IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社せばた集団の特許一覧

<>
  • 特許-熱媒体 図1
  • 特許-熱媒体 図2
  • 特許-熱媒体 図3
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-02-05
(45)【発行日】2024-02-14
(54)【発明の名称】熱媒体
(51)【国際特許分類】
   C09K 5/04 20060101AFI20240206BHJP
【FI】
C09K5/04 B
C09K5/04 A
【請求項の数】 2
(21)【出願番号】P 2021137334
(22)【出願日】2021-08-25
(65)【公開番号】P2023031689
(43)【公開日】2023-03-09
【審査請求日】2023-11-13
【早期審査対象出願】
(73)【特許権者】
【識別番号】520441187
【氏名又は名称】株式会社せばた集団
(74)【代理人】
【識別番号】100114627
【弁理士】
【氏名又は名称】有吉 修一朗
(74)【代理人】
【識別番号】100182501
【弁理士】
【氏名又は名称】森田 靖之
(74)【代理人】
【識別番号】100175271
【弁理士】
【氏名又は名称】筒井 宣圭
(74)【代理人】
【識別番号】100190975
【弁理士】
【氏名又は名称】遠藤 聡子
(72)【発明者】
【氏名】瀬端 啓一
【審査官】井上 明子
(56)【参考文献】
【文献】特開2015-89915(JP,A)
【文献】特開2012-162669(JP,A)
【文献】特開平8-218062(JP,A)
【文献】特開2015-145452(JP,A)
【文献】国際公開第2013/146683(WO,A1)
【文献】特開2014-139078(JP,A)
【文献】特許第6856294(JP,B1)
(58)【調査した分野】(Int.Cl.,DB名)
C09K 5/00-5/20
(57)【特許請求の範囲】
【請求項1】
液化イソブタンと、
液化プロパンと、
液化二酸化炭素と、
エチルエーテルと、
シリコーンオイルと、
ポリアルキレングリコールのみからなり、
前記液化イソブタンの含有量は、熱媒体全量に対して20~30質量%であり、
前記液化プロパンの含有量は、熱媒体全量に対して20~30質量%であり、
前記液化二酸化炭素の含有量は、熱媒体全量に対して20~30質量%であり、
前記エチルエーテルの含有量は、熱媒体全量に対して1~3質量%であり、
前記シリコーンオイルの含有量は、熱媒体全量に対して5~7質量%であり、
前記ポリアルキレングリコールの含有量は、熱媒体全量に対して2~5質量%である
熱媒体。
【請求項2】
液化イソブタンと、
液化プロパンと、
液化二酸化炭素と、
エチルエーテルと、
シリコーンオイルと、
ポリアルキレングリコールのみからなり、
前記液化イソブタンの含有量は、熱媒体全量に対して30質量%であり、
前記液化プロパンの含有量は、熱媒体全量に対して30質量%であり、
前記液化二酸化炭素の含有量は、熱媒体全量に対して30質量%であり、
前記エチルエーテルの含有量は、熱媒体全量に対して質量%であり、
前記シリコーンオイルの含有量は、熱媒体全量に対して5質量%であり、
前記ポリアルキレングリコールの含有量は、熱媒体全量に対して3質量%である
熱媒体。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は熱媒体に関する。詳しくは、例えば自動車用空気調和機に使用される熱媒体に係るものである。
【背景技術】
【0002】
冷媒は、熱を移動させるために用いられる熱媒体であり、空気調和機に使用された場合には、室内機と室外機を繋ぐパイプの中を循環する。
即ち、冷媒は空気中の熱を乗せてパイプ内を循環し、熱交換器まで熱を運ぶ。この冷媒による熱移動が、冷房及び暖房を実現する。
【0003】
