(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-01-30
(45)【発行日】2024-02-07
(54)【発明の名称】骨格筋前駆細胞及びその精製方法、筋原性疾患を治療するための組成物、並びに骨格筋前駆細胞を含む細胞群の製造方法
(51)【国際特許分類】
C12N 5/077 20100101AFI20240131BHJP
C12N 5/0775 20100101ALI20240131BHJP
C12N 5/10 20060101ALI20240131BHJP
C12N 15/12 20060101ALI20240131BHJP
A61P 21/00 20060101ALI20240131BHJP
A61P 21/04 20060101ALI20240131BHJP
A61K 35/34 20150101ALI20240131BHJP
A61K 35/545 20150101ALN20240131BHJP
【FI】
C12N5/077
C12N5/0775 ZNA
C12N5/10
C12N15/12
A61P21/00
A61P21/04
A61K35/34
A61K35/545
(21)【出願番号】P 2022536398
(86)(22)【出願日】2021-07-13
(86)【国際出願番号】 JP2021026344
(87)【国際公開番号】W WO2022014604
(87)【国際公開日】2022-01-20
【審査請求日】2022-10-24
(31)【優先権主張番号】P 2020120226
(32)【優先日】2020-07-13
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】504132272
【氏名又は名称】国立大学法人京都大学
(73)【特許権者】
【識別番号】000000033
【氏名又は名称】旭化成株式会社
(74)【代理人】
【識別番号】100099759
【氏名又は名称】青木 篤
(74)【代理人】
【識別番号】100123582
【氏名又は名称】三橋 真二
(74)【代理人】
【識別番号】100108903
【氏名又は名称】中村 和広
(74)【代理人】
【識別番号】100142387
【氏名又は名称】齋藤 都子
(74)【代理人】
【識別番号】100135895
【氏名又は名称】三間 俊介
(74)【代理人】
【識別番号】100197169
【氏名又は名称】柴田 潤二
(72)【発明者】
【氏名】櫻井 英俊
(72)【発明者】
【氏名】趙 明明
(72)【発明者】
【氏名】加藤 弘毅
(72)【発明者】
【氏名】田積 充年
【審査官】山本 匡子
(56)【参考文献】
【文献】国際公開第2016/108288(WO,A1)
【文献】特表2020-519311(JP,A)
【文献】米国特許出願公開第2015/0299659(US,A1)
【文献】特表2020-500512(JP,A)
【文献】ALEXANDER , MS. et al.,CD82 Is a Marker for Prospective Isolation of Human Muscle Satellite Cells and Is Linked to Muscular Dystrophies,Cell Stem Cell,2016年12月01日,Vol.19, No.6,p.800-807,doi: 10.1016/j.stem.2016.08.006
【文献】SAKAI-TAKEMURA, F. et al.,Premyogenic progenitors derived from human pluripotent stem cells expand in floating culture and differentiate into transplantable myogenic progenitors,Sci Rep.,2018年04月26日,8(1)6555,doi: 10.1038/s41598-018-24959-y
【文献】櫻井 英俊,筋疾患に対する他家細胞移植治療製剤の開発,日本医療研究開発機構 医療分野研究成果展開事業 産学連携医療イノベーション創出プログラム セットアップスキーム(ACT-MS)事後評価報告書,2020年08月26日,http://tokkyo.shinsakijuhttps://www.amed.go.jp/content/000070938.pdf
(58)【調査した分野】(Int.Cl.,DB名)
C12N 15/00-90
C12N 5/00-28
C12Q
MEDLINE/BIOSIS/REGISTRY/CAPLUS(STN)
JSTPlus/JMEDPlus/JST7580(JDreamIII)
(57)【特許請求の範囲】
【請求項1】
Pax7陽性であり、細胞表面においてCD146(MCAM)が陽性であり、かつCD57が陰性である骨格筋前駆細胞
を30%以上含む細胞群を含む、筋原性疾患を治療するための組成物。
【請求項2】
前記骨格筋前駆細胞が多能性幹細胞由来である、請求項1に記載の
組成物。
【請求項3】
前記多能性幹細胞が、ES細胞、ntES細胞及びiPS細胞からなる群から選択される、請求項2に記載の
組成物。
【請求項4】
前記骨格筋前駆細胞が、培養系において、ミオシン重鎖(MHC)陽性の骨格筋細胞に分化し、さらに多核の骨格筋細胞へ成熟し得る、請求項1~3のいずれか一項に記載の
組成物。
【請求項5】
生体における適用部位において、線維化を誘発しないことを特徴とする、請求項
1~4のいずれか1項に記載の組成物。
【請求項6】
前記筋原性疾患が、筋ジストロフィーである、請求項
1~
5のいずれか一項に記載の組成物。
【請求項7】
医薬的に許容され得る担体を含む、請求項
1~
6のいずれか一項に記載の組成物。
【請求項8】
骨格筋前駆細胞を精製する方法であって、
骨格筋前駆細胞を含む細胞集団から、細胞表面において、CD146(MCAM)が陽性であり、かつ、CD57が陰性である細胞群を回収する工程、
を含む、方法。
【請求項9】
前記細胞群が、Pax7陽性の骨格筋前駆細胞を30%以上含む、請求項
8に記載の方法。
【請求項10】
前記工程が、蛍光活性化細胞選別(FACS)法又は磁気細胞選別(MACS)法によって実施される、請求項
8又は
9に記載の方法。
【請求項11】
前記細胞集団が多能性幹細胞由来である、請求項
8~
10のいずれか1項に記載の方法。
【請求項12】
前記多能性幹細胞が、ES細胞、ntES細胞及びiPS細胞からなる群から選択される、請求項
11に記載の方法。
【請求項13】
請求項
8~
12のいずれか一項に記載の方法に使用するためのキットであって、CD146(MCAM)に特異的に結合する結合剤、及びCD57に特異的に結合する結合剤を含む、キット。
【請求項14】
骨格筋前駆細胞を含む細胞群を製造する方法であって、
骨格筋前駆細胞を含む細胞集団から、細胞表面において、CD146(MCAM)が陽性であり、かつ、CD57が陰性である細胞群を回収する工程
を含む、方法。
【請求項15】
前記細胞群が、Pax7陽性の骨格筋前駆細胞を30%以上含む、請求項
14に記載の方法。
【請求項16】
前記工程が、蛍光活性化細胞選別(FACS)法又は磁気細胞選別(MACS)法によって実施される、請求項
14又は
15に記載の方法。
【請求項17】
前記細胞集団が多能性幹細胞由来である、請求項
14~
16のいずれか一項に記載の方法。
【請求項18】
前記多能性幹細胞が、ES細胞、ntES細胞及びiPS細胞からなる群から選択される、請求項
17に記載の方法。
【請求項19】
請求項
14~
18のいずれか一項に記載の方法に使用するためのキットであって、CD146(MCAM)に特異的に結合する結合剤、及びCD57に特異的に結合する結合剤を含む、キット。
【請求項20】
請求項
15に記載の方法によって得られる骨格筋前駆細胞を含む細胞群
を含む、筋原性疾患を治療するための組成物。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、骨格筋前駆細胞及びそれを含む筋原性疾患を治療するための組成物に関する。また、本発明は、骨格筋前駆細胞を精製する方法及び骨格筋前駆細胞を含む細胞群を製造する方法に関する。本願は、2020年7月13日に出願された日本国特許出願第2020-120226号に基づく優先権を主張するものであり、ここに参照することによって、その全体が本明細書中へ組み込まれるものとする。
【背景技術】
【0002】
胚性幹細胞(ES細胞)や、体細胞へ未分化細胞特異的遺伝子を導入することで得られる人工多能性幹細胞(iPS細胞)などの多能性を有する細胞が報告されて以来、筋原性疾患の治療方法、とりわけ、筋ジストロフィーの治療方法として、これらの多能性幹細胞から分化誘導された骨格筋前駆細胞を移植する治療法が注目されている。
【0003】
これまで、多能性幹細胞から骨格筋前駆細胞を分化誘導する方法として、(1)単一のヒトES細胞を浮遊培養により増殖させた細胞を無血清培養液中で接着培養した後、CD73陽性細胞を単離しさらに培養した後、NCAM陽性細胞を単離し増殖する方法(非特許文献1)、(2)5-Azacytidine(脱メチル化剤)で処理したヒトES細胞を浮遊培養して胚様体を形成させた後、さらに接着培養する方法(非特許文献2)、(3)多能性幹細胞を浮遊培養し、次いで接着培養を行い、その後解離して再び接着培養を行う方法(特許文献1)、(4)TGF-β阻害剤、GSK3β阻害剤、HGF、bFGF及びIGF1を含む培養液中で、多能性幹細胞を培養する方法(特許文献2)などが知られている。現在、これらの方法によって誘導された骨格筋前駆細胞を臨床応用するための研究が行われている。
【0004】
多能性幹細胞から骨格筋前駆細胞を分化誘導した場合、未分化の多能性幹細胞や、骨格筋前駆細胞以外の細胞が、分化誘導後の細胞集団に含まれるため、臨床に用いるためには目的の骨格筋前駆細胞の収率と純度を上げる精製方法が必要となる。多能性幹細胞から分化誘導した骨格筋前駆細胞を精製する方法として、その細胞表面マーカーであるCD82及びCD57を利用し、CD82陽性かつCD57陰性の細胞を単離する方法が知られている(非特許文献3)。
【先行技術文献】
【特許文献】
【0005】
【文献】特表2013-527746号公報
【文献】国際公開第2016/108288号
【非特許文献】
【0006】
【文献】Barberi T, et al. Nat Med. 13:642-8, 2007
【文献】Zheng JK, et al. Cell Res. 16:713-22, 2006
【文献】Matthew S. Alexander, et al., Cell Stem Cell 19, 1, 2016
【発明の概要】
【発明が解決しようとする課題】
【0007】
本発明の目的は、臨床応用に適した品質を有する、骨格筋前駆細胞、及びその精製方法を提供することである。
【課題を解決するための手段】
【0008】
本発明者らは、上記の課題を解決すべく、鋭意研究を重ねた結果、特定の細胞表面マーカーを用いた精製法により、臨床応用に適した品質を有する骨格筋前駆細胞の収率及び純度を高めることに成功した。また、本発明者らは、そのような方法により得られた骨格筋前駆細胞又はそれを含む組成物が、生体における適用部位において、損傷した筋線維を再生しかつ線維化を誘発しないという極めて顕著な効果を発揮するということを見出し、本発明を完成するに至った。
【0009】
すなわち、本発明は以下の通りである。
[1] Pax7陽性であり、細胞表面においてCD146(MCAM)が陽性であり、かつCD57が陰性である骨格筋前駆細胞。
[2] 多能性幹細胞由来である、項目1に記載の骨格筋前駆細胞。
[3] 前記多能性幹細胞が、ES細胞、ntES細胞及びiPS細胞からなる群から選択される、項目2に記載の骨格筋前駆細胞。
[4] 培養系において、ミオシン重鎖(MHC)陽性の骨格筋細胞に分化し、さらに多核の骨格筋細胞へ成熟し得る、項目1~3のいずれか一項に記載の骨格筋前駆細胞。
【0010】
[5] 項目1~4のいずれか一項に記載の骨格筋前駆細胞を含む細胞群を含む、筋原性疾患を治療するための組成物。
