(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-02-05
(45)【発行日】2024-02-14
(54)【発明の名称】球形ポンプロータ静圧支持構造及び静圧支持構造を備える球形ポンプ
(51)【国際特許分類】
F04B 1/128 20200101AFI20240206BHJP
F04B 1/146 20200101ALI20240206BHJP
F04B 1/143 20200101ALI20240206BHJP
F04B 1/145 20200101ALI20240206BHJP
F04B 7/04 20060101ALI20240206BHJP
F04B 1/126 20200101ALI20240206BHJP
F04C 18/54 20060101ALI20240206BHJP
F04C 18/063 20060101ALI20240206BHJP
F04C 29/00 20060101ALI20240206BHJP
【FI】
F04B1/128
F04B1/146
F04B1/143
F04B1/145
F04B7/04
F04B1/126
F04C18/54
F04C18/063
F04C29/00 E
(21)【出願番号】P 2022550043
(86)(22)【出願日】2020-10-22
(86)【国際出願番号】 CN2020122673
(87)【国際公開番号】W WO2021083019
(87)【国際公開日】2021-05-06
【審査請求日】2022-04-20
(31)【優先権主張番号】201911061558.X
(32)【優先日】2019-11-01
(33)【優先権主張国・地域又は機関】CN
(31)【優先権主張番号】201911060871.1
(32)【優先日】2019-11-01
(33)【優先権主張国・地域又は機関】CN
(73)【特許権者】
【識別番号】523362054
【氏名又は名称】深▲セン▼市球形動力科技有限公司
(74)【代理人】
【識別番号】110002468
【氏名又は名称】弁理士法人後藤特許事務所
(72)【発明者】
【氏名】王 陸一
(72)【発明者】
【氏名】李 正平
(72)【発明者】
【氏名】張 五星
【審査官】丹治 和幸
(56)【参考文献】
【文献】特表2019-513946(JP,A)
【文献】米国特許出願公開第2016/0333879(US,A1)
【文献】中国特許出願公開第105756933(CN,A)
【文献】特表2013-538312(JP,A)
【文献】特表2013-506083(JP,A)
【文献】中国実用新案第209494702(CN,U)
(58)【調査した分野】(Int.Cl.,DB名)
F04B 1/00- 7/06、
9/00-15/08、
25/00-37/20、
41/00-41/06
F04C 15/00、18/54、29/00
F03C 1/00-99/00
(57)【特許請求の範囲】
【請求項1】
球形ポンプロータ静圧支持構造であって、
前記球形ポンプロータ静圧支持構造は、回転盤に設けられる第1液流通路及び第2液流通路と、スライドシューの平行な両側面に設けられる液体圧力受け溝とを含み、前記第1液流通路は、第1液流通路入口と、第1液流通路出口とを含み、前記第1液流通路入口は、球形ポンプの1つの作動室に連通し、前記第2液流通路は、第2液流通路入口と、第2液流通路出口とを含み、前記第2液流通路入口は、前記球形ポンプのもう1つの作動室に連通し、前記第1液流通路出口及び前記第2液流通路出口は、それぞれ前記スライドシューの平行な両側面における液体圧力受け溝に連通し、
前記スライドシューの平行な両側面と、前記球形ポンプのスライド
溝の側面との間にはスライドシューライナが設けられ、
前記スライドシューの平行な両側面は、両側の前記スライドシューライナに密接して前記スライド溝内を前記スライドシューライナの表面に沿って往復摺動し、
前記球形ポンプロータ静圧支持構造は、前記スライドシューの平行な両側面と前記スライドシューライナとの間に設けられる、球形ポンプロータ静圧支持構造。
【請求項2】
前記第1液流通路入口は、前記回転盤の上端面に設けられ、前記第1液流通路出口は、前記スライドシューの平行な両側面のうちの1つの側面に設けられ、前記第1液流通路入口及び前記第1液流通路出口は、それぞれ前記回転盤の軸線が位置する、前記スライドシューの平行な両側面と平行な平面の両側に位置し、
前記第2液流通路入口は、前記回転盤の上端面に設けられ、前記第2液流通路出口は、前記スライドシューの平行な両側面のうちのもう1つの側面に設けられ、前記第2液流通路入口及び前記第2液流通路出口は、それぞれ前記回転盤の軸線が位置する、前記スライドシューの平行な両側面と平行な平面の両側に位置する、請求項1に記載の球形ポンプロータ静圧支持構造。
【請求項3】
前記液体圧力受け溝は、前記スライドシューの平行な両側面に設けられる第1液体圧力受け溝及び第2液体圧力受け溝を含み、前記第1液流通路出口は、前記第1液体圧力受け溝に連通し、前記第2液流通路出口は、前記第2液体圧力受け溝に連通し、前記第1液体圧力受け溝の断面サイズは、前記第1液流通路出口の断面サイズよりも大きく、前記第2液体圧力受け溝の断面サイズは、前記第2液流通路出口の断面サイズよりも大きく、前記第1液体圧力受け溝及び前記第2液体圧力受け溝の表面は、前記スライドシューの平行な両側面よりも
低い、請求項1に記載の球形ポンプロータ静圧支持構造。
【請求項4】
前記第1液体圧力受け溝の断面サイズは、前記第1液流通路出口の断面サイズの10倍以上であり、前記第2液体圧力受け溝の断面サイズは、前記第2液流通路出口の断面サイズの10倍以上である、請求項3に記載の球形ポンプロータ静圧支持構造。
【請求項5】
前記液体圧力受け溝は、前記スライドシューの平行な両側面に設けられる第1多段階圧力受け溝及び第2多段階圧力受け溝を含み、前記第1液流通路出口は、前記第1多段階圧力受け溝に連通し、前記第2液流通路出口は、前記第2多段階圧力受け溝に連通し、前記第1多段階圧力受け溝の断面サイズは、前記第1液流通路出口の断面サイズよりも大きく、前記第2多段階圧力受け溝の断面サイズは、前記第2液流通路出口の断面サイズよりも大きく、前記第1多段階圧力受け溝及び前記第2多段階圧力受け溝の表面は、前記スライドシューの平行な両側面よりも
低く、
前記第1多段階圧力受け溝及び前記第2多段階圧力受け溝は、いずれも1つの基本圧力受け溝と、複数の補助圧力受け溝とを含み、前記基本圧力受け溝は、前記スライドシューの平行な両側面の中央に設けられ、前記基本圧力受け溝の底部は、前記第1液流通路出口又は前記第2液流通路出口に連通し、前記基本圧力受け溝の外周には、複数の前記補助圧力受け溝がそれぞれ設けられ、複数の前記補助圧力受け溝は、順に前記基本圧力受け溝の外周に周設される、請求項1に記載の球形ポンプロータ静圧支持構造。
