IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日本特殊陶業株式会社の特許一覧

<>
  • 特許-酸素飽和度測定装置 図1
  • 特許-酸素飽和度測定装置 図2
  • 特許-酸素飽和度測定装置 図3
  • 特許-酸素飽和度測定装置 図4
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-02-07
(45)【発行日】2024-02-16
(54)【発明の名称】酸素飽和度測定装置
(51)【国際特許分類】
   A61B 5/1455 20060101AFI20240208BHJP
【FI】
A61B5/1455
【請求項の数】 3
(21)【出願番号】P 2020112851
(22)【出願日】2020-06-30
(65)【公開番号】P2022011607
(43)【公開日】2022-01-17
【審査請求日】2023-06-23
(73)【特許権者】
【識別番号】000004547
【氏名又は名称】日本特殊陶業株式会社
(74)【代理人】
【識別番号】110000497
【氏名又は名称】弁理士法人グランダム特許事務所
(72)【発明者】
【氏名】中村 友春
【審査官】藤原 伸二
(56)【参考文献】
【文献】特開2003-210438(JP,A)
【文献】特開平10-323342(JP,A)
【文献】特開2005-052385(JP,A)
【文献】特開2007-330430(JP,A)
【文献】特開2019-170542(JP,A)
【文献】特開2016-059736(JP,A)
【文献】特開2018-202062(JP,A)
【文献】米国特許出願公開第2018/0085069(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 5/145-5/1455
A61B 5/02-5/03
G01N 21/17-21/27
G01N 33/483-33/49
(57)【特許請求の範囲】
【請求項1】
生体組織へ向けて波長が異なる複数の光を発光する発光部と、
前記生体組織を透過又は反射した前記複数の光を受光する受光部と、
前記複数の光についてそれぞれ、前記受光部が受光した光に基づく電気信号を周波数信号に変換する時間周波数変換を行うことで前記複数の光にそれぞれ対応する周波数スペクトルを生成する生成部と、
前記周波数スペクトルの全周波数帯または特定周波数帯において予め定められたピーク特定方式に従って特定された複数のピークにおける振幅値から前記複数のピークの各々に対応した酸素飽和度の候補値を算出する候補値算出部と、
前記候補値算出部が算出した前記候補値のうちの最大値を酸素飽和度として決定する決定部と
を備え
前記ピーク特定方式は、前記周波数スペクトルにおいて、周波数が大きくなる方向又は小さくなる方向に向けて隣り合う前記振幅値の上昇幅を順に算出し、前記上昇幅が正の値から負の値に転じるときを前記ピークとして特定する方式であり、
前記候補値算出部は、前記ピーク特定方式に従って特定されたピークの各々の前記振幅値を用いて以下の式(4)からRを算出し、算出した各々のRを式(3)に代入することによって酸素飽和度の前記候補値を算出する酸素飽和度測定装置。
酸素飽和度=A×R +B×R+C ・・・式(3)
R=(Red(Fn)/Red(F0))/(IR(Fn)/IR(F0)) ・・・式(4)
A、B、Cは、酸素飽和度測定装置の種類などによって定まる値。
Red(Fn)は、第1周波数スペクトルFSRにおけるピークの周波数Fnの振幅値。
Red(F0)は、第1周波数スペクトルFSRにおける周波数0Hzのときの振幅値。
IR(Fn)は、第2周波数スペクトルFSIRにおけるピークの周波数Fnの振幅値。
IR(F0)は、第2周波数スペクトルFSIRにおける周波数0Hzのときの振幅値。
【請求項2】
前記特定周波数帯は、下限周波数を0.50Hz以上とし、上限周波数を3.33Hz以下とした周波数帯であり、
前記候補値算出部は、前記特定周波数帯において前記ピークを特定する
請求項1に記載の酸素飽和度測定装置。
【請求項3】
外部機器と通信する通信部を備え、
前記通信部は、前記決定部によって決定された前記酸素飽和度を示す情報を前記外部機器に向けて出力する
