(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-02-05
(45)【発行日】2024-02-14
(54)【発明の名称】原子炉格納容器、及び、原子炉格納容器の支持構造
(51)【国際特許分類】
G21C 9/016 20060101AFI20240206BHJP
G21C 13/024 20060101ALI20240206BHJP
G21C 13/00 20060101ALI20240206BHJP
【FI】
G21C9/016
G21C13/024 200
G21C13/024 110
G21C13/00 200
(21)【出願番号】P 2021048608
(22)【出願日】2021-03-23
【審査請求日】2023-06-01
(73)【特許権者】
【識別番号】507250427
【氏名又は名称】日立GEニュークリア・エナジー株式会社
(74)【代理人】
【識別番号】110001807
【氏名又は名称】弁理士法人磯野国際特許商標事務所
(72)【発明者】
【氏名】日高 政隆
(72)【発明者】
【氏名】石田 直行
(72)【発明者】
【氏名】松崎 隆久
(72)【発明者】
【氏名】浜田 克紀
(72)【発明者】
【氏名】田村 明紀
【審査官】後藤 大思
(56)【参考文献】
【文献】特開2016-145773(JP,A)
【文献】特開2020-041961(JP,A)
【文献】特開2012-093282(JP,A)
【文献】特開2016-001164(JP,A)
【文献】米国特許第05217681(US,A)
(58)【調査した分野】(Int.Cl.,DB名)
G21C 9/00-9/06
G21C 11/00-13/10
(57)【特許請求の範囲】
【請求項1】
核燃料が装架された炉心を内包する原子炉圧力容器の下方の空間の底部を形成するペデスタル床と、
前記空間の側部を形成するペデスタル壁と、を備え、
前記ペデスタル床と前記ペデスタル壁は、
少なくとも一層以上の耐熱材と、
前記耐熱材の外側に配置されたコンクリートと、を有し、
前記耐熱材の層と前記コンクリートの層面との間に、低融点酸化材の層が挟み込まれており、
前記低融点酸化材は、前記コンクリートに含まれる炭酸カルシウムの脱炭酸反応の開始温度から終了温度までの範囲内で任意に定める温度を制御目標温度とし、結晶の相転移時の温度が前記制御目標温度よりも低い温度になっている部材である
ことを特徴とする原子炉格納容器。
【請求項2】
請求項1に記載の原子炉格納容器において、
前記制御目標温度は、1010K未満の温度であり、
前記低融点酸化材は、前記結晶の相転移時の温度が1005K以下の温度になっている部材である
ことを特徴とする原子炉格納容器。
【請求項3】
請求項1に記載の原子炉格納容器において、
前記ペデスタル床と前記ペデスタル壁は、
炉心溶融物の熱で前記耐熱材の温度が上昇した場合に、前記低融点酸化材の結晶の相転移時の吸熱反応を利用して前記低融点酸化材の温度を前記結晶の相転移時の温度付近に任意の時間保つことで、前記コンクリートの層面の温度が前記制御目標温度未満の温度に保たれる時間を延ばす
ことを特徴とする原子炉格納容器。
【請求項4】
請求項1に記載の原子炉格納容器において、
前記ペデスタル床と前記ペデスタル壁は、
炉心溶融物の熱で前記耐熱材の温度が上昇した場合に、前記低融点酸化材の融解時の吸熱反応を利用して前記低融点酸化材の温度を融点付近に任意の時間保つことで、前記コンクリートの層面の温度が前記制御目標温度未満の温度に保たれる時間を延ばす
ことを特徴とする原子炉格納容器。
【請求項5】
請求項1に記載の原子炉格納容器において、
前記低融点酸化材として酸化ビスマスが用いられている
ことを特徴とする原子炉格納容器。
【請求項6】
請求項1に記載の原子炉格納容器において、
前記ペデスタル床と前記ペデスタル壁は、
前記低融点酸化材の層と前記コンクリートの層面との間に第2耐熱材が挟み込まれており、
炉心溶融物の熱で前記耐熱材の温度が上昇した場合に、前記低融点酸化材の結晶の相転移時の吸熱反応と前記第2耐熱材の温度勾配とを利用して前記低融点酸化材の温度を前記結晶の相転移時の温度付近に任意の時間保つことで、前記コンクリートの層面の温度が前記制御目標温度未満の温度に保たれる時間を延ばす
ことを特徴とする原子炉格納容器。
【請求項7】
請求項1に記載の原子炉格納容器において、
前記ペデスタル床と前記ペデスタル壁は、
前記低融点酸化材の層と前記コンクリートの層面との間に第2耐熱材が挟み込まれており、
炉心溶融物の熱で前記耐熱材の温度が上昇した場合に、前記低融点酸化材の融解時の吸熱反応と前記第2耐熱材の温度勾配とを利用して前記低融点酸化材の温度を融点付近に任意の時間保つことで、前記コンクリートの層面の温度が前記制御目標温度未満の温度に保たれる時間を延ばす
ことを特徴とする原子炉格納容器。
【請求項8】
請求項6又は請求項7に記載の原子炉格納容器において、
前記ペデスタル床と前記ペデスタル壁は、
炉心溶融物の熱で前記耐熱材の温度が上昇した場合に、前記低融点酸化材の沸騰時の吸熱反応と前記第2耐熱材の熱抵抗とを利用して前記低融点酸化材の温度を沸点付近に保つことで、前記コンクリートの層面の温度が前記制御目標温度未満の温度に保たれる時間を延ばす
ことを特徴とする原子炉格納容器。
【請求項9】
請求項1に記載の原子炉格納容器において、
前記耐熱材は、
前記原子炉圧力容器に近い側に配置された表層側耐熱材の層と、
前記原子炉圧力容器から遠い側に配置された深層側耐熱材の層と、を有しており、
前記深層側耐熱材の融点は、前記表層側耐熱材の融点よりも低い
ことを特徴とする原子炉格納容器。
【請求項10】
請求項1に記載の原子炉格納容器において、
前記低融点酸化材として三酸化アンチモンが用いられている
ことを特徴とする原子炉格納容器。
【請求項11】
請求項1に記載の原子炉格納容器において、
前記低融点酸化材として13~16族元素の酸化物が用いられている
ことを特徴とする原子炉格納容器。
【請求項12】
核燃料が装架された炉心を内包する原子炉圧力容器の下方の空間の底部を形成する格納容器床と、
前記空間の側部を形成する格納容器壁と、を備え、
前記格納容器床と前記格納容器壁は、
少なくとも一層以上の耐熱材と、
前記耐熱材の外側に配置されたコンクリートと、を有し、
前記耐熱材の層と前記コンクリートの層面との間に、低融点酸化材の層が挟み込まれており、
前記低融点酸化材は、前記コンクリートに含まれる炭酸カルシウムの脱炭酸反応の開始温度から終了温度までの範囲内で任意に定める温度を制御目標温度とし、結晶の相転移時の温度が前記制御目標温度よりも低い温度になっている部材である
ことを特徴とする原子炉格納容器。
【請求項13】
原子炉圧力容器と、
前記原子炉圧力容器を支持する支持部材と、を備え、
前記支持部材は、
少なくとも一層以上の耐熱材と、
前記耐熱材の外側に配置されたコンクリートと、を有し、
前記耐熱材の層と前記コンクリートの層面との間に、低融点酸化材の層が挟み込まれており、
前記低融点酸化材は、前記コンクリートに含まれる炭酸カルシウムの脱炭酸反応の開始温度から終了温度までの範囲内で任意に定める温度を制御目標温度とし、結晶の相転移時の温度が前記制御目標温度よりも低い温度になっている部材である
ことを特徴とする原子炉格納容器の支持構造。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、原子炉格納容器、及び、原子炉格納容器の支持構造に関する。
【背景技術】
【0002】
原子力発電プラントは、原子炉建屋の外部への核分裂生成物の放出を防止するために、核燃料を燃料棒に封止している。さらに、原子力発電プラントは、燃料棒を束ねた燃料集合体を装荷した炉心を原子炉圧力容器(以下、単に「圧力容器」と呼ぶ場合がある)に密閉し、気密構造の原子炉格納容器(以下、単に「格納容器」と呼ぶ場合がある)に圧力容器を格納している。また、原子力発電プラントは、非常用炉心冷却系等の複数の安全設備が設けられ、地震、風水害等で外部電源を喪失した場合においても、非常用発電設備や可搬式発電設備で非常用炉心冷却系の機能を維持し炉心の溶融を防ぐ。しかしながら、万一の場合であるが、全ての非常用炉心冷却系が機能せず、その状態を長時間放置すると、炉心が溶融するシビアアクシデントが発生する可能性がある。そのため、原子力発電プラントは、このようなシビアアクシデントの発生を防止することが望ましい。