クロロフルオロカーボン(CFC)に代わる冷媒として、CFCのオゾン層破壊係数より小さいオゾン層破壊係数を有するハイドロクロロフルオロカーボン(HCFC)が使用されるようになった。
ハイドロクロロフルオロカーボンは、水素を含むクロロフルオロカーボンである。
【0004】
ここで、「オゾン層破壊係数」は、トリクロロフルオロメタン(CFC-11)を基準値(=1)として、大気中に放出された単位重量の物質がオゾン層に与える破壊効果を相対値として表した値である。
【0005】
しかし、CFCよりもオゾン層破壊係数が小さいものの、HCFCも塩素を含むため、HCFCはオゾン層破壊の性質を有する。
また、HCFCの地球温暖化係数は高く、例えばHCFCの一種であるクロロジフルオロメタン(以下、「R-22」とする。)の地球温暖化係数は1,810である。
【0006】
ここで、「地球温暖化係数」は、二酸化炭素を基準値(=1)とした場合、その物質の大気中における単位濃度あたりの温室効果の100年間の強さを相対値で表した値である。
【0007】
そして、CFC及びHCFCを経て使われるようになった冷媒が、ハイドロフルオロカーボン(HFC)であり、様々なHFC冷媒が提案されている。
【0008】
例えば特許文献1には、2-メチルプロパン即ちイソブタンと、ペンタフルオロエタンと、テトラフルオロエタン(以下、「R-134a」とする。)と、ジフルオロメタンとを含むHFC冷媒が記載されている。
【先行技術文献】
【特許文献】
【0009】
【文献】特表2018-502208号公報
【発明の概要】
【発明が解決しようとする課題】
【0010】
しかしながら、特許文献1に記載の冷媒は、オゾン層破壊係数については「0」であるが、地球温暖化係数については1,263であり、R-22の地球温暖化係数よりは小さいものの充分な地球温暖化係数ではなかった。
【0011】
こうした中、オゾン層保護と地球温暖化防止といった地球環境保護の立場から、フロンのような人工的に化学合成されたものではなく、もともと自然界に存在し、生成から消滅までの循環サイクルがすでに確立されている物質を冷媒として積極的に使用する動きがあり、このような冷媒は「自然冷媒」と呼ばれている。
【0012】
このような自然冷媒として使用され得る物質としては、プロパンやブタンなどの炭化水素、アンモニア、二酸化炭素、空気、水などがある。
ここで、プロパンやブタンなどの炭化水素は、オゾン層破壊係数が「0」であることに加えて、地球温暖化係数も「0」であり、地球環境にとって非常に良い冷媒物質である。
【0013】
しかし、炭化水素は可燃性であり、また、潤滑性が乏しいため炭化水素を冷媒として使用した場合、炭化水素冷媒を空気調和機内において流動させるために大きな力が必要となり、空気調和機に対して負荷を掛けてしまうという問題があった。
【0014】
そこで、オゾン層破壊係数と地球温暖化係数の両方が低い即ち低環境負荷であり、不燃性であり、さらに、空気調和機など冷媒が使用される装置に対して負荷を低減できる熱媒体が求められていた。
【0015】
本発明は、以上の点に鑑みて創案されたものであり、低環境負荷であり、不燃性であり、使用される装置に対する負荷を低減できる熱媒体を提供することを目的とする。
【課題を解決するための手段】
【0016】
上記の目的を達成するために、本発明の熱媒体は、液化イソブタンと、液化プロパンと、液化二酸化炭素と、エチルエーテルと、シリコーンオイルとを含む。
【0017】
ここで、可燃性である液化イソブタンと、可燃性である液化プロパンと、可燃性であるエチルエーテルとが、不燃性の液化二酸化炭素と混合されているので、得られた本発明の熱媒体は、イソブタンとプロパンとエチルエーテルを含んでいても不燃性となることができる。
【0018】
また、液化プロパンと、液化二酸化炭素と、エチルエーテルとによって、本発明の熱媒体は高い冷却能力を発揮できる。
【0019】
また、本発明の熱媒体は塩素やフッ素を含んでいないことから、本発明の熱媒体のオゾン層破壊係数は「1未満」であり、地球温暖化係数は「1以下」である。