【請求項6】
前記第1多段階圧力受け溝及び前記第2多段階圧力受け溝は、多段階円形溝又は多段階矩形溝である、請求項5に記載の球形ポンプロータ静圧支持構造。
【請求項7】
前記液体圧力受け溝は、円形溝又は矩形溝である、請求項1に記載の球形ポンプロータ静圧支持構造。
【請求項8】
シリンダーブロックと、シリンダーヘッドと、ピストンと、回転盤と、主軸及び主軸支持枠とを含む静圧支持構造
付きの球形ポンプであって、
前記シリンダーブロックは、半球形キャビティを有し、前記シリンダーブロックには、シリンダーの外部を貫通する回転盤軸通過孔が設けられ、
前記シリンダーヘッドは、半球形キャビティを有し、前記シリンダーヘッドの下端は、前記シリンダーブロックの上端に固定接続されて球形キャビティを形成し、前記シリンダーヘッドの内球面には、ピストン軸孔、入液長円孔及び排液長円孔が設けられ、前記入液長円孔及び前記排液長円孔の孔口は、それぞれ前記シリンダーヘッドの内球面であって、前記ピストン軸孔の軸線に垂直な環状空間内に配置され、前記入液長円孔は、前記シリンダーヘッドの上端にある入液孔に連通し、前記排液長円孔は、前記シリンダーヘッドの上端にある排液孔に連通し、
前記ピストンは、球形頂面と、特定の角度をなす2つの側面と、前記2つの側面の下部に位置するピストンピンボスとを含み、前記ピストンの球形頂面の中央にピストン軸が突出し、前記ピストン軸の軸線は、前記ピストンの球形頂面の球心を通り、前記ピストンの球形頂面は、前記球形キャビティと同一の球心を有し、密封動きばめを形成し、
前記回転盤の上部と下端面との間の外周面は回転盤球面であり、前記回転盤球面は、前記球形キャビティと同一の球心を有し、球形キャビティに密接して密封動きばめを形成し、前記回転盤は、その上部に前記ピストンピンボスに対応する回転盤ピンボスを有し、前記回転盤の下端の中心に回転盤軸が突出し、前記回転盤軸は、前記回転盤球面の球心を通り、前記回転盤軸の端部にはスライドシューが固定して設けられ、
前記主軸は、前記主軸支持枠を介して前記シリンダーブロックの下端に接続され、前記主軸支持枠は、前記シリンダーブロックの下端に固定接続され、前記主軸支持枠は、前記主軸の回転に支持を提供し、前記主軸の上端面には、スライド溝が設けられ、前記主軸の下端は、動力機構に接続され、
前記ピストン軸孔及び前記回転盤軸の軸線は、いずれも前記球形キャビティの球心を通り、前記ピストン軸孔の軸線と前記主軸の軸線とは特定の角度をなし、前記回転盤ピンボスと前記ピストンピンボスとは合わせて円柱ヒンジを形成し、前記円柱ヒンジの各合わせ面の間には密封動きばめが形成され、前記回転盤軸は、前記シリンダーブロックの下端から伸出した後、前記スライドシューは、前記主軸の上端にある前記スライド溝内に挿入され、前記スライドシューの互いに平行な両側面は、前記スライド溝の両側面に密接して滑りばめを形成し、前記スライドシューの平行な両側面は、前記回転盤軸の両側に対称的に配置されるとともに、前記円柱ヒンジの軸線に平行であり、前記主軸が回転して前記回転盤及び前記ピストンを駆動する際に、前記スライドシューは前記スライド溝内を往復摺動し、前記ピストンと前記回転盤とは互いに対して揺動し、前記回転盤の上端面、前記ピストンの両側面と、前記球形キャビティとの間には、容積が交互に変化する2つの作動室が形成され、前記スライドシューの平行な両側面と前記スライド溝との間には静圧支持構造が設けられ、前記静圧支持構造は、前記回転盤に設けられる第1液流通路及び第2液流通路と、前記スライドシューの平行な両側面に設けられる液体圧力受け溝とを含み、前記第1液流通路は、第1液流通路入口と、第1液流通路出口とを含み、前記第1液流通路入口は、1つの前記作動室に連通し、前記第2液流通路は、第2液流通路入口と、第2液流通路出口とを含み、前記第2液流通路入口は、もう1つの前記作動室に連通し、前記第1液流通路出口及び前記第2液流通路出口は、それぞれ前記スライドシューの平行な両側面における液体圧力受け溝に連通する、静圧支持構造
付きの球形ポンプ。
【請求項9】
前記第1液流通路入口は、前記回転盤の上端面に設けられ、前記第1液流通路出口は、前記スライドシューの平行な両側面のうちの1つの側面に設けられ、前記第1液流通路入口及び前記第1液流通路出口は、それぞれ前記回転盤の軸線が位置する、前記スライドシューの平行な両側面と平行な平面の両側に位置し、
前記第2液流通路入口は、前記回転盤の上端面に設けられ、前記第2液流通路出口は、前記スライドシューの平行な両側面のうちのもう1つの側面に設けられ、前記第2液流通路入口及び前記第2液流通路出口は、それぞれ前記回転盤の軸線が位置する、前記スライドシューの平行な両側面と平行な平面の両側に位置する、請求項8に記載の静圧支持構造を備える球形ポンプ。
【請求項10】
前記スライドシューの平行な両側面と、前記スライド溝の側面との間には、スライドシューライナが設けられ、
前記スライドシューの平行な両側面は、両側の前記スライドシューライナに密接するとともに、前記スライド溝内を前記スライドシューライナの表面に沿って往復摺動する、請求項8に記載の静圧支持構造を備える球形ポンプ。
【請求項11】
前記液体圧力受け溝は、前記スライドシューの平行な両側面に設けられる第1液体圧力受け溝及び第2液体圧力受け溝を含み、前記第1液流通路出口は、前記第1液体圧力受け溝に連通し、前記第2液流通路出口は、前記第2液体圧力受け溝に連通し、前記第1液体圧力受け溝の断面サイズは、前記第1液流通路出口の断面サイズよりも大きく、前記第2液体圧力受け溝の断面サイズは、前記第2液流通路出口の断面サイズよりも大きく、前記第1液体圧力受け溝及び前記第2液体圧力受け溝の表面は、前記スライドシューの平行な両側面よりも
低い、請求項8に記載の静圧支持構造を備える球形ポンプ。
【請求項12】
前記液体圧力受け溝は、前記スライドシューの平行な両側面に設けられる第1多段階圧力受け溝及び第2多段階圧力受け溝を含み、前記第1液流通路出口は、前記第1多段階圧力受け溝に連通し、前記第2液流通路出口は、前記第2多段階圧力受け溝に連通し、前記第1多段階圧力受け溝の断面サイズは、第1液流通路出口の断面サイズよりも大きく、前記第2多段階圧力受け溝の断面サイズは、前記第2液流通路出口の断面サイズよりも大きく、前記第1多段階圧力受け溝及び前記第2多段階圧力受け溝の表面は、前記スライドシューの平行な両側面よりも
低く、