[6] 前記細胞群が、前記骨格筋前駆細胞を30%以上含む、項目5に記載の組成物。
[7] 生体における適用部位において、線維化を誘発しないことを特徴とする、項目5又は6に記載の組成物。
[8] 前記細胞群が多能性幹細胞由来である、項目5~7のいずれか一項に記載の組成物。
[9] 前記多能性幹細胞が、ES細胞、ntES細胞及びiPS細胞からなる群から選択される、項目8に記載の組成物。
[10] 前記筋原性疾患が、筋ジストロフィーである、項目5~9のいずれか一項に記載の組成物。
[11] 医薬的に許容され得る担体を含む、項目5~10のいずれか一項に記載の組成物。
【0011】
[12] 骨格筋前駆細胞を精製する方法であって、
骨格筋前駆細胞を含む細胞集団から、細胞表面において、CD146(MCAM)が陽性であり、かつ、CD57が陰性である細胞群を回収する工程、
を含む、方法。
[13] 前記細胞群が、Pax7陽性の骨格筋前駆細胞を30%以上含む、項目12に記載の方法。
[14] 前記工程が、蛍光活性化細胞選別(FACS)法又は磁気細胞選別(MACS)法によって実施される、項目12又は13に記載の方法。
[15] 前記細胞集団が多能性幹細胞由来である、項目12~14のいずれか1項に記載の方法。
[16] 前記多能性幹細胞が、ES細胞、ntES細胞及びiPS細胞からなる群から選択される、項目15に記載の方法。
【0012】
[17] 項目12~16のいずれか一項に記載の方法に使用するためのキットであって、CD146(MCAM)に特異的に結合する結合剤、及びCD57に特異的に結合する結合剤を含む、キット。
【0013】
[18] 骨格筋前駆細胞を含む細胞群を製造する方法であって、
骨格筋前駆細胞を含む細胞集団から、細胞表面において、CD146(MCAM)が陽性であり、かつ、CD57が陰性である細胞群を回収する工程
を含む、方法。
[19] 前記細胞群が、Pax7陽性の骨格筋前駆細胞を30%以上含む、項目18に記載の方法。
[20] 前記工程が、蛍光活性化細胞選別(FACS)法又は磁気細胞選別(MACS)法によって実施される、項目18又は19に記載の方法。
[21] 前記細胞集団が多能性幹細胞由来である、項目18~20のいずれか一項に記載の方法。
[22] 前記多能性幹細胞が、ES細胞、ntES細胞及びiPS細胞からなる群から選択される、項目21に記載の方法。
【0014】
[23] 項目18~22のいずれか一項に記載の方法に使用するためのキットであって、CD146(MCAM)に特異的に結合する結合剤、及びCD57に特異的に結合する結合剤を含む、キット。
【0015】
[24] 項目18~22のいずれか一項に記載の方法によって得られる骨格筋前駆細胞を含む細胞群。
【0016】
[25] 筋原性疾患の治療に使用するための細胞群であって、前記細胞群が、Pax7陽性であり、細胞表面においてCD146(MCAM)が陽性であり、かつCD57が陰性である骨格筋前駆細胞を含む、細胞群。
【0017】
[26] 筋原性疾患を治療するための医薬の製造における細胞群の使用であって、
前記細胞群が、Pax7陽性であり、細胞表面においてCD146(MCAM)が陽性であり、かつCD57が陰性である骨格筋前駆細胞を含む、使用。
【0018】
[27] 筋原性疾患を罹患する対象を治療する方法であって、
Pax7陽性であり、細胞表面においてCD146(MCAM)が陽性であり、かつCD57が陰性である骨格筋前駆細胞を含む細胞群を、それを必要とする対象に投与すること、を含む、方法。
【発明の効果】
【0019】
本発明により提供される、骨格筋前駆細胞は、生体における適用部位において、線維化を誘発せずに筋原性疾患を罹患する対象を治療することを可能とする。
【図面の簡単な説明】
【0020】
【
図1】Pax7の発現と連携して蛍光タンパク質Venusを発現するヒトiPS細胞(s01-Pax7-Venus)を分化誘導して得た骨格筋前駆細胞を含む細胞集団からFACS解析によりPax7陽性CD57陰性細胞およびPax7陰性細胞を選別した後、RNA-seqにより遺伝子の発現量を測定した結果である。
【
図2】Pax7の発現と連携して蛍光タンパク質Venusを発現するヒトiPS細胞(s01-Pax7-Venus)を分化誘導して得た骨格筋前駆細胞を含む細胞集団からFACS解析により選別したPax7陽性細胞における細胞表面タンパク質の発現を解析した結果である。(a)はCD207、(b)はFGFR4および(c)はMCAMに対する抗体で解析した。
【
図3】ヒトiPS細胞を分化誘導して得た骨格筋前駆細胞を含む細胞集団からFACSによりCD57陽性細胞、MCAM陽性CD57陰性細胞およびMCAM陰性CD57陰性細胞を選別した後、遺伝子の発現量を定量した結果である。(a)はPax7遺伝子の結果、(b)はMyoD遺伝子の結果、(c)はTFAP2A遺伝子の結果、(d)はPDGFRα遺伝子の結果を示す。データはバルク(選別前)での発現量に対する比率で算出し、平均±SEで示す。
【
図4a】ヒトiPS細胞を分化誘導して得た骨格筋前駆細胞を含む細胞集団からFACSによりCD57陽性細胞、MCAM陽性CD57陰性細胞およびMCAM陰性CD57陰性細胞を選別し、筋管細胞へ分化誘導後にMyosin Heavy Chain(MHC)の発現を観察および定量した結果である。(a)は明視野およびMHC抗体による免疫染色の結果である。
【
図4b】ヒトiPS細胞を分化誘導して得た骨格筋前駆細胞を含む細胞集団からFACSによりCD57陽性細胞、MCAM陽性CD57陰性細胞およびMCAM陰性CD57陰性細胞を選別し、筋管細胞へ分化誘導後にMyosin Heavy Chain(MHC)の発現を観察および定量した結果である。(b)は
図4aから算出したMHC陽性細胞の比率を定量した結果である。データは平均±SEで示す。
【
図5】ヒトiPS細胞を分化誘導して得た骨格筋前駆細胞を含む細胞集団からFACSによりCD82陽性CD57陰性細胞およびMCAM陽性CD57陰性細胞を選別した後、重度免疫不全を併せ持つ筋ジストロフィー(DMD/NSG)マウスの腓腹筋へ移植した4週後の組織像の結果である。(a)は移植部位におけるジストロフィン(緑色)、ラミニンα2(白色)、ラミンA/C(赤色)および細胞核(青色)の免疫染色像を示す。(b)はジストロフィン陽性筋線維数を示す。
【
図6】ヒトiPS細胞を分化誘導して得た骨格筋前駆細胞を含む細胞集団からFACSによりCD82陽性CD57陰性細胞もしくはMCAM陽性CD57陰性細胞を選別した後、重度免疫不全を併せ持つ筋ジストロフィー(DMD/NSG)マウスの腓腹筋へ移植した4週後の組織像の結果である。上段はラミンA/C(緑色)、ラミニンα2(白色)の免疫染色像、下段がHE染色像を示す。
【
図7a】ヒトiPS細胞を分化誘導して得た骨格筋前駆細胞を含む細胞集団からFACSによりCD82陽性CD57陰性細胞もしくはMCAM陽性CD57陰性細胞を選別した後、重度免疫不全を併せ持つ筋ジストロフィー(DMD/NSG)マウスの腓腹筋へ移植した4週後の組織像の結果である。(a)の上段はラミンA/C(緑色)、ラミニンα2(白色)の免疫染色像、下段はSirius Red染色像を示す。
【
図7b】ヒトiPS細胞を分化誘導して得た骨格筋前駆細胞を含む細胞集団からFACSによりCD82陽性CD57陰性細胞もしくはMCAM陽性CD57陰性細胞を選別した後、重度免疫不全を併せ持つ筋ジストロフィー(DMD/NSG)マウスの腓腹筋へ移植した4週後の組織像の結果である。(b)は
図7(a)から算出した組織面積あたりの線維化面積の比率を示す。統計解析はt検定を行った。***:P<0.005
【発明を実施するための形態】
【0021】
本発明を以下に詳細に説明する。
【0022】
特段の定義がない限り、本明細書で使用する用語(技術的用語および科学的用語)は、当業者が一般に理解している用語と同一の意味を有する。
【0023】
本発明は、骨格筋前駆細胞及びそれを含む筋原性疾患を治療するための組成物、骨格筋前駆細胞を精製する方法、骨格筋前駆細胞を含む細胞群を製造する方法及び筋原性疾患を罹患する対象を治療する方法に関する。
【0024】
本明細書において、「骨格筋」とは、成熟筋を意味し、筋繊維すなわち多核細胞である筋細胞を含む。また、本明細書において、一般的な骨格筋前駆細胞を指す文脈において用いられる「骨格筋前駆細胞」とは、成熟した筋細胞へは至っていないもののその前段階にある細胞であって、筋細胞へ選択的に分化し得る能力を有する細胞を意味するが、骨芽細胞や脂肪細胞などの他の中胚葉細胞への分化能を全く有しないことを意味するものではなく、場合によっては、筋細胞以外の細胞への分化能を有している細胞も骨格筋前駆細胞に包含され得る。一般的に、骨格筋前駆細胞は、特定の遺伝子の発現によって特徴づけられ、例えば、MyoD、Myf5、Pax7、Myogenin、ミオシン重鎖(MHC)、NCAM、Desmin、SkMAct、M-Cadherin、Fgfr4およびVCAME1などのマーカー遺伝子の発現を検出することによって同定可能である。骨格筋前駆細胞のうち、本発明で使用され得る骨格筋前駆細胞は、少なくとも、Pax7陽性であり、細胞表面においてCD146(MCAM)が陽性であり、かつCD57が陰性であるという特徴を有しており、生体に適用した場合、その適用部位において線維化を誘発しないという極めて優れた効果を発揮する。また、本発明の骨格筋前駆細胞は、培養系において、ミオシン重鎖(MHC)陽性の骨格筋細胞に分化し、さらに多核の骨格筋細胞へ成熟し得る。従って、本発明の骨格筋前駆細胞を移植した場合、被移植組織において、効率的に骨格筋細胞へと成熟し、治療効果を発揮し得る。
【0025】
本発明に含まれる骨格筋前駆細胞は、特に断りがない限り、骨格筋幹細胞および/またはサテライト細胞を含んでいる。
【0026】
本明細書において、「骨格筋幹細胞」とは、自己複製能を有し、骨格筋の損傷時には筋芽細胞への分化・増殖し、傷んだ筋線維に融合して修復する性質を有する細胞をいい、成熟した筋肉に見られる「サテライト細胞」も骨格筋幹細胞に含まれる。「骨格筋幹細胞」及び「サテライト細胞」は、その発現マーカーとしてPax7が発現することが知られている。
【0027】
本発明において、表面マーカーとして用いられる「CD146」とは、メラノーマ細胞接着分子(MCAM)または細胞表面糖タンパク質MUC18としても知られる細胞接着分子をいう(本明細書中、「CD146」、「MCAM」又は「CD146(MCAM)」として記載され、いずれも同義で用いられる。)。ヒトにおいて、CD146はMCAM遺伝子によってコードされており、例えば、ヒトCD146のmRNA及びアミノ酸の配列は、GenBankデータベース及びGenPeptデータベースにおいて、受入番号NM_006500及びNP_006491として提供されているが、これらに限定されない。
【0028】
本明細書において、「細胞表面においてCD146(MCAM)が陽性である細胞」(「CD146陽性細胞」ともいう。)とは、細胞表面においてCD146特異的結合剤(例えば、抗CD146抗体)と反応する細胞をいい、公知の免疫学的手法(例えば、抗CD146抗体を用いたフローサイトメトリーによる検出法)により同定することができる。従って、CD146陽性細胞とは、野生型CD146を細胞表面に発現する細胞のみならず、抗CD146抗体と反応する変異型CD146を細胞表面に発現する細胞も包含する。
【0029】
本発明において、表面マーカーとして用いられる「CD57」とは、Galactosylgalactosylxylosylprotein 3-beta-glucuronosyltransferase 1(B3GAT1)またはLEU7としても知られる酵素であり、B3GAT1遺伝子によってコードされている細胞表面タンパク質である。例えば、ヒトCD57のmRNA及びアミノ酸の配列は、GenBankデータベース及びGenPeptデータベースにおいて、受入番号NM_018644、NM_054025又はNM_001367973、並びにNP_061114、NP_473366及びNP_001354902として提供されているが、これらに限定されない。
【0030】