【0020】
また、シリコーンオイルによって、本発明の熱媒体の不燃性と潤滑性を向上させることができる。
【0021】
また、本発明の熱媒体において、液化イソブタンの含有量は、熱媒体全量に対して20~30質量%であり、液化プロパンの含有量は、熱媒体全量に対して20~30質量%であり、液化二酸化炭素の含有量は、熱媒体全量に対して20~30質量%であり、エチルエーテルの含有量は、熱媒体全量に対して1~5質量%であり、シリコーンオイルの含有量は、熱媒体全量に対して5~10質量%である構成とすることができる。
特に、本発明の熱媒体において、液化イソブタンの含有量は、熱媒体全量に対して30質量%であり、液化プロパンの含有量は、熱媒体全量に対して30質量%であり、液化二酸化炭素の含有量は、熱媒体全量に対して30質量%であり、エチルエーテルの含有量は、熱媒体全量に対して3質量%であり、シリコーンオイルの含有量は、熱媒体全量に対して7質量%である構成とすることができる。
【0022】
この場合、液化イソブタンの含有量が熱媒体全量に対して20~30質量%であることによって、本発明の熱媒体が使用される装置内において熱媒体の適正な圧力値を維持し易くなり、適正な伝熱性能を維持し易くなる。
また、液化プロパンの含有量が熱媒体全量に対して20~30質量%であることによって、本発明の熱媒体が使用される装置内において熱媒体の適正な圧力値を維持しながら、高い冷却能力を維持し易くなる。
また、液化二酸化炭素の含有量が熱媒体全量に対して20~30質量%であることによって、本発明の熱媒体が使用される装置内において熱媒体の適正な圧力値を維持しながら、高い冷却能力を維持し易くなる。
【0023】
また、エチルエーテルの含有量が熱媒体全量に対して1~5質量%であることによって、本発明の熱媒体が使用される装置内において熱媒体の適正な圧力値を維持しながら、高い冷却能力を維持し易くなる。
また、シリコーンオイルの含有量が熱媒体全量に対して5~10質量%であることによって、伝熱性能や冷却能力に影響を与えずに、本発明の熱媒体の不燃性と潤滑性を向上させる効果を発揮し易くなる。
【0024】
また、本発明の熱媒体は、さらに、ポリアルキレングリコールを含む構成とすることができる。
この場合、本発明の熱媒体の潤滑性をさらに向上させることができる。
【0025】
また、ポリアルキレングリコールをさらに含む本発明の熱媒体において、液化イソブタンの含有量は、熱媒体全量に対して20~30質量%であり、液化プロパンの含有量は、熱媒体全量に対して20~30質量%であり、液化二酸化炭素の含有量は、熱媒体全量に対して20~30質量%であり、エチルエーテルの含有量は、熱媒体全量に対して1~3質量%であり、シリコーンオイルの含有量は、熱媒体全量に対して5~7質量%であり、ポリアルキレングリコールの含有量は、熱媒体全量に対して2~5質量%である構成とすることができる。
特に、ポリアルキレングリコールをさらに含む本発明の熱媒体において、液化イソブタンの含有量は、熱媒体全量に対して30質量%であり、液化プロパンの含有量は、熱媒体全量に対して30質量%であり、液化二酸化炭素の含有量は、熱媒体全量に対して30質量%であり、エチルエーテルの含有量は、熱媒体全量に対して2質量%であり、シリコーンオイルの含有量は、熱媒体全量に対して5質量%であり、ポリアルキレングリコールの含有量は、熱媒体全量に対して3質量%である構成とすることができる。
【0026】
この場合、液化イソブタンの含有量が熱媒体全量に対して20~30質量%であることによって、本発明の熱媒体の潤滑性をさらに向上させるという効果を発揮しつつ、本発明の熱媒体が使用される装置内において熱媒体の適正な圧力値を維持しながら、高い冷却能力を維持し易くなる。
また、液化プロパンの含有量が熱媒体全量に対して20~30質量%であることによって、本発明の熱媒体の潤滑性をさらに向上させるという効果を発揮しつつ、本発明の熱媒体が使用される装置内において熱媒体の適正な圧力値を維持しながら、高い冷却能力を維持し易くなる。