請求項1または請求項2に記載の酸素飽和度測定装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、酸素飽和度測定装置に関するものである。
【背景技術】
【0002】
特許文献1には、生体組織を透過又は反射した2種類の脈波信号に基づいて酸素飽和度を測定する酸素飽和度測定装置が開示されている。この酸素飽和度測定装置は、検査対象の体動によるノイズが脈波信号に混入した場合であっても、酸素飽和度を精度よく測定できるように、以下の算定方式を採用している。即ち、この酸素飽和度測定装置は、上記2種類の脈波信号をそれぞれ複数の周波数帯に分離し、分離した周波数帯毎の減光度比を計算する。そして、この酸素飽和度測定装置は、求めた減光度比に基づいて候補となる周波数帯(例えば、減光度比が最小となる周波数帯)を選択し、選択した周波数帯における減光度比から酸素飽和度を計算する。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2007-83021号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかし、この算定方式では、全ての周波数帯について減光度比を計算して計算値を比較する必要があるため、処理負荷や必要な記憶領域が大きくなりがちであり、構成をより簡素化することが求められている。
【0005】
本発明は、上述した課題の少なくとも一つを解決するために、体動によるノイズの影響を抑えた酸素飽和度の測定を、簡素な構成で実現しうる技術の提供を目的とする。
【課題を解決するための手段】
【0006】
本発明の酸素飽和度測定装置は、発光部、受光部、生成部、候補値算出部、及び決定部を備える。発光部は、生体組織へ向けて波長が異なる複数の光を発光する。受光部は、生体組織を透過又は反射した複数の光を受光する。生成部は、複数の光についてそれぞれ、受光部が受光した光に基づく電気信号を周波数信号に変換する時間周波数変換を行うことで複数の光にそれぞれ対応する周波数スペクトルを生成する。候補値算出部は、上記周波数スペクトルの全周波数帯または特定周波数帯において予め定められたピーク特定方式に従って特定された複数のピークにおける振幅値から複数のピークの各々に対応した酸素飽和度の候補値を算出する。決定部は、上記候補値算出部が算出した上記候補値のうちの最大値を酸素飽和度として決定する。
【0007】
この酸素飽和度測定装置は、上記周波数スペクトルにおけるピークの振幅値に基づいて酸素飽和度を算出することができる。また、上記周波数スペクトルにおけるピークは、測定対象の体動によって上記電気信号にノイズが混入した場合にも発生しうるが、ノイズによるピークの振幅値に基づいて算出した酸素飽和度は比較的小さい値となりやすい。そこで、この酸素飽和度測定装置は、複数のピークにおける振幅値から複数のピークの各々に対応した酸素飽和度の候補値を算出し、これらの候補値のうちの最大値を酸素飽和度として決定するようにしている。このため、この酸素飽和度測定装置は、体動によるノイズが生じた場合であっても、高い精度で酸素飽和度を測定することができる。しかも、この酸素飽和度測定装置は、周波数スペクトルを生成した後、ピークが生じた部分の振幅値に対応する酸素飽和度の候補値のみを算出するので、全ての振幅値に対応する酸素飽和度の候補値を算出してそれぞれを比較する構成と比較して簡素化されている。したがって、この酸素飽和度測定装置は、体動によるノイズの影響を抑えた酸素飽和度の測定を、簡素な構成で実現しうる。
【0008】
上記特定周波数帯は、下限周波数を0.50Hz以上とし、上限周波数を3.33Hz以下とした周波数帯としてもよい。上記候補値算出部は、特定周波数帯においてピークを特定するようにしてもよい。
【0009】
この構成によれば、特定周波数帯に絞ってピークを特定するため、全周波数帯においてピークを特定する構成と比較して、処理負荷や必要な記憶領域を軽減することができる。しかも、この酸素飽和度測定装置は、特定周波数帯の下限周波数を0.50Hz以上とし、上限周波数を3.33Hz以下としているため、脈拍の測定に不要な周波数を効果的に除外することができる。したがって、この酸素飽和度測定装置は、体動によるノイズの影響を抑えた酸素飽和度の測定を、より一層簡素な構成で実現しうる。
【0010】
