWよりも小さな欠陥部Dを、高感度で検出できる。ここで、「高感度で検出できる」とは、従来法より小さな欠陥部Dを検出可能ということである。即ち、検出可能な欠陥部Dのサイズの下限が従来法よりも小さい。
【0063】
また、
図9Aで示すように、阻止法では、健全部Nに対応する受信信号量を基準として、そこからの減少量で欠陥部Dが判定される。従って、健全部Nでの受信信号が一定値とすることが好ましい。しかしながら、流体Fの中でも特に気体G中を伝搬する超音波では、液体W(
図17)中を伝搬する超音波と比較して、受信プローブ121に到達する強度が極めて小さい。そのため、受信信号は高い増幅率(ゲイン)で増幅することが好ましい。このため、ゲインを一定に保つには高精度な信号増幅回路が好ましい。一方、本実施形態による散乱法では、
図5に示すように、健全部Nでは信号が、ほぼゼロであり、欠陥部Dで信号が観測されるので、信号増幅回路のゲイン安定性への要求を小さくできる。ただし、上記の
図5では、オフセット値だけ信号強度の値が底上げされている。
【0064】
また、本実施形態では、ポジ画像が得られる。即ち、散乱法では健全部Nには信号が発生しないか発生しても小さく、欠陥部Dでは信号が新たに発生するか信号が大きくなる。つまり、欠陥部Dのポジ画像が得られる。これに対して、阻止法では、健全部Nで信号が大きく、欠陥部Dで信号が減少する。つまり、欠陥部Dのネガ画像が得られる。
【0065】
図10は、制御装置2の機能ブロック図である。制御装置2は、送信系統210と、受信系統220と、データ処理部201と、スキャンコントローラ204と、駆動部202と、位置計測部203とを備える。
【0066】
送信系統210は、送信プローブ110への印加電圧を生成する系統である。送信系統210は、波形発生器211及び信号アンプ212を備える。波形発生器211でバースト波信号が発生する。そして、発生したバースト波信号は信号アンプ212で増幅される。信号アンプ212から出力された電圧は送信プローブ110に印加される。
【0067】
受信系統220は、偏心配置受信プローブ120から出力される受信信号を検出する系統である。偏心配置受信プローブ120から出力された信号は、信号アンプ222に入力されて増幅される。増幅された信号は、波形解析部221に入力される。波形解析部221は、受信信号から信号強度データ(
図5)を生成する。生成された信号強度データはデータ処理部201に送られる。
【0068】
受信系統220は、位相抽出部231を備える。位相抽出部231には、信号アンプ222の出力信号が入力される。位相抽出部231は、偏心配置受信プローブ120が受信した超音波ビームU(散乱波U1)の信号の位相情報を抽出する。抽出された位相情報はデータ処理部201の位相変化量算出部232に送られる。
【0069】
信号の位相とは、超音波ビームUが送信プローブ110から放出されてから、受信信号の特定の位置に至るまでの遅延時間である。受信信号の特定の位置とは、受信信号の中で遅延時間を算出しやすい特徴的な受信信号の位置を表す。例えば、10個の波のバースト波を用いた場合、3個目の波の位置である。
【0070】
更に、信号の位相としては、信号の基本周期内での遅延時間を用いても良い。信号の基本周期とは、基本周波数f0の逆数である。例えば、基本周波数f0=800kHzのバースト波を用いた場合、基本周期は1.25μsになる。位相抽出部231は、受信信号の特定位置、例えばゼロクロス点が基本周期の中のどこにあるかを算出する。本実施形態では、位相抽出部231は、遅延時間を信号の基本周期T0で割った剰余を算出することにより、基本周期内での位相を算出する。
【0071】
データ処理部201は、位相変化量算出部232を備える。位相変化量算出部232は、位相情報を入力信号として受け取り、スキャンコントローラ204から走査位置の情報も受け取る。これら2つの情報を用いて、位相変化量算出部232は、位相抽出部231で抽出した位相情報の、走査位置に関する位相変化量(走査位置毎の位相変化量)を算出する。この変化量は、信号の位相情報の、走査位置に関する空間微分量に相当する。
【0072】
「走査位置に関する位相変化量」には、変化量(空間微分量)に加えて、その2乗値、絶対値等、変化量(空間微分量)の大きさ変化を表す信号量(変化量)も含まれる。xy2次元平面で走査して、この2次元走査位置(x,y)に関して変化量を算出すると、欠陥部Dの輪郭を把握し易い画像が得られる。
【0073】
位相変化量算出部232における位相情報の変化量の算出方法は、例えば、CPU(中央演算装置)又はマイコン(マイクロコントローラ)による演算処理、FPGA(Field-Programmable Gate Array)等でのデジタル信号処理、アナログ回路による信号処理等を含む。
【0074】
このように、位相抽出部231及び位相変化量算出部232により、x軸方向及びy軸方向の各走査位置において、信号の位相変化の抽出、及びその走査位置に関する位相変化量が算出される。走査位置の違いによる信号変化を以下に説明する
【0075】
図11は、x軸方向の各走査位置での偏心配置受信プローブ120の受信信号の変化を模式的に示した図である。縦方向の破線は、欠陥部Dの存在位置であり、欠陥部Dの幅はWDである。参考として、透過法に基づく同軸配置受信プローブ140を設置した場合の信号振幅をグラフG1に示す。グラフG2は、偏心配置受信プローブ120で受信した信号の信号振幅を示し、波形解析部221の出力信号である。グラフG1,G2のいずれにおいても、欠陥部Dの近傍で信号振幅は大きくなっており、欠陥部Dを検出できることがわかる。
【0076】
しかしながら、グラフG1,G2のいずれにおいても、欠陥部Dのサイズ(幅)であるWDよりも信号の幅が広がっている。この理由は、超音波ビームUのビームサイズが大きいためである。即ち、超音波ビームUの一部が欠陥部Dに照射した場合も散乱波U1が発生するため、欠陥部Dの近傍で散乱波U1の信号振幅はだんだんと大きくなる。このため、実際の欠陥部Dのサイズよりも信号振幅が広がってしまう。これは、表示装置3に表示した場合、欠陥部Dのサイズが実際よりも見かけ上大きくなり、解像度が低下した状態に対応する。従って、グラフG1,G2にのみ基づくと、表示装置3に表示され、欠陥部Dの輪郭を示す画像の解像度が低下し得る。
【0077】
グラフG3は、散乱波U1の信号の位相をプロットしたものであり、位相抽出部231(
図10)の出力信号である。散乱波U1(
図6B)の位相信号は、欠陥部D(
図6B)の位置で急峻に変化することがわかる。この理由は
図12A~
図12Cを参照して後記する。グラフG4は、散乱波U1の位相信号のx軸方向の走査位置に関する位相変化量をプロットしたものであり、位相変化量算出部232(