【0003】
格納容器は、炉心溶融物の熱で圧力容器が破損して、炉心溶融物が格納容器の下部区画に落下した場合においても、炉心溶融物を内部に保持し、原子炉建屋の外部への核分裂生成物の放出を防止する性能が求められる。
【0004】
シビアアクシデントの発生時の炉心溶融物の冷却手段としては、過去のシビアアクシデントで得られた知見を基に原子炉の安全機能を強化するアクシデントマネジメント対策が提案されている。アクシデントマネジメント対策としては、炉心溶融物が下部区画に落下した格納容器の内部に復水貯蔵タンク水を注水する手段や、格納容器ドライウェルへのスプレイ水の流入を利用して炉心溶融物を冷却する手段がある。
【0005】
格納容器は鋼製あるいはコンクリート製である。格納容器の底部にはコンクリートのベースマットが敷かれ、圧力容器を支持するペデスタル構造のコンクリート側壁によって格納容器の下部区画が形成されている。格納容器は、下部区画の床面や側壁面を炉心溶融物の熱負荷から防護するために、例えば特許文献1に示すようにコンクリートの床面や側壁面に高融点の耐熱材を敷設した構造や、特許文献2に示すように耐熱材によるコアキャッチャーを設置した構造になっている。耐熱材の材質としては、ジルコニアやアルミナが用いられる。
【0006】
耐熱材は、炉心溶融物の発熱によって温度上昇するが、融点が高いため、炉心溶融物の熱負荷に対する耐性が高い。このため、格納容器は、万一、シビアアクシデントが発生した場合に、アクシデントマネジメント対策として注水を行うが、仮にその注水が遅れることがあったとしても、耐熱材の温度が上昇するのみで、炉心溶融物の保持機能を維持することが容易である。
【0007】
一方、多成分材であるコンクリートの最終的な溶融(分解)温度は、1500K(ケルビン)前後であるが、1500K未満の温度においても成分に応じた化学変化が発生する。コンクリート材の骨材成分である炭酸カルシウムは、約1000Kから脱炭酸反応が始まり、約1100Kで全て酸化カルシウムに分解する。つまり、コンクリート材の骨材成分である炭酸カルシウムは、約1000Kを脱炭酸反応の開始温度とし、約1100Kを脱炭酸反応の終了温度としている。このようなコンクリート材は、骨材成分の分解によって、例えば約1070Kで圧縮強度が70%低下することが報告されている。ただし、コンクリートの床面や側壁面は、仮にコンクリートの表面が1070Kに達したとしても、その深部で低温のコンクリートが支えている。そのため、コンクリートの床面や側壁面は、圧縮強度の低下で破損に継がることはない。しかしながら、耐熱材の支持や廃炉作業の容易性を考慮すると、コンクリートの床面や側壁面の健全性を維持しておくことは有益である。また、格納容器は、万一の場合のアクシデントマネジメント対策としての注水が遅れた場合において、コンクリートの床面や側壁面の温度を床面や側壁面の圧縮強度が低下しない温度に維持できる構造であることが好ましい。加えて、格納容器は、耐圧の関係で、気密構造の格納容器の内部においてアクシデントマネジメント対策による注水までの圧力上昇を抑制する上で、僅かであっても脱炭酸反応による炭酸ガスの発生を遅らせることも好ましい。
【0008】
特許文献1には、床面の上に耐熱材を敷設し、その上方に炉心溶融物に接触した場合に共融するコンクリートを配置した原子炉格納容器が記載されている。特許文献1に記載された原子炉格納容器は、耐熱材の上に落下した炉心溶融物とコンクリートとを混合することによって、炉心溶融物を冷却する構造になっている。また、特許文献2には、加圧水型原子炉を対象にして、コアキャッチャー容器の内外面を金属層で構成し、金属層の間隙にコンクリートが充填された原子炉格納容器が記載されている。特許文献2に記載された原子炉格納容器は、溶融したコンクリートの対流と熱伝達とが熱抵抗となることで、炉心溶融物からコアキャッチャーの内層に伝わった熱を、コアキャッチャーの外層に伝わり難くする構造になっている。
【先行技術文献】
【特許文献】
【0009】
【文献】特開平9-211166号公報
【文献】特表2018-503811号公報
【発明の概要】
【発明が解決しようとする課題】
【0010】
特許文献1,2に記載された従来の原子炉格納容器は、以下に説明するように、低コストな構成でありながら、仮にシビアアクシデントが発生した場合であっても、下部区画の耐熱材を支持するコンクリートの強度の健全性を確保することが要望されていた。
【0011】
特許文献1に記載された従来の原子炉格納容器は、仮にシビアアクシデントが発生した場合に、原子炉圧力容器の内部で核燃料が崩壊することで発生する炉心溶融物の温度が下部区画の耐熱材を支持するコンクリートの炉心溶融物との混合及び溶融によって一旦低下するものの、炉心溶融物の温度が放熱量と発熱量とのバランスで定まるため、炉心溶融物の温度が再び上昇する。これにより、コンクリートの溶融が発生してしまう。炉心溶融物の温度が低い状態で放熱量を得るためには、コンクリートの伝熱面積を増加させなければならないが、その場合に2乗3乗の法則の沿って多量のコンクリートを用いなければならない。なお、2乗3乗の法則とは、相似な形状をした2つの物体において代表長さの2乗に比例する面積に関する量と3乗に比例する体積に関する量とを比較すると、それぞれの量の変化の割合もほぼ2乗と3乗のオーダーとなることを意味している。また、一定時間の間、炉心溶融物の温度が低下した場合において、圧力容器から落下した炉心溶融物の温度は2000K前後になっている。そのため、下部区画の耐熱材を支持するコンクリートの表面温度を低下させるためには、耐熱材の厚さを増加させなければならないが、その場合に2乗3乗則の沿って多量の耐熱財を用いなければならない。このような特許文献1に記載された従来の原子炉格納容器は、シビアアクシデントが発生した場合に備えて、下部区画の耐熱材を支持するコンクリートの溶融を防止して、コンクリートの強度の健全性を確保するために、コンクリートの伝熱面積を増加させたり、耐熱材の厚さを増加させたりしなければならない。このような特許文献1に記載された従来の原子炉格納容器は、コストが高騰し易いため、低コストな構成でありながら、仮にシビアアクシデントが発生した場合であっても、下部区画で耐熱材を支持するコンクリートの強度の健全性を確保することが要望されていた。
【0012】
また、特許文献2に記載された従来の原子炉格納容器は、コンクリートの溶融温度が1500K前後であり、多成分系であるため、温度に応じた比熱で温度勾配に差があるものの、仮にシビアアクシデントが発生した場合に、下部区画の耐熱材を支持するコンクリートの温度上昇が継続的に発生する。特許文献2に記載された従来の原子炉格納容器は、金属層の間隙に充填されたコンクリートが溶融する際に、熱伝導の良いコアキャッチャー外側の金属層の温度が1500Kに近づくため、コアキャッチャーをコンクリートの床面や側壁面に設置すると、コンクリートの床面や側壁面の表面温度が1100Kを超えてしまう。これにより、コンクリートの溶融が発生してしまう。このような特許文献2に記載された従来の原子炉格納容器は、特許文献1に記載された従来の原子炉格納容器と同様に、シビアアクシデントが発生した場合に備えて、下部区画の耐熱材を支持するコンクリートの溶融を防止して、コンクリートの強度の健全性を確保するために、コンクリートの伝熱面積を増加させたり、耐熱材の厚さを増加させたりしなければならない。このような特許文献2に記載された従来の原子炉格納容器は、特許文献1に記載された従来の原子炉格納容器と同様に、コストが高騰し易いため、低コストな構成でありながら、仮にシビアアクシデントが発生した場合であっても、下部区画で耐熱材を支持するコンクリートの強度の健全性を確保することが要望されていた。