【0027】
また、液化二酸化炭素の含有量が熱媒体全量に対して20~30質量%であることによって、本発明の熱媒体の潤滑性をさらに向上させるという効果を発揮しつつ、本発明の熱媒体が使用される装置内において熱媒体の適正な圧力値を維持しながら、高い冷却能力を維持し易くなる。
また、エチルエーテルの含有量が熱媒体全量に対して1~3質量%であることによって、本発明の熱媒体の潤滑性をさらに向上させるという効果を発揮しつつ、本発明の熱媒体が使用される装置内において熱媒体の適正な圧力値を維持しながら、高い冷却能力を維持し易くなる。
【0028】
また、シリコーンオイルの含有量が熱媒体全量に対して5~7質量%であることによって、本発明の熱媒体の潤滑性をさらに向上させるという効果を発揮しつつ、伝熱性能や冷却能力に影響を与えずに、本発明の熱媒体の不燃性と潤滑性を向上させる効果を発揮し易くなる。
また、ポリアルキレングリコールの含有量は、熱媒体全量に対して2~5質量%であることによって、伝熱性能や冷却能力に影響を与えずに、本発明の熱媒体の潤滑性をさらに向上させる効果を発揮し易くなる。
【0029】
また、上記の目的を達成するために、本発明の熱媒体は、液化イソブタンと、液化プロパンと、液化二酸化炭素と、エチルエーテルと、ポリアルキレングリコールとを含む。
【0030】
ここで、可燃性である液化イソブタンと、可燃性である液化プロパンと、可燃性であるエチルエーテルとが、不燃性の液化二酸化炭素と混合されているので、得られた本発明の熱媒体は、イソブタンとプロパンとエチルエーテルを含んでいても不燃性となることができる。
【0031】
また、液化プロパンと、液化二酸化炭素と、エチルエーテルとによって、本発明の熱媒体は高い冷却能力を発揮できる。
【0032】
また、本発明の熱媒体は塩素やフッ素を含んでいないことから、本発明の熱媒体のオゾン層破壊係数は「1未満」であり、地球温暖化係数は「1以下」である。
【0033】
また、ポリアルキレングリコールによって、本発明の熱媒体の潤滑性をさらに向上させることができる
【0034】
また、本発明の熱媒体において、液化イソブタンの含有量は、熱媒体全量に対して20~30質量%であり、液化プロパンの含有量は、熱媒体全量に対して20~30質量%であり、液化二酸化炭素の含有量は、熱媒体全量に対して20~30質量%であり、エチルエーテルの含有量は、熱媒体全量に対して1~5質量%であり、ポリアルキレングリコールの含有量は、熱媒体全量に対して5~10質量%である構成とすることができる。
特に、本発明の熱媒体において、液化イソブタンの含有量は、熱媒体全量に対して30質量%であり、液化プロパンの含有量は、熱媒体全量に対して30質量%であり、液化二酸化炭素の含有量は、熱媒体全量に対して30質量%であり、エチルエーテルの含有量は、熱媒体全量に対して3質量%であり、ポリアルキレングリコールの含有量は、熱媒体全量に対して7質量%である構成とすることができる。
【0035】
この場合、液化イソブタンの含有量が熱媒体全量に対して20~30質量%であることによって、本発明の熱媒体が使用される装置内において熱媒体の適正な圧力値を維持し易くなり、適正な伝熱性能を維持し易くなる。
また、液化プロパンの含有量が熱媒体全量に対して20~30質量%であることによって、本発明の熱媒体が使用される装置内において熱媒体の適正な圧力値を維持しながら、高い冷却能力を維持し易くなる。
また、液化二酸化炭素の含有量が熱媒体全量に対して20~30質量であることによって、本発明の熱媒体が使用される装置内において熱媒体の適正な圧力値を維持しながら、高い冷却能力を維持し易くなる。
【0036】
また、エチルエーテルの含有量が熱媒体全量に対して1~5質量%であることによって、本発明の熱媒体が使用される装置内において熱媒体の適正な圧力値を維持しながら、高い冷却能力を維持し易くなる。