前記第1多段階圧力受け溝及び前記第2多段階圧力受け溝は、いずれも1つの基本圧力受け溝と、複数の補助圧力受け溝とを含み、前記基本圧力受け溝は、前記スライドシューの平行な両側面の中央に設けられ、前記基本圧力受け溝の底部は、前記第1液流通路出口又は前記第2液流通路出口に連通し、前記基本圧力受け溝の外周には、複数の前記補助圧力受け溝がそれぞれ設けられ、複数の前記補助圧力受け溝は、順に前記基本圧力受け溝の外周に周設される、請求項8に記載の静圧支持構造を備える球形ポンプ。
【請求項13】
前記第1多段階圧力受け溝及び前記第2多段階圧力受け溝は、多段階円形溝又は多段階矩形溝である、請求項12に記載の静圧支持構造を備える球形ポンプ。
【請求項14】
前記液体圧力受け溝は、円形溝又は矩形溝である、請求項8に記載の静圧支持構造を備える球形ポンプ。
【請求項15】
冷却通路をさらに含み、前記入液孔内には、スロットル階段が設けられ、前記入液孔内の液体は、スロットル面を通過してスロットリングされた後、吸液する前記作動室及び前記冷却通路内に入り、
前記冷却通路の入口は、前記入液孔に連通し、前記シリンダーヘッドには、シリンダーヘッド分流通路及びシリンダーヘッド還流通路が設けられ、前記シリンダーブロックには、シリンダーブロック分流通路及びシリンダーブロック還流通路が設けられ、前記主軸支持枠には、主軸支持枠還流溝が設けられ、前記入液孔から分流する冷却液は、順にシリンダーヘッド分流通路、シリンダーブロック分流通路を経て前記シリンダーブロックの下端、前記主軸の上端及び前記主軸支持枠の上端からなるキャビティである集液槽に入り、さらに順に主軸支持枠還流溝、シリンダーブロック還流通路、及びシリンダーヘッド還流通路を経て入液孔内に戻り、吸液する前記作動室内に吸引される、請求項8に記載の静圧支持構造を備える球形ポンプ。
【請求項16】
前記ピストンピンボスは、半円柱構造であり、半円柱構造である前記ピストンピンボスの中部には凹溝があり、前記ピストンピンボスの中心軸線には、貫通したピストンピン孔が設けられ、
前記回転盤ピンボスの両端は、半円柱凹溝であり、中部は、突起した半円柱であり、前記回転盤ピンボスの突起した中心軸線には、貫通した回転盤ピン孔が設けられ、
センターピンは、前記回転盤ピンボス及び前記ピストンピンボスに形成されるピン孔に挿入されて円柱ヒンジを形成し、
前記センターピンの両端は円弧状であり、前記円弧状は、前記球形キャビティの形状に適合する、請求項10に記載の静圧支持構造を備える球形ポンプ。
【請求項17】
前記ピストン及び前記回転盤の外球面、前記ピストン軸の外円柱面、前記ピストンピンボスの半円柱の円柱面には、PEEK被覆層が設けられ、
前記スライドシューライナの材料はPEEKであり、
前記主軸における前記シリンダーブロックの下端に対応する部分には、シリンダーブロックスリーブが設けられ、前記シリンダーブロックスリーブは、PEEK材料を採用し、前記シリンダーブロックスリーブの内円柱面及び外円柱面には、軸方向に沿って貫通した冷却溝が設けられる、請求項16に記載の静圧支持構造を備える球形ポンプ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、容積可変型機構の技術分野に関し、特に、球形ポンプロータ静圧支持構造及び静圧支持構造を備える球形ポンプに関する。
【背景技術】
【0002】
球形ポンプは、近年開発された構造が新しい容積可変型機構である。球形ポンプの利点は、吸気/排気バルブがなく運動部品が少なく、各運動部品の間は面接触であり、面密封構造を構成するため、密封の信頼性が高く、高圧及び構造小型化を実現できることである。現在、球形ポンプは実際に多くの分野に使用されており、ポンプ機械の新規構造である。しかし、球形ポンプのピストン軸線と主軸との間に一定の角度があり、2つの作動室中の圧力が交互に変化し、1つの作動室が高圧であるときにもう1つの作動室が低圧となることで、ピストン及び回転盤が低圧側に揺動してシリンダーブロックの球面を押し付けることにより、この側の回転盤とシリンダーブロック球面との間の隙間が小さくなり、油膜又は水膜が破壊され、摩擦力が大きくなり、電力消費が増大し、ロータとスライドシューは異常に摩耗される恐れがある。
【発明の概要】
【0003】
本発明の目的は、球形ポンプロータ静圧支持構造を設計することである。球形ポンプロータスライドシューに静圧支持構造を増設することによって、球形ポンプによる液体圧力により球形ポンプが動作するときの不平衡力を平衡化することにより、動作電力消費が減少され、球形ポンプの寿命が延長される。
【0004】
本発明の別の目的は、静圧支持構造を備える球形ポンプを設計することである。球形ポンプロータスライドシューに静圧支持構造を増設することによって、球形ポンプによる液体圧力により球形ポンプが動作するときの不平衡力を平衡化することにより、動作電力消費が減少され、球形ポンプの寿命が延長される。
【0005】
上述した目的を達成するために、本発明によれば、球形ポンプロータ静圧支持構造であって、前記球形ポンプロータ静圧支持構造は、回転盤に設けられる第1液流通路及び第2液流通路と、スライドシューの平行な両側面に設けられる液体圧力受け溝とを含み、前記第1液流通路は、第1液流通路入口と、第1液流通路出口とを含み、前記第1液流通路入口は、球形ポンプの1つの作動室に連通し、前記第2液流通路は、第2液流通路入口と、第2液流通路出口とを含み、前記第2液流通路入口は、前記球形ポンプのもう1つの作動室に連通し、前記第1液流通路出口及び前記第2液流通路出口は、それぞれ前記スライドシューの平行な両側面における液体圧力受け溝に連通し、前記スライドシューの平行な両側面における前記球形ポンプのスライド溝に密接する側面との間にはスライドシューライナが設けられ、前記スライドシューの平行な両側面は、両側の前記スライドシューライナに密接して前記スライド溝内を前記スライドシューライナの表面に沿って往復摺動し、前記静圧支持構造は、前記スライドシューの平行な両側面と前記スライドシューライナとの間に設けられる、球形ポンプロータ静圧支持構造が提供される。
【0006】
本発明によれば、シリンダーブロックと、シリンダーヘッドと、ピストンと、回転盤と、主軸及び主軸支持枠とを含む静圧支持構造を備える球形ポンプであって、
前記シリンダーブロックは、半球形キャビティを有し、前記シリンダーブロックには、シリンダーの外部を貫通する回転盤軸通過孔が設けられ、
前記シリンダーヘッドは、半球形キャビティを有し、前記シリンダーヘッドの下端は、前記シリンダーブロックの上端に固定接続されて球形キャビティを形成し、前記シリンダーヘッドの内球面には、ピストン軸孔、入液長円孔及び排液長円孔が設けられ、前記入液長円孔及び前記排液長円孔の孔口は、それぞれ前記シリンダーヘッドの内球面であって、前記ピストン軸孔の軸線に垂直な環状空間内に配置され、前記入液長円孔は、前記シリンダーヘッドの上端にある入液孔に連通し、前記排液長円孔は、前記シリンダーヘッドの上端にある排液孔に連通し、