図10)の出力信号である。グラフG4は、散乱波U1の位相信号をx軸方向の走査位置に関して空間微分した信号に対応する。更に、グラフG5は、グラフG4の値を2乗したものをプロットしたものである。グラフG4,G5に基づくと、欠陥部Dの輪郭に対応した信号、即ち、欠陥部Dの輪郭を示す高解像度の画像が得られることがわかる。従って、グラフG2とグラフG3~G5との比較により、散乱波U1の信号の位相の走査位置に関する位相変化量を算出することにより、欠陥部Dを解像度よく検出できることがわかる。
【0078】
図12Aは、超音波ビームUが欠陥部Dに入射しない走査位置を示す図である。
図12Bは、超音波ビームUが欠陥部Dに入射するが送信音軸AX1が欠陥部Dに入らない走査位置を示す図である。
図12Cは、超音波ビームUが欠陥部Dに入射し、かつ、送信音軸AX1が欠陥部Dに入る走査位置を示す図である。散乱波U1の位相が欠陥部Dの位置で急峻に変化する理由は、本発明者の検討によると以下の理由と推測される。
【0079】
超音波ビームUが欠陥部Dに入射しない走査位置(x1)での走査時(
図12A)、散乱波U1は生じないため、上記
図11のグラフG1,G2に示した信号振幅は変化しない。しかし、超音波ビームUが欠陥部Dに入射するが送信音軸AX1が欠陥部Dに入らない走査位置(x2)での走査時(
図12B)、欠陥部Dに超音波ビームUの一部が入射しただけでも散乱波U1は生じる。このため、上記
図11のグラフG1,G2に示すように、信号振幅に変化がみられる。ただし、上記
図11のグラフG3~G5に示すように位相は変化しない。これは、偏心配置受信プローブ120が、散乱波U1と様々な方向からの超音波ビームUとを含む受信成分を受信し、これらが混ざる結果、位相の変化が確認し難くなるためと考えられる。
【0080】
図12Cに示したように、超音波ビームUが欠陥部Dに入射し、かつ、送信音軸AX1が欠陥部Dに入る走査位置(x3)では、上記
図11のグラフG3~G5に示すように位相が顕著に変化する。これは、超音波ビームUの送信音軸AX1が欠陥部Dに入射することで、欠陥部Dでの散乱に適した状態で超音波ビームUが欠陥部Dに入射したためと考えらえる。これにより、偏心配置受信プローブ120が、散乱波U1を大部分に含む受信成分を受信し、位相の変化が顕著に生じるためと考えられる。
【0081】
このように、超音波ビームUの送信音軸AX1が欠陥部Dに照射されたとき、即ち、偏心配置受信プローブ120での受信成分のほとんどが散乱波U1の場合には、散乱波U1の位相変化を明確に捉えることができる。従って、散乱波U1の位相変化に基づくことで、欠陥部Dの位置を把握できる。
【0082】
図10に戻って、データ処理部201は、被検査体Eの欠陥部Dに関する情報を画像化したり、欠陥部Dの存在の有無を検出したりするといった、取得した情報を所望の形態に処理する。なお、データ処理部201で生成された画像及び情報は表示装置3に表示される。
【0083】
スキャンコントローラ204は、
図1に示す送信プローブ走査部103及び受信プローブ104を駆動制御する。送信プローブ走査部103及び受信プローブ104の駆動制御は、駆動部202を通じて行われる。また、スキャンコントローラ204は、位置計測部203を介して、送信プローブ110及び偏心配置受信プローブ120の位置情報(x軸方向及びy軸方向の各走査位置。xy座標)を計測する。
【0084】
データ処理部201は、スキャンコントローラ204から受け取る送信プローブ110及び偏心配置受信プローブ120の位置情報を基にして、それぞれの位置での信号強度データをプロットして画像化し、表示装置3に表示する。上記のように、欠陥部Dで取得した信号強度データは、健全部Nの信号強度データよりも大きい。従って、送信プローブ110の走査位置に対して信号強度データをプロットすると、どこに欠陥部Dがあるかを示す画像が取得できる。表示装置3は、この画像を表示する。
【0085】
データ処理部201は、位相変化量算出部232からの出力信号も、送信プローブ110の走査位置に対してプロットすることで画像を生成し、それを表示装置3に表示する。後述する通り、位相変化量算出部232からの出力信号は欠陥部Dの輪郭画像に対応した画像を与える。
【0086】
信号強度データが生成する画像と、位相変化量算出部232が出力する画像との2つの画像は、重畳して1つの画像として表示しても良い。重畳した画像は、第1画像の上に、第2画像を重ね合わせて表示された画像である。この際、2枚の画像の走査位置が対応するように第1画像と第2画像とが重ね合わせられる。例えば、信号強度データの画像を階調付き白黒画像で表示し、位相変化量算出部232が出力する画像を黄色など別の色で重畳表示すると良い。
【0087】
図13は、制御装置2のハードウェア構成を示す図である。制御装置2は、RAM(Random Access Memory)等のメモリ251、CPU(Central Processing Unit)252、ROM(Read Only Memory)、HDD(Hard Disk Drive)等の記憶装置253、NIC(Network Interface Card)等の通信装置254、I/F(Interface)255等を備えて構成されている。
【0088】
制御装置2は、記憶装置253に格納されている所定の制御プログラムがメモリ251にロードされ、CPU252によって実行される。これにより、
図3のデータ処理部201、位置計測部203、スキャンコントローラ204、位相抽出部231、位相変化量算出部232等が具現化する。
【0089】
図14は、第1実施形態の超音波検査方法を示すフローチャートである。第1実施形態の超音波検査方法は上記の超音波検査装置Zにより実行でき、適宜、
図1及び
図10を参照して説明する。第1実施形態の超音波検査方法は、気体G(
図1)を介して被検査体E(
図1)に超音波ビームUを入射することにより被検査体Eの検査を行うものである。なお、この超音波検査方法を流体Fとして気体Gを用いた実施形態について説明するが、この超音波検査方法は、流体Fとして液体W(
図17)を用いた実施形態についても有効であることはいうまでもない。
【0090】
まず、制御装置2(
図10)の指令により、送信プローブ110(
図1)から超音波ビームU(
図6B)を放出する放出ステップS101が行われる。続いて、偏心配置受信プローブ120(
図1)において超音波ビームU(この例では散乱波U1)を受信する受信ステップS102が行われる。
【0091】
その後、偏心配置受信プローブ120が受信した超音波ビームU(この例では散乱波U1)の信号(例えば波形信号)を基に、信号の位相情報を抽出する位相抽出ステップS103が行われる。位相抽出ステップS103は、位相抽出部231(
図10)により行われ、位相抽出部231は、例えば上記
図4Bに示す受信信号から信号の位相情報を抽出(生成)する。
