IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社日立ソリューションズ東日本の特許一覧 ▶ セイコーエプソン株式会社の特許一覧

特許7429149要員計画支援装置および要員計画支援方法
<>
  • 特許-要員計画支援装置および要員計画支援方法 図1
  • 特許-要員計画支援装置および要員計画支援方法 図2
  • 特許-要員計画支援装置および要員計画支援方法 図3
  • 特許-要員計画支援装置および要員計画支援方法 図4
  • 特許-要員計画支援装置および要員計画支援方法 図5
  • 特許-要員計画支援装置および要員計画支援方法 図6
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-01-30
(45)【発行日】2024-02-07
(54)【発明の名称】要員計画支援装置および要員計画支援方法
(51)【国際特許分類】
   G06Q 10/0631 20230101AFI20240131BHJP
【FI】
G06Q10/0631
【請求項の数】 6
(21)【出願番号】P 2020067680
(22)【出願日】2020-04-03
(65)【公開番号】P2021163412
(43)【公開日】2021-10-11
【審査請求日】2023-01-23
(73)【特許権者】
【識別番号】000233538
【氏名又は名称】株式会社日立ソリューションズ東日本
(73)【特許権者】
【識別番号】000002369
【氏名又は名称】セイコーエプソン株式会社
(74)【代理人】
【識別番号】110002572
【氏名又は名称】弁理士法人平木国際特許事務所
(72)【発明者】
【氏名】飯塚 新司
(72)【発明者】
【氏名】鈴島 晃
【審査官】庄司 琴美
(56)【参考文献】
【文献】特開2020-052691(JP,A)
【文献】特開2013-191077(JP,A)
【文献】特開2015-215673(JP,A)
【文献】特開2006-085213(JP,A)
【文献】特開昭62-152065(JP,A)
【文献】国際公開第2017/141432(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G06Q 10/00 - 99/00
(57)【特許請求の範囲】
【請求項1】
プロジェクトにおける各作業に対し、前記作業を担当した要員と、前記作業の予定期間と、実績期間と、予定工数と、実績工数と、が登録されている作業実績情報記憶部と、
分析対象の要員が登録されている対象要員情報記憶部と、
前記作業実績情報記憶部に登録されている各作業に対し、前記作業の前提に関わるプロジェクト、作業、要員のいずれか一つ以上の特性を示す特性情報と、前記作業の納期遅延の有無および/または工数予実差を示す作業結果と、を加工する学習データ加工部と、
前記対象要員情報記憶部に登録されている各要員に対し、前記特性情報を説明変数とし、前記作業結果を目的変数とした機械学習モデルを、前記要員の前記特性情報と前記作業結果を学習データとして学習し、前記機械学習モデルのパラメータを、要員特徴量として抽出するモデル学習部と、
を有する要員計画支援装置。
【請求項2】
前記作業実績情報記憶部には、作業の種類を表す工程がさらに登録されており、
要員毎に各工程における作業経験の度合を表したスキルレベルが登録されている作業スキル情報記憶部を有し、
前記学習データ加工部は、前記作業スキル情報記憶部を参照し、前記作業実績情報記憶部に登録されている各作業に対し、前記作業を担当した要員の、前記作業の工程におけるスキルレベルに基づき、前記要員の特性を示す特性情報として、作業スキルの情報を加工することを特徴とした、請求項1に記載の要員計画支援装置。
【請求項3】
前記要員特徴量に基づくクラスタリング分析により要員を分類する要員分類部を有し、 前記要員分類部により分類された要員群に基づいて要員グループを作成することを特徴とする請求項1又は2に記載の要員計画支援装置。
【請求項4】
前記作業実績情報記憶部に登録されている予定工数と実績工数に基づき、プロジェクト別、前記要員グループ別、日付別の予定工数と実績工数の集計を行う作業工数集計部と、
前記作業工数集計部による集計結果をグラフ表示する作業工数表示部と、