本明細書において、「細胞表面においてCD57が陰性である細胞」(「CD57陽性細胞」ともいう。)とは、細胞表面においてCD57特異的結合剤(例えば、抗CD57抗体)と反応しない細胞をいい、公知の免疫学的手法(例えば、抗CD57抗体を用いたフローサイトメトリーによる検出法)により同定することができる。従って、CD57陰性細胞とは、野生型CD57を細胞表面に発現しない細胞のみならず、抗CD57抗体と反応する変異型CD57を細胞表面に発現しない細胞も包含する。
【0031】
本明細書において、「Pax7」とは、骨格筋前駆細胞、特に、骨格筋幹細胞(サテライト細胞)のマーカーとして知られる転写因子である。例えば、ヒトPax7のmRNA及びアミノ酸の配列は、GenBankデータベース及びGenPeptデータベースにおいて、受入番号NM_013945、NM_001135254又はNM_002584、並びにNP_001128726、NP_002575又はNP_039236として提供されているが、これらに限定されない。本発明の骨格筋前駆細胞における「Pax7」の発現は、公知の遺伝子発現検出手法を用いて定量することが可能である。
【0032】
従来、多能性幹細胞から分化誘導された骨格筋前駆細胞を含む細胞集団から、骨格筋前駆細胞を精製する方法として、細胞表面にCD82が発現し、細胞表面にCD57が発現していないCD82陽性CD57陰性細胞を選択する方法が用いられていた。しかしながら、この方法により精製された骨格筋前駆細胞は、Pax7陽性細胞の収率と純度が不十分であり、また、骨格筋前駆細胞以外の細胞が多く混入することから、多くの症例の被移植組織において線維化するなどの問題があった。しかしながら、本発明により提供される骨格筋前駆細胞、又はそれを含む細胞群は、生体における適用部位において、線維化を誘発しないという優れた特徴を有する。
【0033】
一実施態様において、本発明は、Pax7陽性であり、細胞表面においてCD146(MCAM)が陽性であり、かつCD57が陰性である骨格筋前駆細胞を含む細胞群を含む、筋原性疾患を治療するための組成物を提供する。
【0034】
本発明の組成物に含まれる骨格筋前駆細胞を含む細胞群は、骨格筋前駆細胞と共に他の種類の細胞を含んだ細胞群であってもよい。一実施態様において、本発明に含まれる細胞群に対する骨格筋前駆細胞は、30%以上含まれることが好ましく、例えば、30%以上、35%以上、40%以上、45%以上、50%以上、55%以上、60%以上、65%以上、70%以上、75%以上、80%以上、85%以上、90%以上、95%以上、又は100%含まれる。
【0035】
一実施態様において、本発明の組成物に含まれる骨格筋前駆細胞は、培養系において、ミオシン重鎖(MHC)陽性の骨格筋細胞に分化し、さらに多核の骨格筋細胞へ成熟する能力を有する。従って、本発明の組成物を移植した場合、被移植組織において、効率的に骨格筋細胞へと成熟し、治療効果を発揮し得る。
【0036】
本発明に用いられ得る骨格筋前駆細胞又は骨格筋前駆細胞を含む細胞群は、多能性幹細胞由来であってもよい。
【0037】
本発明で使用可能な多能性幹細胞は、生体に存在するすべての細胞に分化可能である多能性を有し、かつ、増殖能をも併せもつ幹細胞であり、それには、以下のものに限定されないが、例えば、胚性幹(ES)細胞、精子幹(GS)細胞、胚性生殖(EG)細胞、人工多能性幹(iPS)細胞、核移植により得られるクローン胚由来の胚性幹(ntES)細胞、Muse細胞などが含まれる。好ましい多能性幹細胞は、ES細胞、iPS細胞およびntES細胞であり、筋原性疾患治療に用いるという観点から、より好ましくは、ヒトES細胞、ヒトiPS細胞であり、さらに好ましくは、ヒトiPS細胞である。
【0038】
(A)胚性幹細胞
ES細胞は、ヒトやマウスなどの哺乳動物の初期胚(例えば胚盤胞)の内部細胞塊から樹立された、多能性と自己複製による増殖能を有する幹細胞である。
【0039】
ES細胞は、受精卵の8細胞期、桑実胚後の胚である胚盤胞の内部細胞塊に由来する胚由来の幹細胞であり、成体を構成するあらゆる細胞に分化する能力、いわゆる分化多能性と、自己複製による増殖能とを有している。ES細胞は、マウスで1981年に発見され(M.J. Evans and M.H. Kaufman(1981), Nature 292:154-156)、その後、ヒト、サルなどの霊長類でもES細胞株が樹立された(J.A. Thomson et al.(1998), Science 282:1145-1147; J.A. Thomson et al.(1995), Proc. Natl. Acad. Sci. USA, 92:7844-7848;J.A. Thomson et al.(1996), Biol. Reprod., 55:254-259; J.A. Thomson and V.S. Marshall(1998), Curr. Top. Dev. Biol., 38:133-165)。
【0040】
ES細胞は、対象動物の受精卵の胚盤胞から内部細胞塊を取出し、内部細胞塊を線維芽細胞のフィーダー上で培養することによって樹立することができる。また、継代培養による細胞の維持は、白血病抑制因子(leukemia inhibitory factor(LIF))、塩基性線維芽細胞成長因子(basic fibroblast growth factor(bFGF))などの物質を添加した培養液を用いて行うことができる。ヒトおよびサルのES細胞の樹立と維持の方法については、例えばUSP5,843,780; Thomson JA, et al.(1995), Proc Natl. Acad. Sci. U S A. 92:7844-7848; Thomson JA, et al.(1998), Science. 282:1145-1147; H. Suemori et al.(2006), Biochem. Biophys. Res. Commun., 345:926-932; M. Ueno et al.(2006), Proc. Natl. Acad. Sci. USA, 103:9554-9559; H. Suemori et al.(2001), Dev. Dyn., 222:273-279;H. Kawasaki et al.(2002), Proc. Natl. Acad. Sci. USA, 99:1580-1585;Klimanskaya I, et al.(2006), Nature. 444:481-485などに記載されている。
【0041】
ES細胞作製のための培養液として、例えば0.1mM 2-メルカプトエタノール、0.1mM 非必須アミノ酸、2mM L-グルタミン酸、20% KSRおよび4ng/ml bFGFを補充したDMEM/F-12培養液を使用し、37℃、2% CO2/98% 空気の湿潤雰囲気下でヒトES細胞を維持することができる(O. Fumitaka et al.(2008), Nat. Biotechnol., 26:215-224)。また、ES細胞は、3~4日おきに継代する必要があり、このとき、継代は、例えば1mM CaCl2および20% KSRを含有するPBS中の0.25% トリプシンおよび0.1mg/mlコラゲナーゼIVを用いて行うことができる。
【0042】
ES細胞の選択は、一般に、アルカリホスファターゼ、Oct-3/4、Nanogなどの遺伝子マーカーの発現を指標にしてReal-Time PCR法で行うことができる。特に、ヒトES細胞の選択では、OCT-3/4、NANOG、ECADなどの遺伝子マーカーの発現を指標とすることができる(E. Kroon et al.(2008), Nat. Biotechnol.,26:443-452)。
【0043】
ヒトES細胞株は、例えばWA01(H1)およびWA09(H9)は、WiCell Reserch Instituteから、KhES-1、KhES-2およびKhES-3は、京都大学再生医科学研究所(京都、日本)から入手可能である。
【0044】
(B)精子幹細胞
精子幹細胞は、精巣由来の多能性幹細胞であり、精子形成のための起源となる細胞である。この細胞は、ES細胞と同様に、種々の系列の細胞に分化誘導可能であり、例えばマウス胚盤胞に移植するとキメラマウスを作出できるなどの性質をもつ(M. Kanatsu-Shinohara et al.(2003) Biol. Reprod., 69:612-616; K. Shinohara et al.(2004), Cell, 119:1001-1012)。神経膠細胞系由来神経栄養因子(glial cell line-derived neurotrophic factor(GDNF))を含む培養液で自己複製可能であるし、またES細胞と同様の培養条件下で継代を繰り返すことによって、精子幹細胞を得ることができる(竹林正則ら(2008),実験医学,26巻,5号(増刊),41~46頁,羊土社(東京、日本))。
【0045】
(C)胚性生殖細胞
胚性生殖細胞は、胎生期の始原生殖細胞から樹立される、ES細胞と同様な多能性をもつ細胞であり、LIF、bFGF、幹細胞因子(stem cell factor)などの物質の存在下で始原生殖細胞を培養することによって樹立しうる(Y. Matsui et al.(1992), Cell, 70:841-847; J.L. Resnick et al.(1992), Nature, 359:550-551)。
【0046】
(D)人工多能性幹細胞
人工多能性幹(iPS)細胞は、特定の初期化因子を、DNAまたはタンパク質の形態で体細胞に導入することによって作製することができる、ES細胞とほぼ同等の特性、例えば分化多能性と自己複製による増殖能を有する体細胞由来の人工の幹細胞である(K. Takahashi and S. Yamanaka(2006) Cell, 126:663-676; K. Takahashi et al.(2007), Cell, 131:861-872; J. Yu et al.(2007), Science, 318:1917-1920; Nakagawa, M.ら,Nat. Biotechnol. 26:101-106(2008);国際公開WO 2007/069666)。初期化因子は、ES細胞に特異的に発現している遺伝子、その遺伝子産物もしくはnon-cording RNAまたはES細胞の未分化維持に重要な役割を果たす遺伝子、その遺伝子産物もしくはnon-cording RNA、あるいは低分子化合物によって構成されてもよい。初期化因子に含まれる遺伝子として、例えば、Oct3/4、Sox2、Sox1、Sox3、Sox15、Sox17、Klf4、Klf2、c-Myc、N-Myc、L-Myc、Nanog、Lin28、Fbx15、ERas、ECAT15-2、Tcl1、beta-catenin、Lin28b、Sall1、Sall4、Esrrb、Nr5a2、Tbx3等が例示され、これらの初期化因子は、単独で用いても良く、組み合わせて用いても良い。初期化因子の組み合わせとしては、WO2007/069666、WO2008/118820、WO2009/007852、WO2009/032194、WO2009/058413、WO2009/057831、WO2009/075119、WO2009/079007、WO2009/091659、WO2009/101084、WO2009/101407、WO2009/102983、WO2009/114949、WO2009/117439、WO2009/126250、WO2009/126251、WO2009/126655、WO2009/157593、WO2010/009015、WO2010/033906、WO2010/033920、WO2010/042800、WO2010/050626、WO2010/056831、WO2010/068955、WO2010/098419、WO2010/102267、WO2010/111409、WO 2010/111422、WO2010/115050、WO2010/124290、WO2010/147395、WO2010/147612、Huangfu D, et al.(2008), Nat. Biotechnol., 26: 795-797、Shi Y, et al.(2008), Cell Stem Cell, 2: 525-528、Eminli S, et al.(2008), Stem Cells. 26:2467-2474、Huangfu D, et al.(2008), Nat Biotechnol. 26:1269-1275、Shi Y, et al.(2008), Cell Stem Cell, 3, 568-574、Zhao Y, et al.(2008), Cell Stem Cell, 3:475-479、Marson A,(2008), Cell Stem Cell, 3, 132-135、Feng B, et al.(2009), Nat Cell Biol. 11:197-203、R.L. Judson et al.,(2009), Nat. Biotech., 27:459-461、Lyssiotis CA, et al.(2009), Proc Natl Acad Sci U S A. 106:8912-8917、Kim JB, et al.(2009), Nature. 461:649-643、Ichida JK, et al.(2009), Cell Stem Cell. 5:491-503、Heng JC, et al.(2010), Cell Stem Cell. 6:167-74、Han J, et al.(2010), Nature. 463:1096-100、Mali P, et al.(2010), Stem Cells. 28:713-720に記載の組み合わせが例示される。