前記ピストンは、球形頂面と、特定の角度をなす2つの側面と、前記2つの側面の下部に位置するピストンピンボスとを含み、前記ピストンの球形頂面の中央にピストン軸が突出し、前記ピストン軸の軸線は、前記ピストンの球形頂面の球心を通り、前記ピストンの球形頂面は、前記球形キャビティと同一の球心を有し、密封動きばめを形成し、つまり前記球形キャビティを密封するとともに動き可能に球形キャビティに嵌められる。
前記回転盤の上部と下端面との間の外周面は回転盤球面であり、前記回転盤球面は、前記球形キャビティと同一の球心を有し、球形キャビティに密接して密封動きばめ(密封が実現されるとともに動き可能に嵌合)を形成し、前記回転盤は、その上部に前記ピストンピンボスに対応する回転盤ピンボスを有し、前記回転盤の下端の中心に回転盤軸が突出し、前記回転盤軸は、前記回転盤球面の球心を通り、前記回転盤軸の端部にはスライドシューが固定して設けられ、
前記主軸は、前記主軸支持枠を介して前記シリンダーブロックの下端に接続され、前記主軸支持枠は、前記シリンダーブロックの下端に固定接続され、前記主軸支持枠は、前記主軸の回転に支持を提供し、前記主軸の上端面には、スライド溝が設けられ、前記主軸の下端は、動力機構に接続され、
前記ピストン軸孔及び前記回転盤軸の軸線は、いずれも前記球形キャビティの球心を通り、前記ピストン軸孔の軸線と前記主軸の軸線とは特定の角度をなし、前記回転盤ピンボスと前記ピストンピンボスとは合わせて円柱ヒンジを形成し、前記円柱ヒンジの各合わせ面の間には密封動きばめが形成され(密封が実現されるとともに動き可能に嵌合され)、前記回転盤軸は、前記シリンダーブロックの下端から伸出した後、前記スライドシューは、前記主軸の上端にある前記スライド溝内に挿入され、前記スライドシューの互いに平行な両側面は、前記スライド溝の両側面に密接して滑りばめを形成し、前記スライドシューの平行な両側面は、前記回転盤軸線の両側に対称的に配置されるとともに、前記円柱ヒンジの軸線に平行であり、前記主軸が回転して前記回転盤及び前記ピストンを駆動する際に、前記スライドシューは前記スライド溝内を往復摺動し、前記ピストンと前記回転盤とは互いに対して揺動し、前記回転盤の上端面、前記ピストンの両側面と、前記球形キャビティとの間には、容積が交互に変化する2つの作動室が形成され、前記スライドシューの平行な両側面と前記スライド溝との間には静圧支持構造が設けられ、前記静圧支持構造は、前記回転盤に設けられる第1液流通路及び第2液流通路と、前記スライドシューの平行な両側面に設けられる液体圧力受け溝とを含み、前記第1液流通路は、第1液流通路入口と、第1液流通路出口とを含み、前記第1液流通路入口は、1つの前記作動室に連通し、前記第2液流通路は、第2液流通路入口と、第2液流通路出口とを含み、前記第2液流通路入口は、もう1つの前記作動室に連通し、前記第1液流通路出口及び前記第2液流通路出口は、それぞれ前記スライドシューの平行な両側面における液体圧力受け溝に連通する、静圧支持構造を備える球形ポンプがさらに提供される。
【0007】
従来技術に比べ、本発明は以下の利点を有する。
ロータの回転過程において2つの作動室の非対称的な圧縮による不平衡力が解消され、スライドシューに静圧支持構造の小さい力を設けるだけで、てこ作用により回転盤において大きな平衡力が得られる。ピストン球面、回転盤球面と球形キャビティとの間の隙間の均一が保証され、摩擦消耗及び摩擦力が減少されるとともに、スライドシューとスライド溝との間の摩擦力が減少され、球形ポンプが動作する過程における非平衡力が現用され、合わせ面間の隙間が保証され、球形ポンプの電力消費が減少され、冷却潤滑の条件が改善され、部品の使用寿命が延長され、オイルポンプ及びウォーターポンプの両方にも適用できる。
【図面の簡単な説明】
【0008】
以下、図面を参照しながら本発明の具体的な実施形態をさらに詳しく説明する。
【0009】
【
図19】多段階液体圧力受け溝が矩形圧力受け溝であるスライドシューの構造模式図である。
【
図21】多段階液体圧力受け溝が円形圧力受け溝であるスライドシューの構造模式図である。
【符号の説明】
【0010】
1、シリンダーヘッド;2、ピストン;3、センターピン;4、回転盤;5、シリンダーブロック;6、主軸;7、主軸支持枠;8、軸受;9、シールリング; 10、スライドシューライナ;11、シリンダーブロックスリーブ;
101、入液孔;1011、スロットル階段;102、排液孔;103、シリンダーヘッド分流通路;104、ピストン軸孔;105、入液長円孔;106、排液長円孔;107、シリンダーヘッド還流通路;108、屑排出溝;
201、ピストン基体;202、ピストンPEEK被覆層;2021、球形頂面;203、ピストン軸;204、ピストンピンボス;2041、側面;205、ピストンピン孔;206、ノッチ;
401、回転盤基体;402、回転盤PEEK被覆層;403、スライドシュー;404、第1液流通路; 4041、第1液流通路入口;4042、第1液流通路出口;405、第2液流通路;4051、第2液流通路入口;4052、第2液流通路出口; 406、第1液体圧力受け溝;407、第2液体圧力受け溝;408、第1多段階矩形溝;4081、第1矩形基本圧力受け溝;4082、第1矩形補助圧力受け溝;409、第2多段階矩形溝;4091、第2矩形基本圧力受け溝;4092、第2矩形補助圧力受け溝;410、第1多段階円形溝;4101、第1円形基本圧力受け溝;4102、第1円形補助圧力受け溝;411、第2多段階円形溝;4111、第2円形基本圧力受け溝;4112、第2円形補助圧力受け溝;412、回転盤軸;413、回転盤ピン孔;414、回転盤ピンボス;
501、シリンダーブロック分流通路;502、シリンダーブロック還流通路;503、回転盤軸通過孔;
601、スライド溝;602、主軸液通流孔;701、主軸支持枠還流溝;1001、作動室。
【発明を実施するための形態】
【0011】
本発明の技術的手段、目的及び効果をより明確にするために、以下、図面を参照しながら本発明の具体的な実施形態を説明する。
【0012】
図1から