を有することを特徴とする請求項3に記載の要員計画支援装置。
【請求項5】
前記モデル学習部の前記機械学習モデルと、前記要員分類部の前記クラスタリング分析の手法と、を確率モデルとして表現し、ネットワークにより一つの確率モデルに結合したベイジアンネットワークモデルであって、前記特性情報と前記作業結果を観測変数として含み、前記要員特徴量と前記要員グループを潜在変数として含む、ベイジアンネットワークモデルを有し、
前記モデル学習部の前記要員特徴量と、前記要員分類部の前記要員グループの出力結果と、を前記潜在変数の初期値として、前記特性情報と前記作業結果に前記ベイジアンネットワークモデルを適合し、前記潜在変数の値を推定することで、前記要員特徴量と前記要員グループを再推定することを特徴とした、請求項3又は4に記載の要員計画支援装置。
【請求項6】
プロジェクトにおける各作業に対し、前記作業を担当した要員と、前記作業の予定期間と、実績期間と、予定工数と、実績工数と、が登録されている作業実績情報記憶部と、分析対象の要員が登録されている対象要員情報記憶部と、を有し、前記作業実績情報記憶部に登録されている各作業に対し、前記作業の前提に関わるプロジェクト、作業、要員のいずれか一つ以上の特性を示す特性情報と、前記作業の納期遅延の有無および/または工数予実差を示す作業結果と、を加工する学習データ加工ステップと、
前記対象要員情報記憶部に登録されている各要員に対し、前記特性情報を説明変数とし、前記作業結果を目的変数とした機械学習モデルを、前記要員の前記特性情報と前記作業結果を学習データとして学習し、前記機械学習モデルのパラメータを、要員特徴量として抽出するモデル学習ステップと、
をコンピュータに実行させる要員計画支援方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、要員計画支援技術に関する。
【背景技術】
【0002】
プロジェクトを管理する種々の手法が提案されている。
プロジェクト管理における要員計画では、過去の類似のプロジェクトや、標準的なプロジェクトにおける、各工程の作業工数や必要な作業スキルを参照し、いつ、どのような要員が、どれくらい必要かを計画する。
【0003】
要員計画においては、過去の作業経験の度合を表した作業スキルの情報だけでなく、作業の手戻りや納期遅延の頻度、工数超過の程度といった、工数予実差(作業における工数の予定と実際との差異)に関わる要員の作業能力を考慮することで、より高い精度の要員計画が可能となる。
下記特許文献1によれば、見積予見性、見積変更回数平均、期限遵守率、乖離状況など、工数予実差に関わる要員の作業能力(能力情報)を考慮し、作業計画を作成することができる。
【先行技術文献】
【特許文献】
【0004】
【文献】特許第5927052号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
特許文献1に記載の技術では、能力情報の値として、見積変更回数などの作業結果の過去の作業(タスク)での平均値を用いている。しかしながら、能力情報の値は、作業の前提となったプロジェクト、作業、要員の特性を考慮しない値となっている。ここで特性とは、プロジェクトの遅延状況、作業の予定工数、要員の作業経験など、作業結果に影響を与える可能性のある、作業の前提となった条件をいう。能力情報の値は、このような特性を考慮しない単純平均によって算出されている。そのため、能力情報の値と作業結果との間には、特性に応じた差異が生じる。どの特性がどれくらい作業結果に影響を与えるかは、要員毎に違いがあるため、能力情報の値と作業結果との間の差異も、要員毎に異なると考えられる。従って、能力情報の値が近い要員であっても、同じ前提の作業を異なる要員が作業した場合、同じような作業結果とならず、納期遅延や工数予実差が発生する可能性が生じる。
【0006】
以上により、能力情報に基づく要員計画は、納期遅延や工数予実差が発生する要因となりうる。
また、作業能力を考慮した要員計画では、過去の類似のプロジェクトにおける要員の作業工数を、作業能力別に分析し、傾向を把握できることが望ましい。
しかしながら、特許文献1に記載の技術では、能力情報による要員の分類を行わない。従って、作業能力別に作業工数の傾向を把握することができないという問題がある。
【0007】
