IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 森村SOFCテクノロジー株式会社の特許一覧

<>
  • 特許-固体酸化物形燃料電池 図1
  • 特許-固体酸化物形燃料電池 図2
  • 特許-固体酸化物形燃料電池 図3
  • 特許-固体酸化物形燃料電池 図4
  • 特許-固体酸化物形燃料電池 図5
  • 特許-固体酸化物形燃料電池 図6
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-02-02
(45)【発行日】2024-02-13
(54)【発明の名称】固体酸化物形燃料電池
(51)【国際特許分類】
   H01M 4/86 20060101AFI20240205BHJP
   H01M 8/12 20160101ALI20240205BHJP
【FI】
H01M4/86 T
H01M8/12
【請求項の数】 5
(21)【出願番号】P 2017155525
(22)【出願日】2017-08-10
(65)【公開番号】P2019036415
(43)【公開日】2019-03-07
【審査請求日】2020-07-10
【審判番号】
【審判請求日】2022-09-26
(73)【特許権者】
【識別番号】519322392
【氏名又は名称】森村SOFCテクノロジー株式会社
(74)【代理人】
【識別番号】100094569
【弁理士】
【氏名又は名称】田中 伸一郎
(74)【代理人】
【識別番号】100103610
【弁理士】
【氏名又は名称】▲吉▼田 和彦
(74)【代理人】
【識別番号】100109070
【弁理士】
【氏名又は名称】須田 洋之
(74)【代理人】
【識別番号】100119013
【弁理士】
【氏名又は名称】山崎 一夫
(74)【代理人】
【識別番号】100123777
【弁理士】
【氏名又は名称】市川 さつき
(74)【代理人】
【識別番号】100111796
【弁理士】
【氏名又は名称】服部 博信
(72)【発明者】
【氏名】新美 泰之
(72)【発明者】
【氏名】安藤 茂
(72)【発明者】
【氏名】岡本 修
(72)【発明者】
【氏名】輪島 尚人
(72)【発明者】
【氏名】讓原 正義
(72)【発明者】
【氏名】川上 晃
(72)【発明者】
【氏名】柿沼 保夫
(72)【発明者】
【氏名】高橋 一雄
(72)【発明者】
【氏名】青島 利裕
【合議体】
【審判長】池渕 立
【審判官】山口 大志
【審判官】土屋 知久
(56)【参考文献】
【文献】特開平06-302329(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 4/86- 4/98
H01M 8/00- 8/0297
H01M 8/08- 8/2495
(57)【特許請求の範囲】
【請求項1】
空気極と、
燃料極と、
前記空気極と前記燃料極との間に配置される固体電解質と、を有する固体酸化物形燃料電池において、
前記空気極は、ペロブスカイト型酸化物を含み、ヤング率は、10GPa以上50GPa未満である、固体酸化物形燃料電池(ただし、ポーラスな基体管の上に積層されている場合を除く)
【請求項2】
前記空気極は、硫黄元素を5ppm以上4000ppm以下含む、請求項1に記載の固体酸化物形燃料電池。
【請求項3】
前記ペロブスカイト型酸化物において、
Aサイトに含まれるモル数(A)と、Bサイトに含まれるモル数(B)とのモル比であるA/B比が、1.000<A/B比≦1.030である、請求項1または2に記載の固体酸化物形燃料電池。
【請求項4】
前記ペロブスカイト型酸化物は、
Aサイトにランタン(La)、Bサイトにコバルト(Co)を含む、請求項1~3のいずれか1項に記載の固体酸化物形燃料電池。
【請求項5】
前記ペロブスカイト型酸化物は、
ランタンストロンチウムコバルト鉄酸化物である、請求項4に記載の固体酸化物形燃料電池。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、シャットダウン時の空気極の剥離を防止することが可能な固体酸化物形燃料電池に関する。
【背景技術】
【0002】
燃料電池の一つに、固体電解質に固体酸化物を用いた固体酸化物形燃料電池(Solid Oxide Fuel Cell:SOFC)がある。
【0003】
空気極としてランタンストロンチウムコバルタイトフェライト(LSCF)などのペロブスカイト型酸化物を用いた固体酸化物形燃料電池が知られている。例えば、特開2011-44119号公報(特許文献1)には、ランタン(La)を含むペロブスカイト型酸化物を含む空気極材料において、ペロブスカイト型酸化物のAサイトに含まれる元素のモル数の合計と、ペロブスカイト型酸化物のBサイトに含まれる元素のモル数の合計との比をA/B比としたときに、空気極材料中に粒子間で異なるA/B比を有することが記載されている。これにより、長期の耐久性能が得られることが記載されている。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2011-44119号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
固体酸化物形燃料電池において、空気極のシャットダウン時の剥離を防止するためには、空気極のヤング率を特定範囲とすることが重要であることを見出した。
【0006】
従って、本発明は、シャットダウン時の空気極の剥離を抑制が可能な固体酸化物形燃料電池の提供をその目的としている。
【課題を解決するための手段】
【0007】
そして、本発明は、空気極と、燃料極と、前記空気極と前記燃料極との間に配置される固体電解質と、を有する固体酸化物形燃料電池において、前記空気極は、ペロブスカイト型酸化物を含み、ヤング率は、10GPa以上50GPa未満である、固体酸化物形燃料電池である。
【図面の簡単な説明】
【0008】
図1】本発明による固体酸化物形燃料電池セルの断面の一態様を示す模式図である。
図2】本発明による燃料電池セルユニットを示す部分断面図である。
図3】本発明による固体酸化物形燃料電池を備えた固体酸化物形燃料電池システムの一態様を示す構成図である。
図4】固体酸化物形燃料電池システムの燃料電池モジュールを示す側面断面図である。
図5】固体酸化物型燃料電池システムの燃料電池セルスタックを示す斜視図である。
図6図4のIII-III線に沿った断面図である。
【発明を実施するための形態】
【0009】
定義