図3に示すように、本発明に記載の球形ポンプは、シリンダーヘッド1、ピストン2、回転盤4、シリンダーブロック5、主軸6、主軸支持枠7などを含む。シリンダーブロック5及びシリンダーヘッド1は、半球形のキャビティを有する。シリンダーブロック5、シリンダーヘッド1及び主軸支持枠7は、順にネジを介して固定接続されて球形キャビティを有する球形ポンプハウジング、即ち、球形ポンプステータを形成する。ピストン2、回転盤4及び主軸6は順に接続されて球形ポンプロータを構成する。主軸支持枠7によって、主軸6は回転可能に支持される。主軸支持枠7は、ネジを介してシリンダーブロック5の下端に固定接続される。ピストン2と回転盤4とは、センターピン3を介してヒンジ接続される。ピストン2のピストン軸203は、シリンダーヘッド1内のピストン軸孔104内に挿入され、回転盤4の回転盤軸の下端にあるスライドシュー403は、主軸6の上端にあるスライド溝601内に挿入される。
【0013】
図4、
図5に示すように、シリンダーヘッド1の上端面には、入液孔101及び排液孔102が設けられる。シリンダーヘッド1の内球面には入液長円孔105、排液長円孔106及びピストン軸孔104が設けられる。ピストン軸孔104の軸線は、シリンダーヘッド1の内球面の球心を通る。シリンダーヘッド1の内球面上における入液長円孔105及び排液長円孔106の孔口は、それぞれピストン軸孔104の軸線に垂直な環状空間内に配置される。入液長円孔105はシリンダーヘッド1の上端にある入液孔101に連通し、排液長円孔106は、シリンダーヘッド1の上端にある排液孔102に連通する。ピストン2の回転により排液制御を実現する。各作動室が排液又は入液を必要とする場合、対応する作動室は入液長円孔105又は排液長円孔106に連通する。ピストン軸203がピストン軸孔104内を回転するときに産生する研磨屑がピストン2の外球面とシリンダーヘッド1の内球面との間に入ることを防止するために、シリンダーヘッド1の内球面に屑排出溝108が設けられる。屑排出溝108の一端は、入液長円孔105に連通する。屑排出溝108の他端は、シリンダーヘッド1の内球面に沿ってピストン軸孔104の方向に向かってピストン軸孔104の孔口近傍まで延在する。屑排出溝108の断面はU形であり、U形開口はシリンダーヘッド1の内球面に位置する。屑排出溝108の断面のサイズ(即ち、屑排出溝108の深さ及び幅のサイズ)は、球形ポンプに漏れが発生しないように設計される。屑排出溝108は、ピストン軸孔104に連通してもよく、ピストン軸孔104に連通しなくてもよい。このようにして、ピストン軸孔104から排出される研磨屑は屑排出溝108内に集まり、液体に伴って作動室1001内に入り、流体に伴ってシリンダーの外部に排出される。
【0014】
図6、
図7に示すように、シリンダーブロック5の下端には、シリンダーの外部まで貫通する回転盤軸通過孔503が設けられる。この回転盤軸通過孔503は、回転盤4が回転するときに回転盤軸がシリンダーブロック5に干渉しないサイズを有する。シリンダーブロック5の下端に係合する主軸6の部分には、シリンダーブロックスリーブ11が設けられる。シリンダーブロック5の下端には、シリンダーブロックスリーブ孔が設けられる。シリンダーブロックスリーブ11は、シリンダーブロックスリーブ孔内に位置し、主軸6が回転するときの上端回転支持に使用される(滑り軸受に相当する)。シリンダーブロックスリーブ孔の軸線、シリンダーブロックスリーブ11の軸線は主軸6の軸線と重なり合い、シリンダーブロック5の内球面の球心を通る。シリンダーブロックスリーブ11の内径は、主軸6の上端軸頸に適合する。シリンダーブロックスリーブ11の外径は、シリンダーブロックスリーブ孔の内径に適合する。シリンダーブロックスリーブ11は、円柱状スリーブであり、材料がPEEKである。シリンダーブロックスリーブ11の外円柱及び内円柱面には、軸方向に沿って貫通した冷却溝が設けられる。冷却液が冷却溝を流れて主軸6及びシリンダーブロックスリーブ11を冷却及び潤滑する。
【0015】
図13、
図14に示すように、ピストン2は球形頂面2021、特定の角度(角度はαであり、αは10度~25度である)をなす2つの側面2041、及び2つの側面2041の下部に位置するピストンピンボス204を有する。ピストン2の球形頂面2021の中央には、ピストン軸203が突出する。ピストン軸203の軸線はピストン2の球形頂面2021の球心を通る。ピストン軸203は、シリンダーヘッド1の内球面におけるピストン軸孔104内に挿入される。ピストン2の球形頂面2021は、前記球形キャビティと同一の球心を有し、密封動きばめを形成する(密封が実現されるとともに動き可能に嵌合される)。ピストンピンボス204は半円柱構造であり、半円柱の中心軸線には、貫通したピストンピン孔205がある。ピストン2の下部にあるピストンピンボス204には、半円柱凹溝が形成されるようにノッチ206が設けられる。このピストン2のノッチ206は、ピストンピンボス204の中央に位置し、ピストンピンボス204のピストンピン孔205の軸線に垂直である。ピストン2のノッチ206の幅は、回転盤ピンボスの突起の半円柱体の幅に適合する。実際の生産において、ピストン2は、ステンレス鋼の金属基体、即ち、ピストン基体201の上に、射出によりPEEK層(即ち、ピストンPEEK被覆層202)を被覆することにより、ピストンの球形頂面2021、ピストンピンボス204の外円柱面及び両側の球面2041、ピストンピンボス204の半円柱凹溝の両側面及び円弧底面、ピストン軸203の円柱面の表面にはPEEK被覆層を設ける。これによって、運動部分に鋼とPEEKの摩擦対が形成される。PEEK材料は、耐摩耗性、高強度、耐腐食性及び自己潤滑性を有し、良好な耐摩耗材料であるとともに、ステンレス鋼と良好な摩擦ペアリング特性を有する。
【0016】
図15から
図18に示すように、回転盤4は、その上部にピストンピンボス204に対応する回転盤ピンボス414を有する。回転盤4の下端の中心には、回転盤軸412が突出する。回転盤軸412は、回転盤の球面の球心を通る。在回転盤軸412の端部には、スライドシュー403が設けられる。回転盤4の上部と下端面との間の外周面は回転盤の球面である。回転盤の球面は、前記球形キャビティと同一の球心を有し、球形キャビティに密接して密封動きばめを形成する(密封が実現されるとともに動き可能に嵌合される)。前記回転盤ピンボス414の両端は半円柱凹溝であり、中部は突起した半円柱である。半円柱の中心には、貫通した回転盤ピン孔413が設けられる。センターピン3は、前記回転盤ピンボス414の回転盤ピン孔413及びピストンピンボス204に形成されたピストンピン孔205に挿入されて円柱ヒンジを形成する。円柱ヒンジの各合わせ面は、互いに密封動きばめを形成し(密封が実現されるとともに動き可能に嵌合され)、円柱ヒンジの両端と球形キャビティは密封動きばめを形成する(密封が実現されるとともに動き可能に嵌合される)。ピストン2と回転盤4は、円柱ヒンジを介して密封動的接続を形成する。センターピン3の両端には、PEEK材料製の円弧状入れ子が設けられる。円弧状入れ子の円弧形状は、球形キャビティの形状に適合する。実際の生産において、回転盤4は、ステンレス鋼の金属基体、即ち、回転盤基体401の上に、射出によりPEEK層(即ち、回転盤PEEK被覆層402)を被覆することにより、回転盤の球面、スライドシュー403とスライド溝601の接触する平行な両側面の表面にある被覆層がPEEKとなる。これによって、運動部分に鋼とPEEKの摩擦対が形成される。センターピン3の両端は円弧面であり、センターピン3と、ピストンピンボス204及び回転盤ピンボス414に形成されたピン孔との接触部分の円柱面の材料はPEEKであるため、センターピン3の強度が保証される。センターピン3は、鋼基体上に一層のPEEK材料が被覆される。