本発明は、作業の前提となった特性を考慮した要員の作業能力に基づき、要員計画の作成を支援できる技術を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明の一観点によれば、プロジェクトにおける各作業に対し、前記作業を担当した要員と、前記作業の予定期間と、実績期間と、予定工数と、実績工数と、が登録されている作業実績情報記憶部と、分析対象の要員が登録されている対象要員情報記憶部と、前記作業実績情報記憶部に登録されている各作業に対し、前記作業の前提に関わるプロジェクト、作業、要員のいずれか一つ以上の特性を示す特性情報と、前記作業の納期遅延の有無および/または工数予実差を示す作業結果と、を加工する学習データ加工部と、前記対象要員情報記憶部に登録されている各要員に対し、前記特性情報を説明変数とし、前記作業結果を目的変数とした機械学習モデルを、前記要員の前記特性情報と前記作業結果を学習データとして学習し、前記機械学習モデルのパラメータを、前記要員の作業能力を表す要員特徴量として抽出するモデル学習部と、を有する要員計画支援装置が提供される。
【0009】
本発明においては、作業の前提に関わる特性情報を説明変数、作業結果を目的変数とする機械学習モデルを、過去のプロジェクトにおける作業実績から加工した要員の特性情報と作業結果から学習し、そのモデルのパラメータを、要員の作業能力を表す特徴量として抽出することができる。
【0010】
前記作業実績情報記憶部には、作業の種類を表す工程がさらに登録されており、要員毎に各工程における作業経験の度合を表したスキルレベルが登録されている作業スキル情報記憶部を有し、前記学習データ加工部は、前記作業スキル情報記憶部を参照し、前記作業実績情報記憶部に登録されている各作業に対し、前記作業を担当した要員の、前記作業の工程におけるスキルレベルに基づき、前記要員の特性を示す特性情報として、作業スキルの情報を加工することを特徴とする。
これにより、特性情報として、作業を担当した要員の、作業の工程における過去の作業経験の度合を表したスキルレベルに基づく、作業スキルの情報を用いることができる。
【0011】
前記要員特徴量に基づくクラスタリング分析により要員を分類する要員分類部を有し、前記要員分類部により分類された要員群に基づいて要員グループを作成することを特徴とする。
要員特徴量に基づくクラスタリング分析で要員を分類し、要員グループを作成することで、要員特徴量の類似する要員グループに要員を分類することができる。
【0012】
前記作業実績情報記憶部に登録されている予定工数と実績工数に基づき、プロジェクト別、前記要員グループ別、日付別の予定工数と実績工数の集計を行う作業工数集計部と、前記作業工数集計部による集計結果をグラフ表示する作業工数表示部と、を有することを特徴とする。
過去のプロジェクトにおける作業工数を要員グループ別にグラフ表示することで、作業能力別に作業工数の傾向を把握することができる。
【0013】
前記モデル学習部の前記機械学習モデルと、前記要員分類部の前記クラスタリング分析の手法と、を確率モデルとして表現し、ネットワークにより一つの確率モデルに結合したベイジアンネットワークモデルであって、前記特性情報と前記作業結果を観測変数として含み、前記要員特徴量と前記要員グループを潜在変数として含む、ベイジアンネットワークモデルを有し、前記モデル学習部の前記要員特徴量と、前記要員分類部の前記要員グループの出力結果と、を前記潜在変数の初期値として、前記特性情報と前記作業結果に前記ベイジアンネットワークモデルを適合し、前記潜在変数の値を推定することで、前記要員特徴量と前記要員グループを再推定することを特徴とする。
ベイジアンネットワークでは、要員毎に行う機械学習モデルの学習において、学習データの数が不十分な要員であっても、他の要員のデータから構築したベイジアンネットワークモデルを適合することで、要員特徴量を推定できる。また、追加の特性情報と作業結果にベイジアンネットワークモデルを適合させて、モデルを更新することができる。
【0014】