本発明による燃料電池セルとは、燃料極と、固体電解質と、空気極とを少なくとも備えてなる、当業界において通常固体酸化物形燃料電池セルと分類または理解されるものと同一のものを意味する。また、本発明による燃料電池セルはこれを用いて当業界において燃料電池システムと理解され、また今後理解されるであろうシステムに用いることができる。また、本発明による燃料電池セルは、その形状も限定されず、例えば円筒状、板状、内部にガス流路を複数形成した中空板状などであってもよい。また、内側電極は支持体の表面に形成されていても良い。
【0010】
空気極
本発明において、空気極は、ペロブスカイト型酸化物を含み、ヤング率が10GPa以上50GPa未満である。これにより、シャットダウン時の空気極の剥離を防止することができる。
【0011】
この理由としては、以下のように考えているが、本発明はこれに限定されるものではない。
【0012】
シャットダウン時における空気極の剥離は、空気極に加わる応力によるものと考えられる。空気極に加わる応力としては、例えば、空気極が還元雰囲気に曝された場合に還元膨張することにより加わる応力が考えられる。
【0013】
運転停止時、特にシャットダウン時において、燃料電池に対して燃料ガスや空気の供給を止めると、燃料ガス流路の出口であるセル開口部から、燃料配管、改質器、マニホールド等に残存した燃料ガスが噴出し、空気極が還元雰囲気に曝されてしまう場合がある。空気極は、還元雰囲気に曝された場合、還元膨張する現象が知られている。この還元膨張による応力が空気極に加わることにより、シャットダウン時において、空気極の剥離が発生すると考えられる。
【0014】
空気極において、応力σとヤング率Eと歪εの関係は、一般的に、下記の(1)式で表される。
σ=Eε ・・・(1)
空気極に対し、セル焼成時の残留応力による歪εと還元膨張による歪εが発生する時、空気極に加わる応力σを小さくする為には、ヤング率Eの値を小さく設計する事が有効である。すなわち、空気極のヤング率が大きいと空気極に含まれる粒子同士のネッキングが強くなり、シャットダウンによって空気極にかかる歪に対して応力が大きくなるため、空気極の剥離が発生しやすくなる。一方で、空気極のヤング率が小さいと、空気極に含まれる粒子同士のネッキングが弱く、粒子が脱落し、空気極として機能を発揮できない。
【0015】
本発明は、空気極のヤング率を10GPa以上50GPa未満にすることにより、空気極に含まれる粒子同士が適度な強度でネッキングすることが可能となる。よって、空気極に加わる応力を小さくする事ができ、シャットダウン時の空気極の剥離を防止することができる。
【0016】
本発明において、空気極のヤング率は下記の方法により求めることができる。
【0017】
ヤング率の測定は、ナノインデンテーション法(例えば、エリオニクス社ENT-2100)を用いて測定する。インデンターにバーコビッチ型の三角錐圧子を使用する。ダイヤモンド圧子のヤング率として1140GPa、ポアソン比として0.07を使用することができる。測定荷重は、圧痕の押し込み深さが空気極の膜厚の1/10以下の値になるように設定する。これにより、空気極の基材に形成されている固体電解質の影響を受ける事無く、空気極のヤング率を求められる。測定荷重の設定は、荷重を任意に5点変化させた時の押し込み深さを測定し、各荷重と各押し込み深さの関係を荷重負荷曲線にする。得られた曲線から空気極の膜厚の1/10以下になる荷重を求める。この荷重を用いて空気極表面の任意の計10点測定してヤング率を算出し、得られた10点の平均値を本発明の空気極のヤング率とする。
【0018】
本発明において、空気極は、ヤング率が10GPa以上40GPa以下であることが好ましく、10GPa以上25GPaであることがさらに好ましい。これにより、シャットダウン時の空気極の剥離を有効に防止することが可能となる。
【0019】
本発明において、空気極に含まれるペロブスカイト型酸化物としては、Aサイトにランタン(La)を含み、Bサイトにコバルト(Co)または鉄(Fe)を含むものが好ましい。具体的には、(La1-x,Sr)CoO(但し、x=0.1~0.3)及びLa(Co1-x,Ni)O(但し、x=0.1~0.6)などのランタンコバルト系酸化物、(La,Sr)FeO系と(La,Sr)CoO3系の固溶体であるランタンコバルトフェライト系酸化物(La1-mSr)(Co1-n,Fe)O(但し、0.05<m<0.50、0≦n≦1)、サマリウム及びコバルトを含むサマリウムコバルト系酸化物(Sm0.5Sr0.5CoO)などが挙げられる。好ましくは、ランタンストロンチウムコバルタイトフェライト(La,Sr)(Co,Fe)Oである。
【0020】
本発明において、空気極は、ペロブスカイト型酸化物のAサイトに含まれる元素のモル数の合計(A)と、ペロブスカイト型酸化物のBサイトに含まれる元素のモル数の合計(B)との比率をA/B比と表したときに、空気極のA/B比は、1.000<A/B比≦1.030であることが好ましい。なお、本発明において、例えば、A/B比が1.001であるペロブスカイト型酸化物(ABO)は、A1.001BOと表すことができる。これにより、シャットダウン時の空気極の剥離を防止し、かつ良好な発電性能の発揮が可能な固体酸化物形燃料電池を得ることが可能となる。
【0021】
本発明において、空気極は、1.005≦A/B比≦1.015とすることがさらに好ましい。これにより、シャットダウン時の空気極の剥離を防止し、かつ良好な発電性能の発揮が可能な固体酸化物形燃料電池を得ることが可能となる。
【0022】
本発明において、空気極に含まれるペロブスカイト型酸化物のAサイトに含まれる元素のモル数(A)およびBサイトに含まれる元素のモル数(B)は、以下の方法により求められる。
【0023】
空気極に含まれるペロブスカイト型酸化物のA/B比の算出方法
空気極に含まれるペロブスカイト型酸化物を構成する各元素の酸化物を準備し、ガラスビード法により成形し、標準試料を作製する。次に、この標準試料の特性X線のピーク強度を蛍光X線分析装置(XRF)により測定する。その後、これら標準試料の秤量値から算出される標準試料の組成量と、得られた特性X線のピーク強度とから検量線を作成する。
【0024】
作製した空気極を市販のカッターで削り、削り取った測定試料を粉末プレス法により成形し、評価試料を作製する。なお、空気極を削る際、空気極が露出している部分を削るのが好ましいが、空気極の表面に空気極とは異なる膜などが形成されている場合には、この膜を削り取るなどにより除去し、空気極を露出させた後、空気極を削るのが好ましい。この評価試料の特性X線のピーク強度をXRFにより測定する。得られた特性X線のピーク強度と上記検量線とから空気極材料に含まれるペロブスカイト型酸化物の各元素量(wt%)を求める。これらから、ペロブスカイト型酸化物のAサイトに含まれる元素のモル数(A)、及びBサイトに含まれる元素のモル数(B)を求める。
【0025】