上記ピーク特定方式は、周波数スペクトルにおいて、周波数が大きくなる方向又は小さくなる方向に向けて隣り合う振幅値の上昇幅を順に算出し、上昇幅が正の値から負の値に転じるときをピークとして特定する方式としてもよい。
【0011】
この構成によれば、振幅値の上昇幅を順に算出して正の値から負の値に転じる部分を検出するだけでピークを特定することができるので、ピークの特定に要する処理を簡素化できる。
【0012】
上記酸素飽和度測定装置は、外部機器と通信する通信部を備えるようにしてもよい。通信部は、決定部によって決定された酸素飽和度を示す情報を外部機器に向けて出力するようにしてもよい。
【0013】
この構成によれば、酸素飽和度測定装置によって測定した酸素飽和度を、外部機器に出力することができる。
【0014】
なお、本明細書において、「以上」を用いた記載では下限値を含むものとし、「以下」を用いた記載では上限値を含むものとする。例えば、「10以上」との記載では「10」を含むものとし、「20以下」との記載では「20」を含むものとする。
【発明の効果】
【0015】
本発明によれば、体動によるノイズの影響を抑えた酸素飽和度の測定を、簡素な構成で実現しうる。
【図面の簡単な説明】
【0016】
図1図1は、第1実施形態の酸素飽和度測定装置の電気的な構成を概念的に例示するブロック図である。
図2図2は、第1実施形態の酸素飽和度測定装置が行う酸素飽和度測定処理の流れを例示するフローチャートである。
図3図3は、周波数スペクトルの波形の一例を示す説明図である。
図4図4は、第2実施形態の酸素飽和度測定装置の電気的な構成を概念的に例示するブロック図である。
【発明を実施するための形態】
【0017】
1.第1実施形態
1-1.酸素飽和度測定装置の構成
図1に示される酸素飽和度測定装置1は、生体組織Bの酸素飽和度を測定する装置であり、第1発光部2、第2発光部4、受光部6、第1駆動部10、第2駆動部12、選択部14、増幅回路15、A/Dコンバータ16、バンドパスフィルタ17、復調回路18、制御部22、記憶部24、表示部26、及び操作部28を備える。
【0018】
第1発光部2及び第2発光部4は、発光部の一例に相当し、例えばLED等の発光素子として構成されており、生体組織Bへ向けて互いに波長が異なる光を発光する。例えば、第1発光部2は、赤色の光を発光し、第2発光部4は、赤外線を発光する。
【0019】
受光部6は、例えばフォトダイオードとして構成されており、第1発光部2及び第2発光部4から発光され生体組織B(例えば指など)を透過した光をそれぞれ受光する。受光部6が受光した光は、受光部6によって光の強度に応じた電気信号に変換され、増幅回路15によって増幅され、A/Dコンバータ16によってアナログ信号からデジタル信号に変換され、バンドパスフィルタ17によって帯域制限され、復調回路18によって復調され、制御部22に入力される。
【0020】
第1駆動部10は、例えばLED駆動回路として構成されており、第1発光部2が発光するように第1発光部2を駆動する。第2駆動部12は、例えばLED駆動回路として構成されており、第2発光部4が発光するように第2発光部4を駆動する。
【0021】
選択部14は、例えばタイミング発生回路として構成されており、制御部22からの指示に応じて第1駆動部10及び第2駆動部12に対して交互にタイミング信号を出力する。これにより、選択部14は、第1発光部2及び第2発光部4を交互に発光させる。また、選択部14は、タイミング信号を復調回路18にも出力する。これにより、復調回路18は、第1発光部2及び第2発光部4の各々の発光タイミングを特定することができる。
【0022】
バンドパスフィルタ17は、例えばデジタルフィルタなどのフィルタ回路として構成されており、特定周波数帯以外の周波数成分を除去する。特定周波数帯は、脈拍以外の周波数を除外する観点から、一般的な人間の脈拍に対応した周波数(0.66Hz以上2.50Hz以下)よりも広めの帯域であることが好ましい。例えば、特定周波数帯の下限周波数は、0.50Hz以上であることが好ましく、0.60Hz以上であることがより好ましい。また、特定周波数帯の上限周波数は、3.33Hz以下であることが好ましく、3.00Hz以下であることがより好ましい。
【0023】