また、ポリアルキレングリコールの含有量が熱媒体全量に対して5~10質量%であることによって、シリコーンオイルが含有されていないので、このような含有量であっても、伝熱性能や冷却能力に影響を与えずに、本発明の熱媒体の潤滑性をさらに向上させる効果を発揮し易くなる。
【発明の効果】
【0037】
本発明に係る熱媒体は、低環境負荷であり、不燃性であり、使用される装置に対する負荷を低減できる。
【図面の簡単な説明】
【0038】
図1】暖房運転時の自動車用空気調和機における、本発明を適用した冷媒の流れを示す概略図(a)であり、冷房運転時の自動車用空気調和機における、本発明を適用した冷媒の流れを示す概略図(b)である。
図2】本発明を適用した冷媒を使用して自動車用空気調和機を冷房運転した時の各種温度の経時変化を示すグラフである。
図3】従来の冷媒R-134aを使用して自動車用空気調和機を冷房運転した時の各種温度の経時変化を示すグラフである。
【発明を実施するための形態】
【0039】
本発明の第1の実施態様の熱媒体は、液化イソブタンと、液化プロパンと、液化二酸化炭素と、エチルエーテルと、シリコーンオイルと、ポリアルキレングリコールとを含むものである。
【0040】
また、本発明の熱媒体は、必ずしもポリアルキレングリコールを含まなくてもよい。
しかし、本発明の熱媒体が、さらにポリアルキレングリコールを含んでいれば、本発明の熱媒体の潤滑性をさらに向上させることができるので好ましい。
【0041】
また、本発明の熱媒体がポリアルキレングリコールを含んでいれば、必ずしもシリコーンオイルを含んでいなくてもよい。
即ち、本発明の第2の実施態様の熱媒体は、液化イソブタンと、液化プロパンと、液化二酸化炭素と、エチルエーテルと、ポリアルキレングリコールとを含むものでもあるが、さらにシリコーンオイルを含んでいれば、本発明の熱媒体の潤滑性に加えて不燃性も向上させることができるので好ましい。
【0042】
また、本発明の熱媒体は、液体状態のイソブタンと、液体状態のプロパンと、液体状態の二酸化炭素と、液体状態のエチルエーテルと、液体状態のシリコーンオイルと、液体状態のポリアルキレングリコールを混合することで製造される。
【0043】
本発明の第1の実施態様の熱媒体において、液化イソブタンの含有量は、熱媒体全量に対して20~30質量%であることが好ましい。
また、本発明の第1の実施態様の熱媒体において、液化プロパンの含有量は、熱媒体全量に対して20~30質量%ことが好ましい。
また、本発明の第1の実施態様の熱媒体において、液化二酸化炭素の含有量は、熱媒体全量に対して20~30質量%であることが好ましい。
【0044】
また、本発明の第1の実施態様の熱媒体において、エチルエーテルの含有量は、熱媒体全量に対して1~3質量%であることが好ましい。
また、本発明の第1の実施態様の熱媒体において、シリコーンオイルの含有量は、熱媒体全量に対して5~7質量%であることが好ましい。
また、本発明の第1の実施態様の熱媒体において、ポリアルキレングリコールの含有量は、熱媒体全量に対して2~5質量%であることが好ましい。
【0045】
また、シリコーンオイルを含んでいるがポリアルキレングリコールを含んでいない本発明の熱媒体において、液化イソブタンの含有量は、熱媒体全量に対して20~30質量%であることが好ましい。
また、シリコーンオイルを含んでいるがポリアルキレングリコールを含んでいない本発明の熱媒体において、液化プロパンの含有量は、熱媒体全量に対して20~30質量%であることが好ましい。
また、シリコーンオイルを含んでいるがポリアルキレングリコールを含んでいない本発明の熱媒体において、液化二酸化炭素の含有量は、熱媒体全量に対して20~30質量%であることが好ましい。
【0046】
また、シリコーンオイルを含んでいるがポリアルキレングリコールを含んでいない本発明の熱媒体において、エチルエーテルの含有量は、熱媒体全量に対して1~5質量%であることが好ましい。
また、シリコーンオイルを含んでいるがポリアルキレングリコールを含んでいない本発明の熱媒体において、シリコーンオイルの含有量は、熱媒体全量に対して5~10質量%であることが好ましい。