【0013】
本発明は、前記した課題を解決するためになされたものであり、低コストな構成でありながら、仮にシビアアクシデントが発生した場合であっても、下部区画の耐熱材を支持するコンクリートの強度の健全性が確保された原子炉格納容器、及び、原子炉格納容器の支持構造を提供することを主な目的とする。その他の課題解決の目的は、発明を実施するための形態において適宜説明する。
【課題を解決するための手段】
【0014】
前記目的を達成するため、本発明は、原子炉格納容器であって、核燃料が装架された炉心を内包する原子炉圧力容器の下方の空間の底部を形成するペデスタル床と、前記空間の側部を形成するペデスタル壁と、を備え、前記ペデスタル床と前記ペデスタル壁は、少なくとも一層以上の耐熱材と、前記耐熱材の外側に配置されたコンクリートと、を有し、前記耐熱材の層と前記コンクリートの層面との間に、低融点酸化材の層が挟み込まれており、前記低融点酸化材は、前記コンクリートの層面において前記コンクリートに含まれる炭酸カルシウムの脱炭酸反応の開始温度から終了温度までの範囲内で任意に定める温度を制御目標温度とし、結晶の相転移時の温度が前記制御目標温度よりも低い温度になっている部材である構成とする。
その他の手段は、後記する。
【発明の効果】
【0015】
本発明によれば、低コストな構成でありながら、仮にシビアアクシデントが発生した場合であっても、下部区画の耐熱材を支持するコンクリートの強度の健全性を確保することができる。
【図面の簡単な説明】
【0016】
【
図1】実施形態1に係る沸騰水型の原子炉格納容器を備える原子力発電プラントの構造を表す縦断面図である。
【
図2A】実施形態1に係る原子炉格納容器に設けられた耐熱構造部の横断面図である。
【
図2B】実施形態1に係る原子炉格納容器に設けられた耐熱構造部の縦断面図である。
【
図3】実施形態1に係る原子炉格納容器の下部区画への注水動作を示す説明である。
【
図4A】低融点酸化材による作用効果を説明するための酸化ビスマスの示差熱の温度特性図である。
【
図4B】低融点酸化材による作用効果を説明するための効果の説明のための酸化ビスマスの比エンタルピの温度特性図である。
【
図5A】低融点酸化材が設けられていない場合の耐熱材の温度とコンクリートの温度のトレンド図である。
【
図5B】低融点酸化材が設けられている場合の耐熱材の温度とコンクリートの温度のトレンド図である。
【
図6A】実施形態2に係る原子炉格納容器に設けられた耐熱構造部の横断面図である。
【
図6B】実施形態2に係る原子炉格納容器に設けられた耐熱構造部の縦断面図である。
【
図7】実施形態2に係る原子炉格納容器に設けられた耐熱構造部の縦断面に沿った温度プロファイル図である。
【
図8A】実施形態3に係る原子炉格納容器に設けられた耐熱構造部の横断面図である。
【
図8B】実施形態3に係る原子炉格納容器に設けられた耐熱構造部の縦断面図である。
【
図9】実施形態4に係る加圧水型の原子炉格納容器を備える原子力発電プラントの構造を表す縦断面図である。
【発明を実施するための形態】
【0017】
以下、図面を参照して、本発明の実施の形態(以下、「本実施形態」と称する)について詳細に説明する。各図は、本発明を十分に理解できる程度に、概略的に示しているに過ぎない。よって、本発明は、図示例のみに限定されるものではない。また、各図において、共通する構成要素や同様な構成要素については、同一の符号を付し、それらの重複する説明を省略する。
【0018】
[実施形態1]
本実施形態1に係る原子炉格納容器1は、沸騰水型原子炉、加圧水型原子炉等の軽水炉、高速増殖炉、新型転換炉、高温ガス炉、他の各種原子炉に適用可能である。以下、これら各種原子炉のうち沸騰水型原子炉に本発明を適用する場合を例にして説明するが、これに限られるものではなく、また、本発明の趣旨を逸脱しない範囲において各種の変形が可能である。
【0019】
<原子炉格納容器の構成>
以下、
図1乃至
図3を参照して、本実施形態1に係る原子炉格納容器を備える原子力発電プラントの構成について説明する。
図1は、本実施形態1に係る沸騰水型の原子炉格納容器1を備える原子力発電プラント40の構造を表す縦断面図である。
図2Aは、原子炉格納容器1に設けられた耐熱構造部HR1の横断面図である。
図2Bは、原子炉格納容器1に設けられた耐熱構造部HR1の縦断面図である。
図3は、原子炉格納容器1の下部区画4への注水動作を示す説明図である。
【0020】
図1に示すように、原子力発電プラント40は、核燃料の燃料集合体を装荷した炉心20と、炉心20に対して図示せぬ制御棒を挿入したり引き抜いたりする制御棒駆動機構31と、炉心20を内包する原子炉圧力容器2と、内部で原子炉圧力容器2を保持する原子炉格納容器1と、原子炉格納容器1が設置された原子炉建屋42と、を備えている。原子炉格納容器1は、上端部に格納容器上蓋43が取り付けられて密封されている。格納容器上蓋43の真上には、複数に分割された放射線遮蔽体であるシールドプラグ47が配置されている。原子炉格納容器1は、内部気相空間のドライウェル13と、冷却水が入った圧力抑制プール11を含むウェットウェル12と、を有する。ドライウェル13とウェットウェル12とは、隔離されている。ドライウェル13の空間と圧力抑制プール11の水中とが、ベント管21で連通されている。
【0021】
原子炉格納容器1の内部には、下部区画4が設けられている。下部区画4は、原子炉圧力容器2の下方に設けられた空間であり、原子炉圧力容器52から落下した高温の炉心溶融物59を受け入れる。原子炉格納容器1は、下部区画4の上方に原子炉圧力容器2が配置されるように、コンクリート製のペデスタル壁3とペデスタル床5とで原子炉圧力容器2を支えている。ペデスタル壁3は、原子炉格納容器1の内部空間である下部区画4の側部を形成する。ペデスタル床5は、下部区画4の底部を形成する。ペデスタル壁3とペデスタル床5とは、一体に形成されている。
【0022】
原子炉格納容器1では、主蒸気管の破断や給水管の破断等の事故時に、ドライウェル13に放出された蒸気がベント管21を通って圧力抑制プール11に流入して圧力抑制プール11の水中で凝縮される。これにより、原子炉格納容器1の内部の圧力上昇が抑制される。原子炉建屋42の内部には、原子炉冷却系配管の破断事故等の発生時に炉心20を冷却するための図示せぬ注水装置や原子炉圧力容器2の図示せぬ減圧手段を有する図示せぬ非常用炉心冷却装置が設けられる。また、原子力発電プラント40では、炉心20の溶融とそれによる原子炉圧力容器2の破損等のシビアアクシデントを想定して、ペデスタル注水系14や図示せぬ代替スプレイ系が設置されている。ペデスタル注水系14や図示せぬ代替スプレイ系は、アクシデントマネジメント対策として原子炉格納容器1の内部に注水するための、復水タンクや可搬型の水張設備を用いた設備である。
【0023】
また、本実施形態では、原子炉格納容器1は、下部区画4のコンクリート18の床面(ペデスタル床5の上壁面)や側壁面(ペデスタル壁3の側壁面)に耐熱構造部HR1が設けられている。
【0024】
以下、
図2A及び
図2Bを参照して、耐熱構造部HR1の構成について説明する。なお、ここでは、炉心20の溶融と原子炉圧力容器2の破損等のシビアアクシデントの発生時に炉心溶融物9がペデスタル床5に落下した場合を想定して説明する。
図2Aは、
図2Bに示す原子炉格納容器1をX1-X1線に沿って切断して得られる切り口すなわち断面を矢印方向に見たレイアウトを示している。また、
図2Bは、
図2Aに示す原子炉格納容器1をY1-Y1線に沿って切断して得られる切り口すなわち断面を矢印方向に見たレイアウトを示している。
【0025】
図2A及び
図2Bに示すように、耐熱構造部HR1は、ペデスタル床5やペデスタル壁3の少なくとも一層以上の耐熱材6と、耐熱材6の外側に配置されたコンクリート18と、を有し、耐熱材6の層とコンクリート18の層面との間に、低融点酸化材7の層が挟み込まれた構成になっている。
【0026】