復調回路18は、入力された電気信号を復調する。復調回路18は、選択部14から入力されるタイミング信号に基づいて、受光部6側から入力された電気信号が第1発光部2の光に基づく電気信号であるか、第2発光部4の光に基づく電気信号であるかを判定する。そして、復調回路18は、第1発光部2の光に基づく電気信号、及び第2発光部4の光に基づく電気信号を個別に復調する。
【0024】
制御部22は、生成部、候補値算出部、及び決定部の一例に相当し、例えばCPUとして構成されている。記憶部24は、例えばROM、RAM等のメモリとして構成されている。表示部26は、例えば液晶表示器等の表示器として構成されており、酸素飽和度の測定結果などを表示するために用いられる。操作部28は、例えばボタンとして構成されており、制御部22での処理の設定等に用いられる。
【0025】
制御部22は、選択部14の動作を制御して、所定のタイミングで第1発光部2及び第2発光部4を発光させることができる。第1発光部2及び第2発光部4が発光した光は、生体組織Bを透過して受光部6に受光されて電気信号に変換され、増幅回路15、A/Dコンバータ16、バンドパスフィルタ17及び復調回路18を介して制御部22に入力される。
【0026】
制御部22は、受光部6が受光した複数の光についてそれぞれ、受光部6が受光した光に基づく電気信号を周波数信号に変換する時間周波数変換を行うことで、複数の光にそれぞれ対応する周波数スペクトルを生成する。具体的には、制御部22は、第1発光部2が発光した光に基づく電気信号を周波数信号に変換する時間周波数変換を行うことで第1周波数スペクトルFSRを生成する。また、制御部22は、第2発光部4が発光した光に基づく電気信号を周波数信号に変換する時間周波数変換を行うことで第2周波数スペクトルFSIRを生成する。制御部22は、時間周波数変換として、例えばFFT(Fast Fourier Transform)を行う。
【0027】
制御部22は、周波数スペクトルの全周波数帯または特定周波数帯において所定のピーク特定方式に従ってピークを特定する。本実施形態では、バンドパスフィルタ17によって特定周波数帯に帯域制限されているため、周波数スペクトルの全周波数帯と特定周波数帯とは同義である。制御部22は、上記2つの周波数スペクトルのうち一方の周波数スペクトル(例えば、第2周波数スペクトルFSIR)においてピークを特定する。
【0028】
ピーク特定方式は、例えば周波数スペクトルにおいて、周波数が大きくなる方向又は小さくなる方向に向けて隣り合う振幅値の上昇幅を順に算出し、上昇幅が正の値から負の値に転じるときをピークとして特定する方式である。
【0029】
但し、除外条件に該当するピークについては、特定されたピークから除外するようにしてもよい。除外条件は、例えば「周波数が特定周波数帯(例えば0.50Hz以上3.33Hz以下)の範囲外であるピークであること」であってもよい。
【0030】
また、除外条件は、「複数のピークが特定された場合において、周波数が他のピークの周波数の高調波に相当するピークであること」であってもよい。なお、高調波は、他のピークの周波数に対して正確に整数倍である必要は無く、誤差範囲も含むものとする。例えば、以下の式(1)を満たすものを周波数FXに対する第2高調波とし、以下の式(2)を満たすものを周波数FXに対する第3高調波としてもよい。
FX×2×(1-α)<「第2高調波」<FX×2×(1+α) ・・・式(1)
FX×3×(1-α)<「第3高調波」<FX×3×(1+α) ・・・式(2)
αは、予め定められた値であり、例えば0.05。
【0031】
また、除外条件は、「規定数を超えるピークが特定された場合において、振幅値の大きさ(例えば第2周波数スペクトルFSIRにおける振幅値の大きさ)が上位規定数(例えば3つ)未満のピークであること」であってもよい。
【0032】
また、除外条件は、例えば脈拍強度PI(min)が0.1%程度の装置の場合、「振幅値(例えば第2周波数スペクトルFSIRにおける振幅値)が予め定められた下限値未満であるピークであること」であってもよい。
【0033】
制御部22は、ピーク特定方式に従って特定されたピークの各々の振幅値を抽出する。より具体的には、制御部22は、ピーク特定方式に従って特定されたピークの各々の周波数を特定し、上記2つの周波数スペクトルの各々において、各々のピークの周波数における振幅値を抽出する。
【0034】
制御部22は、抽出した振幅値を用いて、ピークの各々に対応した酸素飽和度の候補値を算出する。酸素飽和度は、例えば以下の式(3)によって算出される。