本発明において、空気極は、硫黄元素を含むことが好ましい。具体的には、空気極は硫黄元素を4000ppm以下含むことが好ましく、1000ppm以下含むことが更に好ましい。また、20ppm以上含むことが好ましく、50ppm以上含むことが更に好ましい。これにより、シャットダウン時の剥離を有効に防止することができる。
【0026】
本発明において、空気極に含まれる硫黄元素の含有量や存在位置は、GD-OES(グロー放電発光分析装置)によって、明確にすることができる。GD-OESは、空気極を厚み方向に分析することにより、厚み方向の各位置に対応した硫黄元素量を得ることができる。
【0027】
本発明において、空気極に含まれる硫黄元素は、空気極に点在して存在していることが好ましい。
【0028】
空気極に含まれる硫黄元素の量は、下記の方法により求めることができる。
【0029】
空気極に含まれる硫黄元素の含有量は、燃料電池セルから空気極全体を削り取り、得られた全量を炭素硫黄分析装置(例えば、LECO社製CS844)により分析することにより、求めることができる。空気極の表面に空気極とは異なる膜などが形成されている場合は、この膜を削り取るなどにより除去した後、空気極全体を削り取るのが好ましい。
【0030】
本発明において、空気極は、固体電解質との界面から5μm以内の空気極の表面領域と、固体電解質側領域以外の領域である空気極の内部領域とから構成されることが好ましい。なお、空気極の表面領域は、下記の方法により特定できる。
【0031】
燃料電池セルを空気極と固体電解質との界面を含むように切断する。この切断面を空気極と固体電解質との界面を含むように走査型電子顕微鏡(SEM)により観察し、2次電子像または反射電子像を取得する。この得られた電子像において、コントラストおよび多孔度の違いから固体電解質と空気極の界面を特定する。この固体電解質と空気極の界面から5μm以内の領域を空気極の空気極の表面領域とする。なお、固体電解質と空気極の界面において凹凸が有る場合、界面の凹凸部をランダムに10点定め、位置平均値を界面とし、この界面から5μm以内の領域を空気極の表面領域とする。
【0032】
本発明において、空気極表面領域に含まれる硫黄元素の含有量は、空気極の内部領域に含まれる硫黄元素の含有量よりも大きいことが好ましい。これにより、空気極と固体電解質との密着性を高めることができる。また、空気極の内部領域に含まれるペロブスカイト型酸化物の粒子が焼結し過ぎる事を防止でき、空気とペロブスカイト型酸化物の粒子との接触面積を確保する事ができる。これにより、シャットダウン運転時における空気極の剥離を防止し、かつ発電性能が高い燃料電池セルを得ることが可能になる。
【0033】
本発明において、空気極の表面領域に含まれる硫黄元素の含有量は、下記の方法により求めることができる。
【0034】
燃料電池セルを空気極と固体電解質との界面が含まれるように任意の面で切断する。この切断面を走査型電子顕微鏡/エネルギー分散型X線分光法(SEM-EDX、例えば、日立製作所製 SU8220)を用い、倍率5000倍において観察し、画像を得る。画像において、上述の方法にて特定した空気極の表面領域を囲み、得られた信号強度を定量化することで、空気極の表面領域に含まれる硫黄元素の含有量を求めることができる。
【0035】
本発明において、空気極の内部領域に含まれる硫黄元素の含有量は、下記の方法により求めることができる。
【0036】
燃料電池セルにおいて、空気極の内部領域に該当する部分を削り取る。得られた空気極粉を、炭素硫黄分析装置(例えば、LECO社製CS844)を用いて分析することにより、空気極の内部領域に含まれる硫黄元素の含有量を求めることができる。
【0037】
本発明において、空気極の表面領域は、硫黄元素を50ppm以上含むことが好ましく、300ppm以上含むことが更に好ましい。また、28000ppm以下含むことが好ましく、9000ppm以下含むことがさらに好ましい。これにより、シャットダウン時の空気極の剥離を有効に防止することができる。
【0038】
本発明において、空気極の内部領域は、空気極の表面領域よりも少ない硫黄元素を含むことが好ましい。具体的には、硫黄元素を20ppm以上含むことが好ましく、400ppm以上含むことがさらに好ましい。また、4000ppm以下であることが好ましく、1000ppm以下であることが更に好ましい。これにより、シャットダウン時の空気極の剥離を有効に防止することが可能となる。
【0039】
本発明において、空気極に含まれる硫黄元素は、硫酸ストロンチウム化合物として含まれることが好ましい。硫酸ストロンチウム化合物とは、硫酸ストロンチウムと、例えば、La、Co、Feなどの空気極に含まれる構成元素を含む化合物を指す。これにより、シャットダウン時の空気極の剥離を有効に防止することが可能となる。
【0040】
本発明において、空気極は、単層であっても、複層であっても良い。複層の空気極である場合の例としては、例えば固体電解質の上に、空気極触媒層として(La,Sr)(Co,Fe)Oを設け、燃料電池セルの最表層に空気極集電層として(La,Sr)(CoFe)Oと導電性材料(AgまたはAlなど)を含む層を設けた構成が挙げられる。
【0041】
燃料極
本発明において、燃料極は、上記の空気極とともに燃料電池セルを構成可能なものであれば特に限定されないが、例えば、NiO/ジルコニウム含有酸化物、NiO/セリウム含有酸化物などが挙げられる。ここで、NiO/ジルコニウム含有酸化物とは、NiOとジルコニウム含有酸化物とが、所定の比率で均一に混合されたものを意味する。また、NiO/セリウム含有酸化物とは、NiOとセリウム含有酸化物とが、所定の比率で均一に混合されたものを意味する。NiO/ジルコニウム含有酸化物のジルコニウム含有酸化物としては、例えばCaO、Y23、Sc23のうちの1種以上をドープしたジルコニウム含有酸化物などが挙げられる。また、NiO/セリウム含有酸化物のセリウム含有酸化物としては、一般式Ce1-yLnyO2(但し、LnはLa、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Sc、Yのいずれか1種又は2種以上の組み合わせであり、0.05≦y≦0.50)などが挙げられる。なお、NiOは燃料雰囲気下で還元されてNiとなるため、上述の混合物はそれぞれNi/ジルコニウム含有酸化物又はNi/セリウム含有酸化物となる。
【0042】
本発明において燃料極は、単層であっても、複層であっても良い。複層の燃料極である場合の例としては、例えば支持体と向かい合う側にNi/YSZ(イットリア安定化ジルコニア)層を有する燃料極、または固体電解質と向かい合う側にNi/GDC(Gd-CeO)(燃料極触媒層として機能する)層を有した燃料極、さらにはこれら両方の層を有した燃料極が挙げられる。
【0043】
固体電解質