【0017】
図8から
図12に示すように、主軸支持枠7は、ネジを介してシリンダーブロック5の下端に固定される。主軸6は、主軸支持枠7を介してシリンダーブロック5の下端に接続される。主軸6の上端面には、長方形のスライド溝601が設けられる。スライド溝601の断面サイズは、回転盤4上のスライドシュー403の平行な両側面の間の厚さに適合する。回転盤軸は、シリンダーブロック5の下端から伸出し、スライドシュー403は、主軸6の上端にあるスライド溝601内に挿入される。スライドシュー403の互いに平行な両側面とスライド溝601の両側面とは互いにフィットして滑りばめを形成する。主軸支持枠7に対応する主軸6の下端における部分には、軸受8及びシールリング9が設けられる。主軸支持枠7の軸孔における孔壁には、主軸支持枠還流溝701が設けられる。主軸支持枠還流溝701は、シリンダーブロック5の下端面におけるシリンダーブロック還流通路502に連通する。スライド溝601の底面には主軸液通流孔602が設けられる。主軸液通流孔602は、主軸6の上端の液体を主軸6の下端軸頸と主軸支持枠7との間に隙間内(シールリング9の上方)に導入し、さらに主軸支持枠還流溝701からシリンダーブロック還流通路502内に戻すためのものである。主軸支持枠7は主軸の回転に支持を提供する。主軸6の下端は、動力機構に接続されて球形ポンプの動作に動力を提供する。
【0018】
シリンダーヘッド1には、シリンダーヘッド分流通路103及びシリンダーヘッド還流通路107が設けられる。シリンダーブロック5には、シリンダーブロック分流通路501及びシリンダーブロック還流通路502が設けられる。シリンダーヘッド分流通路103の上端及びシリンダーヘッド還流通路107の上端は、それぞれ入液孔101に連通する。シリンダーヘッド分流通路103及びシリンダーヘッド還流通路107の下端は、シリンダーヘッド1の下端フランジ面に設けられる。シリンダーブロック分流通路501及びシリンダーブロック還流通路502の上端は、シリンダーブロック5の上端フランジ面に設けられる。シリンダーヘッド分流通路103の下端は、シリンダーブロック分流通路501の上端に連通する。シリンダーブロック還流通路502の上端は、シリンダーヘッド還流通路107の下端に連通する。シリンダーブロック還流通路502の下端は、主軸支持枠還流溝701に連通する。入液孔101内には、スロットル階段1011が設けられる。入液孔101内の液体は、スロットル面によってスロットリングされた後、ほとんど液体を吸引する作動室1001に入り、少部分が冷却通路内に入ってシステムを冷却する。シリンダーヘッド分流通路103、シリンダーブロック分流通路501、集液槽、主軸支持枠還流溝701、シリンダーブロック還流通路502、シリンダーヘッド還流通路107は順に連通して球形ポンプ冷却通路を構成する。冷却通路の入口は入液孔101に連通し、入液孔101から分流する冷却液は、順にシリンダーヘッド分流通路103、シリンダーブロック分流通路501を経てシリンダーブロック5の下端、主軸6の上端及び主軸支持枠7の上端からなるキャビティである集液槽に入り、さらに順に主軸支持枠還流溝701、シリンダーブロック還流通路502、シリンダーヘッド還流通路107を経て入液孔101内に戻り、作動室1001内に吸引されることにより、球形ポンプの冷却循環システムが形成される。
【0019】
前記ピストン軸孔104及び回転盤軸412の軸線は、いずれも前記球形キャビティの球心を通る。ピストン軸孔104及び回転盤軸412の軸線と、主軸6の軸線との角度はいずれもαである。前記スライドシュー403の平行な両側面は、回転盤軸線の両側に対称的に配置され、円柱ヒンジの軸線に平行である。主軸6が回転して回転盤4及びピストン2を駆動する際に、スライドシュー403はスライド溝601内を往復摺動し、ピストン2と回転盤4は互いに対して揺動する。前記回転盤4の上端面、前記ピストン2の両側面と、前記球形キャビティとの間には、容積が交互に変化する2つの作動室1001が形成される。1つの作動室1001が吸液するときに、もう1つの作動室1001は圧縮して排液する。主軸6が1周回転するたびに、ピストン2はピストン軸孔104の軸線の周りに1周回転し、ピストン2は、回転盤4に対してセンターピン3の軸線の周りに1回揺動すると同時に、回転盤4のスライドシュー403は主軸6内のスライド溝601内を1回揺動する。揺動幅は2αである。2つの作動室1001は、それぞれ完全な吸液又は圧縮排液過程を1回行う。
【0020】
図2、
図3、
図15から
図18に示すように、回転盤4のスライドシュー403の平行な両側面とスライド溝601との間には、静圧支持構造が設けられる。静圧支持構造は、回転盤4に設けられる第1液流通路404、第2液流通路405、及びスライドシュー403の平行な両側面に設けられる液体圧力受け溝を含む。前記液体圧力受け溝は、スライドシュー403の平行な両側面に設けられる第1液体圧力受け溝406及び第2液体圧力受け溝407を含む。
【0021】