酸素飽和度=A×R+B×R+C ・・・式(3)
A、B、Cは、酸素飽和度測定装置の種類などによって定まる値である。例えば、A=-12、B=-12、C=170とし、以下の式(3)’としてもよい。
酸素飽和度=-12×R-12×R+170 ・・・式(3)’
Rは、以下の式(4)によって算出される。
R=(Red(Fn)/Red(F0))/(IR(Fn)/IR(F0)) ・・・式(4)
Red(Fn)は、第1周波数スペクトルFSRにおけるピークの周波数Fnの振幅値である。Red(F0)は、第1周波数スペクトルFSRにおける周波数0Hzのときの振幅値である。IR(Fn)は、第2周波数スペクトルFSIRにおけるピークの周波数Fnの振幅値である。IR(F0)は、第2周波数スペクトルFSIRにおける周波数0Hzのときの振幅値である。
つまり、式(3)は、Rを変数とした二次関数となっている。
制御部22は、ピークの周波数毎に、抽出した振幅値を上記式(3)に代入して、酸素飽和度の候補値を算出する。
【0035】
制御部22は、酸素飽和度の候補値の中から予め定められた最大値特定方式に従って最大値を特定する。最大値特定方式は、例えば、最大値及び最大値との差が予め定められた誤差範囲内である値を最大値群として抽出し、最大値群に1つしか抽出されない場合はこれを最大値として特定し、2つ以上が抽出された場合にはこれらのうち最大の振幅値(例えば第2周波数スペクトルFSIRにおける最大の振幅値)に基づいて算出された候補値を最大値として特定する方式である。
【0036】
制御部22は、最大値特定方式に従って特定された最大値を酸素飽和度として決定する。制御部22は、決定した酸素飽和度を示す情報を表示部26に表示させる。
【0037】
1-2.酸素飽和度測定処理
図2のフローチャートを参照して、制御部22によって行われる酸素飽和度測定処理について説明する。酸素飽和度測定処理は、生体組織Bの酸素飽和度を測定する処理である。制御部22は、予め定められた開始条件が成立した場合に、酸素飽和度測定処理を開始する。開始条件は、例えば、「電源オン状態において操作部28による開始操作が行われたこと」であってもよいし、別の条件であってもよい。
【0038】
制御部22は、酸素飽和度測定処理が開始された場合、第1発光部2及び第2発光部4を交互に発光させる発光制御を行う(S11)。制御部22は、第1発光部2及び第2発光部4を交互に発光させるように選択部14に指示することで、選択部14が第1駆動部10及び第2駆動部12を交互に駆動して、第1発光部2及び第2発光部4を交互に発光させる。第1発光部2及び第2発光部4が発光した光は、生体組織Bを透過して受光部6に受光される。受光部6が受光した光は、受光部6によって光の強度に応じた電気信号に変換され、増幅回路15によって増幅され、A/Dコンバータ16によってアナログ信号からデジタル信号に変換され、バンドパスフィルタ17によって帯域制限され、復調回路18によって発光源別に復調され、制御部22に入力される。
【0039】
制御部22は、入力されたデジタル信号をFFT(時間周波数変換)することで、図3に示すような周波数スペクトルを生成する(S12)。つまり、制御部22は、第1発光部2が発光した光に基づく電気信号に対してFFTすることで第1周波数スペクトルFSRを生成する。また、制御部22は、第2発光部4が発光した光に基づく電気信号に対してFFTすることで第2周波数スペクトルFSIRを生成する。
【0040】
制御部22は、S12で生成した周波数スペクトル(例えば第2周波数スペクトルFSIR)においてピークを特定する(S13)。また、特定されたピークから、除外条件に相当するピークは除外される。その結果、図3に示す例では、ピークP1,P2,P3の3つのピークが特定される。
【0041】
制御部22は、ピークを特定した後、第1周波数スペクトルFSR及び第2周波数スペクトルFSIRの各々についてピークP1,P2,P3の振幅値を抽出する(S14)。具体的には、制御部22は、第2周波数スペクトルFSIRにおいてピークP1,P2,P3の周波数F1,F2,F3を特定する。そして、制御部22は、第1周波数スペクトルFSRにおいて、周波数F1,F2,F3における振幅値FR1,FR2,FR3を抽出し、第2周波数スペクトルFSIRにおいて周波数F1,F2,F3における振幅値FIR1,FIR2,FIR3を抽出する。