本発明において、固体電解質は、上記の空気極とともに燃料電池セルを構成可能なものであれば特に限定されないが、例えば、ランタンガレート系酸化物、固溶種としてY、Ca、Scのいずれか1種以上を固溶した安定化ジルコニアなどが挙げられる。固体電解質は、好適にはSr及びMgがドープされたランタンガレート系酸化物であり、より好適には一般式La1-aSrGa1-b-cMgCo(但し、0.05≦a≦0.3、0<b<0.3、0≦c≦0.15)で表されるランタンガレート系酸化物(LSGM)である。本発明の一つの好ましい態様によれば、固体電解質と燃料極の間に、反応抑制層として、セリアにLaを固溶させたセリウム系酸化物(Ce1-xLa(但し、0.3<x<0.5))を設けてもよい。反応抑制層は、好ましくはCe0.6La0.4である。
【0044】
本発明において、固体電解質は、空気極側の表面にCoを含む固体電解質表面領域を含み、この固体電解質表面領域の厚さが2μm以下であることが好ましい。これにより、シャットダウン時の空気極の剥離を防止することができる。
【0045】
本発明において、固体電解質表面領域とは、固体電解質において、空気極側の表面に存在する領域であり、コバルト(Co)を含むものである。固体電解質表面領域の厚みは、下記の方法で求めることができる。固体電解質と空気極との界面を含むように電子線マイクロアナライザ(EPMA)により分析し、界面を特定する。固体電解質と空気極との界面に凹凸が有る場合、界面の凹凸部をランダムに10点定め、位置平均値を界面とする。固体電解質をEPMAのライン分析することによりCoを含むか否かを明確にし、上述の界面からの距離を求めることにより、固体電解質表面領域の厚みを求めることができる。
【0046】
本発明において、固体電解質に含まれるCoは、EPMAのライン分析により存在を確認することができる。詳しくは、EPMAにより倍率5000倍にて空気極と固体電解質の界面を撮影し、Coのライン分析によりCoラインプロファイルを得る。得られたCoラインプロファイルにおいて、Coが検出限界以下の領域においてCoラインプロファイルの変動幅の平均値を求め、これをベースラインとする。空気極に含まれるCoラインプロファイルの変動幅の平均値を求め、これをCo量100とする。ベースラインをCo量ゼロとする。このベースラインとCo100の位置を元に、固体電解質に含まれるCo量が5以下になるまでの位置を特定し、この位置から空気極と固体電解質との界面までの最短距離を求め、これを固体電解質表面領域の厚さとする。
【0047】
本発明において、固体電解質表面領域には、Coを8質量%以下含むことが好ましく、5質量%以下含むことがさらに好ましい。これによりシャットダウン時の空気極の剥離を防止することができる。
【0048】
本発明において、固体電解質は、固体電解質表面領域と固体電解質内部領域とから構成されており、固体電解質内部領域はCoを含まないことが好ましい。これにより、シャットダウン時の空気極の剥離を防止することができる。
【0049】
本発明において、固体電解質表面領域に含まれるCoは、固体酸化物形燃料電池を作製する際に空気極から拡散してきたCoであることが好ましい。本発明において、空気極は、固体電解質またはその前駆体の表面に空気極用スラリーをコーティングした後、焼成して作製する。この際、空気極に含まれるペロブスカイト型酸化物に含まれるCoが固体電解質に拡散し、固体電解質表面領域にCoが含まれる。本発明においては、焼成時において、空気極から固体電解質へのCoの拡散が固体電解質表面領域に抑えられる、つまり、固体電解質内部領域にはCoの拡散が極めて小さい。したがって、シャットダウン時の空気極の剥離を防止することができる。
【0050】
本発明において固体電解質は、単層であっても、複層であっても良い。固体電解質が複層である場合の例としては、固体電解質と反応抑制層を設けた構成が挙げられる。例えば燃料極とLSGMからなる固体電解質の間にLDC(例えば、Ce0.6La0.42)などの反応抑制層を設けた構成や、空気極とYSZからなる固体電解質の間にGDC(例えば、Ce0.9Gd0.12)などの反応抑制層を設けた構成が挙げられる。
【0051】
燃料電池セル
図1は本発明の固体酸化物形燃料電池セルの断面の一態様を示す模式図であり、内側電極を燃料極としたタイプについて示した。本発明における固体酸化物形燃料電池セル210は、例えば多孔質支持体201と、(第一/第二)燃料極202、(第一/第二)固体電解質203と、(第一/第二)空気極204と、集電層205から構成される。ここで、(第一/第二)とは、「単層又は二以上の層であって、二層の場合は第一層と第二層とを有する」ことを意味する。本発明の固体酸化物形燃料電池セルにおいて、各層の好ましい厚さは、多孔質支持体が0.5~2mm、燃料極が10~200μm、燃料極触媒層が0~30μm、反応抑制層が0~20μm、固体電解質が5~60μm、空気極触媒層が0~50μm、空気極が10~200μmである。
【0052】
図2は、本発明による燃料電池セルユニットを示す部分断面図である。図に示すように、燃料電池セルユニット16は、燃料電池セル84と、この燃料電池セル84の上下方向端部にそれぞれ接続された内側電極端子86とを備えてなる。燃料電池セル84は、上下方向に延びる管状構造体であり、内部に燃料ガス流路88を形成する円筒形の多孔質支持体91上に内側電極層90と、外側電極層92と、内側電極層90と外側電極層92との間にある固体電解質94とを備えてなる。
【0053】
燃料電池セル84の上端側と下端側に取り付けられた内側電極端子86は、同一構造であるため、ここでは、上端側に取り付けられた内側電極端子86について具体的に説明する。内側電極層90の上部90aは、固体電解質94と外側電極層92に対して露出された外周面90bと上端面90cとを備える。内側電極端子86は、導電性のシール材96を介して内側電極層90の外周面90bと接続され、さらに、内側電極層90の上端面90cとは直接接触することにより、内側電極層90と電気的に接続されている。内側電極端子86の中心部には、内側電極層90の燃料ガス流路88と連通する燃料ガス流路98が形成されている。
【0054】
空気極材料
本発明において、空気極材料は、ABOで表されるペロブスカイト型酸化物を含む空気極材料において、ペロブスカイト型酸化物のAサイトに含まれる元素のモル数(A)と、ペロブスカイト型酸化物のBサイトに含まれる元素のモル数(B)との比がA/B比であり、A/B比が1.000<A/B比であることが好ましく、さらに好ましくは、1.000<A/B比≦1.030である。これにより、シャットダウン時における空気極の剥離を防止することができる。
【0055】
本発明において、空気極材料に含まれるペロブスカイト型酸化物のAサイトに含まれる元素のモル数(A)およびBサイトに含まれる元素のモル数(B)は、以下の方法により求められる。