【0092】
位相抽出部231の出力信号は位相変化量算出部232(
図10)に入力され、抽出した位相情報の、走査位置に関する位相変化量を算出する位相変化量算出ステップS104が行われる。位相変化量算出ステップS104においては、スキャンコントローラ204(
図10)から送られる、走査位置情報(座標位置)を参照して、走査位置の単位長さ変化あたりの、位相変化量を算出する。位相変化量算出ステップS104は、位相変化量算出部232により行われる。
【0093】
送信プローブ110及び偏心配置受信プローブ120の走査位置情報は、位置計測部203(
図10)からスキャンコントローラ204(
図10)に送信される。データ処理部201(
図10)は、スキャンコントローラ204から取得した送信プローブ110の走査位置情報に対して、それぞれの走査位置での位相変化量をプロットする。このようにして、例えば上記
図11に示したグラフG3~G5が得られ、位相変化量が画像化される。
【0094】
なお、上記
図11は走査位置情報が1次元(1方向)の場合であり、走査位置情報がx,yの2次元の場合については、位相変化量をプロットすることで、欠陥部Dの輪郭情報が2次元画像として示され、それが表示装置3に表示される。
【0095】
位相変化量算出ステップS104の次に、形状表示ステップS105が行われる。形状表示ステップS105は、位相変化量算出ステップS104で生成された、位相情報の走査位置に関する位相変化量が、予め設定されている閾値以上か否かを判定することで、被検査体Eの欠陥部Dの形状を例えば表示装置3に表示する。表示装置3には、例えば、閾値を超えた走査位置を描画した画像表示される。このようにすると、欠陥部Dの輪郭を明確に示すことが出来るという効果が得られるので、より好ましい。形状表示ステップS105はデータ処理部201により行われる。
【0096】
データ処理部201は、走査が完了したか否かを判定する(ステップS111)。走査が完了している場合(Yes)、制御装置2は処理を終了する。走査が完了していない場合(No)、データ処理部201は駆動部202(
図10)に指令を出力することによって、次の走査位置まで送信プローブ110及び偏心配置受信プローブ120を移動させ(ステップS112)、放出ステップS101へ処理を戻す。
【0097】
以上の超音波検査装置Z及び超音波検査方法によれば、欠陥部の検出性能、例えば表示画像の解像度を向上でき、欠陥部Dの位置を把握し易くできる。
【0098】
なお、流体Fは上記のように気体G(
図1)でもよく、後記のように液体W(
図17)でもよい。ただし、流体Fとして空気等の気体Gを用いた場合、以下の理由により、さらに好ましい効果を与える。
【0099】
液体W中と比較して、気体G中では超音波の減衰量が大きい。超音波の気体G中での減衰量は周波数の2乗に比例することが知られている。このため、気体G中で超音波を伝搬させるには1MHz程度が上限となる。液体W中の場合は、5MHz~数10MHzの超音波でも伝搬するので、気体G中で使用可能な周波数は、液体W中のそれより小さいことになる。
【0100】
一般に、超音波の周波数が低くなると、超音波ビームUの収束が困難になる。そのため、気体G中を伝搬させる1MHzの超音波ビームは、液体W中の超音波ビームUと比べて収束可能なビーム径が大きくなる。このため、同軸配置受信プローブ140(
図2A)で検出する振幅画像は、流体Fとして気体Gを用いた場合、解像度が低くなることがある。
【0101】
しかし、本開示によれば、流体Fとして気体Gを用いた場合であっても、偏心配置受信プローブ120で検出した散乱波U1の、走査位置に関する位相変化量(空間微分量)は、欠陥部Dの輪郭像に近い画像が得られる。このため、流体Fとして液体Wを用いる場合は勿論、気体Gを用いた場合であっても高い解像度が得られる。このように、本開示の効果は、流体Fとして気体Gを用いた場合に、さらに高いものになる。
【0102】
(第2実施形態)
図15は、第2実施形態の超音波検査装置Zの構成を模式的に示した図である。第2実施形態では、走査計測装置1は、偏心配置受信プローブ120に加えて、同軸配置受信プローブ140を備える。ここで、同軸配置受信プローブ140は、偏心距離Lがゼロになる位置に配置した受信プローブ121である。即ち、同軸配置受信プローブ140の受信音軸AX2は、送信プローブ110の送信音軸AX1と同一である。
【0103】
図16は、第2実施形態に係る制御装置2の構成を示す図である。偏心配置受信プローブ120の出力信号は、受信系統220aに入力され、その中の位相抽出部231で位相情報が抽出される。位相情報は、データ処理部201に入力され、その中の位相変化量算出部232で信号の位相の走査位置に関する位相変化量が算出される。この位相変化量は、上記のように、欠陥部Dの輪郭に対応する。位相変化量算出部232では、輪郭画像データが生成される。
【0104】
同軸配置受信プローブ140の出力信号は、受信系統220bに入力され、信号アンプ223で増幅後、波形解析部221で信号の振幅情報が抽出される。同軸配置受信プローブ140の受信音軸AX2は、送信プローブ110の送信音軸AX1に一致するように設置されているので、欠陥部Dにおいて超音波ビームUの透過量が遮断されるため、同軸配置受信プローブ140の受信信号の振幅は、欠陥部Dにおいて減少する。これは、従来技術である「阻止モード」での欠陥検出方法である。同軸配置受信プローブ140が接続された受信系統220bの波形解析部221の出力信号は、データ処理部201に入力され、その中の振幅画像生成部224で振幅画像データを生成する。
【0105】
以上の手順で、偏心配置受信プローブ120の信号から輪郭画像データが生成され、同軸配置受信プローブ140の信号から振幅画像データが生成する。これら2つの画像データは、データ処理部201の画像合成部225に入力される。画像合成部225は、振幅画像データ(第1画像)と、輪郭画像データ(第2画像)と、を合成(重畳)するものである。振幅画像データは、上記のように、同軸配置受信プローブ140で受信した直達波U3(
図9A)の振幅に基づいて振幅画像生成部224が生成した、被検査体Eの内部の欠陥部Dの位置を示すものである。輪郭画像データは、走査位置に関する位相変化量に基づいて位相変化量算出部232が生成した、被検査体Eの内部の欠陥部Dの輪郭を示すものである。合成した画像は表示装置3に入力されて表示される。
【0106】
超音波ビームUの収束サイズよりも小さな欠陥部Dを観測する場合、振幅画像データは輪郭がぼやけた画像になるが、輪郭画像データは欠陥部Dの実サイズにより近いシャープな形状を与える。このため、第2実施形態によれば、欠陥部Dをより高解像度で画像化できるという効果がある。
【0107】