【0042】
制御部22は、ピークの振幅値を抽出した後、抽出した振幅値を用いてピークの各々に対応した酸素飽和度の候補値を算出する(S15)。具体的には、制御部22は、上述した式(4)において、Red(Fn)に振幅値FR1を代入し、IR(Fn)に振幅値FIR1を代入してRを求め、このRを式(3)に代入して酸素飽和度の候補値C1を算出する。さらに、制御部22は、上述した式(4)において、Red(Fn)に振幅値FR2を代入し、IR(Fn)に振幅値FIR2を代入してRを求め、このRを式(3)に代入して酸素飽和度の候補値C2を算出する。さらに、制御部22は、上述した式(4)において、Red(Fn)に振幅値FR3を代入し、IR(Fn)に振幅値FIR3を代入してRを求め、このRを式(3)に代入して酸素飽和度の候補値C3を算出する。
【0043】
制御部22は、酸素飽和度の候補値を算出した後、候補値C1,C2,C3の中から上述した最大値特定方法に従って最大値を特定する(S16)。制御部22は、S16にて特定された最大値を酸素飽和度として決定する(S17)。発明者らは鋭意検討を重ねた結果、体動ノイズによるピークに基づいて酸素飽和度を算出した場合には、酸素飽和度が実際の値よりも小さくなるという事実を発見した。このため、候補値の中から最大値を特定し、これを酸素飽和度として決定することで、体動ノイズによるピークに基づく酸素飽和度を除外し、真の酸素飽和度を求めることができる。制御部22は、酸素飽和度を決定すると、酸素飽和度を示す情報(例えば酸素飽和度を示す数値)を表示部26に表示させる。
【0044】
1-3.効果
上述した酸素飽和度測定装置1は、例えば以下のような効果を生じさせる。
上記酸素飽和度測定装置1は、周波数スペクトルにおけるピークの振幅値に基づいて酸素飽和度を算出することができる。また、周波数スペクトルにおけるピークは、測定対象の体動によって電気信号にノイズが混入した場合にも発生しうるが、ノイズによるピークの振幅値に基づいて算出した酸素飽和度は比較的小さい値となりやすい。そこで、この酸素飽和度測定装置1は、複数のピークにおける振幅値から複数のピークの各々に対応した酸素飽和度の候補値を算出し、これらのうち最大値特定方式に従って特定された最大値を酸素飽和度として決定するようにしている。このため、この酸素飽和度測定装置1は、体動によるノイズが生じた場合であっても、高い精度で酸素飽和度を測定することができる。しかも、この酸素飽和度測定装置1は、周波数スペクトルを生成した後、ピークが生じた部分の振幅値に対応する酸素飽和度の候補値のみを算出するので、全ての振幅値に対応する酸素飽和度の候補値を算出してそれぞれを比較する構成と比較して簡素化されている。したがって、この酸素飽和度測定装置1は、体動によるノイズの影響を抑えた酸素飽和度の測定を、簡素な構成で実現しうる。
【0045】
さらに、この酸素飽和度測定装置1は、特定周波数帯に絞ってピークを特定するため、全周波数帯においてピークを特定する構成と比較して、処理負荷や必要な記憶領域を軽減することができる。しかも、この酸素飽和度測定装置1は、特定周波数帯の下限周波数を0.50Hz以上とし、上限周波数を3.33Hz以下としているため、脈拍の測定に不要な周波数を効果的に除外することができる。したがって、この酸素飽和度測定装置1は、体動によるノイズの影響を抑えた酸素飽和度の測定を、より一層簡素な構成で実現しうる。
【0046】
さらに、この酸素飽和度測定装置1によれば、振幅値の上昇幅を順に算出して正の値から負の値に転じる部分を検出するだけでピークを特定することができるので、ピークの特定に要する処理を簡素化できる。
【0047】
2.第2実施形態
第2実施形態の酸素飽和度測定装置201は、表示部252を有する外部機器250と通信可能な点で第1実施形態の酸素飽和度測定装置1と異なり、他の構成は、第1実施形態の酸素飽和度測定装置1と同一の構成である。なお、第1実施形態と同じ構成について、同じ符号を付して説明する。
【0048】