【0047】
上記初期化因子には、ヒストンデアセチラーゼ(HDAC)阻害剤[例えば、バルプロ酸(VPA)、トリコスタチンA、酪酸ナトリウム、MC 1293、M344等の低分子阻害剤、HDACに対するsiRNAおよびshRNA(例、HDAC1 siRNA Smartpool(Millipore)、HuSH 29mer shRNA Constructs against HDAC1(OriGene)等)等の核酸性発現阻害剤など]、MEK阻害剤(例えば、PD184352、PD98059、U0126、SL327およびPD0325901)、Glycogen synthase kinase-3阻害剤(例えば、BioおよびCHIR99021)、DNAメチルトランスフェラーゼ阻害剤(例えば、5-azacytidine)、ヒストンメチルトランスフェラーゼ阻害剤(例えば、BIX-01294等の低分子阻害剤、Suv39hl、Suv39h2、SetDBlおよびG9aに対するsiRNAおよびshRNA等の核酸性発現阻害剤など)、L-channel calcium agonist(例えばBayk8644)、酪酸、TGFβ阻害剤またはALK5阻害剤(例えば、LY364947、SB431542、616453およびA-83-01)、p53阻害剤(例えばp53に対するsiRNAおよびshRNA)、ARID3A阻害剤(例えば、ARID3Aに対するsiRNAおよびshRNA)、miR-291-3p、miR-294、miR-295およびmir-302などのmiRNA、Wnt Signaling(例えばsoluble Wnt3a)、神経ペプチドY、プロスタグランジン類(例えば、プロスタグランジンE2およびプロスタグランジンJ2)、hTERT、SV40LT、UTF1、IRX6、GLISl、PITX2、DMRTBl等の樹立効率を高めることを目的として用いられる因子も含まれており、本明細書においては、これらの樹立効率の改善目的にて用いられた因子についても初期化因子と別段の区別をしないものとする。
【0048】
初期化因子は、タンパク質の形態の場合、例えばリポフェクション、細胞膜透過性ペプチド(例えば、HIV由来のTATおよびポリアルギニン)との融合、マイクロインジェクションなどの手法によって体細胞内に導入してもよい。
【0049】
一方、DNAの形態の場合、例えば、ウイルス、プラスミド、人工染色体などのベクター、リポフェクション、リポソーム、マイクロインジェクションなどの手法によって体細胞内に導入することができる。ウイルスベクターとしては、レトロウイルスベクター、レンチウイルスベクター(以上、Cell, 126, pp.663-676, 2006; Cell, 131, pp.861-872,2007; Science, 318, pp.1917-1920,2007)、アデノウイルスベクター(Science, 322, 945-949,2008)、アデノ随伴ウイルスベクター、センダイウイルスベクター(WO 2010/008054)などが例示される。また、人工染色体ベクターとしては、例えばヒト人工染色体(HAC)、酵母人工染色体(YAC)、細菌人工染色体(BAC、PAC)などが含まれる。プラスミドとしては、哺乳動物細胞用プラスミドを使用しうる(Science, 322:949-953,2008)。ベクターには、核初期化物質が発現可能なように、プロモーター、エンハンサー、リボゾーム結合配列、ターミネーター、ポリアデニル化サイトなどの制御配列を含むことができるし、さらに、必要に応じて、薬剤耐性遺伝子(例えばカナマイシン耐性遺伝子、アンピシリン耐性遺伝子、ピューロマイシン耐性遺伝子など)、チミジンキナーゼ遺伝子、ジフテリアトキシン遺伝子などの選択マーカー配列、緑色蛍光タンパク質(GFP)、βグルクロニダーゼ(GUS)、FLAGなどのレポーター遺伝子配列などを含むことができる。また、上記ベクターには、体細胞への導入後、初期化因子をコードする遺伝子もしくはプロモーターとそれに結合する初期化因子をコードする遺伝子を共に切除するために、それらの前後にLoxP配列を有してもよい。
【0050】
また、RNAの形態の場合、例えばリポフェクション、マイクロインジェクションなどの手法によって体細胞内に導入しても良く、分解を抑制するため、5-メチルシチジンおよびpseudouridine(TriLink Biotechnologies)を取り込ませたRNAを用いても良い(Warren L,(2010) Cell Stem Cell. 7:618-630)。
【0051】
iPS細胞誘導のための培養液としては、例えば、10~15%FBSを含有するDMEM、DMEM/F12またはDME培養液(これらの培養液にはさらに、LIF、penicillin/streptomycin、puromycin、L-グルタミン、非必須アミノ酸類、β-メルカプトエタノールなどを適宜含むことができる。)または市販の培養液[例えば、マウスES細胞培養用培養液(TX-WES培養液、トロンボX社)、霊長類ES細胞培養用培養液(霊長類ES/iPS細胞用培養液、リプロセル社)、無血清培地(mTeSR、Stemcell Technology社)]などが含まれる。
【0052】
培養法の例としては、例えば、37℃、5% CO2存在下にて、10%FBS含有DMEMまたはDMEM/F12培養液上で体細胞と初期化因子とを接触させ約4~7日間培養し、その後、細胞をフィーダー細胞(例えば、マイトマイシンC処理STO細胞、SNL細胞等)上にまきなおし、体細胞と初期化因子の接触から約10日後からbFGF含有霊長類ES細胞培養用培養液で培養し、該接触から約30~約45日またはそれ以上ののちにiPS様コロニーを生じさせることができる。
【0053】
あるいは、37℃、5% CO2存在下にて、フィーダー細胞(例えば、マイトマイシンC処理STO細胞、SNL細胞等)上で10%FBS含有DMEM培養液(これにはさらに、LIF、ペニシリン/ストレプトマイシン、ピューロマイシン、L-グルタミン、非必須アミノ酸類、β-メルカプトエタノールなどを適宜含むことができる。)で培養し、約25~約30日またはそれ以上ののちにES様コロニーを生じさせることができる。望ましくは、フィーダー細胞の代わりに、初期化される体細胞そのものを用いる(Takahashi K, et al.(2009), PLoS One. 4:e8067またはWO2010/137746)、もしくは細胞外基質(例えば、Laminin-5(WO2009/123349)およびマトリゲル(BD社))を用いる方法が例示される。
【0054】
この他にも、血清を含有しない培地を用いて培養する方法も例示される(Sun N, et al.(2009), Proc Natl Acad Sci USA. 106:15720-15725)。さらに、樹立効率を上げるため、低酸素条件(0.1%以上、15%以下の酸素濃度)によりiPS細胞を樹立しても良い(Yoshida Y, et al.(2009), Cell Stem Cell. 5:237-241またはWO2010/013845)。
【0055】
上記培養の間には、培養開始2日目以降から毎日1回新鮮な培養液と培養液交換を行う。また、核初期化に使用する体細胞の細胞数は、限定されないが、培養ディッシュ100cm2あたり約5×103~約5×106細胞の範囲である。
【0056】
iPS細胞は、形成したコロニーの形状により選択することが可能である。一方、体細胞が初期化された場合に発現する遺伝子(例えば、Oct3/4、Nanog)と連動して発現する薬剤耐性遺伝子をマーカー遺伝子として導入した場合は、対応する薬剤を含む培養液(選択培養液)で培養を行うことにより樹立したiPS細胞を選択することができる。また、マーカー遺伝子が蛍光タンパク質遺伝子の場合は蛍光顕微鏡で観察することによって、発光酵素遺伝子の場合は発光基質を加えることによって、また発色酵素遺伝子の場合は発色基質を加えることによって、iPS細胞を選択することができる。
【0057】
本明細書中で使用する「体細胞」なる用語は、卵子、卵母細胞、ES細胞などの生殖系列細胞または分化全能性細胞を除くあらゆる動物細胞(好ましくは、ヒトを含む哺乳動物細胞)をいう。体細胞には、非限定的に、胎児(仔)の体細胞、新生児(仔)の体細胞、および成熟した健全なもしくは疾患性の体細胞のいずれも包含されるし、また、初代培養細胞、継代細胞、および株化細胞のいずれも包含される。具体的には、体細胞は、例えば(1)神経幹細胞、造血幹細胞、間葉系幹細胞、歯髄幹細胞等の組織幹細胞(体性幹細胞)、(2)組織前駆細胞、(3)リンパ球、上皮細胞、内皮細胞、筋肉細胞、線維芽細胞(皮膚細胞等)、毛細胞、肝細胞、胃粘膜細胞、腸細胞、脾細胞、膵細胞(膵外分泌細胞等)、脳細胞、肺細胞、腎細胞および脂肪細胞等の分化した細胞などが例示される。
【0058】
本発明において、体細胞を採取する由来となる哺乳動物個体は特に制限されないが、好ましくはヒトである。得られるiPS細胞がヒトの再生医療用途に使用される場合には、拒絶反応が起こらないという観点から、患者本人またはHLAの型が同一もしくは実質的に同一である他人から体細胞を採取することが特に好ましい。ここでHLAの型が「実質的に同一」とは、免疫抑制剤などの使用により、該体細胞由来のiPS細胞から分化誘導することにより得られた細胞を患者に移植した場合に移植細胞が生着可能な程度にHLAの型が一致していることをいう。例えば、主たるHLA(例えば、HLA-A、HLA-BおよびHLA-DRの3遺伝子座、あるいはHLA-Cを加えた4遺伝子座)が同一である場合などが挙げられる(以下同じ)。
【0059】
(E)核移植により得られたクローン胚由来のES細胞
ntES細胞は、核移植技術によって作製されたクローン胚由来のES細胞であり、受精卵由来のES細胞とほぼ同じ特性を有している(T. Wakayama et al.(2001), Science, 292:740-743; S. Wakayama et al.(2005), Biol. Reprod., 72:932-936; J. Byrne et al.(2007), Nature, 450:497-502)。すなわち、未受精卵の核を体細胞の核と置換することによって得られたクローン胚由来の胚盤胞の内部細胞塊から樹立されたES細胞がnt ES(nuclear transfer ES)細胞である。nt ES細胞の作製のためには、核移植技術(J.B. Cibelli et al.(1998), Nature Biotechnol., 16:642-646)とES細胞作製技術(上記)との組み合わせが利用される(若山清香ら(2008),実験医学,26巻,5号(増刊),47~52頁)。核移植においては、哺乳動物の除核した未受精卵に、体細胞の核を注入し、数時間培養することで初期化することができる。