【0047】
一方、本発明の第2の実施態様の熱媒体において、液化イソブタンの含有量は、熱媒体全量に対して20~30質量%であることが好ましい。
また、本発明の第2の実施態様の熱媒体において、液化プロパンの含有量は、熱媒体全量に対して20~30質量%であることが好ましい。
また、本発明の第2の実施態様の熱媒体において、液化二酸化炭素の含有量は、熱媒体全量に対して20~30質量%であることが好ましい。
【0048】
また、本発明の第2の実施態様の熱媒体において、エチルエーテルの含有量は、熱媒体全量に対して1~5質量%であることが好ましい。
また、本発明の第2の実施態様の熱媒体において、ポリアルキレングリコールの含有量は、熱媒体全量に対して5~10質量%であることが好ましい。
【0049】
また、本発明の熱媒体は、一般の熱媒体が使用される装置と同様の装置に使用され、例えば空気調和機、冷凍機、ヒートポンプに使用される。
ここでは、図を参照して本発明の熱媒体を自動車用空気調和機に使用した時の、本発明の熱媒体の流れを説明する。
【0050】
図1(a)は、暖房運転時の自動車用空気調和機における、本発明を適用した冷媒の流れを示す概略図であり、図1(b)は、冷房運転時の自動車用空気調和機における、本発明を適用した冷媒の流れを示す概略図である。
【0051】
図1に示すように、自動車用空気調和機1は、自動車の車体21のフロント部分に位置するエンジンルーム21Aに内蔵されている。
【0052】
また、自動車用空気調和機1は、コンデンサー11を備える。
ここで、コンデンサー11は、高温高圧の気体状態である本発明の冷媒を冷却し、液体状態と気体状態とが混在した本発明の冷媒へと変化させる。
【0053】
また、自動車用空気調和機1は、配管19を介してコンデンサー11と連通したレシーバー12を備える。
ここで、レシーバー12は、液体状態と気体状態とが混在した本発明の冷媒を、液体状態の本発明の冷媒と、気体状態の本発明の冷媒とに分離する。このときの液体状態の本発明の冷媒は、低温高圧の冷媒であり、レシーバー12は、液体状態の本発明の冷媒に含まれる不純物を取り除く。
【0054】
また、自動車用空気調和機1は、配管19を介してレシーバー12と連通した膨張弁、即ちエキスパンションバルブ13を備える。
ここで、エキスパンションバルブ13は、レシーバー12から供給された低温高圧の液体状態である本発明の冷媒を一気に膨張させ、低温低圧の霧状である本発明の冷媒へと変化させる。
【0055】
また、図示していないが、自動車用空気調和機1は、ブロアファンとフィルターを備えている。
また、自動車用空気調和機1は、配管19を介してエキスパンションバルブ13と連通した熱交換器、即ちエバポレーター14を備える。
【0056】
ここで、ブロアファンは、車室内の空気または車外の空気を取込み、取込んだ空気を、フィルターを通してエバポレーター14へ供給する。
また、エバポレーター14は、ブロアファンから供給された空気の熱を奪って、空気を冷却する。
【0057】
即ち、エバポレーター14には、エキスパンションバルブ13から低温低圧の霧状である本発明の冷媒も供給されており、この冷媒が膨張の過程で、ブロアファンから供給された空気の熱を奪い気化する。
そして、本発明の冷媒によって熱を奪われた空気は、冷たい空気へ変化する。
【0058】
また、自動車用空気調和機1は、配管19を介してエバポレーター14と連通したコンプレッサー15を備える。
【0059】
ここで、コンプレッサー15は、エバポレーター14から供給された低温低圧の気体状態である本発明の冷媒を圧縮し、高温高圧の気体状態である本発明の冷媒へと変化させる。
【0060】
また、エンジンルーム21Aには、自動車のエンジン16と、ヒーターコア18とが内蔵されている。
ここで、エンジン16は、配管19を介してヒーターコア18と連通している。また、エンジン16とヒーターコア18とを結ぶ配管19には、ウォーターバルブ17が設けられている。