【0056】
空気極材料に含まれるペロブスカイト型酸化物のA/B比の算出方法
空気極に含まれるペロブスカイト型酸化物を構成する各元素の酸化物を準備し、ガラスビード法により成形し、標準試料を作製する。次に、この標準試料の特性X線のピーク強度を蛍光X線分析装置(XRF)により測定する。その後、これら標準試料の秤量値から算出される標準試料の組成量と、得られた特性X線のピーク強度とから検量線を作成する。
【0057】
作製した空気極材料を粉末プレス法により成形し、評価試料を作製する。この評価試料の特性X線のピーク強度をXRFにより測定する。得られた特性X線のピーク強度と上記検量線とから空気極材料に含まれるペロブスカイト型酸化物の各元素量(wt%)を求める。これらから、ペロブスカイト型酸化物のAサイトに含まれる元素のモル数(A)、及びBサイトに含まれる元素のモル数(B)を求める。
【0058】
本発明において、ペロブスカイト型酸化物としては、Aサイトにランタン(La)を含み、Bサイトにコバルト(Co)を含むものが好ましい。具体的には、(La1-x,Sr)CoO(但し、x=0.1~0.3)及びLa(Co1-x,Ni)O(但し、x=0.1~0.6)などのランタンコバルト系酸化物、(La,Sr)FeO系と(La,Sr)CoO3系の固溶体であるランタンコバルトフェライト系酸化物(La1-mSr)(Co1-n,Fe)O(但し、0.05<m<0.50、0≦n≦1)、サマリウム及びコバルトを含むサマリウムコバルト系酸化物(Sm0.5Sr0.5CoO)などが挙げられる。好ましくは、ランタンストロンチウムコバルタイトフェライト(La,Sr)(Co,Fe)Oである。
【0059】
本発明において、空気極材料は、硫黄元素を含んでいることが好ましく、4000ppm以下含むことが好ましく、1000ppm以下含むことがさらに好ましい。また、20ppmより大きく含むことが好ましく、50ppm以上含むことがさらに好ましい。これにより、シャットダウン時における空気極の剥離を有効に防止することができる。
【0060】
本発明の空気極材料に含まれる硫黄元素としては、ペロブスカイト型酸化物とは別に配合された硫黄化合物に由来するものであっても、ペロブスカイト型酸化物の調製原料に含まれる硫黄化合物に由来するものであってもよい。硫黄化合物としては、特開2014-135271に記載された有機硫黄化合物または無機硫黄化合物を用いることができる。また、無機硫黄化合物として硫酸ストロンチウムを用いることができる。
【0061】
本発明において、有機硫黄化合物または硫酸ストロンチウムを用いることが好ましい。これにより、空気極と固体電解質との密着性を高めることができる。また、空気極の内部領域に含まれるペロブスカイト型酸化物の粒子が焼結し過ぎる事を防止でき、空気とペロブスカイト型酸化物の粒子との接触面積を確保する事ができる。これにより、シャットダウン運転時における空気極の剥離を防止し、かつ発電性能が高い燃料電池セルを得ることが可能になる。
【0062】
空気極材料の製造方法
本発明において、空気極材料は以下のように作製することが可能である。
【0063】
液相法を用いる場合
ペロブスカイト型酸化物が所望の組成となるように、ペロブスカイト型酸化物に含まれる各元素の水溶性の硝酸塩を所定の割合で水に溶解する。これにNHOHを添加してそれぞれの不溶性塩を共沈させ、沈殿を乾燥、焼成させることにより所望の組成を有するペロブスカイト型酸化物を有する粉末を得ることができる。
【0064】
固相法を用いる場合
ペロブスカイト型酸化物が所望の組成となるように、ペロブスカイト型酸化物に含まれる各元素の金属酸化物の原料を秤量し、溶媒と混合する。その後、溶媒を除去し、得られた粉末を焼成し、粉砕することにより所望の組成を有するペロブスカイト型酸化物を有する粉末を得ることができる。
【0065】
本発明において、各方法において、原料の秤量値を任意に制御することにより、空気極材料のA/B比を制御することが可能となる。
【0066】
各方法によって得られた、所望の組成を有するペロブスカイト型酸化物を空気極材料として用いることができる。また、必要に応じ、溶媒等と混合し、ペーストやスラリーとすることにより空気極材料としても良い。
【0067】
セルの製造方法
本発明による固体酸化物形燃料電池セルは、公知の方法に準じて従って、適宜製造することができる。好ましい製造方法を示せば下記のとおりである。
【0068】
まず、本発明において空気極は、所望の組成比を有する空気極材料を含む原料粉末に、溶媒(水、アルコールなど)、分散剤、バインダー等の成形助剤を添加してスラリーを作製し、それを固体電解質またはその前駆体にコーティングし、乾燥した後、焼成(好ましくは、950℃以上1200℃未満)することによって得ることができる。ここで、「固体電解質またはその前駆体にコーティングする」とは、スラリーを固体電解質またはその前駆体に直接コーティングするのみならず、例えば触媒層のような中間的な層を介して固体電解質またはその前駆体にコーティングする態様も含まれるものとする。また、前駆体とは、後記するように、固体電解質と空気極とを同時に共焼成する態様にあって、焼成により固体電解質となる焼成前の物質または成形体を意味する。
【0069】
コーティングは、スラリー液をコーティングするスラリーコート法、テープキャスティング法、ドクターブレード法、転写法などにより好ましく行うことができる。また印刷手法も利用可能であり、スクリーン印刷法やインクジェット法などを用いることができる。
【0070】
固体電解質、燃料極は、各原料粉末に、溶媒(水、アルコールなど)、分散剤、バインダー等の成形助剤を添加してスラリーを作製し、それをコーティングし、乾燥した後、焼成(1100℃以上1400℃未満)することによって得ることができる。コーティングは、スラリー液をコーティングするスラリーコート法、テープキャスティング法、ドクターブレード法、転写法などにより好ましく行うことができる。また印刷手法も利用可能であり、スクリーン印刷法やインクジェット法などを用いることができる。
【0071】
焼成は、各電極及び固体電解質を形成する都度行ってもよいが、複数の層を一度に焼成する「共焼成」を行うことも可能である。また、固体電解質がドーパントの拡散等により変性しないように、焼成は酸化雰囲気下で行なうことが好ましい。より好適には、空気と酸素との混合ガスを用い、酸素濃度20質量%以上30質量%以下の雰囲気で焼成を行う。
【0072】
本発明の好ましい態様によれば、内側電極に燃料極を、外側電極に空気極を用いる場合、燃料極と固体電解質とを共焼成した後、空気極を成形し、共焼成よりも低い温度で焼成する。空気極の好ましい焼成温度は、950℃以上1200℃未満の範囲である。
【0073】