回転盤4内には、第1液流通路404及び第2液流通路405が設けられる。第1液流通路404は、第1液流通路入口4041、第1通路、及び第1液流通路出口4042を含む。第1液流通路入口4041は、回転盤4の上端面に設けられ、1つの作動室1001に連通する。第1液流通路出口4042は、スライドシュー403の平行な両側面のうちの1つの側面に設けられる。第1液流通路入口4041及び第1液流通路出口4042は、それぞれ回転盤軸線が位置する、スライドシュー403の平行な両側面と平行な平面(この平面はスライドシュー403の平行な両側面と平行であるとともに、回転盤球面の球心を通る)の両側に位置する。第2液流通路405は、第2液流通路入口4051、第2通路、及び第2液流通路出口4052を含む。第2液流通路入口4051は、回転盤4の上端面に設けられ、もう1つの作動室1001に連通する。第2液流通路出口4052は、スライドシュー403の平行な両側面のうちのもう1つの側面に設けられる。第2液流通路入口4051及び第2液流通路出口4052は、それぞれ回転盤軸線が位置する、スライドシュー403の平行な両側面と平行な平面(この平面はスライドシュー403の平行な両側面と平行であるとともに、回転盤球面の球心を通る)の両側に位置する。第1通路及び第2通路は、回転盤4内において互いに独立する。このスライドシュー403は、このスライド溝601内に位置する。スライドシュー403の平行な両側面は、それぞれスライド溝601の平行な両側面にフィットして滑りばめを形成する。前記静圧支持構造は、スライドシュー403の平行な両側面と球形ポンプのスライド溝601の平行な両側面との間に設けられる。加工の便利及びスライドシュー403とスライド溝601との間の摩擦力の低減のために、最も好ましくは、スライドシュー403の平行な両側面とスライド溝601の側面との間にスライドシューライナ10を設ける。スライドシューライナ10はPEEK板状である。スライドシューライナ10は、2枚あり、それぞれスライドシュー403の平行側面の両側に設けられる。スライドシューライナ10の片側は、スライド溝601の側面に密接し、スライドシューライナ10の他側は、スライドシュー403の平行側面の片側に密接する。スライドシューライナ10は、スライド溝601に固定した後に一体に加工されてもよい。加工する際に、スライドシューライナ10の両側面がスライドシュー403の両側面にフィットし、隙間を制御し、スライドシュー403の平行な両側面が両側のスライドシューライナ10にフィットしてスライド溝601内をスライドシューライナ10の表面に沿って往復摺動することを確保する。
【0022】
スライドシュー403の平行な両側面には、それぞれ第1液体圧力受け溝406及び第2液体圧力受け溝407が設けられる。第1液流通路出口4042は、第1液体圧力受け溝406に連通し、第2液流通路出口4052は、第2液体圧力受け溝407に連通する。第1液流通路出口4042及び第2液流通路出口4052の流通面積をできるだけ減少させることにより、静圧支持構造の液体流量を制御し、容積効率の顕著な低下を回避する。第1液体圧力受け溝406の断面サイズは、第1液流通路出口4042の断面サイズよりも遥かに大きく、第2液体圧力受け溝407の断面サイズは、第2液流通路出口4052の断面サイズよりも遥かに大きい。第1液体圧力受け溝406及び第2液体圧力受け溝407の表面は、スライドシュー403の両平行側の平面よりもやや低く、一般には1mm低い。第1液流通路出口4042及び第2液流通路出口4052の直径は、一般に0.3から3mmである。液圧支持の液体支持力を増大させるために、第1液体圧力受け溝406及び第2液体圧力受け溝407の断面面積をできるだけ大きくし、少なくとも10倍以上にする。つまり、第1液体圧力受け溝406の断面サイズは第1液流通路出口4042の断面サイズの10倍以上であり、第2液体圧力受け溝407の断面サイズは第2液流通路出口4052の断面サイズの10倍以上である。
【0023】
球形ポンプが動作する際に、第1液流通路404に連通する作動室1001が高圧である場合、ロータ全体は、スライドシュー403における第1液体圧力受け溝406が設けられる側(低圧にある作動室1001の側)へ一方向押し付けることにより、スライドシュー403における第1液体圧力受け溝406が設けられる側面と、対応するスライド溝601内のスライドシューライナ10との間の隙間が小さくなるとともに、第1液体圧力受け溝406が設けられる側に位置する回転盤球面と球形キャビティとの間の隙間も小さくなり、第1液体圧力受け溝406が設けられるスライドシュー側面とスライドシューライナ10との間の摩擦力が大きくなり、回転盤球面と球形キャビティとの間の摩擦力が大きくなる。しかし、この場合、第1液流通路404内の高圧液体が第1液体圧力受け溝406内に入ることで第1液体圧力受け溝406内に大きな液圧が発生し、この液圧は、静圧支持構造としてスライドシュー403の側面とスライドシューライナ10との間に作用することにより、第1液流通路404に連通する作動室の高圧によるロータに対する一方向の押し付けに対抗することによって、スライドシュー403における第1液体圧力受け溝406が設けられる側面と、対応するスライドシューライナ10との間の隙間が大きくなり、設計値に回復するとともに、回転盤球面と球形キャビティとの間の隙間も正常に戻る。これによって、球形ポンプが動作する際の各合わせ面間の摩擦力、球形ポンプの摩耗が減少され、球形ポンプの使用寿命が延長される。
【0024】
同様に、第2液流通路405に連通する作動室1001が高圧である場合、ロータ全体は、スライドシュー403における第2液体圧力受け溝407が設けられる側(低圧にある作動室1001の側)へ一方向に押し付けることにより、スライドシュー403における第2液体圧力受け溝407が設けられる側面と、対応するスライド溝601内のスライドシューライナ10との間の隙間が小さくなるとともに、第2液体圧力受け溝407が設けられる側に位置する回転盤球面と球形キャビティとの間のも小さくなり、第2液体圧力受け溝407が設けられるスライドシュー側面とスライドシューライナ10との間の摩擦力が大きくなり、回転盤球面と球形キャビティとの間の摩擦力が増大する。しかし、この場合、第2液流通路405内の高圧液体が第2液体圧力受け溝407内に入ることで第2液体圧力受け溝407内に大きな液圧が発生し、この液圧が静圧支持構造としてスライドシュー403の側面とスライドシューライナ10との間に作用することにより、第2液流通路405に連通する作動室の高圧によるロータに対する一方向の押付力に対抗する。これによって、スライドシュー403における第2液体圧力受け溝407が設けられる側面と、対応するスライドシューライナ10との間の隙間が大きくなり、設計値に回復するとともに、回転盤球面と球形キャビティとの間の隙間も正常に戻る。球形ポンプは周期的に動作し、2つの作動室1001が交互に高圧を発生し、第1液流通路404と第2液流通路405が交互に高圧の作動室1001に連通し、絶えずにロータが動作するときの不平衡力を平衡化し、動作面間の隙間を調整することによって、球形ポンプが動作するときの各合わせ面間の摩擦力、球形ポンプの摩耗が減少され、球形ポンプの使用寿命が延長される。
【0025】