具体的には、耐熱構造部HR1では、コンクリート18の床面(ペデスタル床5の上壁面)や側壁面(ペデスタル壁3の側壁面)に、少なくとも一層以上の耐熱材6が敷設されている。耐熱材6は、炉心20が溶融して原子炉圧力容器2から落下するようなシビアアクシデントの発生時に炉心溶融物9を受け止めて(保持して)、床面や側壁面に対する炉心溶融物9の熱負荷を軽減するための部材である。耐熱材6は、融点が比較的高くで、熱伝導率が比較的低いことが好ましいため、ジルコニアやアルミナ等が用いられる。
【0027】
ペデスタル床5とペデスタル壁3に設けられた耐熱構造部HR1は、耐熱材6の層とコンクリート18の層面(コンクリート面19)との間に、耐熱材支持部材8を介して間隙が形成されている。耐熱構造部HR1は、その間隙に、低融点酸化材7の層を挟み込んだ構成になっている。
【0028】
低融点酸化材7は、シビアアクシデントの発生時に、シビアアクシデントが発生してから、コンクリート18に含まれる炭酸カルシウムの脱炭酸反応が終わるまでの時間を延ばすための部材である。低融点酸化材7は、その結晶の相転移時の温度や融点が以下に説明する制御目標温度よりも低い温度になっている。
【0029】
ここで、「制御目標温度」とは、ペデスタル床5とペデスタル壁3に用いられたコンクリート18の層面(コンクリート面19)においてコンクリート18に含まれる炭酸カルシウムの脱炭酸反応の開始温度から終了温度までの範囲内で任意に定める温度である。一般に、炭酸カルシウムの脱炭酸反応温度は約1000Kから約1100Kの間で生じる。コンクリート18は、温度が炭酸カルシウムの脱炭酸反応の開始温度に達すると、圧縮強度が低下し始めたり、ガスが発生し始めたりする。コンクリート材は、骨材成分の分解によって、例えば約1070Kで圧縮強度が70%低下する。
【0030】
制御目標温度としては、1010K未満の温度、好ましくは炭酸カルシウムの脱炭酸反応の開始温度である1000K付近未満の温度にするとよい。なお、コンクリート18の層面の温度は、低融点酸化材7の層の温度の上昇から時間の遅れを伴って上昇する。そのため、低融点酸化材7の結晶の相転移時の温度が炭酸カルシウムの脱炭酸反応の開始温度よりも高い温度なっている場合であっても、耐熱構造部HR1は、コンクリート18の層面の温度を制御目標温度よりも低い温度に任意の時間保つことができる。
【0031】
なお、低融点酸化材7の結晶の相転移時の温度は、前記した制御目標温度に近似した温度未満でできるだけ低温であることが好ましい。このような低融点酸化材7は、結晶の相転移時の温度が1010K未満の温度になっている部材であるとよい。このような温度特性を実現する低融点酸化材7としては、例えば酸化ビスマス(Bi2O3)を挙げることができる。酸化ビスマスの結晶の相転移時の温度は、990Kから1005Kの範囲である。したがって、低融点酸化材7として酸化ビスマスを用いる場合に、低融点酸化材7は、結晶の相転移時の温度が1005K以下の温度になっている部材となる。
【0032】
本実施形態では、低融点酸化材7として酸化ビスマスを用いるものとし、制御目標温度を炭酸カルシウムの脱炭酸反応の開始温度である1000Kとし、低融点酸化材7の結晶の相転移時の温度が炭酸カルシウムの脱炭酸反応の開始温度に近似した1000K未満であるものとして説明する。ただし、制御目標温度は、運用次第で炭酸カルシウムの脱炭酸反応の開始温度である1000Kよりも高い温度に設定することができる。また、低融点酸化材7の結晶の相転移時の温度は、運用次第で炭酸カルシウムの脱炭酸反応の開始温度である1000Kよりも高い温度であってもよい。
【0033】
耐熱材支持部材8は、低融点酸化材7(酸化ビスマス)の層が溶融した後に上部の耐熱材6を支えるために設置されている。耐熱材6の壁面から耐熱材支持部材8に伝わる熱は、ペデスタル床5やペデスタル壁3に伝わる前に、融解した低融点酸化材7(酸化ビスマス)の層に伝わる。原子炉格納容器1は、耐熱材支持部材8内部の熱伝導量よりもこの熱伝達量が多くなるように、耐熱材支持部材8の表面積が予め定められている。耐熱材6を支持する強度を計算して、耐熱材支持部材8の個数、直径、及び断面形状を決定すればよい。
【0034】
図3に示すように、原子炉格納容器1(
図1参照)は、炉心20の溶融と原子炉圧力容器2の破損等のシビアアクシデントの発生時に、万一の場合のアクシデントマネジメント対策として、ペデスタル注水系14による下部区画4への注水を行う。このとき、耐熱構造部HR1では、低融点酸化材7は、コンクリート18の層面(コンクリート面19)の温度を結晶の相転移の温度付近に任意の時間一定に保つように作用する。
【0035】
以下、低融点酸化材7として単成分の酸化ビスマス(Bi
2O
3)を用いた場合を例にして、
図4A乃至
図5Bを参照して、低融点酸化材7の作用効果について説明する。
図4Aは、低融点酸化材7による作用効果を説明するための酸化ビスマスの示差熱の温度特性図である。
図4Aの横軸は温度(K)を表しており、縦軸は示差熱(K)を表している。
図4Bは、低融点酸化材7による作用効果を説明するための酸化ビスマスの比エンタルピの温度特性図である。
図4Bの横軸は温度(K)を表しており、縦軸は比エンタルピ(J/kg)を表している。
図5Aは、低融点酸化材7が設けられていない場合の耐熱材6の温度とコンクリート18の温度のトレンド図である。
図5Bは、低融点酸化材7が設けられている場合の耐熱材6の温度とコンクリート18の温度のトレンド図である。
図5A及び
図5Bの軸は時間(分)を表しており、縦軸は温度(K)を表している。
【0036】
本実施形態では、制御目標温度を炭酸カルシウムの脱炭酸反応の開始温度である1000Kとし、低融点酸化材7に用いられた酸化ビスマスの結晶の相転移時の温度が、前記した制御目標温度である1000Kよりも低い温度(つまり、1000K未満の温度)になっている。そのため、
図4Aに示す例では、酸化ビスマスの結晶の相転移時の吸熱反応により、低融点酸化材7に用いられた酸化ビスマスの示差熱が1000Kよりも低い値から比較的大きく低下している。
【0037】
また、本実施形態では、低融点酸化材7に用いられた酸化ビスマスの融点が約1090Kになっている。そのため、
図4Aに示す例では、酸化ビスマスの融解による吸熱反応により、低融点酸化材7に用いられた酸化ビスマスの示差熱が約1090Kで若干低下している。
【0038】
また、
図4Bに示す例では、低融点酸化材7に用いられた酸化ビスマスの比エンタルピが1000K付近の温度から比較的大きく上昇している。また、低融点酸化材7に用いられた酸化ビスマスの比エンタルピが酸化ビスマスの融点の温度である約1090Kの温度から上昇している。
【0039】
炉心溶融物9の熱で耐熱材6の温度が上昇した場合に、
図4A及び
図4Bに示すように、耐熱材6の層とコンクリート18の層面(ペデスタル床5の上壁面とペデスタル壁3の側壁面)に挟まれた低融点酸化材7(酸化ビスマス)の層の温度も上昇する。このとき、1000K未満の温度で結晶の相転移が起こることで、吸熱反応が発生する。低融点酸化材7(酸化ビスマス)の温度は、その吸熱反応によって、相転移反応が終わるまで前記した制御目標温度である1000Kよりも低い温度に任意の時間一定に保たれる。そのため、原子炉格納容器1は、コンクリート18の層面(コンクリート面19)の温度を前記した制御目標温度である1000Kよりも低い温度(1000K未満の温度)に任意の時間一定に保つことができる。
【0040】
また、結晶の相転移が終わった後、低融点酸化材7(酸化ビスマス)の層は、温度が上昇するが、約1090Kで融点に達し、融解熱で比エンタルピの上昇にも関わらず再び温度が一定になる。このとき、コンクリート18の層面は、低融点酸化材7の層の温度の上昇から遅れて上昇するため、前記した制御目標温度よりも低い温度に任意の時間一定に保つことができる。
【0041】
図5Aは、ジルコニアやアルミナ等の耐熱材6のみが設けられ、低融点酸化材7が設けられていない場合の耐熱材6とコンクリート18の温度変化を示している。一方、