【0060】
(F)Multilineage-differentiating Stress Enduring cells(Muse細胞)
Muse細胞は、WO2011/007900に記載された方法にて製造された多能性幹細胞であり、詳細には、線維芽細胞または骨髄間質細胞を長時間トリプシン処理、好ましくは8時間または16時間トリプシン処理した後、浮遊培養することで得られる多能性を有した細胞であり、SSEA-3およびCD105が陽性である。
【0061】
一実施態様において、本発明に用いられ得る骨格筋前駆細胞又は骨格筋前駆細胞を含む細胞群は、対象、またはHLAの型が同一もしくは実質的に同一である他人から採取した体細胞を用いて誘導したiPS細胞から分化させた骨格筋前駆細胞又は骨格筋前駆細胞を含む細胞群であってもよい。
【0062】
本発明が治療し得る筋原性疾患としては、例えば、筋ジストロフィー(例、デュシェンヌ型筋ジストロフィー(DMD)、ベッカー型筋ジストロフィー、先天性筋ジストロフィー、肢帯型筋ジストロフィー、筋緊張性筋ジストロフィー等)、先天性ミオパチー、遠位型ミオパチー、ミトコンドリアミオパチーなどの遺伝性ミオパチー、多発性筋炎、皮膚筋炎、重症筋無力症などの非遺伝性ミオパチー筋ジストロフィー、糖原病、周期性四肢麻痺、が例示される。より好ましい治療対象は、筋ジストロフィーである。
【0063】
一実施態様において、本発明の組成物は、常套手段にしたがって医薬的に許容され得る担体と混合するなどして注射剤、懸濁剤、点滴剤等の非経口製剤として製造されてもよい。当該非経口製剤に含まれ得る医薬上許容される担体としては、例えば、生理食塩水、ブドウ糖やその他の補助薬を含む等張液(例えば、D-ソルビトール、D-マンニトール、塩化ナトリウムなど)などの注射用の水性液を挙げることができる。本発明の組成物は、例えば、緩衝剤(例えば、リン酸塩緩衝液、酢酸ナトリウム緩衝液)、無痛化剤(例えば、塩酸リドカイン、塩酸プロカインなど)、安定剤(例えば、ヒト血清アルブミン、ポリエチレングリコールなど)、保存剤(例えば、安息香酸ナトリウム、塩化ベンザルコニウム、など)、酸化防止剤(例えば、アスコルビン酸、エデト酸ナトリウムなど)などと配合しても良い。
【0064】
一実施態様において、本発明の組成物を水性懸濁液として製剤化する場合、上記水性液に約1.0×105~約1.0×109細胞/mLとなるように、骨格筋前駆細胞を懸濁させればよい。このようにして得られる製剤は、安定で低毒性であるので、ヒトなどの哺乳動物に対して安全に投与することができる。投与方法は特に限定されないが、好ましくは注射もしくは点滴投与であり、静脈内投与、動脈内投与、筋肉内投与(患部局所投与)などが挙げられる。本発明の剤の投与量は、投与対象、治療標的部位、症状、投与方法などにより差異はあるが、通常、DMD患者(体重60kgとして)においては、例えば、筋肉内投与(患部局所投与)の場合、1回につき骨格筋前駆細胞量として約1.0×105~約1.0×109細胞を約10~約20箇所に分け、約1ヶ月以上の間隔を空け、約1~約4回投与するのが好都合である。
【0065】
一実施態様において、本発明は、筋原性疾患を罹患する対象を治療する方法であって、
Pax7陽性であり、細胞表面においてCD146(MCAM)が陽性であり、かつCD57が陰性である骨格筋前駆細胞を含む細胞群を、それを必要とする対象に投与すること、を含む、方法を提供する。
【0066】
また、一実施態様において、本発明は、筋原性疾患の治療に使用するための細胞群であって、前記細胞群が、Pax7陽性であり、細胞表面においてCD146(MCAM)が陽性であり、かつCD57が陰性である骨格筋前駆細胞を含む、細胞群を提供する。
【0067】
また、一実施態様において、本発明は、筋原性疾患を治療するための骨格筋前駆細胞を含む細胞群を製造するための使用であって、
前記細胞群が、Pax7陽性であり、細胞表面においてCD146(MCAM)が陽性であり、かつCD57が陰性である骨格筋前駆細胞を含む、使用を提供する。
【0068】
<多能性幹細胞から骨格筋前駆細胞を分化誘導する方法>
本発明で用いられ得る骨格筋前駆細胞、又は骨格筋前駆細胞を含む細胞集団は、例えば、国際公開第2016/108288号に記載の方法によって得られる骨格筋前駆細胞又は骨格筋前駆細胞を含む細胞集団を用いることができるが、この方法に限定されない。なお、国際公開第2016/108288号は、参照により本明細書に援用される。
【0069】
例えば、多能性細胞から骨格筋前駆細胞を分化誘導する方法は、下記の工程(1)と(2A)または(2B)とを含む方法を用いることができる。
【0070】
(1)多能性幹細胞をTGF-β阻害剤とGSK3β阻害剤を含む培養液中で培養する工程;
(2A)(1)の工程で得られた細胞を、HGFを含み、さらにIGF1を含んでもよい培養液中で培養する工程;
(2B)(1)の工程で得られた細胞を、
(i)IGF1、HGFおよびbFGFを含む培養液中、
(ii)IGF1を含む培養液中、および
(iii)IGF1およびHGFを含む培養液中
で順次培養する工程
【0071】
多能性細胞から骨格筋前駆細胞を分化誘導する方法はまた、前記工程(1)から(2A)または(2B)に加えて、工程(3)(2A)または(2B)の工程で得られた細胞を、TGF-β阻害剤、IGF1および血清を含む培養液中で培養する工程を含む方法を用いることができる。
【0072】
多能性細胞から骨格筋前駆細胞を分化誘導する方法について、下記に詳述する。
【0073】
工程(1):多能性幹細胞をTGF-β阻害剤とGSK3β阻害剤を含む培養液中で培養する工程
工程(1)は、多能性幹細胞をTGF-β阻害剤とGSK3β阻害剤を含む培養液中で培養する工程である。本工程(1)において用いる培養液は、動物細胞の培養に用いられる培地を基礎培地として調製することができる。基礎培地としては、例えば、IMDM培地、Medium 199培地、Eagle’s Minimum Essential Medium(EMEM)培地、αMEM培地、Dulbecco’s modified Eagle’s Medium(DMEM)培地、Ham’s F12培地、RPMI 1640培地、Fischer’s培地、StemPro34(invitrogen)、RPMI-base medium、およびこれらの混合培地などが包含される。本工程(1)において、好ましくは、IMDM培地およびHam’s F12培地の混合培地である。
【0074】
基礎培地には、血清が含有されていてもよいし、あるいは無血清でもよい。必要に応じて、例えば、アルブミン、トランスフェリン、Knockout Serum Replacement(KSR)(ES細胞培養時のFBSの血清代替物)、N2サプリメント(Invitrogen)、B27サプリメント(Invitrogen)、脂肪酸、インスリン、セレン(亜セレン酸ナトリウム)、コラーゲン前駆体、微量元素、2-メルカプトエタノール(2ME)、チオールグリセロールなどの1つ以上の血清代替物を含んでもよいし、脂質、アミノ酸、L-グルタミン、Glutamax(Invitrogen)、非必須アミノ酸、ビタミン、増殖因子、低分子化合物、抗生物質、抗酸化剤、ピルビン酸、緩衝剤、無機塩類などの1つ以上の物質も含有し得る。本工程(1)において、好ましい基礎培地は、アルブミン、トランスフェリン、脂肪酸、インスリン、セレンおよびチオールグリセロールを添加したIMDM培地およびHam’s F12培地の混合培地である。
【0075】
本発明において、TGFβ阻害剤は、TGFβの受容体への結合からSMADへと続くシグナル伝達を阻害する物質である限り特に限定されないが、例えば、TGFβの受容体であるALKファミリーへの結合を阻害する物質、ALKファミリーによるSMADのリン酸化を阻害する物質などが挙げられる。本発明において、TGFβ阻害剤は、例えば、Lefty-1(NCBI Accession No.として、マウス:NM_010094、ヒト:NM_020997が例示される)、SB431542、SB202190(以上、R.K.Lindemann et al., Mol. Cancer,2003, 2:20)、SB505124(GlaxoSmithKline)、 NPC30345 、SD093、SD908、SD208(Scios)、LY2109761、LY364947、LY580276(Lilly Research Laboratories)、A-83-01(WO2009/146408)およびこれらの誘導体などが例示される。
【0076】
本工程(1)で使用されるTGFβ阻害剤は、好ましくは、SB431542であり得る。
【0077】
培地中におけるSB431542の濃度は、特に限定されないが、1μM以上50μM以下が好ましく、例えば、1μM、2μM、3μM、4μM、5μM、6μM、7μM、8μM、9μM、10μM、11μM、12μM、13μM、14μM、15μM、16μM、17μM、18μM、19μM、20μM、25μM、30μM、35μM、40μM、45μM、50μMであるがこれらに限定されない。より好ましくは、2μM以上10μM以下であり、特に好ましくは5μMである。
【0078】
本発明において、GSK-3β阻害剤は、GSK-3βタンパク質のキナーゼ活性(例えば、βカテニンに対するリン酸化能)を阻害する物質として定義され、既に多数のものが知られているが、例えば、GSK-3β阻害剤として最初に見出されたLithium chloride(LiCl)、インジルビン誘導体であるBIO(別名、GSK-3β阻害剤IX;6-ブロモインジルビン3’-オキシム)、マレイミド誘導体であるSB216763(3-(2,4-ジクロロフェニル)-4-(1-メチル-1H-インドール-3-イル)-1H-ピロール-2,5-ジオン)、フェニルαブロモメチルケトン化合物であるGSK-3β阻害剤VII(4-ジブロモアセトフェノン)、細胞膜透過型のリン酸化ペプチドであるL803-mts(別名、GSK-3βペプチド阻害剤;Myr-N-GKEAPPAPPQSpP-NH2)および高い選択性を有するCHIR99021(6-[2-[4-(2,4-Dichlorophenyl)-5-(4-methyl-1H-imidazol-2-yl)pyrimidin-2-ylamino]ethylamino]pyridine-3-carbonitrile)が挙げられる。これらの化合物は、例えばCalbiochem社やBiomol社等から市販されており容易に利用することが可能であるが、他の入手先から入手してもよく、あるいはまた自ら作製してもよい。
【0079】
本工程(1)で使用されるGSK-3β阻害剤は、好ましくは、CHIR99021であり得る。
【0080】
培地中におけるCHIR99021の濃度は、特に限定されないが、好ましくは、GSK-3β阻害において使用される濃度である1μMよりも高い濃度が使用され、例えば、2μM、3μM、4μM、5μM、6μM、7μM、8μM、9μM、10μM、15μM、20μM、25μM、30μM、35μM、40μM、45μM、50μM等であるがこれらに限定されない。より好ましくは、5μM以上(例えば、5μM以上50μM以下、好ましくは5μM以上10μM以下)である。
【0081】
本工程(1)において、培養期間は、10日以上30日以下が例示され、例えば、10日、11日、12日、13日、14日、15日、16日、17日、18日、19日、20日、21日、22日、23日、24日、25日、26日、27日、28日、29日、30日などであり得て、好ましくは、16日から21日の間、より好ましくは16日である。
【0082】
工程(2A):HGFを含み、さらにIGF1を含んでもよい培養液中で培養する工程