本発明において、液体圧力受け溝の形状は矩形、円形又は他の形状であってもよく、スライドシュー403の平行な両側面のそれぞれの中央に設けられる。液体圧力受け溝は、多段階圧力受け溝、即ち、多段階液体圧力受け溝となるように設計されてもよい。多段階液体圧力受け溝は、多段階円形溝又は多段階矩形溝であってもよい。多段階圧力受け溝は、スライドシュー403の平行な両側面の中央に位置する第1多段階圧力受け溝及び第2多段階圧力受け溝を含む。第1液流通路出口4042は、第1多段階圧力受け溝に連通する。第2液流通路出口4052は、第2多段階圧力受け溝に連通する。第1多段階圧力受け溝の断面サイズは、第1液流通路出口4042の断面サイズよりも大きい。第2多段階圧力受け溝の断面サイズは、第2液流通路出口4052の断面サイズよりも大きい。第1多段階圧力受け溝及び第2多段階圧力受け溝の表面は、スライドシュー403の両平行側平面よりもやや低い。第1多段階圧力受け溝及び第2多段階圧力受け溝は、いずれも1つの基本圧力受け溝及び複数の補助圧力受け溝を含む。基本圧力受け溝は、スライドシュー403の平行な両側面の中央に設けられる。第1液流通路出口4042は、基本圧力受け溝の底部に設けられることによって、第1液流通路404は第1多段階圧力受け溝に連通する。第2液流通路出口4052は、基本圧力受け溝の底部に設けられることによって、第2液流通路405は、第2多段階圧力受け溝に連通する。基本圧力受け溝の外周には、複数の補助圧力受け溝がそれぞれ設けられる。複数の補助圧力受け溝は、順に基本圧力受け溝の外周に配置される。基本圧力受け溝内の高圧液体は主な液圧を受ける。基本圧力受け溝内の高圧液体は、スライドシュー403の平行な両側面とスライドシューライナ10の平面との間の隙間を通過し、一部が溢れ出て外周にある隣り合う補助圧力受け溝内に入る。補助圧力受け溝内の高圧液体は、スライドシュー403にも静圧支持構造の作用を奏し、支持面積を増大させる。この補助圧力受け溝内の液体は、一部がさらに外周にある隣り合う補助圧力受け溝内に入り、基本圧力受け溝から順に外周にある各段階の補助圧力受け溝に入る。多段階圧力受け溝内の液体の圧力が段々に低くなり、液体の量も段々に少なくなる。多段階圧力受け溝により、環中央に位置する基本圧力受け溝の圧力が最大であることが保証され、高圧作動室から導入される液体流量が効果的に利用され、液体静圧支持構造力が安定し、分布が均一であり、静圧支持構造の効果がより良好である。
【0026】
図19、
図20に示すように、第1多段階圧力受け溝及び第2多段階圧力受け溝はいずれも矩形溝である。即ち、第1多段階圧力受け溝は第1多段階矩形溝408である。第1多段階矩形溝408は、スライドシュー403の平行な両側面のうちの1つの側面の中心に設けられる第1矩形基本圧力受け溝4081と、第1矩形基本圧力受け溝4081の外周に周設される第1矩形補助圧力受け溝4082とを含む。第2多段階圧力受け溝は、第2多段階矩形溝409である。第2多段階矩形溝409は、スライドシュー403の平行な両側面のもう1つの側面の中心に設けられる第2矩形基本圧力受け溝4091と、第2矩形基本圧力受け溝4091の外周に周設される第2矩形補助圧力受け溝4092とを含む。第1多段階矩形溝408及び第2多段階矩形溝409は、それぞれスライドシュー403の平行な両側面に設けられる。第1液流通路出口4042は、第1多段階矩形溝408の第1矩形基本圧力受け溝4081の底部に設けられることで、第1多段階矩形溝408は、第1液流通路404に連通する。第2液流通路出口4052は、第2多段階矩形溝409の第2矩形基本圧力受け溝4091の底部に設けられることで、使第2多段階矩形溝409は、第2液流通路405に連通する。
【0027】
図21、
図22に示すように、第1多段階圧力受け溝及び第2多段階圧力受け溝はいずれも円形溝である。即ち、第1多段階圧力受け溝は第1多段階円形溝410である。第1多段階円形溝410は、スライドシュー403の平行な両側面のうちの1つの側面の中心に設けられる第1円形基本圧力受け溝4101と、第1円形基本圧力受け溝4101の外周に周設される第1円形補助圧力受け溝4102とを含む。第2多段階圧力受け溝は、第2多段階円形溝411である。第2多段階円形溝411は、スライドシュー403の平行な両側面のうちの1つの側面の中心に設けられる第2円形基本圧力受け溝4111と、第2円形基本圧力受け溝4111の外周に周設される第2円形補助圧力受け溝4112とを含む。第1多段階円形溝410及び第2多段階円形溝411は、それぞれスライドシュー403の平行な両側面に設けられる。第1液流通路出口4042は、第1多段階円形溝410の基本圧力受け溝の底部に設けられることで、第1多段階円形溝410は、第1液流通路404に連通する。第2液流通路出口4052は、第2多段階円形溝411の第2円形基本圧力受け溝4111の底部に設けられることで、第2多段階円形溝411は、第2液流通路405に連通する。
【0028】
加工プロセスを簡素化するために、第1液流通路404及び第2液流通路405は、加工時に、複数のセグメントの通路を組み合わせて構成されてもよい。第1液流通路404を加工する際に、まず回転盤4の上端面に位置する第1液流通路入口4041から特定の角度で下向きに穿孔し、そしてスライドシュー403の下端部から特定の角度で上向きに穿孔して前記下向きへの穿孔に連通させ、さらにスライドシュー403の側面における液体圧力受け溝の底部から孔を開けて前記孔に連通する第1液流通路出口4042の孔を形成し、最後にスライドシュー403の下端部の孔口を塞げばよい。同様の方法により第2液流通路405を加工し、まず回転盤4の上端面に位置する第2液流通路入口4051から特定の角度で下向きに穿孔し、そしてスライドシュー403の下端部から特定の角度で上向きに穿孔して前記下向きへの穿孔に連通させ、さらにスライドシュー403の側面における液体圧力受け溝の底部から孔を開けて前記孔に連通する第2液流通路出口4052の孔を形成し、最後にスライドシュー403の下端部の孔口を塞げばよい。
【0029】
以上の説明は、本発明の模式的な実施形態に過ぎず、本発明の範囲を制限するものではない。当業者が本発明の思想及び原則から逸脱しない範囲で行う同等変化及び修正は、いずれも本発明の保護範囲に含まれるべきである。なお、本発明の各組成部分は、前記全体の使用に限定されず、本明細書に記載の各技術的特徴は、必要に応じてその一つを単独で使用してもよく、複数の特徴を組み合わせて使用してもよい。そのため、本発明には、本発明の技術的特徴に関する他の組み合わせ及びその具体的な使用が含まれる。
【0030】
本出願は、2019年11月01日に出願された中国特許出願第201911060871.1号(発明名称球形ポンプロータ静圧支持構造)、及び2019年11月01日に出願された中国特許出願第201911061558.X号(発明名称:静圧支持構造を備える球形ポンプ)の優先権を主張する。