本発明の他の観点によれば、プロジェクトにおける各作業に対し、前記作業を担当した要員と、前記作業の予定期間と、実績期間と、予定工数と、実績工数と、が登録されている作業実績情報記憶部と、分析対象の要員が登録されている対象要員情報記憶部と、を有し、前記作業実績情報記憶部に登録されている各作業に対し、前記作業の前提に関わるプロジェクト、作業、要員のいずれか一つ以上の特性を示す特性情報と、前記作業の納期遅延の有無および/または工数予実差を示す作業結果と、を加工する学習データ加工ステップと、前記対象要員情報記憶部に登録されている各要員に対し、前記特性情報を説明変数とし、前記作業結果を目的変数とした機械学習モデルを、前記要員の前記特性情報と前記作業結果を学習データとして学習し、前記機械学習モデルのパラメータを、要員特徴量として抽出するモデル学習ステップと、をコンピュータに実行させる要員計画支援方法が提供される。
【発明の効果】
【0015】
本発明によれば、作業の前提となった特性を考慮した要員の作業能力に基づき、要員計画の作成を支援することができる。
【図面の簡単な説明】
【0016】
図1】本発明の一実施の形態による要員計画支援処理の流れを模式的に示す概要図である。
図2】本実施の形態による要員計画支援装置の一構成例を示す機能ブロック図である。
図3】要員計画支援装置Aにおける全体の処理の概要を示すフローチャート図である。
図4図3のステップS2のモデルの学習処理の流れを示すフローチャート図である。
図5】作業工数表示部によるグラフ表示の一例を示す図である。
図6】ベイジアンネットワークモデルの一例を示す図である。
【発明を実施するための形態】
【0017】
本発明の実施の形態について説明する前に、本願発明で導入した「要員特徴量」という用語の意義について以下に説明する。
まず、本発明において、「作業能力が類似する」とは「同じ前提の作業を同じような作業結果で実施できる」ことを意味する。
ここで、「同じ前提の作業」とは「作業結果に影響を与える可能性のある、作業の前提となったプロジェクト、作業、要員の特性が同じまたは近い」ことを意味する。以下、この「プロジェクト、作業、要員の特性」のことを「特性情報」と呼ぶ。
また、本発明において、「作業結果」とは「完了した作業における納期遅延の有無、工数超過の程度」等を意味する。
これらの前提の下で、「要員特徴量」を「特性情報を説明変数、作業結果を目的変数とする機械学習モデルのパラメータ」として定義する。こうすることで、「要員特徴量の値が近い要員は、作業能力が類似する」という好ましい性質を持った、要員の作業能力を表す特徴量を定義することができる。この理由を以下に説明する。
【0018】
上記の機械学習モデルをfとし、その説明変数である特性情報をX、目的変数である作業結果をYとする。機械学習モデルfのパラメータθは、要員の特性情報と作業結果を学習データとしたモデルの学習により推定する。このとき、Y=f(X; θ)は、当該要員が特性情報がXである作業を実施したときの作業結果の予測値となる。
「要員特徴量」とは、この「機械学習モデルfのパラメータθ」のことである。パラメータは要員毎に推定する。すなわち、要員Aに対してパラメータθを、要員A'に対してパラメータθ'を、それぞれ推定する、という具合である。ここで、以下のことが言える。
1)θとθ'の値が近いと、XとX'の値が同じまたは近ければ、Y=f(X; θ)とY'=f(X'; θ')の値も近くなる。
このことは、関数fの連続性から直ちに従う。「θとθ'の値が近い」ことは、要員Aと要員A'が「要員特徴量の値が近い要員である」ことを意味する。また、「XとX'の値が同じまたは近い」ことは「同じ前提の作業」であることを、「YとY'の値が近い」ことは「同じような作業結果」となることを、それぞれ意味する。従って、1)は次の2)に言い換えることができる。
2)要員特徴量が近い要員は、同じ前提の作業を同じような作業結果で実施することができる。
上記の1)と2)の関係を表したものが以下の式である。
【0019】
【数1】
【0020】
先に述べた「作業能力が類似する」ことの意味に照らし合わせると、2)は次の3)に言い換えることができる。
3)要員特徴量が近い要員は、作業能力が類似する。
以上が「要員特徴量」についての説明である。
【0021】
以下に、本発明の一実施の形態による要員計画支援技術について図面を参照しながら詳細に説明する。
図1は、本実施の形態による要員計画支援処理の流れを模式的に示す概要図である。図1についての詳細は後述する。
図2は、本実施の形態による要員計画支援システムAの一構成例を示す図である。図2に示すように、要員計画支援システムAは、処理部1と記憶部3とを有する。