なお、第2実施形態では、偏心配置受信プローブ120で受信した信号から得た、位相変化量算出部232からの情報(輪郭画像データ)と、同軸配置受信プローブ140で受信した信号から得た、振幅画像生成部224からの情報(振幅画像データ)とを合成し、表示装置3に重畳表示を行った。しかし、本開示において、これら2つの情報、即ち、位相変化量及び振幅の各情報の活用方法は、2つの画像の合成に限定されるものではない。
【0108】
これら2つの情報を活用する方法の、別の実施形態を以下に述べる。以下の実施形態では、偏心配置受信プローブ120で受信した信号から得た位相変化量と、同軸配置受信プローブ140で受信した信号から得た振幅とを適切に組み合わせることで、解像度の高い欠陥部Dの画像を生成し、表示できる。
【0109】
これら2つの信号の組み合わせ方法の第1の例としては、位相変化量算出部232の出力信号が予め定めた閾値を超えた走査位置において、同軸配置受信プローブ140からの波形解析部221の出力信号、即ち、振幅信号の変化量が予め定めた閾値を超えた場合に、その走査位置に欠陥部Dがあると判定できる。このようにして判定した欠陥部Dの情報が、走査位置情報とともに欠陥部Dの画像として表示装置3に表示する。これにより、位相変化の空間的変化量である位相変化量の算出において、意図しないノイズ混入などにより、信号変化が発生した場合でも、欠陥部Dの誤検知の発生を抑制できる。
【0110】
第2の例においては、位相変化量算出部232の出力信号を欠陥部Dの輪郭情報とし、同軸配置受信プローブ140の受信信号の振幅値を用いて、その輪郭線で仕切られる画像のうち、どの領域が欠陥部Dの位置に対応するのかを判定できる。その判定に基づいて、欠陥画像が表示装置3に表示される。これにより、欠陥部Dを解像度良く表示できる。
【0111】
(第3実施形態)
図17は、第3実施形態の超音波検査装置Zの構成を示す図である。第3実施形態では、流体Fは液体Wであり、図示の例では水である。超音波検査装置Zは、流体Fである液体Wを介して被検査体Eに超音波ビームUを入射することで被検査体Eの検査を行うものである。被検査体Eは、液体Wの液面L0の下に配置され、液体Wに浸かっている。超音波検査装置Zは、走査計測装置1と、制御装置2と、表示装置3とを備える。表示装置3は制御装置2に接続される。
【0112】
走査計測装置1は、被検査体Eへの超音波ビームUの走査及び計測を行うものであり、筐体101に固定された試料台102を備え、試料台102には被検査体Eが載置される。被検査体Eは、任意の材料で構成されている。被検査体Eは例えば固体材料であり、より具体には例えば金属、ガラス、樹脂材料等である。また、被検査体Eは内部に欠陥部Dを有している。欠陥部Dは、空洞等である。欠陥部Dの例は、空洞や、本来あるべき材料と異なる異物材などである。被検査体Eにおいて、欠陥部D以外の部分を健全部Nと称する。
【0113】
欠陥部Dと健全部Nとは、構成する材料が異なるため、両者の間では音響インピーダンスが異なり、超音波ビームの伝搬特性が変化する。超音波検査装置Zでは、この変化を観測して、欠陥部Dを検出する。
【0114】
走査計測装置1は、超音波ビームUを放出する送信プローブ110と、偏心配置受信プローブ120とを有する。送信プローブ110は、送信プローブ走査部103を介して筐体101に設置され、超音波ビームUを放出する。偏心配置受信プローブ120は、被検査体Eに関して送信プローブ110の反対側に設置されて超音波ビームUを受信する受信プローブ121である。偏心配置受信プローブ120は、送信プローブ110の送信音軸AX1とは異なる位置に受信音軸AX2を有する。送信音軸AX1と受信音軸AX2との距離が偏心距離Lである。偏心配置受信プローブ120は、受信プローブ走査部104を介して筐体101に設置される。
【0115】
なお、流体Fとして水等の液体Wを使用する場合においても、超音波を受信する受信プローブ121(
図18)のうち、偏心距離Lがゼロ以上の位置に配置されたものを偏心配置受信プローブ120と定義し、偏心距離Lがゼロの位置に配置されたものを同軸配置受信プローブ140(
図18)と定義する。言い換えると、受信プローブ121は、偏心配置受信プローブ120と同軸配置受信プローブ140を包括する用語である。
【0116】
第3実施形態では、送信プローブ110に対して、
図17のx軸方向に偏心距離Lだけ偏心配置受信プローブ120がずらされて配置されているが、
図17のy軸方向にずらされた状態で偏心配置受信プローブ120が配置されてもよい。あるいは、x軸方向にL1、y軸方向にL2(即ち、送信プローブ110のxy平面での位置を原点とすると、(L1,L2)の位置)に偏心配置受信プローブ120が配置されてもよい。
【0117】
第3実施形態では、好ましい例として、偏心配置受信プローブ120は、欠陥部Dでの超音波ビームUの散乱により生じた散乱波U1(
図6B)を受信する。欠陥部Dの存在により散乱波U1が生成するため、散乱波U1の検出により、欠陥部Dの検出精度を更に向上できる。以下の例では、説明の簡略化のために、散乱波U1を受信可能な位置に設置された偏心配置受信プローブ120を例に挙げて、本実施形態を説明する。
【0118】
偏心距離Lは、被検査体Eの健全部Nでの受信信号よりも、欠陥部Dでの信号強度の方が大きくなるような位置に設定する。この点については第1実施形態と同様である。
【0119】
第3実施形態の超音波検査装置Zに備えられる制御装置2について、上記の
図10を更に参照しながら説明する。第3実施形態においても、制御装置2は、送信系統210と、受信系統220と、データ処理部201と、スキャンコントローラ204と、駆動部202と、位置計測部203とを備える。制御装置2の構成及び動作については、第1実施形態と同様である。
【0120】
受信系統220は、位相抽出部231を備える。位相抽出部231には、信号アンプ222の出力信号が入力される。位相抽出部231では、受信信号から上記の位相情報を生成する。生成された位相情報はデータ処理部201に送られる。
【0121】
データ処理部201は、位相変化量算出部232を備える。位相変化量算出部232は、位相情報を入力信号として受け取り、スキャンコントローラ204から走査位置の情報も受け取る。これら2つの情報を用いて、位相変化量算出部232は、走査位置の変化による位相変化量を算出する。
【0122】
第1実施形態と同様に、この走査位置の変化による位相変化量は、欠陥部Dの輪郭情報に対応する。従って、この位相変化量を走査位置に対応して画像化することで、解像度の高い欠陥部の映像を得ることが出来る。
【0123】
(第4実施形態)
図18は、第4実施形態の超音波検査装置Zの構成を示す図である。第4実施形態では、走査計測装置1は、偏心配置受信プローブ120に加えて、同軸配置受信プローブ140を備える。ここで、同軸配置受信プローブ140とは、偏心距離Lがゼロになる位置に配置した受信プローブ121である。即ち、同軸配置受信プローブ140の受信音軸AX2は、送信プローブ110の送信音軸AX1と同一である。