図5Aは、ジルコニアやアルミナ等の耐熱材6に加え、酸化ビスマスの低融点酸化材7が設けられている場合の耐熱材6と低融点酸化材7とコンクリート18の温度変化を示している。
【0042】
図5Aでは、低融点酸化材7(酸化ビスマス)を挟んだ場合と比較するため、耐熱材6を2層敷いた状態を表し、
図5Bでは下側の耐熱材6を低融点酸化材7(酸化ビスマス)に置き換え、コンクリート18との境界である低融点酸化材7(酸化ビスマス)の層の下面温度を破線で表している。
【0043】
図5Aに示すように、低融点酸化材7が設けられていない構成では、耐熱材6の温度が単調に上昇し、耐熱材6に接するコンクリート18の層面(コンクリート表面)の温度も単調に上昇する。そのため、コンクリート18の層面(コンクリート表面)の温度は、前記した制御目標温度である1000Kを短時間のうちに超える。
【0044】
一方、
図5Bに示すように、低融点酸化材7が設けられた構成では、低融点酸化材7の層(酸化ビスマス)の温度が結晶の相転移時の温度に達すると、結晶の相転移が発生して温度が一定になる。そのため、低融点酸化材7(酸化ビスマス)に接するコンクリート18の層面(コンクリート表面)の温度上昇が緩和される。これにより、低融点酸化材7(酸化ビスマス)の結晶の相転移が始まってから終わるまでの間(
図5Bに示す「緩和時間」参照)、コンクリート18の層面の温度が一定に保たれる。この後、低融点酸化材7(酸化ビスマス)の結晶の相転移が終わると、低融点酸化材7(酸化ビスマス)の温度が再び上昇をし始め、低融点酸化材7(酸化ビスマス)に接するコンクリート18の層面(コンクリート表面)の温度も上昇をし始める。
【0045】
図5Bに示す緩和時間中において、原子炉格納容器1は、コンクリート18の層面の温度を前記した制御目標温度よりも低い一定の温度に任意の時間保つ。そのため、緩和時間中、コンクリート18の強度の低下が緩和され、これによって、ペデスタル床5とペデスタル壁3のコンクリート18の強度低下が緩和される。
【0046】
結晶の相転移が終わった後は、再び温度が上昇し、低融点酸化材7(酸化ビスマス)は約1090Kで溶融し始め、再び温度が一定に保たれる。低融点酸化材7(酸化ビスマス)の結晶の相転移や融解によってコンクリート18の層面の温度上昇が抑制され、1000K未満の温度に保持される時間も延長される。緩和時間は、低融点酸化材7(酸化ビスマス)の層の質量に比例する。耐熱材6の温度も低融点酸化材7(酸化ビスマス)の温度の影響を受け、
図5Bの二点鎖線に示す低融点酸化材7(酸化ビスマス)を用いない場合と比較して、実線のように温度上昇率が低下する。
【0047】
なお、耐熱材6であるジルコニアやアルミナは、酸化物であるが、炉心溶融物9との接触により化学反応が発生したり耐熱材6と耐熱材6との間で化学反応が発生したりする。これに伴って、酸素の移動で耐熱材6が還元されると、耐熱材6の融点が低下する場合がある。そこで、耐熱材6の層に接して酸化材の低融点酸化材7(酸化ビスマス)を配置することで、低融点酸化材7(酸化ビスマス)が還元されて耐熱材6に酸素を供給し、耐熱材6の還元を抑制する効果も期待できる。
【0048】
原子炉格納容器1は、炉心溶融物9が下部区画4に落下する前に、ペデスタル注水系14から下部区画4への注水を開始する。このとき、原子炉格納容器1は、注水遅れ時間を上記の緩和時間によって回復することで、炉心溶融物9が冷却され、低コストな構成でありながら、ペデスタル床5とペデスタル壁3の健全性を確保(維持)できる。
【0049】
なお、注水が遅れた場合や炉心溶融物9が下部区画4に落下した後に注水を行う手順をとる場合は、炉心溶融物9から下部区画4の気相への除熱量が少ないため、下部区画4に注水されるまでの間に、耐熱材6の層により多く熱が伝わる。この場合であっても、原子炉格納容器1は、注水遅れ時間を上記の緩和時間によって回復することで、炉心溶融物9が冷却され、低コストな構成でありながら、ペデスタル床5とペデスタル壁3の健全性を確保(維持)できる。
【0050】
次に、コンクリート18の層面の温度が前記した制御目標温度未満の温度に保たれる時間を緩和時間Δtとし、緩和時間Δtについて計算する。ここでは、原子炉の炉心20の溶融や原子炉圧力容器2の破損等のシビアアクシデントの発生時に、炉心溶融物9がペデスタル床5に落下することを想定して、緩和時間Δtを計算する。また、保守的に炉心溶融物9の上面から下部区画4の気相への放熱を無視して、炉心溶融物9が落下した直後から準定常状態になるまでの顕熱量が耐熱材6の層の顕熱と結晶の相転移の直前までの低融点酸化材7の層の顕熱とバランスし、ペデスタル床5への除熱を無視し、炉心溶融物9の崩壊熱Qを低融点酸化材のみで受け止めて融解する、と全て保守的に仮定して、緩和時間Δtを計算する。
【0051】
低融点酸化材7の結晶の相転移から融解までの顕熱をq1とし、質量をMとする場合に、低融点酸化材7の総顕熱Q1は、以下の式(1)で表される。
Q1=q1×M …(1)
【0052】
また、低融点酸化材7の結晶の相転移の吸熱をPとし、低融点酸化材7の溶融潜熱をLとする場合に、低融点酸化材7の結晶の相転移と融解における潜熱Q2は、以下の式(2)で表される。
Q2=P+L …(2)
【0053】
また、炉心溶融物9の崩壊熱をQとする場合に、緩和時間Δtは、以下の式(3)で表される。
Δt=(Q1+Q2)/Q …(3)
【0054】
式(3)に式(1)と式(2)を代入することにより、以下の式(4)を得ることができる。
Δt=(q1×M+P+L)/Q …(4)
【0055】
ここで、低融点酸化材7の比熱をCとする場合に、低融点酸化材7の結晶の相転移から融解までの顕熱q1は、以下の式(5)で表される。
q1=C×Δt …(5)
【0056】
式(4)に式(5)を代入することにより、以下の式(6)を得ることができる。
Δt=(C×Δt×M+P+L)/Q …(6)
【0057】
式(6)より、以下の式(7)を得ることができる。
Δt×Q-C×Δt×M=(P+L) …(7)
【0058】
さらに、式(7)より、緩和時間Δtとして、以下の式(8)を得ることができる。
Δt=(P+L)/(Q-C×M) …(8)
【0059】
なお、本実施形態では、質量Mを床と壁の低融点酸化材7の総質量とし、床と壁の質量配分を1:1として計算している。炉心溶融物9の崩壊熱は、原子炉が停止してから6時間後の値を用いた。商用炉の寸法を参照して合理的な低融点酸化材の厚さで計算した結果、参考値としての最小の緩和時間Δtは、約10分間である。つまり、本実施形態に係る原子炉格納容器1の耐熱構造部HR1は、試算上、コンクリート18の層面の温度が前記した制御目標温度未満の温度に保たれる時間を約10分間延ばすことができる。
【0060】
原子炉格納容器1では、炉心溶融物9の熱で耐熱材6の温度が上昇して、低融点酸化材7の層の温度が前記した制御目標温度である1000Kよりも低い温度に達した場合に、低融点酸化材7の結晶の相転移が発生する。このとき、原子炉格納容器1の耐熱構造部HR1は、低融点酸化材7の結晶の相転移時の吸熱反応を利用して、低融点酸化材7の温度を結晶の相転移時の温度付近に任意の時間一定に保つように作用する。これにより、低融点酸化材7の層に接するペデスタル床5の層とペデスタル壁3の層の温度上昇が緩和される。その結果、耐熱構造部HR1は、コンクリート18の層面(コンクリート面19)の温度が前記した制御目標温度未満の温度に一定に保たれる時間(緩和時間Δt(
図5B参照))を延ばすことができる。
【0061】
このような耐熱構造部HR1を有する原子炉格納容器1は、コンクリート18の床面や側壁面の温度をコンクリート18の強度が低下したりガスが発生したりする温度よりも低い温度に保つ時間(緩和時間Δt(
図5B参照))を延長できる。
【0062】
また、原子炉格納容器1は、耐熱材6の還元反応を抑制できる。そのため、原子炉格納容器1は、低コストな構成でありながら、仮にシビアアクシデントが発生した場合であっても、下部区画4の耐熱材6を支持するコンクリート18の強度の健全性を確保(維持)できる。また、炉心溶融物9を好適に内部に保持できる。