本工程(2A)は、前記工程(1)で得られた細胞を、HGFを含み、さらにIGF1を含んでもよい培養液中で培養する工程である。本工程(2A)において用いる培養液は、動物細胞の培養に用いられる培地を基礎培地として調製することができる。基礎培地としては、例えば、IMDM培地、Medium 199培地、Eagle’s Minimum Essential Medium(EMEM)培地、αMEM培地、Dulbecco’s modified Eagle’s Medium(DMEM)培地、Ham’s F12培地、RPMI 1640培地、Fischer’s培地、StemPro34(invitrogen)、RPMI-base medium、SF-O3培地(エーディア株式会社)およびこれらの混合培地などが包含される。本工程(2A)において、好ましくは、SF-O3培地が用いられる。
【0083】
基礎培地には、血清が含有されていてもよいし、あるいは無血清でもよい。必要に応じて、例えば、アルブミン、トランスフェリン、Knockout Serum Replacement(KSR)(ES細胞培養時のFBSの血清代替物)、N2サプリメント(Invitrogen)、B27サプリメント(Invitrogen)、脂肪酸、インスリン、セレン(亜セレン酸ナトリウム)、コラーゲン前駆体、微量元素、2-メルカプトエタノール(2ME)、チオールグリセロールなどの1つ以上の血清代替物を含んでもよいし、脂質、アミノ酸、L-グルタミン、Glutamax(Invitrogen)、非必須アミノ酸、ビタミン、増殖因子、低分子化合物、抗生物質、抗酸化剤、ピルビン酸、緩衝剤、無機塩類などの1つ以上の物質も含有し得る。本工程(2)において、好ましい基礎培地は、アルブミンおよび2-メルカプトエタノールを添加したSF-O3培地である。
【0084】
本工程(2A)で使用する培地中におけるHGFの濃度は、特に限定されないが、1ng/ml以上100ng/ml以下が好ましく、例えば、1ng/ml、2ng/ml、3ng/ml、4ng/ml、5ng/ml、6ng/ml、7ng/ml、8ng/ml、9ng/ml、10ng/ml、15ng/ml、20ng/ml、25ng/ml、30ng/ml、35g/ml、40ng/ml、45ng/ml、50ng/ml、60ng/ml、70ng/ml、80ng/ml、90ng/ml、100ng/mlであるがこれらに限定されない。より好ましくは、1ng/ml以上50ng/ml以下であり、さらに好ましくは10ng/mlである。
【0085】
本工程(2A)では、HGFに加えて、さらにIGF1を含有する培養液中で培養を行うことが好ましい。本工程(2A)で使用する培地中におけるIGF1の濃度は、特に限定されないが、1ng/ml以上100ng/ml以下が好ましく、例えば、1ng/ml、2ng/ml、3ng/ml、4ng/ml、5ng/ml、6ng/ml、7ng/ml、8ng/ml、9ng/ml、10ng/ml、15ng/ml、20ng/ml、25ng/ml、30ng/ml、35g/ml、40ng/ml、45ng/ml、50ng/ml、60ng/ml、70ng/ml、80ng/ml、90ng/ml、100ng/mlであるがこれらに限定されない。より好ましくは、1ng/ml以上50ng/ml以下であり、さらに好ましくは10ng/mlである。
【0086】
本工程(2A)において、培養期間は、1日以上40日以下が例示され、例えば、1日、2日、3日、4日、5日、6日、7日、8日、9日、10日、11日、12日、13日、14日、15日、16日、17日、18日、19日、20日、21日、22日、23日、24日、25日、26日、27日、28日、29日、30日、31日、32日、33日、34日、35日、36日、37日、38日、39日、40日などであり得て、好ましくは、20日である。
【0087】
工程(2B):(i)IGF1、HGFおよびbFGFを含む培養液中、(ii)IGF1を含む培養液中、および(iii)IGF1およびHGFを含む培養液中で順次培養する工程
本工程(2B)は、前記工程(1)で得られた細胞を、
(i)IGF1、HGFおよびbFGFを含む培養液中、
(ii)IGF1を含む培養液中、および
(iii)IGF1およびHGFを含む培養液中
で順次培養する工程である。本工程は前期工程(2A)の代わりに行われる工程である。以下、サブ工程(i)~(iii)について順に説明する。
【0088】
サブ工程(i):IGF1、HGFおよびbFGFを含む培養液中で培養する工程
本サブ工程(i)において用いる培養液は、動物細胞の培養に用いられる培地を基礎培地として調製することができる。基礎培地としては、例えば、IMDM培地、Medium 199培地、Eagle’s Minimum Essential Medium(EMEM)培地、αMEM培地、Dulbecco’s modified Eagle’s Medium(DMEM)培地、Ham’s F12培地、RPMI 1640培地、Fischer’s培地、StemPro34(invitrogen)、RPMI-base medium、SF-O3培地(エーディア株式会社)およびこれらの混合培地などが包含される。本サブ工程(i)において、好ましくは、SF-O3培地が用いられる。
【0089】
基礎培地には、血清が含有されていてもよいし、あるいは無血清でもよい。必要に応じて、例えば、アルブミン、トランスフェリン、Knockout Serum Replacement(KSR)(ES細胞培養時のFBSの血清代替物)、N2サプリメント(Invitrogen)、B27サプリメント(Invitrogen)、脂肪酸、インスリン、セレン(亜セレン酸ナトリウム)、コラーゲン前駆体、微量元素、2-メルカプトエタノール(2ME)、チオールグリセロールなどの1つ以上の血清代替物を含んでもよいし、脂質、アミノ酸、L-グルタミン、Glutamax(Invitrogen)、非必須アミノ酸、ビタミン、増殖因子、低分子化合物、抗生物質、抗酸化剤、ピルビン酸、緩衝剤、無機塩類などの1つ以上の物質も含有し得る。本サブ工程(i)において、好ましい基礎培地は、アルブミンおよび2-メルカプトエタノールを添加したSF-O3培地である。
【0090】
本サブ工程(i)で使用する培地中におけるIGF1の濃度は、特に限定されないが、1ng/ml以上100ng/ml以下が好ましく、例えば、1ng/ml、2ng/ml、3ng/ml、4ng/ml、5ng/ml、6ng/ml、7ng/ml、8ng/ml、9ng/ml、10ng/ml、15ng/ml、20ng/ml、25ng/ml、30ng/ml、35g/ml、40ng/ml、45ng/ml、50ng/ml、60ng/ml、70ng/ml、80ng/ml、90ng/ml、100ng/mlであるがこれらに限定されない。より好ましくは、1ng/ml以上50ng/ml以下であり、さらに好ましくは10ng/mlである。
【0091】
本サブ工程(i)で使用する培地中におけるHGFの濃度は、特に限定されないが、1ng/ml以上100ng/ml以下が好ましく、例えば、1ng/ml、2ng/ml、3ng/ml、4ng/ml、5ng/ml、6ng/ml、7ng/ml、8ng/ml、9ng/ml、10ng/ml、15ng/ml、20ng/ml、25ng/ml、30ng/ml、35g/ml、40ng/ml、45ng/ml、50ng/ml、60ng/ml、70ng/ml、80ng/ml、90ng/ml、100ng/mlであるがこれらに限定されない。より好ましくは、1ng/ml以上50ng/ml以下であり、さらに好ましくは10ng/mlである。
【0092】
本サブ工程(i)で使用する培地中におけるbFGFの濃度は、特に限定されないが、1ng/ml以上100ng/ml以下が好ましく、例えば、1ng/ml、2ng/ml、3ng/ml、4ng/ml、5ng/ml、6ng/ml、7ng/ml、8ng/ml、9ng/ml、10ng/ml、15ng/ml、20ng/ml、25ng/ml、30ng/ml、35g/ml、40ng/ml、45ng/ml、50ng/ml、60ng/ml、70ng/ml、80ng/ml、90ng/ml、100ng/mlであるがこれらに限定されない。より好ましくは、1ng/ml以上50ng/ml以下であり、さらに好ましくは10ng/mlである。
【0093】
本サブ工程(i)において、培養期間は、1日以上10日以下が例示され、例えば、1日、2日、3日、4日、5日、6日、7日、8日、9日、10日などであり得て、好ましくは、4日である。
【0094】
サブ工程(ii):IGF1を含む培養液中で培養する工程
本サブ工程(ii)は、前記サブ工程(i)で得られた細胞を、IGF1を含む培養液中で培養する工程である。本サブ工程(ii)において用いる培養液は、動物細胞の培養に用いられる培地を基礎培地として調製することができる。基礎培地としては、例えば、IMDM培地、Medium 199培地、Eagle’s Minimum Essential Medium(EMEM)培地、αMEM培地、Dulbecco’s modified Eagle’s Medium(DMEM)培地、Ham’s F12培地、RPMI 1640培地、Fischer’s培地、StemPro34(invitrogen)、RPMI-base medium、SF-O3培地およびこれらの混合培地などが包含される。本サブ工程(ii)において、好ましくは、SF-O3培地が用いられる。
【0095】
基礎培地には、血清が含有されていてもよいし、あるいは無血清でもよい。必要に応じて、例えば、アルブミン、トランスフェリン、Knockout Serum Replacement(KSR)(ES細胞培養時のFBSの血清代替物)、N2サプリメント(Invitrogen)、B27サプリメント(Invitrogen)、脂肪酸、インスリン、セレン(亜セレン酸ナトリウム)、コラーゲン前駆体、微量元素、2-メルカプトエタノール(2ME)、チオールグリセロールなどの1つ以上の血清代替物を含んでもよいし、脂質、アミノ酸、L-グルタミン、Glutamax(Invitrogen)、非必須アミノ酸、ビタミン、増殖因子、低分子化合物、抗生物質、抗酸化剤、ピルビン酸、緩衝剤、無機塩類などの1つ以上の物質も含有し得る。本サブ工程(ii)において、好ましい基礎培地は、アルブミンおよび2-メルカプトエタノールを添加したSF-O3培地である。
【0096】
本サブ工程(ii)で使用される培地中におけるIGF1の濃度は、特に限定されないが、1ng/ml以上100ng/ml以下が好ましく、例えば、1ng/ml、2ng/ml、3ng/ml、4ng/ml、5ng/ml、6ng/ml、7ng/ml、8ng/ml、9ng/ml、10ng/ml、15ng/ml、20ng/ml、25ng/ml、30ng/ml、35g/ml、40ng/ml、45ng/ml、50ng/ml、60ng/ml、70ng/ml、80ng/ml、90ng/ml、100ng/mlであるがこれらに限定されない。より好ましくは、1ng/ml以上50ng/ml以下であり、さらに好ましくは10ng/mlである。
【0097】
本サブ工程(ii)において、培養期間は、1日以上10日以下が例示され、例えば、1日、2日、3日、4日、5日、6日、7日、8日、9日、10日などであり得て、好ましくは、3日である。
【0098】
サブ工程(iii):IGF1およびHGFを含む培養液中で培養する工程
本サブ工程(iii)は、前記サブ工程(ii)で得られた細胞を、IGF1およびHGFを含む培養液中で培養する工程である。本サブ工程(iii)において用いる培養液は、動物細胞の培養に用いられる培地を基礎培地として調製することができる。基礎培地としては、例えば、IMDM培地、Medium 199培地、Eagle’s Minimum Essential Medium(EMEM)培地、αMEM培地、Dulbecco’s modified Eagle’s Medium(DMEM)培地、Ham’s F12培地、RPMI 1640培地、Fischer’s培地、StemPro34(invitrogen)、RPMI-base medium、SF-O3培地およびこれらの混合培地などが包含される。本サブ工程(iii)において、好ましくは、SF-O3培地が用いられる。
【0099】