処理部1は、学習データ加工部1-1と、モデル学習部1-2と、要員分類部1-3と、作業工数集計部1-4と、作業工数表示部1-5とを有している。
また、記憶部3は、以下のテーブルを格納する。
まず、本実施の形態において用いるデータ(テーブル)について説明する。
【0022】
【表1】
【0023】
表1は、作業実績テーブルTB1の一例を示すものである。作業実績テーブルTB1は、プロジェクト毎の作業実績を示すテーブルであり、プロジェクトIDと作業IDと要員IDと、工程と作業名と、(作業)予定期間と、実績期間と、予定工数と、実績工数とを有する。
【0024】
【表2】
【0025】
表2は、要員毎、工程毎の作業経験の度合を表したスキルレベルを格納する作業スキルテーブルTB2の一例を示すものである。作業スキルテーブルTB2は、要員ID毎の各工程におけるスキルレベルを示すテーブルである。本実施例では、さらに作業内容毎のスキルレベルを示している。
【0026】
【表3】
【0027】
表3は、特性情報を格納する特性情報テーブルTB3の一例を示すものであり、作業毎の、作業の前提となったプロジェクト、作業、要員の特性を示すテーブルである。この表は、プロジェクトIDと作業IDと要員IDと、工程と、プロジェクトの遅延状況と、予定工数と、要員の作業経験とを有する。プロジェクトの遅延状況は、当該プロジェクトが全体として遅延しているときは1、そうでないときは0が格納されている。作業経験は、表2に格納されたスキルレベルのうち、当該要員の当該工程におけるスキルレベルの、作業内容に関する平均値が格納される。
【0028】
【表4】
【0029】
表4は、作業結果を格納する作業結果テーブルTB4の一例を示すものであり、プロジェクト毎の作業結果を示すテーブルである。この表は、プロジェクトID、作業ID、要員ID毎に、納期遅延の有無と、工数予実差とを格納する。納期遅延の有無は、当該作業の作業実績テーブルTB1における実績期間が予定期間を超過しているときは1、そうでないときは0が格納されている。工数予実差は、当該作業の作業実績テーブルTB1における予定工数と実績工数を用いて、(実績工数―予定工数)/予定工数、により算出される。
【0030】
【表5】
【0031】
表5は、対象要員テーブルTB5の一例を示すものであり、要員IDと要員名とが対になっている。
【0032】
【表6】
【0033】
表6は、要員特徴量テーブルTB6の一例を示すものであり、要員ID毎の、例えば、ロジスティック回帰と線形重回帰とにおけるパラメータである、各係数、バイアス、誤差の大きさを示す数値を結合した、9次元ベクトルとして表された、要員特徴量を示す表である。
【0034】
【表7】
【0035】
表7は、要員グループテーブルTB7の一例を示すものであり、要員分類部1-3により分類された要員群に基づいて作成された要員グループを識別するIDである要員グループIDと、当該要員グループに含まれる要員の要員IDと、を示すものである。
【0036】
【表8】
【0037】
表8は、日付別作業工数テーブルTB8の一例を示すものであり、後述する作業工数集計部が内部処理で用いるテーブルである。作業IDと要員IDと日付とをキーに、予定工数と実績工数を引き出すものである。尚、表8の日付別作業工数テーブルTB8は、内部処理に用いるテーブルであるため、図2には示していない。
【0038】
【表9】
【0039】
表9は、要員グループ別作業工数テーブルTB9の一例を示すものであり、プロジェクト毎、要員グループ毎、日付(或いは期間など)毎の、予定工数と実績工数を示すものである。すなわち、同じ要員グループIDにおけるある日の予定工数と実績工数とを示した表である。
【0040】
図1に示すように、本実施の形態による要員計画支援処理の流れを模式的に示す概要図によれば以下の処理が行われる。
(フェーズF1)
まず、フェーズF1では、ガントチャートなどの過去のプロジェクトの作業実績から作業実績テーブルTB1を求め、作業スキルテーブルTB2も準備する。要員計画支援システムAの利用においては、既にこれらのテーブルに値が格納されており、準備が完了していることが前提となる。
(フェーズF2)