固体酸化物形燃料電池セルおよびそれを用いた燃料電池システム
本発明によれば、本発明による固体酸化物形燃料電池セルを備えた固体酸化物形燃料電池システムが提供される。図3は、本発明の一実施形態による固体酸化物形燃料電池システムを示す構成図である。この図3に示すように、固体酸化物形燃料電池システム1は、燃料電池モジュール2と、補機ユニット4を備えてなる。
【0074】
燃料電池モジュール2は、ハウジング6を備え、このハウジング6内部には、断熱材7を介して密封空間8が形成されている。なお、断熱材は設けないようにしても良い。この密封空間8の下方部分である発電室10には、燃料ガスと酸化剤(空気)とにより発電反応を行う燃料電池セル集合体12が配置されている。この燃料電池セル集合体12は、10個の燃料電池セルスタック14(図5参照)を備え、この燃料電池セルスタック14は、16本の燃料電池セルユニット16(図2参照)から構成されている。このように、燃料電池セル集合体12は、160本の燃料電池セルユニット16を有し、これらの燃料電池セルユニット16の全てが直列接続されている。
【0075】
燃料電池モジュール2の密封空間8の上述した発電室10の上方には、燃焼室18が形成され、この燃焼室18で、発電反応に使用されなかった残余の燃料ガスと残余の酸化剤(空気)とが燃焼し、排気ガスを生成するようになっている。また、この燃焼室18の上方には、燃料ガスを改質する改質器20が配置され、前記残余ガスの燃焼熱によって改質器20を改質反応が可能な温度となるように加熱している。さらに、この改質器20の上方には、改質器20の熱を受けて空気を加熱し、改質器20の温度低下を抑制するための空気用熱交換器22が配置されている。
【0076】
次に、補機ユニット4は、水道等の水供給源24からの水を貯水してフィルターにより純水とする純水タンク26と、この貯水タンクから供給される水の流量を調整する水流量調整ユニット28を備えている。また、補機ユニット4は、都市ガス等の燃料供給源30から供給された燃料ガスを遮断するガス遮断弁32と、燃料ガスから硫黄を除去するための脱硫器36と、燃料ガスの流量を調整する燃料流量調整ユニット38を備えている。さらに、補機ユニット4は、空気供給源40から供給される酸化剤である空気を遮断する電磁弁42と、空気の流量を調整する改質用空気流量調整ユニット44及び発電用空気流量調整ユニット45と、改質器20に供給される改質用空気を加熱する第1ヒータ46と、発電室に供給される発電用空気を加熱する第2ヒータ48とを備えている。これらの第1ヒータ46と第2ヒータ48は、起動時の昇温を効率よく行うために設けられているが、省略しても良い。
【0077】
次に、燃料電池モジュール2には、排気ガスが供給される温水製造装置50が接続されている。この温水製造装置50には、水供給源24から水道水が供給され、この水道水が排気ガスの熱により温水となり、図示しない外部の給湯器の貯湯タンクへ供給されるようになっている。また、燃料電池モジュール2には、燃料ガスの供給量等を制御するための制御ボックス52が取り付けられている。さらに、燃料電池モジュール2には、燃料電池モジュールにより発電された電力を外部に供給するための電力取出部(電力変換部)であるインバータ54が接続されている。
【0078】
次に、図4及び図6により、固体酸化物形燃料電池システムの燃料電池モジュールの内部構造を説明する。図4は、固体酸化物形燃料電池システムの燃料電池モジュールを示す側面断面図であり、図6は、図4のIII-III線に沿った断面図である。図4及び図6に示すように、燃料電池モジュール2のハウジング6内の密封空間8には、上述したように、下方から順に、燃料電池セル集合体12、改質器20、空気用熱交換器22が配置されている。
【0079】
改質器20は、その上流端側に純水を導入するための純水導入管60と改質される燃料ガスと改質用空気を導入するための被改質ガス導入管62が取り付けられ、また、改質器20の内部には、上流側から順に、蒸発部20aと改質部20bが形成され、改質部20bには改質触媒が充填されている。この改質器20に導入された水蒸気が混合された燃料ガス及び空気は、改質器20内に充填された改質触媒により改質される。
【0080】
この改質器20の下流端側には、燃料ガス供給管64が接続され、この燃料ガス供給管64は、下方に延び、さらに、燃料電池セル集合体12の下方に形成されたマニホールド66内で水平に延びている。燃料ガス供給管64の水平部64aの下方面には、複数の燃料供給孔64bが形成されており、この燃料供給孔64bから、改質された燃料ガスがマニホールド66内に供給される。
【0081】
このマニホールド66の上方には、上述した燃料電池セルスタック14を支持するための貫通孔を備えた下支持板68が取り付けられており、マニホールド66内の燃料ガスが、燃料電池セルユニット16内に供給される。
【0082】
次に、改質器20の上方には、空気用熱交換器22が設けられている。この空気用熱交換器22は、上流側に空気集約室70、下流側に2つの空気分配室72を備え、これらの空気集約室70と空気分配室72は、6個の空気流路管74により接続されている。ここで、図6に示すように、3個の空気流路管74が一組(74a,74b,74c,74d,74e,74f)となっており、空気集約室70内の空気が各組の空気流路管74からそれぞれの空気分配室72へ流入する。
【0083】
空気用熱交換器22の6個の空気流路管74内を流れる空気は、燃焼室18で燃焼して上昇する排気ガスにより予熱される。空気分配室72のそれぞれには、空気導入管76が接続され、この空気導入管76は、下方に延び、その下端側が、発電室10の下方空間に連通し、発電室10に余熱された空気を導入する。
【0084】
次に、マニホールド66の下方には、排気ガス室78が形成されている。また、図6に示すように、ハウジング6の長手方向に沿った面である前面6aと後面6bの内側には、上下方向に延びる排気ガス通路80が形成され、この排気ガス通路80の上端側は、空気用熱交換器22が配置された空間と連通し、下端側は、排気ガス室78と連通している。また、排気ガス室78の下面のほぼ中央には、排気ガス排出管82が接続され、この排気ガス排出管82の下流端は、図3に示す上述した温水製造装置50に接続されている。図4に示すように、燃料ガスと空気との燃焼を開始するための点火装置83が、燃焼室18に設けられている。
【0085】
次に図5により燃料電池セルスタック14について説明する。図5は、固体酸化物型燃料電池システムの燃料電池セルスタックを示す斜視図である。図5に示すように、燃料電池セルスタック14は、16本の燃料電池セルユニット16を備え、これらの燃料電池セルユニット16の下端側及び上端側が、それぞれ、セラミック製の下支持板68及び上支持板100により支持されている。これらの下支持板68及び上支持板100には、内側電極端子86が貫通可能な貫通穴68a及び100aがそれぞれ形成されている。