基礎培地には、血清が含有されていてもよいし、あるいは無血清でもよい。必要に応じて、例えば、アルブミン、トランスフェリン、Knockout Serum Replacement(KSR)(ES細胞培養時のFBSの血清代替物)、N2サプリメント(Invitrogen)、B27サプリメント(Invitrogen)、脂肪酸、インスリン、セレン(亜セレン酸ナトリウム)、コラーゲン前駆体、微量元素、2-メルカプトエタノール(2ME)、チオールグリセロールなどの1つ以上の血清代替物を含んでもよいし、脂質、アミノ酸、L-グルタミン、Glutamax(Invitrogen)、非必須アミノ酸、ビタミン、増殖因子、低分子化合物、抗生物質、抗酸化剤、ピルビン酸、緩衝剤、無機塩類などの1つ以上の物質も含有し得る。本サブ工程(iii)において、好ましい基礎培地は、アルブミンおよび2-メルカプトエタノールを添加したSF-O3培地である。
【0100】
本サブ工程(iii)で使用される培地中におけるIGF1の濃度は、特に限定されないが、1ng/ml以上100ng/ml以下が好ましく、例えば、1ng/ml、2ng/ml、3ng/ml、4ng/ml、5ng/ml、6ng/ml、7ng/ml、8ng/ml、9ng/ml、10ng/ml、15ng/ml、20ng/ml、25ng/ml、30ng/ml、35g/ml、40ng/ml、45ng/ml、50ng/ml、60ng/ml、70ng/ml、80ng/ml、90ng/ml、100ng/mlであるがこれらに限定されない。より好ましくは、1ng/ml以上50ng/ml以下であり、さらに好ましくは10ng/mlである。
【0101】
本サブ工程(iii)で使用される培地中におけるHGFの濃度は、特に限定されないが、1ng/ml以上100ng/ml以下が好ましく、例えば、1ng/ml、2ng/ml、3ng/ml、4ng/ml、5ng/ml、6ng/ml、7ng/ml、8ng/ml、9ng/ml、10ng/ml、15ng/ml、20ng/ml、25ng/ml、30ng/ml、35g/ml、40ng/ml、45ng/ml、50ng/ml、60ng/ml、70ng/ml、80ng/ml、90ng/ml、100ng/mlであるがこれらに限定されない。より好ましくは、1ng/ml以上50ng/ml以下であり、さらに好ましくは10ng/mlである。
【0102】
本サブ工程(iii)において、培養期間は、7日以上20日以下が例示され、例えば、7日、8日、9日、10日、11日、12日、13日、14日、15日、16日、17日、18日、19日、20日などであり得て、好ましくは、14日である。
【0103】
工程(3):TGF-β阻害剤、IGF1および血清を含む培養液中で培養する工程
本工程(3)は、前記工程(2A)または(2B)で得られた細胞を、TGF-β阻害剤、IGF1および血清を含む培養液中で培養する工程である。本工程(3)において用いる培養液は、動物細胞の培養に用いられる培地を基礎培地として調製することができる。基礎培地としては、例えば、IMDM培地、Medium 199培地、Eagle’s Minimum Essential Medium(EMEM)培地、αMEM培地、Dulbecco’s modified Eagle’s Medium(DMEM)培地、Ham’s F12培地、RPMI 1640培地、Fischer’s培地、StemPro34(invitrogen)、RPMI-base mediumおよびこれらの混合培地などが包含される。本工程(3)において、好ましくは、DMEM培地が用いられる。
【0104】
基礎培地には、血清が含有されていてもよいし、あるいは無血清でもよい。必要に応じて、例えば、アルブミン、トランスフェリン、Knockout Serum Replacement(KSR)(ES細胞培養時のFBSの血清代替物)、N2サプリメント(Invitrogen)、B27サプリメント(Invitrogen)、脂肪酸、インスリン、セレン(亜セレン酸ナトリウム)、コラーゲン前駆体、微量元素、2-メルカプトエタノール(2ME)、チオールグリセロールなどの1つ以上の血清代替物を含んでもよいし、脂質、アミノ酸、L-グルタミン、Glutamax(Invitrogen)、非必須アミノ酸、ビタミン、増殖因子、低分子化合物、抗生物質、抗酸化剤、ピルビン酸、緩衝剤、無機塩類などの1つ以上の物質も含有し得る。本工程(3)において、好ましい基礎培地は、血清、L-グルタミンおよび2-メルカプトエタノールを添加したDMEM培地である。本工程(3)において用いる血清は、ウマ血清であり、基礎培地中の濃度は、1から10%、より好ましくは、2%である。
【0105】
本工程(3)で使用するTGFβ阻害剤は、前記と同様のものを用いることができるが、好ましくは、SB431542であり得る。本工程(3)で使用される培地中におけるSB431542の濃度は、特に限定されないが、500nM以上50μM以下が好ましく、例えば、500nM、600nM、700nM、800nM、900nM、1μM、2μM、3μM、4μM、5μM、6μM、7μM、8μM、9μM、10μM、15μM、20μM、25μM、30μM、35μM、40μM、45μM、50μMであるがこれらに限定されない。より好ましくは、1μM以上20μM以下であり、さらに好ましくは5μMである。
【0106】
本工程(3)で使用される培地中におけるIGF1の濃度は、特に限定されないが、1ng/ml以上100ng/ml以下が好ましく、例えば、1ng/ml、2ng/ml、3ng/ml、4ng/ml、5ng/ml、6ng/ml、7ng/ml、8ng/ml、9ng/ml、10ng/ml、15ng/ml、20ng/ml、25ng/ml、30ng/ml、35g/ml、40ng/ml、45ng/ml、50ng/ml、60ng/ml、70ng/ml、80ng/ml、90ng/ml、100ng/mlであるがこれらに限定されない。より好ましくは、1ng/ml以上50ng/ml以下であり、さらに好ましくは10ng/mlである。
【0107】
本工程(3)において、培養期間は、9日以上50日以下が例示され、好ましくは、20日以上50日以下、30日以上50日以下である。例えば、9日、10日、11日、12日、13日、14日、15日、16日、17日、18日、19日、20日、21日、22日、23日、24日、25日、26日、27日、28日、29日、30日、31日、32日、33日、34日、35日、36日、37日、38日、39日、40日、41日、42日、43日、44日、45日、46日、47日、48日、49日、50日などが挙げられる。
【0108】
<骨格筋前駆細胞を精製する方法及び骨格筋前駆細胞を含む細胞群を製造する方法>
一実施態様において、本発明は、骨格筋前駆細胞を精製する方法であって、
骨格筋前駆細胞を含む細胞集団から、細胞表面において、CD146(MCAM)が陽性であり、かつ、CD57が陰性である細胞群を回収する工程、
を含む、方法を提供する。
【0109】
また、一実施態様において、本発明は、骨格筋前駆細胞を含む細胞群を製造する方法であって、
骨格筋前駆細胞を含む細胞集団から、細胞表面において、CD146(MCAM)が陽性であり、かつ、CD57が陰性である細胞群を回収する工程
を含む、方法を提供する。
【0110】
本明細書において、「骨格筋前駆細胞を含む細胞集団」は、本発明の方法を適用する前の細胞集団であって、本発明の方法を適用することによって得られる「骨格筋前駆細胞を含む細胞群」と区別するために本明細書において用いられる。本発明において、「骨格筋前駆細胞を含む細胞集団」は、多能性幹細胞由来、例えば、ES細胞、ntES細胞及びiPS細胞からなる群から選択される多能性幹細胞由来であってもよい。
【0111】
骨格筋前駆細胞を含む細胞集団から、細胞表面において、CD146(MCAM)が陽性であり、かつ、CD57が陰性である細胞群を回収する工程は、細胞表面において、CD146(MCAM)が陽性であり、かつ、CD57が陰性である細胞を特異的に選択して回収可能である方法を適用すればよい。例えば、CD146(MCAM)に特異的に結合する結合剤と、CD57に特異的に結合する結合剤とを用いて、実施することが可能である。
【0112】
本明細書において、「特異的に結合する結合剤」とは、目的のタンパク質の少なくとも一部分に選択的に結合する物質であり、例えば、抗体、リガンド、又はアプタマーなどを含む。一実施態様において、本発明で使用され得る結合剤は、CD146(MCAM)及びCD57特異的結合剤である。
【0113】
一実施態様において、本発明で使用される結合剤としての「抗体」は、目的のタンパク質に結合するポリクローナル抗体、モノクローナル抗体またはその結合フラグメントであってもよい。本明細書において、「結合フラグメント」とは、例えば、単量体Fabフラグメント、単量体Fab’フラグメント、または二量体F(ab)’2フラグメント、又は単鎖抗体分子(scFv)を包含する。
【0114】
一実施態様において、本発明で使用される結合剤としての「アプタマー」とは、目的の分子に特異的に結合し得るに結合する能力を持つ合成DNA、RNA分子又はその合成類似体をいう。本発明に用いられるアプタマーは、例えば、SELEX法を用い、目的のタンパク質(例えば、CD146又CD57)への結合を、インビトロで反復して選択することにより得ることができる(Tuerk C.,Gold L.,Science,1990,249(4968),505-510;Ellington AD,Szostak JW.,Nature,1990,346(6287):818-822;米国特許第6,867,289号明細書;米国特許第5,567,588号明細書;米国特許第6,699,843号明細書を参照)。
【0115】
一実施態様において、本発明で使用される結合剤としての「リガンド」とは、目的のタンパク質に特異的に結合し得るタンパク質であり、本発明に用いられる特異的結合剤として、以下に限定されないが、例えばCD146(MCAM)に対するリガンドであるGalectin-1、Laminin-411又はnetrin-1や、CD57のリガンドであるCD62L又はCD62P等を用いることができる。
【0116】
一実施態様において、細胞表面において、CD146(MCAM)が陽性であり、かつ、CD57が陰性である細胞群を回収する工程は、蛍光活性化細胞選別(FACS)法又は磁気細胞選別(MACS)法を用いることができる。
【0117】
本明細書において、蛍光活性化細胞選別法とは、非常に細い流液中に細胞粒子を高速度で流し、レーザー光を照射して、粒子が発生する蛍光(細胞が予め蛍光標識された場合)、散乱光などの光を測定する方法であり、さらにセルソーターを備えた装置を用いると、目的の細胞を単離することができる。従って、本発明の細胞群を回収する工程が、蛍光活性化細胞選別法である場合、任意の蛍光物質で標識された結合剤が用いられ得る。
【0118】
本明細書において、磁気細胞選別(MACS)法とは、結合剤を担持した磁気ビーズを用いて、目的の細胞を磁石で捕捉することにより分別する手法である。従って、本発明の細胞群を回収する工程が、磁気細胞選別法である場合、磁気ビーズに担持された結合剤が用いられ得る。
【0119】
本発明の方法を実施することによって得られる骨格筋前駆細胞を含む細胞群は、生体における適用部位において、線維化を誘発せずに筋原性疾患を罹患する対象を治療することができる。また、本発明の方法を、骨格筋前駆細胞を含む細胞集団、例えば、骨格筋前駆細胞を含む、多能性幹細胞由来の細胞集団に実施した場合は、Pax7陽性の骨格筋前駆細胞を30%以上含む細胞群が得られ、これにより、生体における適用部位において、線維化を誘発せずに筋原性疾患を罹患する対象を治療するができる。
【0120】
一実施態様において、本発明は、上記の骨格筋前駆細胞を精製する方法、又は骨格筋前駆細胞を含む細胞群を製造する方法に使用するためのキットであって、CD146(MCAM)に特異的に結合する結合剤、及びCD57に特異的に結合する結合剤を含む、キットを提供する。本発明のキットは、さらに、上記方法の実施に必要な構成要素を適宜含み得、例えば、マグネット(例えばMACS法の場合)、洗浄バッファー、及び/又は当該キットの取り扱い説明書等が含まれるものであってもよい。
【0121】