フェーズF2では、学習データ加工部1-1が、作業実績テーブルTB1に登録されている各作業に対し、特性情報テーブルTB3と作業結果テーブルTB4の情報を加工して格納し、続いて、モデル学習部1-2が、対象要員テーブルTB5に登録されている各要員に対し、特性情報を説明変数とし、作業結果を目的変数とした機械学習モデルを、特性情報テーブルTB3と作業結果テーブルTB4の情報を学習データとしての学習をする。本実施例においては、納期遅延を予測する機械学習モデルとしてロジスティック回帰モデルを、工数予実差の程度を予測する機械学習モデルとして線形重回帰モデルを、それぞれ学習する。
学習データ加工部1-1は、作業スキルテーブルTB2を参照し、作業実績テーブルTB1に登録されている各作業に対し、当該作業を担当した要員の、当該作業の工程におけるスキルレベルに基づき、要員の特性を示す特性情報として、作業スキルの情報を含む加工してもよい。本実施例においては、特性情報テーブルTB3の「要員の作業経験」がそれに該当する。
(フェーズF3)
フェーズF3では、フェーズF2で学習した機械学習モデルのパラメータを、要員の作業能力を表す特徴量である要員特徴量として抽出し、要員特徴量テーブルTB6に格納する。
以上のフェーズにより、作業の前提に関わる特性情報を説明変数、作業結果を目的変数とするモデルを、過去のプロジェクトにおける要員の作業実績から学習し、そのモデルのパラメータを、要員の作業能力を表す特徴量である要員特徴量として抽出することができる。なお、フェーズF3の処理は、学習データ加工部1-1の処理の一部として行われる。
【0041】
(フェーズF4)
フェーズF4では、要員特徴量テーブルTB6に格納された各要員の要員特徴量を、多次元の数値ベクトルとみなし、数値ベクトルに対するクラスタリング手法に基づいて要員を分類し、得られた分類結果に基づいて要員グループを作成する(要員グループテーブルTB7参照)。クラスタリング手法としては、一例として、k-means法を用いることができる。このフェーズにより、要員特徴量に基づくクラスタリング分析で要員を分類し、要員グループを作成することができる。
(フェーズF5)
フェーズF5では、フェーズF4の要員グループの作成結果に基づいて、作業実績テーブルTB1に登録された予定工数と実績工数を要員グループ別にグラフ表示させる(要員グループ別作業工数テーブルTB9参照)。このグラフ表示においては、例えば、時間軸に対して作業工数の予実績が示されている。
このフェーズF5により、過去のプロジェクトにおける作業工数を要員グループ別にグラフ表示することで、作業能力別に作業工数の傾向を容易に把握することができる。
【0042】
図2は、本実施の形態による要員計画支援装置の一構成例を示す機能ブロック図である。
図2に示すように、本実施の形態による要員計画支援装置Aは、CPUなどから構成される処理部1と、メモリやHDDなどから構成される記憶部3とを有している。
処理部1は、学習データの加工を行う学習データ加工部1-1と、モデルの学習を行うモデル学習部1-2と、要員を分類する要員分類部1-3と、作業工数を集計する作業工数集計部1-4と、作業工数等を表示する作業工数表示部(表示制御部)1-5とを有している。作業工数表示部1-5はディスプレイなどを含んでいても良い。
【0043】
また、記憶部3は、表1から表9まで(表8は除く)に示すように、作業実績テーブルTB1、作業スキルテーブルTB2、特性情報テーブルTB3、作業結果テーブルTB4、対象要員テーブルTB5、要員特徴量テーブルTB6、要員グループテーブルTB7、要員グループ別作業工数テーブルTB9を記憶している。尚、日付別作業工数テーブルTB8は、作業工数集計部1-4が内部処理で用いるテーブルであるため、図2には示していない。
【0044】
図3は、要員計画支援装置Aにおける全体の処理の概要を示すフローチャート図である。適宜、図1図2を参照しながら説明を行う。
図3に示すように、処理が開始され(START)、ステップS1において、学習データ加工部1-1が、モデルの学習データの加工処理を行う(図1のフェーズF2)。ステップS2において、モデル学習部1-2が、モデルの学習を行う(図1のフェーズF2,F3)。ステップS3において、要員分類部1-3が、クラスタリング分析による要員の分類を行う(図1のフェーズF4)。ステップS4において、作業工数集計部1-4が、要員グループ別の作業工数の集計を行う(図1のフェーズF5)。ステップS5において、作業工数表示部1-5が、要員グループ別の作業工数の表示を行う(図1のフェーズF5)。