【0063】
また、原子炉格納容器1は、仮に注水が遅れる場合にであっても、コンクリート18の床面や側壁面の健全性を確保できる。そのため、安全性を向上させることができる。
【0064】
なお、低融点酸化材7の候補材としては、酸化ビスマス以外に、酸化ビスマスと化学的性質が類似する三酸化アンチモン(Sb2O3)を挙げることができる。三酸化アンチモンは、酸化ビスマスよりも融点が低いが、沸点(昇華点)が低く飛散し易いため、例えば低融点の物質に混合することで、低融点の物質が融解した液中で昇華する等の粉じん対策を行うことができる。
【0065】
また、低融点にのみ着目すれば、低融点酸化材7の候補材としては、酸化ビスマスや三酸化アンチモン以外に、元素周期上で酸化ビスマスに類似する酸化材として、13~16族元素の酸化物を挙げることができる。
【0066】
原子炉格納容器1は、低融点酸化材7として、酸化ビスマスの代わりに、三酸化アンチモンや13~16族元素の酸化物を用いることができる。ただし、酸化ビスマスは、結晶の相転移時の温度を炭酸カルシウムの脱炭酸反応の開始温度に近似した温度にできる。つまり、酸化ビスマスの結晶の相転移は、炭酸カルシウムの脱炭酸反応の開始温度に近い温度で始まる。そのため、酸化ビスマスは、同量の他の候補材よりも緩和時間Δtを延長できる。
【0067】
[実施形態2]
原子炉格納容器1は、実施形態1の耐熱構造部HR1(
図2A及び
図2B参照)の代わりに、耐熱構造部HR2(
図6A及び
図6B参照)を備える構成にすることができる。以下、
図6A及び
図6Bを参照して、本実施形態2に係る耐熱構造部HR2の構成について説明する。6Aは、本実施形態2に係る耐熱構造部HR2の横断面図である。
図6Bは、耐熱構造部HR2の縦断面図である。
【0068】
図6A及び
図6Bに示すように、本実施形態2に係る耐熱構造部HR2は、実施形態1の耐熱構造部HR1(
図2A及び
図2B参照)と比較すると、低融点酸化材7の層とコンクリート18の層面(コンクリート面19)との間に、第2耐熱材10が挟み込まれている点で相違している。
【0069】
第2耐熱材10は、炉心20が溶融して原子炉圧力容器2から落下するようなシビアアクシデントの発生時に、炉心溶融物9から床面や側壁面に伝わる炉心溶融物9の熱負荷を軽減するための部材である。第2耐熱材10は、耐熱材6よりも薄く形成されている。第2耐熱材10は、低融点酸化材7の層とコンクリート18の層面(コンクリート面19)との間の温度差を大きくするために、熱伝導率の低い材料を用いることが好ましく、例えばジルコニアやアルミナを用いても良い。
【0070】
コンクリート18に含まれる炭酸カルシウムの脱炭酸反応は、1000Kから徐々に発生する。コンクリート18の層面の温度は、炭酸カルシウムの脱炭酸反応が促進するにしたがって、上昇する。本実施形態2の耐熱構造部HR2は、コンクリート表面の温度を1000Kよりも低下させて、コンクリート18の層面の温度に裕度を持たせるために、低融点酸化材7(酸化ビスマス)の層とコンクリート18の層面(コンクリート面19)との間に、第2耐熱材10が挟み込まれている。
【0071】
このような耐熱構造部HR2は、炉心溶融物9の熱で耐熱材6の温度が上昇して、低融点酸化材7の温度が結晶の相転移時の温度付近に達した場合において、実施形態1の耐熱構造部HR1(
図2A及び
図2B参照)と同様に、低融点酸化材7の結晶の相転移時の吸熱反応を利用して、低融点酸化材7の温度を結晶の相転移時の温度付近に任意の時間一定に保つことができる。しかも、耐熱構造部HR2は、低融点酸化材7の温度が結晶の相転移時の温度付近に達した場合において、第2耐熱材10の熱抵抗により温度勾配が発生する。耐熱構造部HR2は、実施形態1の耐熱構造部HR1(
図2A及び
図2B参照)と異なり、第2耐熱材10の温度勾配を利用して、低融点酸化材7の温度を結晶の相転移時の温度付近に任意の時間一定に保つように作用する。これにより、コンクリート18の層面の温度を実施形態1の耐熱構造部HR1のコンクリート18の層面の温度よりもさらに低い温度に保つことができる。
【0072】
また、耐熱構造部HR2は、炉心溶融物9の熱で耐熱材6の温度が上昇して、低融点酸化材7の温度が融点に達した場合において、第2耐熱材10の熱抵抗による温度勾配が発生する。耐熱構造部HR2は、低融点酸化材7の結晶の相転移時の吸熱反応と第2耐熱材10の温度勾配とを利用して、低融点酸化材7の温度を融点付近に任意の時間一定に保つように作用する。これにより、低融点酸化材7の層に接するペデスタル床5とペデスタル壁3の表面温度の上昇が緩和される。そのため、耐熱構造部HR2は、コンクリート18の層面の温度が前記した制御目標温度未満の温度に一定に保たれる時間(緩和時間Δt(
図5B参照))を延ばすことができる。その結果、耐熱構造部HR2は、低融点酸化材7の温度が融点に達した場合において、コンクリート18の層面の温度を実施形態1の耐熱構造部HR1のコンクリート18の層面の温度よりも低い温度に任意の時間一定に保つことができる。
【0073】
また、耐熱構造部HR2は、炉心溶融物9の熱で耐熱材6の温度が上昇して、低融点酸化材7の温度が沸点に達した場合において、第2耐熱材10の熱抵抗により温度勾配とが発生する。耐熱構造部HR2は、低融点酸化材7の沸騰時の吸熱反応と温度勾配とを利用して、低融点酸化材7の温度を沸点付近に任意の時間一定に保つように作用する。これにより、低融点酸化材7の層に接するペデスタル床5とペデスタル壁3の表面温度の上昇が緩和される。そのため、耐熱構造部HR2は、コンクリート18の層面の温度が前記した制御目標温度未満の温度に一定に保たれる時間(緩和時間Δt(
図5B参照))を延ばすことができる。その結果、耐熱構造部HR2は、低融点酸化材7の温度が沸点に達した場合において、コンクリート18の層面の温度を実施形態1の耐熱構造部HR1のコンクリート18の層面の温度よりも低い温度に任意の時間一定に保つことができる。
【0074】
図7に耐熱構造部HR2の温度分布を示す。
図7は、耐熱構造部HR2の縦断面に沿った温度プロファイル図である。
図7に示すように、耐熱構造部HR2は、低融点酸化材7の層とコンクリート18の層面(コンクリート面19)との間に第2耐熱材10を有することにより、コンクリート18の層面から耐熱材6の層までの厚さに応じて、コンクリート18の層面と第2耐熱材10の層と低融点酸化材7の層と耐熱材6の層との間で温度差が発生するため、第2耐熱材10の表面温度の裕度ΔT2を得ることができる。
【0075】
ここで、第2耐熱材10の熱伝導率をRとし、第2耐熱材10の表面温度の裕度をΔT2とし、第2耐熱材10を通過する熱流束をFとし、第2耐熱材10の表面温度の裕度ΔT2を得るために求められる第2耐熱材の厚さをXとして、第2耐熱材10の厚さXについて計算する。
【0076】
第2耐熱材の厚さXは、以下の式(9)で表される。
X=(R×ΔT2)/F …(9)
【0077】
例えば実施形態1の計算例で使用した条件を用いて、第2耐熱材10の厚さXを計算すると、第2耐熱材10の表面温度の裕度ΔT2を100Kとする場合に、第2耐熱材10の表面温度の裕度ΔT2を得るために求められる第2耐熱材の厚さXは1mmである。
【0078】
このような本実施形態2の耐熱構造部HR2(
図6A及び
図6B参照)は、実施形態1の耐熱構造部HR1(
図2A及び
図2B参照)よりも、緩和時間Δt(
図5B参照)をさらに延長できる。そのため、実施形態1の耐熱構造部HR1(
図2A及び
図2B参照)よりも、原子炉格納容器1の安全性を向上させることができる。
【0079】
換言すると、本実施形態2の耐熱構造部HR2を備える原子炉格納容器1は、炉心溶融物9の熱で耐熱材6の温度が上昇した場合に、低融点酸化材7の結晶の相転移時の吸熱反応と第2耐熱材10の温度勾配とを利用している。そして、原子炉格納容器1は、ペデスタル床5とペデスタル壁3における低融点酸化材7の温度を前記した制御目標温度未満の温度に任意の時間一定に保つ構成になっている。これにより、本実施形態2の原子炉格納容器1は、実施形態1の原子炉格納容器1よりも、緩和時間Δt(