一実施態様において、本発明は、上記の骨格筋前駆細胞を精製する方法、又は骨格筋前駆細胞を含む細胞群を製造する方法によって得られる骨格筋前駆細胞を含む細胞群を提供する。
【0122】
以下に実施例を挙げて本発明をより具体的に説明するが、本発明がこれらに限定されないことは言うまでもない。
【実施例】
【0123】
1.実験材料及び方法
1-1.多能性幹細胞の培養
ヒトiPS細胞(WJ14-s01、Ff-WJs513)は、京都大学の山中教授より供与されたものを、Easy iMatrix-511 silk(Nippi)コートした培養容器上でStemFit AK02N培地(AJINOMOTO) で培養した。
【0124】
WJ14-s01を常法に従って相同組換えによりPax7遺伝子座の開始コドンの5’側へNLS-Venus-T2A配列を連結させ、Pax7の発現と連携してVenusを発現するiPS細胞株(s01-Pax7-Venus)を作製した。
【0125】
1-2.ヒトiPS細胞から骨格筋幹細胞群への分化誘導
ヒトiPS細胞から骨格筋前駆細胞群への分化誘導は次の通り行った(国際特許WO2016/108288を参照)。
【0126】
工程(1a)[Day0-14]
MatriGelでコートした培養容器上で5μM SB431542および10μM CHIR99021を添加したCDMi基本培地(1% Albumin from bovine serum(SIGMA)、1% Penicillin-Streptomycin Mixed Solution(ナカライテスク)、1% CD Lipid Concentrate(Invitrogen)、1% Insulin-Transferrin-Selenium(Invitrogen)、450μM 1-Thioglycerol(SIGMA)を添加したIMDM(1×) Iscove’s Modified Dullbecco’s Medium(+)L-Glutamine(+) 25mM HEPES(Invitrogen)とF-12(1×) Nutrient Mixture(Ham)(+)L-Glutamine(Invitrogen)を1:1で混合した培地)を添加し培養した。7、14日目に通常の方法にて継代した。
【0127】
工程(1b)[Day15-16]
工程(1a)で得られた細胞の培地をCDMi基本培地に交換し、培養を続けた。
【0128】
工程(2a)[Day17-20]
工程(1b)で得られた細胞の培地を0.2% BSA(SIGMA)、200μM 2-Mercaptoethanol、10ng/mL IGF-1(Peprotech)、10ng/mL HGF(Peprotech)および10ng/mL bFGF(オリエンタルバイオ)を添加したSF-O3培地に交換し、培養を続けた。
【0129】
工程(2b)[Day21-23]
工程(2a)で得られた細胞の培地を0.2% BSA(SIGMA)、200μM 2-Mercaptoethanol、10ng/mL IGF-1(Peprotech)を添加したSF-O3培地に交換し、培養を続けた。
【0130】
工程(2c)[Day24-37]
工程(2b)で得られた細胞の培地を0.2% BSA(SIGMA)、200μM 2-Mercaptoethanol、10ng/mL IGF-1(Peprotech)および10ng/mL HGF(Peprotech)を添加したSF-O3培地に交換し、培養を続けた。
【0131】
工程(3)[Day38-]
工程(2c)で得られた細胞の培地を2% Horse Serum、1% Penicillin-Streptomycin Mixed Solution、200μM 2-Mercaptoethanol、5μM SB431542および10ng/mL IGF-1を添加した培地に交換し、Day80程度までは培養した。
【0132】
1-3.FACS解析と選別
上述の方法により骨格筋前駆細胞へ分化誘導した細胞を単一細胞へ分散後に抗体と反応させ、BD FACS Aria Fusion cell sorter(BD bioscience)にて解析および選別を行った。抗体はAPC標識抗ヒト/マウスCD207抗体(BioLegend)、BV650標識抗ヒトFGFR4抗体(BD Biosciences)、APC標識抗ヒトMCAM抗体(BioLegend)、PE標識抗ヒトCD57抗体(BD Biosciences)およびAlexa Flour 647標識抗ヒトCD82抗体(BioLegend)を用いた。
【0133】
s01-Pax7-Venus細胞を用いたPax7陽性細胞の解析および選別はVenusを指標として行った。
【0134】
1-4.RNA抽出、cDNA合成、定量PCR
細胞からmRNAをReliaprep RNA Cell Miniprep System(Promega) で抽出し、ReverTra Ace qPCR RT Kit(東洋紡)を用いてcDNAを合成した。定量PCRはcDNA、PowerSYBR Green Master Mix(Applied Biosystems) およびプライマーを用いてStepOne PlusリアルタイムPCRシステム(Thermo Fisher)により実施した。
【0135】
【0136】
1-5.筋管細胞への分化誘導
iMatrix-511コートした培養容器上で2% Horse Serum、1% Penicillin-Streptomycin Mixed Solution、200μM 2-Mercaptoethanol、5μM SB431542および10ng/mL IGF-1を添加した培地で細胞を3日間培養した。
【0137】
1-6.筋管細胞の免疫染色と計測
筋管細胞へ分化誘導した細胞を2% パラホルムアルデヒドで固定後、Blocking One(ナカライテスク)でブロッキングした。一次抗体はマウス抗ミオシン重鎖(MHC)抗体(1:800、eBioscience)を、二次抗体はAlexa568標識抗マウスIgG抗体(1:500、Thermo Fisher)を、核染色は1μg/mLのDAPI(Sigma)を用いた。画像はオールインワン蛍光顕微鏡BZ-X700(Keyence)で撮影し、Hybrid cell count software(Keyence)を用いてMHC陽性のDAPIの数を計測し、陽性率を算出した。
【0138】
1-7.移植実験
重度免疫不全マウスNSG(NOD/SCID/IL2Rγnull)とジストロフィンを発現しないDMDnullマウスを交配させた6-8週齢のDMD/NSGマウスを用いた。マウスの後肢腓腹筋に8×105個のCD82陽性CD57陰性細胞もしくはMCAM陽性CD57陰性細胞を注入した。移植後28日目に腓腹筋を採材し、凍結切片を作製した。
【0139】
1-8.組織切片の染色
腓腹筋の凍結切片を4%パラホルムアルデヒドで固定後、Blocking One(ナカライテスク)でブロッキングした。一次抗体は抗ジストロフィン抗体(1:500、abcam)、抗ラミンA/C抗体(1:200、Leica)および抗ラミニンα2抗体(1:50、ALEXIS)を、二次抗体はAlex488標識抗マウスIgG2b抗体、Alex568標識抗マウスIgG1抗体およびAlex647標識抗ラットIgG抗体を核染色は1μg/mLのDAPI(Sigma)を用いた。
【0140】
HE染色はヘマトキシリン(Merck KGaA)、エオシン(Merck KGaA)を用いて実施した。
【0141】
Sirius Red染色はPicrosirius Red Stain Kit(Polysciences)を用いて実施した。画像はオールインワン蛍光顕微鏡BZ-X700(Keyence)で撮影し、Hybrid cell count software(Keyence)を用いてコラーゲンの染色面積を計測し、線維化面積の比率を算出した。
【0142】
1-9.RNAシークエンス
細胞からmRNAをReliaprep RNA Cell Miniprep System(Promega)で抽出後、TruSeq Strand mRNA Library Prep Kit(Illumina)を用いて作製したcDNAライブラリーをNextSeq 500/550 v2.5 kitでシークエンスを行った。シークエンスの結果をBCL2FASTQ Conversion Software 1.8.4を用いてFASTQ形式に変換後、RPMKforgenesを用いて定量した。定量結果をGenespring GX 13 softwareにより解析した。
【0143】
2.結果
2-1.骨格筋幹細胞マーカーの探索
Pax7の発現と連携して蛍光タンパク質Venusを発現するヒトiPS細胞(s01-Pax7-Venus)を分化誘導して得た骨格筋前駆細胞群からPax7陽性CD57陰性細胞およびPax7陰性細胞を選別し、RNAシークエンスにより遺伝子の発現量を測定した。Pax7陽性CD57陰性細胞で遺伝子の発現量が多く、タンパク質が細胞膜に局在しているマーカー候補としてCD207、FGFR4およびMCAMを見出した(
図1)。
【0144】
次にPax7陽性細胞のCD207、FGFR4およびMCAMの陽性率を検討した。その結果、98%のPax7陽性細胞がMCAM陽性であった(
図2)。
【0145】
次にiPS細胞を分化誘導して得た骨格筋前駆細胞群からPax7陽性細胞をMCAMで選別した時の純度と収率を検討した。MCAM陽性CD57陰性細胞中のPax7陽性細胞の純度と収率はそれぞれ56%、76%であった。これまでに報告されている骨格筋前駆細胞を選別する細胞表面マーカーCD82(Matthew S. Alexander, et al., Cell Stem Cell 19, 1, 2016)を用いた場合に比べて大幅に改善していた(表2)。
【0146】
【表2】
表2:Pax7の発現と連携して蛍光タンパク質Venusを発現するヒトiPS細胞から分化誘導した骨格筋前駆細胞群をFACS解析した結果である。純度は各画分での全細胞数中のPax7陽性細胞数から算出した。回収率は全Pax7陽性細胞数中の各画分でのPax7陽性細胞数から算出した。
【0147】
2-2.MCAM陽性CD57陰性細胞のin vitroでの表現型
ヒトiPS細胞を分化誘導して得た骨格筋前駆細胞群からCD57陽性細胞、MCAM陽性CD57陰性細胞およびMCAM陰性CD57陰性細胞を選別後、Pax7、MyoD、TFAP2AおよびPDGFRα遺伝子の発現量を定量した。骨格筋前駆細胞マーカーのPax7や骨格筋細胞マーカーのMyoDはMCAM陽性CD57陰性細胞で発現が高かった。一方、骨格筋以外の細胞マーカーであるTFAP2A(神経提細胞マーカー)、PDGFRα(間葉系幹細胞マーカー)はMCAM陽性CD57陰性細胞で発現が低かった(
図3)。
【0148】
次にヒトiPS細胞を分化誘導して得た骨格筋前駆細胞群からCD57陽性細胞、MCAM陽性CD57陰性細胞およびMCAM陰性CD57陰性細胞を選別後、筋管細胞への分化能を検討した。MCAM陽性CD57陰性細胞はMHCで染色される筋管細胞に分化し、MHC陽性率は約80%であった(
図4)
【0149】
2-3.MCAM陽性CD57陰性細胞の移植試験
CD82陽性CD57陰性細胞およびMCAM陽性CD57陰性細胞のDMD/NSGマウスに対する移植の効果を検討した。移植4週後の組織切片でジストロフィンに対する免疫染色を行い移植細胞の生着能および筋再生能を評価した。CD82陽性CD57陰性細胞およびMCAM陽性CD57陰性細胞のいずれの細胞を移植した場合でも宿主の筋線維と融合が認められ、ジストロフィン陽性筋線維数は同程度であった(
図5)。
【0150】
また、移植部位の組織切片に対するHE染色においてCD82陽性CD57陰性細胞を移植した組織では間質が拡大し筋線維の配列が乱れていたのに対し、MCAM陽性CD57陰性細胞を移植した組織では正常な筋線維の組織像であった(
図6)。
【0151】
さらに、移植部位の組織切片に対するSirius Red染色においてCD82陽性CD57陰性細胞を移植した組織では拡大した間質で繊維化が亢進しているのに対し、MCAM陽性CD57陰性細胞を移植した組織では異常な繊維化は認められなかった(
図7)。
【配列表】