【0045】
(ステップS2)
図4は、図3のステップS2のモデルの学習処理の流れを示すフローチャート図である。ステップS2において、まず、ステップS2-1に示すように、対象要員テーブルTB5に登録されているすべての要員に対して処理が完了したか否かを判定し、Yesであれば、ステップS2の処理を終了してステップS3に進む。Noであれば、ステップS2-2に進み、対象要員テーブルTB5から、未処理の要員IDを選択する。次いで、ステップS2-3において、作業IDをキーに、特性情報テーブルTB3と作業結果テーブルTB4とを結合し、当該要員IDをキーに、結合したテーブルの行のレコードを抽出する。抽出レコードは、以下のステップS2-4とステップS2-5における機械学習の学習データとなる。ステップS2-4において、ステップS2-3における抽出レコードのうち、特性情報を説明変数、納期遅延有無を目的変数として、納期遅延を予測する機械学習モデルとして、ロジスティック回帰モデルを学習する。次に、ステップS2-5において、ステップS2-3における抽出レコードのうち、特性情報を説明変数、工数予実差を目的変数として、工数予実差の程度を予測する機械学習モデルとして、線形重回帰モデルを学習する。尚、ステップS2-4とS2-5とは両方を行っても良いし、片方のみを行っても良い。
【0046】
ステップS2-5において、下記パラメータに要員IDを付与し、要員特徴量テーブルTB6に格納する。
・公知のロジスティック回帰モデルの回帰係数とバイアス
・公知の線形重回帰モデルの回帰係数、バイアス、誤差の大きさ
ここで、「誤差の大きさ」は、例えば、平均二乗誤差の平方根など、線形重回帰モデルの予測値と実際の工数予実差との差異の大きさを表す値である。
以上の処理により、作業結果(目的変数)毎に学習モデルを作成することができる。
【0047】
(ステップS3)
ステップS2の後に、図3のステップS3に進みクラスタリング分析による要員の分類を行う(図1のフェーズF4)。
【0048】
(ステップS4)
ステップ4における作業工数の集計処理は、例えば以下の処理である。
1)作業実績テーブルTB1の予定工数と実績工数を、それぞれ予定期間と実績期間の稼働日で按分し、日付別作業工数に変換する(日付別作業工数テーブルTB8参照)。
2)日付別作業工数に要員グループテーブルTB7を結合し、予定工数と実績工数を、プロジェクト別、要員グループ別、日付別で集計する。
3)2)における集計結果を、要員グループ別作業工数テーブルTB9に格納する。
【0049】
(ステップS5)
ステップ5における作業工数の表示処理は、例えば以下の処理である。
1)ユーザが指定したプロジェクトIDと要員グループIDをキーとして、要員グループ別作業工数テーブルTB9からレコードを抽出する。
2)タイムバケットを、日付別から、月別や、プロジェクトの進捗率などに変換し、予定工数と実績工数を集計して、以下のようにグラフを表示する。
【0050】
図5は、要員グループ別作業工数テーブルTB9に基づいて作成されたグラフ表示の一例を示す図である。この例では、図5に示すように、作業能力を考慮せずに、従来の方法で要員計画を行った過去のプロジェクトPJ001に対し、本実施の形態による要員の分類と、要員グループ別作業工数の集計・表示を行う。実線は実績工数であり、破線は予定工数である。
図5において、要員グループG002で、実績工数が予定工数を超過する傾向があることがわかる。すなわち、乖離率が高いことがわかる。
PJ001に類似するプロジェクトでは、図5の実績工数をもとに要員グループG002の要員の工数を見積り、要員計画を行うことで、工数超過を防ぐことができるという効果が得られる。
【0051】
次に、ベイジアンネットワークモデルによる要員特徴量と要員グループの再推定について説明する。
モデル学習部1-2の要員特徴量と、要員分類部1-3の要員グループの出力結果を初期値として、ベイジアンネットワークのモデルを適合し、要員特徴量と要員グループとを再推定することができる。
【0052】
図6は、ベイジアンネットワークモデルの一例を示す図である。
(1)ベイジアンネットワークモデル
本発明におけるベイジアンネットワークモデルとは、モデル学習部1-2における機械学習モデルと、要員分類部1-3における要員の分類手法を、以下の確率モデルで表現したモデルである。