図5B参照)をさらに延長できる。そのため、本実施形態2の原子炉格納容器1は、安全性を向上することができる。
【0080】
[実施形態3]
原子炉格納容器1は、実施形態1の耐熱構造部HR1(
図2A及び
図2B参照)の代わりに、耐熱構造部HR3(
図8A及び
図8B参照)を備える構成にすることができる。以下、
図8A及び
図8Bを参照して、本実施形態3に係る耐熱構造部HR3の構成について説明する。8Aは、本実施形態3に係る耐熱構造部HR3の横断面図である。
図8Bは、耐熱構造部HR3の縦断面図である。
【0081】
図8A及び
図8Bに示すように、本実施形態3に係る耐熱構造部HR3は、実施形態1の耐熱構造部HR1(
図2A及び
図2B参照)と比較すると、耐熱材6の代わりに、耐熱材6が多層化された表層側耐熱材15と深層側耐熱材16とを備えている点で相違している。
【0082】
表層側耐熱材15は、下部区画4に近い側(原子炉圧力容器2に近い側)に配置された耐熱材であり、深層側耐熱材16は、下部区画4から遠い側(原子炉圧力容器2から遠い側)に配置された耐熱材である。表層側耐熱材15の融点は、深層側耐熱材16の融点よりも高くなっている。換言すると、深層側耐熱材16の融点は、表層側耐熱材15の融点よりも低くなっている。
図8Aに示すように、耐熱構造部HR3は、横断面視において、内側から外側に向かって、高融点の表層側耐熱材15の層、低融点の深層側耐熱材16の層、低融点酸化材7及び耐熱材支持部材8の層、コンクリート18の層が配置された構成になっている。換言すると、
図8Bに示すように、耐熱構造部HR3は、縦断面視において、上側から下側に向かって、高融点の表層側耐熱材15の層、低融点の深層側耐熱材16の層、低融点酸化材7及び耐熱材支持部材8の層、コンクリート18の層が配置された構成になっている。
【0083】
深層側耐熱材16には、その融点が低融点酸化材7の融点よりも高い材料が用いられる。耐熱材の全ての層を高融点の表層側耐熱材15で構成しないのは、高融点の表層側耐熱材15の材料が希少であり、低融点の深層側耐熱材16のコストが高融点の表層側耐熱材15のコストよりも低いためである。耐熱構造部HR3は、炉心溶融物9との接触温度に合わせて深層側耐熱材16の材料を選ぶことで、実施形態1の耐熱構造部HR1(
図2A及び
図2B参照)よりもコストを低減することができる。
【0084】
また、金属、セラミックでは一般に、還元されると融点が低下する性質を有する。表層側耐熱材15に対して深層側耐熱材16の還元性が同等以上でなければ、表層側耐熱材15が炉心溶融物9だけでなく深層側耐熱材16との接触によっても還元され易くなる。深層側耐熱材16の還元性が高いと表層側耐熱材15に酸素を供給して表層側耐熱材15の耐熱性を維持できる一方で、深層側耐熱材16は還元されて融点が低下する。そこで、低融点酸化材7が深層側耐熱材16への酸素供給源となることで深層側耐熱材16の耐熱性を維持できる。低融点酸化材7の融解後は固液接触により、酸素移行速度も速くなるため、酸素供給が促進される。
【0085】
本実施形態によれば、実施形態1,2に加えて、耐熱材の還元反応を抑制できる。これによって、耐熱材の融点降下を防止できて耐熱性を維持できるので、安全性の高い原子炉格納容器1を提供できる。
このような本実施形態3の耐熱構造部HR3(
図8A及び
図8B参照)は、実施形態1の耐熱構造部HR1(
図2A及び
図2B参照)よりも、表層側耐熱材15と深層側耐熱材16との全体の融点降下を防止でき、表層側耐熱材15と深層側耐熱材16との全体の耐熱性を維持できる。そのため、実施形態1の耐熱構造部HR1(
図2A及び
図2B参照)よりも、原子炉格納容器1の安全性を向上させることができる。
【0086】
[実施形態4]
以下、
図9を参照して、本実施形態4に係る加圧水型の原子炉格納容器51の構成について説明する。
図9は、本実施形態4に係る加圧水型の原子炉格納容器51を備える原子力発電プラント40Aの構造を表す縦断面図である。
【0087】
ただし、本実施形態4に係る原子炉格納容器51は、沸騰水型原子炉、加圧水型原子炉等の軽水炉、高速増殖炉、新型転換炉、高温ガス炉、他の各種原子炉に適用可能である。
【0088】
図9に示すように、原子力発電プラント40Aは、図示せぬ核燃料の燃料集合体を装荷した炉心を内包する原子炉圧力容器52と、内部で原子炉圧力容器52を保持する原子炉格納容器51と、原子炉格納容器51が設置された図示せぬ原子炉建屋と、を備えている。
【0089】
本実施形態4に係る原子炉格納容器51は、加圧水型の格納容器であり、コアキャッチャー設備SP1を備えている。コアキャッチャー設備SP1は、仮にシビアアクシデントが発生して、原子炉圧力容器52から高温の炉心溶融物59が落下する場合に、炉心溶融物59を受け止める設備である。
【0090】
原子炉格納容器51の内部には、下部区画54と拡散区間58と移動区間61が設けられている。下部区画54は、原子炉圧力容器52の下方に設けられた空間であり、原子炉圧力容器52から落下した高温の炉心溶融物59を受け入れる。原子炉格納容器51は、下部区画54の上方に原子炉圧力容器52が配置されるように、コンクリート製の格納容器壁53と格納容器床55とで原子炉圧力容器2を支えている。拡散区間58は、原子炉圧力容器52から下部区画54に落下した炉心溶融物59が収容される空間である。移動区間61は、下部区画54から拡散区間58に移動する炉心溶融物59の通路として機能する空間である。
【0091】
原子炉格納容器51は、下部区画54の下方に格納容器床55aを備え、移動区間61の下方に格納容器床55bを備え、拡散区間58の下方に格納容器床55dを備えている。また、原子炉格納容器51は、下部区画54の側方に耐熱材56aを備え、移動区間61の上方に耐熱材56bを備え、移動区間61の下方に耐熱材56cを備えている。また、原子炉格納容器51は、下部区画54の側方に低融点酸化材57aを備え、移動区間61の上方に低融点酸化材57bを備え、移動区間61の下方に低融点酸化材57cを備え、拡散区間58の下方に低融点酸化材57dを備えている。
【0092】
格納容器床55aや格納容器床55cの上には、炉心溶融物59を受け止めて、炉心溶融物59の熱負荷を軽減するための耐熱材56が敷設されている。耐熱材56は、融点が比較的高くで、熱伝導率が比較的低いことが好ましいため、ジルコニアやアルミナ等が用いられる。
【0093】
原子炉格納容器51では、耐熱材56aの層で受け止めた炉心溶融物59が移動区間61を流れて拡散区間58に達し、図示せぬ注水装置による注水で冷却される。拡散区間58の床には、冷却水を導くことによって、炉心溶融物59を下側から冷却する下面冷却装置62が設置されている。
【0094】
原子炉格納容器51は、下部区画54において、耐熱材56aの層とコンクリート68の層面(コンクリート面69a)との間に、図示せぬ耐熱材支持部材を介して間隙が形成されている。原子炉格納容器51は、その間隙に、低融点酸化材57aの層を挟み込んだ構成になっている。なお、前記した図示せぬ耐熱材支持部材は、実施形態1の耐熱材支持部材8(
図2A及び
図2B参照)と同様の部材である。
【0095】
低融点酸化材57は、シビアアクシデントの発生時に、シビアアクシデントが発生してから、コンクリート68に含まれる炭酸カルシウムの脱炭酸反応が終わるまでの時間を延ばすための部材である。低融点酸化材57は、他の実施形態の低融点酸化材7と同様の温度特性を有している。低融点酸化材57は、その結晶の相転移時の温度や融点が前記した制御目標温度よりも低い温度になっている。低融点酸化材57の結晶の相転移時の温度は、できるだけ高温になるように、前記した制御目標温度に近似した温度であることが好ましい。このような低融点酸化材57は、他の実施形態の低融点酸化材7と同様に、結晶の相転移時の温度が1010K未満の温度になっている部材であるとよい。このような温度特性を実現する低融点酸化材57としては、好ましくは、他の実施形態の低融点酸化材7と同様に、酸化ビスマスを用いるとよい。ただし、低融点酸化材57は、他の実施形態の低融点酸化材7と同様に、三酸化アンチモンや13~16族元素の酸化物を用いることもできる。