【0124】
また、第4実施形態では、流体Fは液体Wであり、液体Wは例えば水である。第4実施形態の超音波検査装置Zは、例えば
図16に示した制御装置2により制御される。
【0125】
第4実施形態においても、上記第2実施形態と同様に、同軸配置受信プローブ140で受信した信号に基づく振幅画像データ(第1画像)に、偏心配置受信プローブ120で受信した信号に基づく、走査位置の変化に関する位相変化量に基づく輪郭画像データ(第2画像)とが合成される。合成は画像合成部225(
図16)により行われる。これにより、欠陥部Dを高解像度で検出できる。
【0126】
(第5実施形態)
図19は、第5実施形態での超音波検査装置Zの構成を示す図である。第5実施形態では、第3実施形態の超音波検査装置Z(
図17)の送信プローブ110に代えて送受信プローブ119が備えられる。送受信プローブ119は、第4実施形態における同軸配置受信プローブ140(
図18)の機能と、第3実施形態の送信プローブ110(
図17)の機能とを担う。従って、送受信プローブ119は、超音波ビームUを放出するとともに、被検査体E(欠陥部Dを含む)からの反射波を受信する。
【0127】
図20は、第5実施形態での超音波検査装置Zの機能ブロック図である。送受信プローブ119は、制御装置2の送信系統210から出力された励起パルスが印加されることで超音波ビームUを放出する。このあと、送受信プローブ119の接続先を直ちに制御装置2の受信系統220bに切り替える。切り替えは、典型的には制御装置2内のスイッチ235を用いて行われる。第5実施形態では、例えばスイッチ235はリレー素子又は半導体アナログスイッチである。
【0128】
欠陥部Dにおいて反射された超音波ビームU(反射波)は、送受信プローブ119により検出される。送受信プローブ119において、反射波の音波は電気信号に変換され、スイッチ235を経由して受信系統220bに入力される。受信系統220b内の波形解析部221において反射波信号の振幅情報が抽出され、振幅画像生成部224が、送受信プローブ119で受信した直達波の振幅に基づいて振幅画像データ(第1画像)を生成する。
【0129】
一方、偏心配置受信プローブ120で検出された信号は、受信系統220aに入力され、位相抽出部231において信号の位相情報が抽出される。この位相情報の走査位置に関する位相変化量を算出することにより、位相変化量算出部232が輪郭画像データ(第2画像)を生成する。画像合成部225は、振幅画像データと輪郭画像データとを合成して重畳し、表示装置3に出力する。このようにして、表示装置3において、合成した2つの画像が重畳表示される。
【0130】
上記のように、散乱波信号の位相の走査位置に関する位相変化量に基づくことで、欠陥部Dの形状をより解像度よく検出できる。このため、欠陥部Dをより高い解像度で画像化できる。また、送受信プローブ119が、送信プローブ110(
図17)及び同軸配置受信プローブ140(
図18)の機能を兼ね備えるため、走査計測装置1の構成を単純化できる。
【0131】
また、従来の阻止法の超音波検査装置の同軸配置受信プローブ140の位置を偏心距離Lだけずらすだけで、第5実施形態に係る超音波検査装置Zを実現できる。つまり、これまで使用していた超音波検査装置を利用でき、設置コストを軽減できる。
【0132】
(第6実施形態)
図21は、第6実施形態に係る超音波検査装置Zにおける送信プローブ110と、偏心配置受信プローブ120との関係を示す図である。第6実施形態では、送信プローブ110と、偏心配置受信プローブ120の収束性の関係について説明する。
【0133】
第6実施形態では、偏心配置受信プローブ120の収束性を送信プローブ110の収束性よりも緩くしている。被検査体Eの内部における欠陥部Dの深さ、欠陥部Dの形状、傾き等により散乱波U1の伝搬経路は多少変化する。そこで、散乱波U1の経路が変化しても偏心配置受信プローブ120が散乱波U1を検出できるように、第2実施形態では偏心配置受信プローブ120の収束性を緩くしている。
【0134】
収束性の大小関係は、被検査体Eの表面におけるビーム入射面積T1,T2の大小関係で定義される。ビーム入射面積T1,T2について説明する。
【0135】
図22は、送信プローブ110におけるビーム入射面積T1及び偏心配置受信プローブ120におけるビーム入射面積T2の関係を説明する図である。送信プローブ110のビーム入射面積T1は、送信プローブ110から放出された超音波ビームUの被検査体E表面での交差面積である。また、偏心配置受信プローブ120のビーム入射面積T2は、偏心配置受信プローブ120から超音波ビームUが放出された場合を想定した仮想的な超音波ビームU2と被検査体E表面での交差面積である。
【0136】
なお、
図22において、超音波ビームUの経路は、被検査体Eがない場合における経路を示したものである。被検査体Eがある場合は、被検査体E表面で超音波ビームUが屈折するため、超音波ビームUは破線で示した経路とは異なる経路を伝搬する。ここで、
図22に示すように、偏心配置受信プローブ120の被検査体Eでのビーム入射面積T2は、送信プローブ110の被検査体Eでのビーム入射面積T1よりも大きい。このようにすることで、偏心配置受信プローブ120の収束性を、送信プローブ110の収束性よりも緩くできる。
【0137】
さらに、偏心配置受信プローブ120の焦点距離R2は、送信プローブ110の焦点距離R1よりも長い。このようにしても、偏心配置受信プローブ120の収束性を、送信プローブ110の収束性よりも緩くできる。このとき、被検査体Eから送信プローブ110及び偏心配置受信プローブ120までの距離は例えば何れも同じであるが、同じでなくてもよい。
【0138】
このように、第6実施形態では、偏心配置受信プローブ120の収束性を送信プローブ110の収束性よりも緩くしている。即ち、偏心配置受信プローブ120の焦点距離R2は、送信プローブ110の焦点距離R1よりも長く設定されている。この結果、偏心配置受信プローブ120のビーム入射面積T2が広くなるため、広い範囲の散乱波U1を検出することができる。これにより、散乱波U1の伝搬経路が多少変化しても、偏心配置受信プローブ120で散乱波U1を検出可能になる。その結果、広い範囲の欠陥部Dを検出できる。
【0139】
また、偏心配置受信プローブ120の焦点は、送信プローブ110の焦点よりも、送信プローブ110の側(図示の例では上方)に存在する。このように焦点をずらすことで、偏心配置受信プローブ120で散乱波U1を受信し易くでき、散乱波U1を検出し易くできる。
【0140】