第2実施形態の酸素飽和度測定装置201は、通信部30をさらに備える。通信部30は、例えばLANチップなどの通信モジュールを備える通信インターフェイスとして構成されている。制御部22は、通信部30を介し、Bluetooth(登録商標)による通信などの無線通信によって、外部機器250と通信することができる。酸素飽和度測定装置201は、例えば第1実施形態で説明した酸素飽和度測定処理において酸素飽和度を決定した後に、決定した酸素飽和度を示す情報(例えば酸素飽和度を示す数値)を外部機器250に向けて出力する。
【0049】
外部機器250は、例えばスマートフォンなどの端末装置として構成されており、表示部252、通信部254を備える。表示部252は、例えば、液晶表示器などの表示器として構成されている。通信部254は、例えばLANチップなどの通信モジュールを備える通信インターフェイスとして構成されており、酸素飽和度測定装置201の通信部30と無線通信する。外部機器250は、酸素飽和度測定装置201から酸素飽和度を示す情報を取得すると、酸素飽和度を示す情報(例えば酸素飽和度を示す数値)を表示部252に表示させる。
【0050】
この酸素飽和度測定装置201によれば、酸素飽和度測定装置201によって測定した酸素飽和度を、外部機器250の表示部252に表示させることが可能となる。
【0051】
<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。また、上述した実施形態や後述する実施形態の様々な特徴は、矛盾しない組み合わせであればどのように組み合わされてもよい。
【0052】
第1実施形態及び第2実施形態では、受光部6が、第1発光部2及び第2発光部4から発光され生体組織Bを透過した光を受光する構成としたが、第1発光部2及び第2発光部4から発光され生体組織Bを反射した光を受光するようにしてもよい。
【0053】
第1実施形態及び第2実施形態では、バンドパスフィルタをデジタルフィルタとしたが、アナログフィルタとしてA/Dコンバータ16よりも受光部6側に設ける構成としてもよい。
【0054】
第1実施形態及び第2実施形態では、酸素飽和度測定装置1,201にバンドパスフィルタを設ける構成としたが、バンドパスフィルタを設けない構成としてもよい。バンドパスフィルタを設けない構成とした場合、酸素飽和度測定装置1,201は、周波数スペクトルの全周波数帯においてピークを特定する構成としてもよいし、特定周波数帯においてピークを特定する構成としてもよい。
【0055】
第1実施形態及び第2実施形態では、酸素飽和度の算出式を式(3)としたが、別の式を採用してもよい。例えば、ピークの振幅値(第1周波数スペクトルFSRの振幅値及び第2周波数スペクトルFSIRの振幅値)に基づいて酸素飽和度を算出する式であれば、公知の別の算出式(例えば、特開平7-327964号公報に開示された算出式)を採用してもよい。また、第1実施形態及び第2実施形態では、酸素飽和度の算出式は、上記式(3)のように二次関数としたが、二次関数に限らず、例えば一次関数であってもよい。別の算出式を採用する場合であっても、ピークの振幅値(第1周波数スペクトルFSRの振幅値及び第2周波数スペクトルFSIRの振幅値)に基づいて酸素飽和度の候補値を算出し、これらのうち最大値を酸素飽和度として決定することで、真の酸素飽和度を測定することができる。
【0056】
第1実施形態及び第2実施形態では、安定性の観点から、酸化ヘモグロビンの吸光度変化が比較的小さい第2周波数スペクトルFSIRからピークを特定する構成としたが、第1周波数スペクトルFSRからピークを特定する構成としてもよい。
【0057】
第2実施形態では、酸素飽和度測定装置201と外部機器250が無線通信する構成としたが、有線で通信する構成としてもよい。
【0058】
なお、今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、今回開示された実施の形態に限定されるものではなく、特許請求の範囲によって示された範囲内又は特許請求の範囲と均等の範囲内での全ての変更が含まれることが意図される。
【符号の説明】
【0059】
1,201…酸素飽和度測定装置
2…第1発光部(発光部)
4…第2発光部(発光部)
6…受光部
22…制御部(生成部、候補値算出部、決定部)
30…通信部
250…外部機器
252…表示部
B…生体組織
FSR…第1周波数スペクトル(周波数スペクトル)
FEIR…第2周波数スペクトル(周波数スペクトル)
P1,P2,P3…ピーク
F1,F2,F3…ピークの周波数
図1
図2
図3
図4