1-1)納期遅延を予測するロジスティック回帰モデル:線形モデルと Bernoulli 分布による、ベイズロジスティック回帰モデル
1-2)工数予実差の線形重回帰モデル:線形モデルと正規分布による、ベイズ線形回帰モデル
1-3)要員特徴量のクラスタリング分析による要員の分類:多変量混合正規分布
これらの確率モデルを、ネットワークで1つの確率モデルに結合する。また、本発明におけるベイジアンネットワークモデルは、特性情報と作業結果を観測変数として含み、要員特徴量と要員グループを潜在変数として含む。
【0053】
(2)ベイジアンネットワークの利用について
2-1)モデル学習部1-2で、ロジスティック回帰と線形重回帰により、要員特徴量を抽出する。
2-2)要員分類部1-3で、クラスタリング分析により、要員グループを作成する。
2-3)2-1)の要員特徴量と、2-2)の要員グループの出力結果を潜在変数の初期値として、特性情報と作業結果にベイジアンネットワークモデルを適合し、潜在変数の値を推定することで、要員特徴量と要員グループを再推定する。
【0054】
(3)ベイジアンネットワークのメリットについて
3-1)データが少ない要員であっても、要員特徴量を推定することができる。ベイジアンネットワークでは、モデル学習部1-2が要員毎に行う機械学習モデルの学習において、学習データの数が不十分な要員であっても、他の要員のデータから構築したベイジアンネットワークモデルを適合することで、要員特徴量を推定できる。
3-2)追加の特性情報と作業結果にベイジアンネットワークモデルを適合させて、モデルを更新することができる。ベイジアンネットワークでは、構築済みのモデルを事前分布として、ベイズ推定により、追加データにモデルを適合させることで、モデルを更新することができる。
【0055】
以上に説明したように、本実施の形態によれば、作業の前提となった特性を考慮した要員の作業能力に基づき、要員計画の作成を支援することができる。
処理および制御は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)によるソフトウェア処理、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)によるハードウェア処理によって実現することができる。
また、上記の実施の形態において、図示されている構成等については、これらに限定されるものではなく、本発明の効果を発揮する範囲内で適宜変更することが可能である。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施することが可能である。
【0056】
また、本発明の各構成要素は、任意に取捨選択することができ、取捨選択した構成を具備する発明も本発明に含まれるものである。
【0057】
また、本実施の形態で説明した機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより各部の処理を行ってもよい。尚、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
また、「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。
また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含むものとする。また前記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。機能の少なくとも一部は、集積回路などのハードウェアで実現しても良い。
【産業上の利用可能性】
【0058】
本発明は、要員計画支援装置に利用可能である。
【符号の説明】
【0059】
A 要員計画支援装置
1 処理部
1-1 学習データ加工部
1-2 モデル学習部
1-3 要員分類部
1-4 作業工数集計部
1-5 作業工数表示部
3 記憶部
TB1 作業実績テーブル
TB2 作業スキルテーブル
TB3 特性情報テーブル
TB4 作業結果テーブル
TB5 対象要員テーブル
TB6 要員特徴量テーブル
TB7 要員グループテーブル
TB8 日付別作業工数テーブル
TB9 要員グループ別作業工数テーブル
図1
図2
図3
図4
図5
図6