なお、偏心配置受信プローブ120として、第1実施形態で用いた非収束型のプローブが用いられてもよい。非収束型のプローブでは焦点距離R2が無限大なので、送信プローブ110の焦点距離R1よりも長くなる。即ち、非収束型の偏心配置受信プローブ120でも、偏心配置受信プローブ120の収束性は送信プローブ110の収束性よりも緩くなる。
【0141】
(第7実施形態)
図23は、第7実施形態に係る偏心配置受信プローブ120の例を示す図である。超音波検査装置Zを、送信プローブ110及び偏心配置受信プローブ120をz軸のマイナス側から見た平面図である。つまり、
図23は、偏心配置受信プローブ120側からみた図である。第3実施形態では、偏心配置受信プローブ120の振動子111(
図3)の、送信音軸AX1に対する受信音軸AX2の偏心方向の長さbが、被検査体Eの表面に沿った方向かつ偏心方向に直交する方向の長さaよりも長い。長さa,bは特性長さであり、それぞれ、矩形振動子に対しては、矩形の辺の長さを意味し、楕円形の振動子に対しては、楕円の長軸又は短軸を意味する。
【0142】
このように偏心配置受信プローブ120の縦横比を設定すると、欠陥部Dの深さ等が変化して散乱波U1の到達位置が変化しても、散乱波U1を偏心配置受信プローブ120で検出できる。
【0143】
散乱波U1は、送信音軸AX1を中心として放射方向に散乱する。従って、
図23の位置に偏心配置受信プローブ120が配置されている場合、偏心配置受信プローブ120の長手方向(「長さb」の延在方向)に散乱波U1が散乱する。換言すると、「長さb」の延在方向は、散乱波U1が放射される方向である。従って、「長さb」の値を大きくすることで、さまざまな深さ等の欠陥部Dで散乱した散乱波U1を検出することができる。つまり、欠陥部Dの深さ等が変化して散乱波U1の到達位置が変化しても、散乱波U1を偏心配置受信プローブ120で検出することができる。
【0144】
長さa,bに制限はなく、長さbが長さaよりも長い、即ち1<b/aであればよいが、上限としたb/a(長さbを長さaで割った値)が例えば100以下、好ましくは50以下である。
【0145】
なお、
図23では、偏心配置受信プローブ120として直方体(矩形状)の偏心配置受信プローブ120を図示したが、楕円形状にして、長軸比及び短軸比を同様に設定しても同様の効果が得られる。
【0146】
(第8実施形態)
図24は、第8実施形態に係る超音波検査装置Zの走査計測装置1の構成を示す図である。第8実施形態では、走査計測装置1は、偏心配置受信プローブ120の傾きを調整する設置角度調整部106を備える。これにより、受信信号の強度を増大でき、信号のSN比(Signal to Noise比、信号雑音比)を大きくできる。設置角度調整部106は、例えば、いずれも図示しないが、アクチュエータ、モータ等により構成される。
【0147】
ここで、送信音軸AX1と受信音軸AX2とが為す角度θを受信プローブ設置角度と定義する。
図24の場合、送信プローブ110は鉛直方向に設置されているので送信音軸AX1は鉛直方向であるため、受信プローブ設置角度である角度θは、送信音軸AX1(即ち鉛直方向)と偏心配置受信プローブ120の探触子面の法線との為す角度である。そして、設置角度調整部106により、角度θを送信音軸AX1が存在する側に傾け、角度θをゼロより大きな値に設定する。即ち、偏心配置受信プローブ120が傾斜配置される。具体的には、偏心配置受信プローブ120は、0°<θ<90°を満たすように傾斜配置され、角度θは例えば10°であるがこれに限られない。
【0148】
また、偏心配置受信プローブ120を傾斜配置する場合の偏心距離Lは以下のように定義される。受信音軸AX2と、偏心配置受信プローブ120の探触子面との交点C2を定義する。また、送信音軸AX1と、送信プローブ110の探触子面との交点C1を定義する。交点C1の位置をxy平面に投影した座標位置(x4,y4)と、交点C2の位置をxy平面に投影した座標位置(x5,y5)との距離を偏心距離Lと定義する。
【0149】
このように偏心配置受信プローブ120を傾斜配置して、本発明者が実際に欠陥部Dの検出を行ったところ、受信信号の信号強度がθ=0の場合と比較して3倍に増加した。
【0150】
図25は、第8実施形態による効果が生じる理由を説明する図である。散乱波U1は送信音軸AX1から外れた方向に伝搬する。従って、
図25に示すように、散乱波U1は被検査体Eの外側に到達した際、被検査体E表面の法線ベクトルとは非ゼロの角度α2をもって被検査体Eと外部との界面に入射する。そして、被検査体Eの表面から出る散乱波U1の角度は被検査体E表面の法線方向に対して非ゼロの出射角である角度β2を有する。散乱波U1は、偏心配置受信プローブ120の探触子面の法線ベクトルを散乱波U1の進行方向と一致させたときに、最も効率よく受信できる。つまり、偏心配置受信プローブ120を傾斜配置することで受信信号強度を増大できる。
【0151】
なお、被検査体Eから出射する超音波ビームUの角度β2と、送信音軸AX1と受信音軸AX2との為す角度θとが一致すると、最も受信効果が高くなる。しかしながら、角度β2と角度θとが完全に一致しない場合であっても、受信信号増大の効果が得られるので、
図25に示しているように、角度β2と角度θとが完全に一致しなくてもよい。
【0152】
なお、走査計測装置1(
図24)では、設置角度調整部106が設けられており、設置角度調整部106によって偏心配置受信プローブ120が設置されている。設置角度調整部106により、偏心配置受信プローブ120の受信プローブ設置角度を調整することが可能である。被検査体Eの材料、厚み等により散乱波U1の経路は多少変化するので、偏心配置受信プローブ120の設置角度の最適値も変化する。従って、設置角度調整部106で受信プローブ設置角度が調整可能とすることにより、被検査体Eの材料、厚み等に応じて偏心配置受信プローブ120の設置角度を適切に調整できる。
【0153】
また、第8実施形態では、偏心配置受信プローブ120が水平面に対して傾いた状態で配置されているが、送信プローブ110も傾いた状態で配置されてもよい。あるいは、送信プローブ110が水平面に対して傾いた状態で配置され、偏心配置受信プローブ120の探触子面が水平面(xy平面)に対して並行となるよう配置されてもよい。いずれの場合も、上記
図2Bに示すように、送信音軸AX1と、受信音軸AX2とは、ずらした状態で配置される。
なお、本実施形態で記載した傾斜配置の効果を得るためには0°<θ<90°の範囲で角度θ(傾斜角)が設定される。一方、本開示の他の実施形態においては、θ=0°であっても良いことは言うまでも無い。
【0154】
(第9実施形態)
図26は、第9実施形態に係る超音波検査装置Zの構成を示す図である。第9実施形態では、偏心配置受信プローブ120は、複数の単位プローブ120aを含む。図示の例では、単位プローブ120aは3つである。単位プローブ120aは、偏心距離L(送信音軸AX1からの距離)が異なる位置にそれぞれ配置される。