【0096】
また、原子炉格納容器51は、移動区間61において、耐熱材56bの層とコンクリート68の層面(コンクリート面69b)との間に、前記した図示せぬ耐熱材支持部材を介して間隙が形成されている。原子炉格納容器51は、その間隙に、低融点酸化材57bの層を挟み込んだ構成になっている。また、原子炉格納容器51は、移動区間61において、耐熱材56cの層とコンクリート68の層面(コンクリート面69c)との間に、前記した図示せぬ耐熱材支持部材を介して間隙が形成されている。原子炉格納容器51は、その間隙に、低融点酸化材57cの層を挟み込んだ構成になっている。
【0097】
また、原子炉格納容器51は、拡散区間58において、下面冷却装置62と格納容器床55dとの間に、前記した耐熱材支持部材を介して間隙が形成されている。原子炉格納容器51は、その間隙に、低融点酸化材57dの層を挟み込んだ構成になっている。
【0098】
原子炉格納容器51は、炉心溶融物59が耐熱材56aの層上に継続的に落下する場合に、耐熱材56a,56b,56cの各層の温度が上昇する。また、原子炉格納容器51は、万一の場合であるが、炉心溶融物59が耐熱材56aの層の表面に固着して移動区間61から拡散区間58に到達しない場合も、耐熱材56a,56b,56cの各層の温度が上昇する。耐熱材56a,56b,56cの各層の温度が上昇すると、低融点酸化材57a,57b,57cの各層の温度も時間の遅れを伴って上昇する。同様に、格納容器床55a,55cの各層の温度と格納容器壁53の表面温度も上昇する。
【0099】
原子炉格納容器51は、低融点酸化材57a,57b,57cの各層の温度が結晶の相転移時の温度に達すると、低融点酸化材57の結晶の相転移が発生する。原子炉格納容器51は、低融点酸化材57の結晶の相転移時の吸熱反応を利用して、低融点酸化材57の温度を結晶の相転移時の温度付近に任意の時間一定に保つように作用する。これにより、低融点酸化材57a,57b,57cの各層に接する格納容器床55a,55cの各層の温度と格納容器壁53の表面温度の上昇が緩和される。その結果、原子炉格納容器51は、コンクリート68の層面(コンクリート面69a,69b,69c)の温度が前記した制御目標温度未満の温度に一定に保たれる時間(緩和時間Δt(
図5B参照))を延ばすことができる。
【0100】
このような原子炉格納容器51は、実施形態1の原子炉格納容器1と同様に、前記した緩和時間Δt(
図5B参照)を延長できる。なお、本実施形態における緩和時間Δtは、コンクリート68の床面や側壁面の温度をコンクリート68の強度が低下したりガスが発生したりする温度よりも低い温度に保つ時間である。
【0101】
また、原子炉格納容器51は、実施形態1の原子炉格納容器1と同様に、耐熱材56の還元反応を抑制できる。そのため、原子炉格納容器51は、低コストな構成でありながら、仮にシビアアクシデントが発生した場合であっても、下部区画54の耐熱材56を支持するコンクリート68の強度の健全性を確保(維持)できる。また、炉心溶融物59を好適に内部に保持できる。
【0102】
本発明は、前記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、前記した実施形態は、本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。実施形態の構成の一部を他の構成に置き換えることが可能であり、実施形態の構成に他の構成を加えることも可能である。さらに、各構成の一部について、他の構成の追加・削除・置換が可能である。
【0103】
例えば、原子力発電プラント40は、原子炉格納容器1を支持する図示せぬ支持部材に、前記した実施形態1乃至3の耐熱構造部HR1,HR2,HR3(
図2A及び
図2B、
図6A及び
図6B、並びに、
図8A及び
図8B参照)を有する構成であってもよい。つまり、原子力発電プラント40は、原子炉格納容器1を支持する図示せぬ支持部材を備え、図示せぬ支持部材は、少なくとも一層以上の耐熱材6と、耐熱材6の外側に配置されたコンクリート18と、を有し、耐熱材6の層とコンクリート18の層面(コンクリート面19)との間に、低融点酸化材7の層が挟み込まれている構成であってもよい。また、例えば、原子力発電プラント40は、原子炉格納容器1を支持する図示せぬ支持部材に、前記した実施形態のコアキャッチャー設備SP1(
図9参照)を有する構成であってもよい。
【0104】
また、例えば、前記した実施形態1乃至実施形態3において、原子炉格納容器1のペデスタル床5とペデスタル壁3は、炉心溶融物9の熱で耐熱材6の温度が上昇した場合に、低融点酸化材7の融解時の吸熱反応を利用する構成にしてもよい。この構成の原子炉格納容器1は、低融点酸化材7の融解時の吸熱反応を利用して、低融点酸化材7の温度を融点付近に任意の時間保つように作用する。この構成の原子炉格納容器1は、ペデスタル床5とペデスタル壁3における低融点酸化材7の温度を融点付近に任意の時間一定に保つことができる。これにより、この構成の原子炉格納容器1は、ペデスタル床5とペデスタル壁3のコンクリート18の層面(コンクリート面19)の温度が前記した制御目標温度未満の温度に一定に保たれる時間(緩和時間Δt(
図5B参照))を延長することができる。
【0105】
また、例えば、前記した実施形態2の耐熱構造部HR2を備える原子炉格納容器1は、炉心溶融物9の熱で耐熱材6の温度が上昇した場合に、低融点酸化材7の結晶の相転移時の吸熱反応と第2耐熱材10の温度勾配とを利用している。そして、原子炉格納容器1は、ペデスタル床5とペデスタル壁3における低融点酸化材7の温度を前記した制御目標温度未満の温度に任意の時間一定に保つ構成になっている。
【0106】
これに対し、前記した実施形態2の耐熱構造部HR2を備える原子炉格納容器1は、炉心溶融物9の熱で耐熱材6の温度が上昇した場合に、低融点酸化材7の融解時の吸熱反応と第2耐熱材10の温度勾配とを利用するようにしてもよい。この構成の原子炉格納容器1は、低融点酸化材7の融解時の吸熱反応と第2耐熱材10の温度勾配とを利用して、低融点酸化材7の温度を融点付近に任意の時間保つように作用する。この構成の原子炉格納容器1は、ペデスタル床5とペデスタル壁3における低融点酸化材7の温度を融点付近に任意の時間一定に保つことができる。これにより、この構成の原子炉格納容器1は、ペデスタル床5とペデスタル壁3のコンクリート18の層面(コンクリート面19)の温度が前記した制御目標温度未満の温度に任意の時間一定に保たれる時間(緩和時間Δt(
図5B参照))を延長することができる。
【符号の説明】
【0107】
1 原子炉格納容器(格納容器)
2 原子炉圧力容器(圧力容器)
3 ペデスタル壁
4 下部区画(空間)
5 ペデスタル床
6 耐熱材
7 低融点酸化材
8 耐熱材支持部材
9 炉心溶融物
10 第2耐熱材
11 圧力抑制プール
12 ウェットウェル
13 ドライウェル
14 ペデスタル注水系
15 表層側耐熱材
16 深層側耐熱材
18 コンクリート
19 コンクリート面(層面)
20 炉心
21 ベント管
31 制御棒駆動機構
40,40A 原子力発電プラント
42 原子炉建屋
43 格納容器上蓋
47 シールドプラグ
51 原子炉格納容器(格納容器)
52 原子炉圧力容器(圧力容器)
53 格納容器壁
54 下部区画(空間)
55(55a,55c,55d) 格納容器床
56(56a,56b,56c) 耐熱材
57(57a,57b,57c,57d) 低融点酸化材
58 拡散区間
59 炉心溶融物
61 移動区間
62 下面冷却装置
68 コンクリート
69(69aa,69b,69c) コンクリート面(層面)
HR1,HR2,HR3 耐熱構造部
SP1 コアキャッチャー設備