【0086】
さらに、燃料電池セルユニット16には、集電体102及び外部端子104が取り付けられている。この集電体102は、燃料極である内側電極層90に取り付けられた内側電極端子86と電気的に接続される燃料極用接続部102aと、空気極である外側電極層92の外周面全体と電気的に接続される空気極用接続部102bとにより一体的に形成されている。空気極用接続部102bは、外側電極層92の表面を上下方向に延びる鉛直部102cと、この鉛直部102cから外側電極層92の表面に沿って水平方向に延びる多数の水平部102dとから形成されている。また、燃料極用接続部102aは、空気極用接続部102bの鉛直部102cから燃料電池セルユニット16の上下方向に位置する内側電極端子86に向って斜め上方又は斜め下方に向って直線的に延びている。
【0087】
さらに、燃料電池セルスタック14の端(図5では左端の奥側及び手前側)に位置する2個の燃料電池セルユニット16の上側端及び下側端の内側電極端子86には、それぞれ外部端子104が接続されている。これらの外部端子104は、隣接する燃料電池セルスタック14の端にある燃料電池セルユニット16の外部端子104(図示せず)に接続され、上述したように、160本の燃料電池セルユニット16の全てが直列接続されるようになっている。
【0088】
次に、図に示された燃料電池システムの起動モードについて説明する。先ず、改質用空気を増やすように改質用空気流量調整ユニット44、電磁弁42及び混合部47を制御し、改質器20に空気を供給する。また、発電室10には、発電用空気流量調整ユニット45、電磁弁42を制御し、空気導入管76から発電用の空気が供給される。そしてまた、燃料ガスの供給を増やすように燃料流量調整ユニット38、及び混合部47を制御し、改質器20に被改質ガスを供給し、改質器20へ送り込まれた被改質ガス及び改質用空気は、改質器20、燃料ガス供給管64、ガスマニホールド66を介して、各々の貫通孔69から各燃料電池セルユニット16内に送り込まれる。各燃料電池セルユニット16内に送り込まれた被改質ガス及び改質用空気は、各燃料電池セルユニット16の下端に形成されている燃料ガス流路98から燃料ガス流路88を通過し、上端に形成されている燃料ガス流路98から夫々流出する。その後、点火装置83によって、燃料ガス流路98上端から流出した被改質ガスに着火して燃焼運転を実行する。これにより、燃焼室18内で被改質ガスが燃焼され、部分酸化改質反応が発生する。
【0089】
その後、改質器20の温度が約600℃以上になり、且つ燃料電池セル集合体12の温度が約250℃を超えたことを条件として、オートサーマル改質反応へと移行させる。この時、水流量調整ユニット28、燃料流量調整ユニット38及び改質用空気流量調整ユニット44により、被改質ガスと改質用空気と水蒸気とを予め混合したガスを改質器20に供給する。次いで、改質器20の温度が650℃以上となり、且つ燃料電池セル集合体12の温度が約600℃を超えたことを条件として、水蒸気改質反応へと移行させる。
【0090】
上述したように着火から燃焼工程の進行に合わせて改質工程を切り替えていくことで、発電室10内の温度が徐々に上昇する。発電室10の温度が、燃料電池モジュール2を安定的に作動させる定格温度(約700℃)よりも低い所定の発電温度に達したら、燃料電池モジュール2を含む電気回路を閉じる。それにより、燃料電池モジュール2は発電を開始し、回路に電流が流れて外部に電力を供給することができる。
【0091】
次に、本実施形態による固体酸化物形燃料電池システムの運転停止について説明する。燃料電池システムの運転停止は、燃料電池モジュールからの電力の取り出しを停止させた後も燃料の供給を継続しながら、冷却用の空気を大量に送ることにより燃料電池セルスタックを冷却する。次に、セルスタックの温度が燃料電池セルの燃料極の酸化温度未満に低下したときの燃料の供給を停止させ、以降、温度が十分に低下するまでの冷却用の空気のみを供給を続け、燃料電池に完全に停止させることができる。
【0092】
また、緊急時には、電力の取り出し、燃料ガス、空気及び燃料改質用の水の供給をほぼ同時に遮断する、シャットダウン停止により燃料電池システムを停止させることができる。また、電力の取り出しを停止させた後も燃料を少しずつ絞りながら停止したり、Nガスなどのパージガスを流すことなく停止することが可能である。
【0093】
シャットダウン停止のほぼ同時に遮断するとは、電流、空気、ガス、水が数10秒以内という非常に短い時間にて全て停止することを示す。例えば、電流、空気、ガス、水がほぼ同時に全て停止する場合や、電流を止めたのち10数秒後に空気と燃料ガスの供給を止め、さらにその10数秒後に水の供給を止める場合が挙げられる。
【実施例
【0094】
本発明を以下の実施例によってさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。
【0095】
実施例1
空気極用スラリーの作製
空気極用スラリーは、ABOで表されるペロブスカイト型酸化物として、(La0.6Sr0.4)(Co0.2Fe0.8)O3を含む空気極材料において、ペロブスカイト型酸化物のAサイトに含まれる元素のモル数(A)と、ペロブスカイト型酸化物のBサイトに含まれる元素のモル数(B)との比が1.001である原料粉末と、溶媒と、バインダーとを混合粉砕することにより作製した。
【0096】
固体酸化物形燃料電池セルの作製
NiO粉末と8YSZ(8mol%Y-92mol%ZrO)粉末とを重量比60:40で混合して、押し出し成形機にてせん断を加え1次粒子化させながら円筒状に成形し、900℃で仮焼して燃焼極支持体を作製した。この燃料極支持体上に、燃料極の反応を促進させる燃料極触媒層を形成した。燃料極触媒層は、NiOとGDC10(10mol%Gd-90mol%CeO)とを、重量比50:50で混合したものをスラリーコート法により燃料極支持体上に製膜し形成した。さらに、燃料極反応触媒層上にLDC40(40mol%La-60mol%CeO)、La0.8Sr0.2Ga0.8Mg0.2の組成のLSGMをスラリーコート法により順次積層し、固体電解質層を形成し、成形体を得た。得られた成形体を1300℃にて焼成した。その後、空気極用スラリーをスラリーコート法にて製膜し、1050℃で焼成することで固体酸化物形燃料電池を作製した。
【0097】
外観検査
得られた固体酸化物形燃料電池セルについて、実体顕微鏡による外観検査を行い、空気極表面におけるクラックの有無を確認した。倍率100倍にて、燃料電池セルにおいて長軸方向における両端2箇所と中央部1箇所の計3箇所を確認し、1箇所でもクラックが確認された場合には×と評価し、それ以外は○と評価した。結果を表1に示す。