【0155】
欠陥部Dの深さ、形状、傾き等により、散乱波U1の経路が多少変化する。例えば、散乱するときの散乱角(送信音軸AX1に対する散乱波U1の為す角度)は通常は同程度である。このため、欠陥部Dが深いほど散乱波U1は送信音軸AX1から近い場所に到達し、欠陥部Dが浅いほど散乱波U1は送信音軸AX1から遠い場所に到達する。そこで、複数の単位プローブ120aを用いて、どの位置の単位プローブ120aで受信したかという情報を用いることにより、欠陥部Dに関する情報(欠陥部Dの深さ等)を得ることができる。
【0156】
複数の単位プローブ120aとしては、複数の感音素子122a(
図28及び
図29)を一つの筐体に収納したアレイ型プローブ122(
図28及び
図29)が用いられてもよい。この場合、
図26の単位プローブ120aがそれぞれ感音素子に対応し、それらが一つの筐体の中に収納されている。感音素子とは、超音波を電気信号に変換する素子である。感音素子としては、圧電素子の他に、静電容量感音素子(CMUT,Capacitive Micro-machined Ultrasonic Transducer)等が用いられてもよい。
【0157】
図27は、第9実施形態に係る超音波検査装置Zの機能ブロック図である。複数個の単位プローブ120aは、それぞれに対応する受信系統220c,220d,220eに接続される。それぞれの受信系統220c,220d,220eの構成は、
図10に示す受信系統220の構成と同様である。即ち、受信系統220c,220d,220eは、何れも
図27では不図示であるが
図10に示すように、信号アンプ222と、波形解析部221と、位相抽出部231とを備える。それぞれの単位プローブ120aからの信号は、信号アンプ222で増幅されて、波形解析部221及び位相抽出部231に入力される。波形解析部221は、受信信号(散乱波U1)の振幅を出力し、位相抽出部231は受信信号(散乱波U1)の位相情報を出力する。これら、受信系統220c,220d,220eそれぞれからの出力は、欠陥情報判定部205に入力される。
【0158】
欠陥情報判定部205は、制御装置2に備えられ、複数の単位プローブ120aのうち、照射された超音波ビームUの、被検査体Eの欠陥部Dでの散乱により生じる散乱波U1を受信した単位プローブ120aの受信信号に基づいて、被検査体Eでの欠陥部Dに関する情報(欠陥部Dの深さ等)を判定する。具体的には、欠陥情報判定部205は、受信系統220c,220d,220eそれぞれにおける波形解析部221からの振幅情報に基づいて、散乱波U1を観測するために最適な受信系統220を判断する。第9実施形態では、欠陥情報判定部205は、振幅が最大の受信系統220を選択する。そして、その選択された受信系統220の位相抽出部231からの位相情報をデータ処理部201に出力する。
【0159】
欠陥情報判定部205は、受信系統220c,220d,220eそれぞれにおける波形解析結果を基に、欠陥部Dに関する情報を判定する。受信信号に基づくとは、どの単位プローブ120aで、どの程度の受信信号(散乱波U1)が検知されたかである。このようにすることで、欠陥部Dの位置情報の精度を向上できる。
【0160】
欠陥情報判定部205の出力は、データ処理部201に入力される。データ処理部201は、位相変化量算出部232を備える。位相変化量算出部232は、プローブを走査するスキャンコントローラ204からの走査位置情報と合わせることにより、走査位置変化に関する、受信信号の位相変化量を算出する。上記のように、この走査位置変化に関する位相変化量は、欠陥部Dの輪郭情報に対応した画像を与える。この情報が画像化されて表示装置3に表示される。
【0161】
なお、欠陥情報判定部205はデータ処理部201の一部として設けてもよい。
【0162】
(第10実施形態)
図28は、第10実施形態における偏心配置受信プローブ120の配置を示す図である。この例では、送信プローブ110及び偏心配置受信プローブ120を、
図1のz軸のマイナス側、つまり、偏心配置受信プローブ120側から見た平面図である。第10実施形態では、偏心配置受信プローブ120はxy平面方向に2次元的に配置される。即ち、偏心配置受信プローブ120は、平面視で矩形状の複数の単位プローブ120aを含み、複数の単位プローブ120aは送信音軸AX1を中心として放射状に配置されている。図示の例では、単位プローブ120aは8個である。
【0163】
散乱波U1の方向は、欠陥部Dの形状、傾斜方向等により多少変化する。そのため、
図28のように、放射状に単位プローブ120aを配置し、どの方向で散乱波U1を検出したかを記録することにより、欠陥部Dの形状、傾斜方向等の情報を、より精度高く得ることができる。
【0164】
(第11実施形態)
図29は、第11実施形態における偏心配置受信プローブ120の配置を示す図であり、単位プローブ120aを傾斜して配置した図である。複数の単位プローブ120aが送信音軸AX1に対して対称に配置されている。従って、偏心距離Lが同じ位置に、少なくとも2つの単位プローブ120aが配置される。図示の例では、送信音軸AX1を含む平面視で送信音軸AX1の両側に、3個ずつ単位プローブ120aが対称に配置される。そして、3つの異なる偏心距離Lのそれぞれの位置に、2個ずつ単位プローブ120aが配置される。なお、単位プローブ120aは、上記の第8実施形態(
図25)と同様に、傾斜して配置される。
【0165】
図30は、第11実施形態における偏心配置受信プローブ120の配置を示す図であり、単位プローブ120aを鉛直方向に配置した図である。1組の単位プローブ120aが送信音軸AX1に対して対称に配置されている。従って、偏心距離Lが同じ位置に、少なくとも2つの単位プローブ120aが配置される。
【0166】
偏心距離Lが同じ位置に少なくとも2つの単位プローブ120aが配置されることで、複数の方向に散乱した散乱波U1を検知することができる。また、送信音軸AX1を含む平面視(
図29及び
図30)にて、送信音軸AX1の両側に少なくとも2つの単位プローブ120aを配置することで、広い範囲の散乱波U1を受信できる。さらに、制御装置2は、両側それぞれの単位プローブ120aで散乱波U1を検知したとき、実際に欠陥部Dを検知し、どちらか一方でのみ散乱波U1を検知した場合では、エラーと判定することができる。これにより、欠陥部Dの検知精度を向上できる。
【0167】
(第12実施形態)
図31は、第12実施形態の超音波検査装置Zの構成を示す図である。第12実施形態では、同軸配置受信プローブ140の焦点距離R3は、偏心配置受信プローブ120の焦点距離R2よりも短い。これにより、同軸配置受信プローブ140の収束性が、偏心配置受信プローブ120の収束性よりも高まっている。