【0061】
また、図1(a)及び図1(b)は、エンジン16と、ウォーターバルブ17と、ヒーターコア18とが自動車用空気調和機1に内蔵されているように便宜上示しているに過ぎず、自動車用空気調和機1は、エンジン16と、ウォーターバルブ17と、ヒーターコア18とを備えていない。
【0062】
エンジン16によって暖められた冷却水は、ウォーターバルブ17を通ってヒーターコア18へ供給される。ヒーターコア18へ供給される冷却水の量は、ウォーターバルブ17によって調整される。
そして、ヒーターコア18において冷却水が空気と熱交換され、暖かい空気が生成される。
【0063】
自動車用空気調和機1が暖房運転の時には、ヒーターコア18において生成された暖かい空気と、エバポレーター14を通過した冷たい空気とが混ざり、設定された温度の暖気WAが車室内空間21Bに供給される。
一方、自動車用空気調和機1が冷房運転の時には、ヒーターコア18において生成された暖かい空気と、エバポレーター14を通過した冷たい空気とを混ぜず、設定された温度の冷気CAがエバポレーター14から車室内空間21Bに供給される。
【0064】
また、図1において、配管に沿って示された白色矢印は、温度が低い流体の流れを示し、配管に沿って示された黒色矢印は、温度が高い流体の流れを示す。
【0065】
<性能評価試験>
本発明の冷媒(以下、「HY-134a」とする。)、及び従来の冷媒であるR-134aそれぞれについて性能評価試験を行なった。
即ち、これらの冷媒をそれぞれ以下の自動車用空気調和機に使用して、冷房運転を行なった。
機器名:三菱ekワゴン用カーエアコン
単相・出力:100V
【0066】
ここで、本発明の冷媒であるHY-134aは、冷媒全量に対して、液化イソブタン30質量%と、液化プロパン30質量%と、液化二酸化炭素30質量%と、エチルエーテル2質量%と、シリコーンオイル5質量%と、ポリアルキレングリコール3質量%を含む。
ここで、冷媒は熱媒体の一例である。
【0067】
また、性能評価試験は、具体的には以下のようにして行なった。
【0068】
評価対象となる冷媒を自動車用空気調和機に封入して冷房運転を行ない、各種温度を測定した。
【0069】
即ち、車外の空気の温度である「外気温」と、車室内空間の空気の温度である「室内温度」と、自動車用空気調和機の吹出し口における空気の温度である「吹出し温度」をそれぞれ測定した。
【0070】
また、自動車用空気調和機に使用された冷媒がコンプレッサーによって圧縮される前の低圧の時の冷媒の圧力である「低圧力」の値と、自動車用空気調和機に使用された冷媒がコンプレッサーによって圧縮された後の高圧の時の冷媒の圧力である「高圧力」の値を測定した。
【0071】
また、性能評価試験で使用した自動車用空気調和機の構造や動作は、図1に示した自動車用空気調和機1の構造や動作と同じである。
【0072】
<冷房運転時の性能評価結果>
表1に、HY-134aを自動車用空気調和機に封入して11分30秒間の冷房運転を行ない、前述の各種測定を行なって得られた結果を示す。
【0073】
【表1】
【0074】
表中、各温度の単位は「℃」であり、圧力の単位は「MPaG」である。
また、図2は、本発明を適用した冷媒を使用して自動車用空気調和機を冷房運転した時の各種温度の経時変化を示すグラフである。
【0075】
即ち、図2には、HY-134a使用の冷房運転時外気温CA1と、HY-134a使用の冷房運転時車室内温度CA2と、HY-134a使用の冷房運転時吹出し温度CA3とが示されている。
【0076】
表2に、R-134aを自動車用空気調和機に封入して55分間の冷房運転を行ない、前述の各種測定を行なって得られた結果を示す。
【0077】
【表2】
【0078】
表中、各温度の単位は「℃」であり、圧力の単位は「MPaG」である。
また、図3は、従来の冷媒R-134aを使用して自動車用空気調和機を冷房運転した時の各種温度の経時変化を示すグラフである。
【0079】