○:クラックなし
×:クラックあり
【0098】
空気極に含まれる硫黄元素の含有量の分析
空気極に含まれる硫黄元素の含有量は、作製した固体酸化物形燃料電池セルの空気極を固体電解質表面が見えるまで削り取り、得られた空気極粉すべてを炭素硫黄分析装置(LECO社製CS844)により分析し、空気極に含まれる硫黄元素の含有量を得た。結果を表1に示す。
【0099】
空気極に含まれるペロブスカイト型酸化物のA/B比の分析
空気極に含まれるペロブスカイト型酸化物のA/B比は、作製した固体酸化物形燃料電池セルの空気極を削り取り、得られた空気極粉すべてをXRFにより分析し、特性X線のピーク強度を得た。次に、空気極の検量線を以下の方法で作成した。空気極に含まれるペロブスカイト型酸化物を構成する各元素の酸化物を準備し、ガラスビード法により成形し、標準試料を作製した。次に、この標準試料の特性X線のピーク強度を蛍光X線分析装置(XRF)により測定した。その後、これら標準試料の秤量値から算出される標準試料の組成量と、得られた特性X線のピーク強度とから検量線を作成した。固体酸化物形燃料電池セルの空気極から得られた特性X線のピーク強度と上記検量線とから空気極に含まれるペロブスカイト型酸化物の各元素量(wt%)を求めた。これらから、ペロブスカイト型酸化物のAサイトに含まれる元素のモル数(A)、及びBサイトに含まれる元素のモル数(B)を求め、空気極に含まれるペロブスカイト型酸化物のA/B比を得た。空気極に含まれるペロブスカイト型酸化物のA/B比は、原料粉末と同じ値を得た。結果を表1に示す。
【0100】
空気極のヤング率の測定
空気極のヤング率の測定は、ナノインデンテーション法(エリオニクス社ENT-2100)を用いて測定した。インデンターにバーコビッチ型の三角錐圧子を使用した。ダイヤモンド圧子のヤング率として1140GPa、ポアソン比として0.07を使用した。測定荷重は、圧痕の押し込み深さが空気極の膜厚の1/10以下の値になるように設定した。測定荷重の設定は、荷重を任意に5点変化させた時の押し込み深さを測定し、各荷重と各押し込み深さの関係を荷重負荷曲線にし、得られた曲線から空気極の膜厚の1/10以下になる荷重を求めた。この荷重を用いて空気極表面の任意の10点測定してヤング率を算出し、得られた10点の平均値を本発明の空気極のヤング率とした。結果を表1に示す。
【0101】
作製した固体酸化物形燃料電池セルは、以下に示される通りであった。燃料極支持体が外径10mm、肉厚1mmであった。燃料極反応触媒層の厚さが10μmであった。LDC層の厚みが5μmであった。LSGM層の厚みが40μmであった。空気極の厚みが20μmであり、かつ、空気極の面積が35cmであった。
【0102】
次に、空気極の上にコーティング液を塗布して空気極集電層を形成した。コーティング液の組成は、銀粉末と、パラジウム粉末と、LSCF粉末と、溶媒と、バインダーとを混合させたものとした。このコーティング液を、固体酸化物形燃料電池セルに、スプレーにより塗布した後、乾燥機にて乾燥させ、室温にて冷却後、700℃1時間焼成して、空気極の外側に空気極集電層を形成した。空気極集電層は、銀とパラジウムとLSCFを備える。
【0103】
固体酸化物型燃料電池セルの発電試験
得られた固体酸化物型燃料電池セル(電極有効面積:35.0cm2 )を用いて発電試験を行った。燃料極の集電は、内側電極端子にAg線を外周に巻きつけ行った。空気極の集電も、空気極集電層にAg線を外周に巻きつけ行った。発電条件は、以下の通りとした。すなわち、燃料ガスは燃料(H2+3%H2O)とN2の混合ガスとし、燃料利用率は75%とした。また、酸化剤ガスは空気とした。測定温度は700℃ とし、電流密度0.2A/cm2での発電電位を測定した。セルの初期性能は表1に初期電位として示されるとおりであった。
【0104】
固体酸化物形燃料電池モジュールの作製
燃料極支持体の両端部に集電体とガスシールを兼ね備えた導電性シール材を取付け、さらに前記燃料極の両端部に導電性シール材を覆うように内側電極端子を設け、燃料電池セルユニットを作製した。内側電極端子は燃料ガス流路となる燃料極支持体の内径より縮径し、前記セルのそれぞれの端部からセルの外方向に伸びる縮径部を有するものとした。前記燃料電池セルユニットを16本一組とし、燃料極と空気極を接続するコネクタで16本を直列につなぎスタック化した。前記スタックを10組搭載し160本を直列に接続し、さらに改質器、空気配管、および燃料配管を取付けた後にハウジングで囲み、固体酸化物形燃料電池モジュールを作製した。この燃料電池モジュールを、固体酸化物形燃料電池システムに組み込んだ。
【0105】
燃料電池システム発電
燃料ガスを都市ガス13Aとし、燃料利用率は75%とした。また、酸化剤は空気とし、空気利用率は40%とした。S/C=2.25とした。発電定常温度は700℃とし、電流密度0.2A/cmで運転した。
【0106】
燃料電池システム停止
定常温度で2時間運転したのち、燃料電池システムの電流、燃料ガス、空気、水の供給をほぼ同時に遮断する、シャットダウン停止により燃料電池システムを停止させた。その後、システム内のモジュールを取り出し、モジュール内の固体酸化物形燃料電池セル全数の外観を目視にて確認した。そして、燃料電池セルスタック内部位置するセルについては、セルスタックを解体し、1本毎に目視にて空気極が成膜されている部位のクラック有無を確認した。また、評価が○のものについて空気極の浮き発生本数をカウントし、×のものについて空気極の剥離本数をカウントした。
外観を以下の基準で評価した。
評価◎:100回以上のシャットダウン停止後も発電に支障がなく、空気極の剥離、セルの破損がない。
評価○100回未満のシャットダウン停止後も発電に支障がなく、空気極の剥離、セルの破損は見られなかったが、100回以上のシャットダウン停止で、空気極の剥離までは至らないものの、空気極の部分的な浮き(しわ)を確認した。
評価×:5回未満のシャットダウン停止で空気極の剥離を確認した。
【0107】
以上の結果は、後記する表1に記載の通りであった。
【0108】
実施例2~12および比較例1および2
表1に示すA/B比を有する(La0.6Sr0.4A/B(Co0.2Fe0.8)O3の原料粉末を用い、焼成直後の空気極中の硫黄含有量が表1に示す量になるように硫黄化合物としてナトリウムジオクチルスルホサクシネートを用いた以外は実施例1と同様に混合粉砕することにより空気極用スラリーを作製した。その後、実施例1と同様にして固体酸化物型燃料電池セルおよび燃料電池システムを作製した。そして、実施例1と同様の試験を行った。結果は表1に示されるとおりであった。
【0109】
【表1】
図1
図2
図3
図4
図5
図6