【0168】
同軸配置受信プローブ140の焦点距離R3を偏心配置受信プローブ120の焦点距離R2よりも短くすることで、送信プローブ110から放出される超音波ビームUのうち、受信音軸AX2上の超音波ビームUを同軸配置受信プローブ140が効率よく受信できる。一方で、散乱波U1は複数の伝搬経路を持つので、それを受信する偏心配置受信プローブ120は収束性を低くすることで、散乱波U1を十分に受信できる。このため、直達波U3及び散乱波U1のそれぞれの特性に合わせた収束性を持つ受信プローブ121を用いることで、より効率的に欠陥を検出できる。
【0169】
(第13実施形態)
図32は、第13実施形態の超音波検査装置Zの構成を示す図である。第13実施形態では、偏心配置受信プローブ120及び同軸配置受信プローブ140の双方の機能を有するアレイ型プローブ122が使用される。アレイ型プローブ122は、複数個の感音素子122a(単位プローブ120a(
図26)としても機能する)が1次元的(
図32)又は2次元的(
図33)に配置された受信プローブ121である。
【0170】
アレイ型プローブ122は、構成する1つの感音素子122aの受信音軸AX2を送信音軸AX1と一致するように配置する。この位置に配置された感音素子122aが、同軸配置受信プローブ140として機能する。残りの感音素子122aは、上記の
図26に示す例と同様に、送信音軸AX1を中心とした
図32において紙面左右方向に連続的かつ対称に配置され、これらは偏心配置受信プローブ120として機能する。この例では、感音素子122aは、1次元的に配置される。
【0171】
アレイ型プローブ122を使用し、感音素子122aを1次元的に配置することで、感音素子122aの設置数が少ないためアレイ型プローブ122の設置コストを削減でき、かつ、複数の感音素子122aで散乱波U1を受信できる。また、欠陥部Dが小さく、超音波伝搬が完全に阻止された場合でも、送信音軸AX1と一致する受信音軸AX2を有する感音素子122aが信号量の減少を検知できる。これにより、小さな欠陥部Dから大きな欠陥部Dまで効率よく検出できる。
【0172】
(第14実施形態)
図33は、第14実施形態の超音波検査装置Zの構成を示す図である。
図33は、送信プローブ110及びアレイ型プローブ122を、
図1のz軸のマイナス側、つまり、アレイ型プローブ122の側から見た平面図である。上記の
図32では、アレイ型プローブ122を構成する感音素子122aは、一方向にのみ1次元的に配置されていた。しかし、
図33に示すアレイ型プローブ122では、感音素子122aはxyの二方向に2次元的に配置されている。図示の例では、感音素子122aは、xyの各方向に同数ずつ(7個ずつ)配置され、正方形状に配置される。しかし、感音素子122aは、正方形状の配置に限られず、例えば長方形、円形、楕円形等の各形状に配置されてもよい。
【0173】
アレイ型プローブ122を使用し、感音素子122aを2次元的に配置することで、多くの感音素子122aにより散乱波U1を受信でき散乱波U1の検出漏れを抑制できる。また、欠陥部Dが大きく、超音波伝搬が完全に阻止された場合でも、送信音軸AX1と一致する受信音軸AX2を有する感音素子122aが信号量の減少を検知できる。これにより、小さな欠陥部Dから大きな欠陥部Dまで効率よく検出できる。
【0174】
以上の各実施形態では、欠陥部Dは空洞である例を記載しているが、欠陥部Dとして被検査体Eの材質とは異なる材質が混入している異物であってもよい。この場合も、異なる材料が接する界面で音響インピーダンスの差(Gap)があるため、散乱波U1が発生するので、上記各実施形態の構成が有効である。本実施形態に係る超音波検査装置Zは、超音波欠陥映像装置を前提としているが、非接触インライン内部欠陥検査装置に適用されてもよい。
【0175】
本開示は前記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、前記した実施形態は本開示を分かりやすく説明するために詳細に説明したものであり、必ずしも説明したすべての構成を有するものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
【0176】
また、前記した各構成、機能、ブロック図を構成する各部等は、それらの一部又はすべてを、例えば集積回路で設計すること等によりハードウェアで実現してもよい。また、
図13に示すように、前記した各構成、機能等は、CPU252等のプロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、HDDに格納すること以外に、メモリ、SSD(Solid State Drive)等の記録装置、又は、IC(Integrated Circuit)カード、SD(Secure Digital)カード、DVD(Digital Versatile Disc)等の記録媒体に格納することができる。
【0177】
また、各実施形態において、制御線及び情報線は説明上必要と考えられるものを示しており、製品上必ずしもすべての制御線及び情報線を示しているとは限らない。実際には、ほとんどすべての構成が相互に接続されていると考えてよい。
【符号の説明】
【0178】
1 走査計測装置
101 筐体
102 試料台
103 送信プローブ走査部
104 受信プローブ走査部
105 偏心距離調整部
106 設置角度調整部
110 送信プローブ
111 振動子
112 バッキング
113 整合層
114 探触子面
115 送信プローブ筐体
116 コネクタ
117,118 リード線
119 送受信プローブ
120 偏心配置受信プローブ
120a 単位プローブ
121 受信プローブ
122 アレイ型プローブ
122a 感音素子
140 同軸配置受信プローブ
2 制御装置
201 データ処理部
202 駆動部
203 位置計測部
204 スキャンコントローラ
205 欠陥情報判定部
210 送信系統
211 波形発生器
212 信号アンプ
220,220a,220b 受信系統
221 波形解析部
222,223 信号アンプ
224 振幅画像生成部
225 画像合成部
231 位相抽出部
232 位相変化量算出部
235 スイッチ
251 メモリ
252 CPU
253 記憶装置
254 通信装置
255 I/F
3 表示装置
AX1 送信音軸
AX2 受信音軸
D 欠陥部
E 被検査体
F 流体
G 気体
G1,G2,G3,G4,G5 グラフ
N 健全部
S101 放出ステップ
S102 受信ステップ
S103 位相抽出ステップ
S104 位相変化量算出ステップ
S105 形状表示ステップ
S111,S112 ステップ
U 超音波ビーム
U1 散乱波
U2 超音波ビーム
U3 直達波
Z 超音波検査装置