即ち、図3には、R-134a使用の冷房運転時外気温CB1と、R-134a使用の冷房運転時車室内温度CB2と、R-134a使用の冷房運転時吹出し温度CB3とが示されている。
【0080】
表1~2から判るように、本発明の冷媒であるHY-134aを使用して冷房運転した時の吹出し温度と、従来の冷媒であるR-134aを使用して冷房運転した時の吹出し温度は、外気温の違いを考慮すれば略同じであった。
【0081】
このことから、HY-134aは、自動車用空気調和機の冷房運転において、R-134aと同等の伝熱性能を発揮できることが判る。
【0082】
また、表1~2から判るように、本発明の冷媒であるHY-134aを使用して冷房運転した時の「低圧力」の値は、R-134aを使用して冷房運転した時の「低圧力」の値と略同じであったが、本発明の冷媒であるHY-134aを使用して冷房運転した時の「高圧力」の値は、R-134aを使用して冷房運転した時の「高圧力」の値よりも低い値を示した。
【0083】
このような結果から、潤滑性が向上した本発明の冷媒を使用した方が、従来の冷媒であるR-134aを使用した場合よりも自動車用空気調和機を低い圧力で冷媒運転させることができ、自動車用空気調和機への負荷、即ちコンプレッサーなどへの負荷を低減させることができることを確認した。
その結果、本発明の冷媒を使用した方が、従来の冷媒であるR-134aを使用した場合よりも自動車用空気調和機の消費電力を低減させることができると考えられる。
【0084】
また、ルームエアコン、即ち家庭用空気調和機に本発明の冷媒を使用しても、自動車用空気調和機に使用した時と同様に家庭用空気調和機への負荷を低減させて、家庭用空気調和機の消費電力を低減させることができると考えられる。
【0085】
また、性能評価試験において使用された本発明の熱媒体における、液化イソブタンの含有量と、液化プロパンの含有量と、液化二酸化炭素の含有量と、エチルエーテルの含有量と、シリコーンオイルの含有量と、ポリアルキレングリコールの含有量は一例であり、これらの含有量に限定されないことは勿論である。
【0086】
以上のように、本発明の冷媒即ち熱媒体は、可燃性である液化イソブタンと、可燃性である液化プロパンと、可燃性であるエチルエーテルとが、不燃性の液化二酸化炭素と混合されているものであるから、得られた本発明の熱媒体は、イソブタンとプロパンとエチルエーテルを含んでいても不燃性となることができる。
【0087】
また、本発明の熱媒体は、液化プロパンと、液化二酸化炭素と、エチルエーテルとを含んでいるので、高い冷却能力を発揮できる。
【0088】
また、本発明の熱媒体は、塩素やフッ素を含んでいないことから、本発明の熱媒体のオゾン層破壊係数は「1未満」であり、地球温暖化係数は「1以下」である。
【0089】
また、本発明の熱媒体はシリコーンオイルを含んでいるので、シリコーンオイルを含まない場合よりも、不燃性と潤滑性が高い。
さらに、本発明の熱媒体はポリアルキレングリコールも含んでいるので、ポリアルキレングリコールを含まない場合よりも、潤滑性が高い。
【0090】
従って、性能評価試験の結果からも明らかなように、本発明の熱媒体は、充分な伝熱性能を発揮できると共に、低環境負荷であり、不燃性であり、自動車用空気調和機、即ち本発明の熱媒体が使用される装置に対する負荷を低減できる。
【符号の説明】
【0091】
1 自動車用空気調和機
11 コンデンサー
12 レシーバー
13 エキスパンションバルブ
14 エバポレーター
15 コンプレッサー
16 エンジン
17 ウォーターバルブ
18 ヒーターコア
19 配管
21 車体
21A エンジンルーム
21B 車室内空間
CA 冷気
WA 暖気
CA1 HY-134a使用の冷房運転時外気温
CA2 HY-134a使用の冷房運転時車室内温度
CA3 HY-134a使用の冷房運転時吹出し温度
CB1 R-134a使用の冷房運転時外気温
CB2 R-134a使用の冷房運転時車室内温度
CB3 R-134a使用の冷房運転時吹出し温度
図1
図2
図3