IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ エフ.ホフマン−ラ ロシュ アーゲーの特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-02-07
(45)【発行日】2024-02-16
(54)【発明の名称】動作障害患者に対する個別化医療の改善
(51)【国際特許分類】
   A61B 10/00 20060101AFI20240208BHJP
   A61B 5/00 20060101ALI20240208BHJP
   G16H 50/20 20180101ALI20240208BHJP
   A61B 5/11 20060101ALN20240208BHJP
【FI】
A61B10/00 H
A61B5/00 102C
A61B5/00 G
G16H50/20
A61B5/11 200
【請求項の数】 20
(21)【出願番号】P 2022516398
(86)(22)【出願日】2020-09-16
(65)【公表番号】
(43)【公表日】2022-11-21
(86)【国際出願番号】 US2020051028
(87)【国際公開番号】W WO2021055443
(87)【国際公開日】2021-03-25
【審査請求日】2022-05-11
(31)【優先権主張番号】62/901,461
(32)【優先日】2019-09-17
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】591003013
【氏名又は名称】エフ. ホフマン-ラ ロシュ アーゲー
【氏名又は名称原語表記】F. HOFFMANN-LA ROCHE AKTIENGESELLSCHAFT
(74)【代理人】
【識別番号】110001416
【氏名又は名称】弁理士法人信栄事務所
(72)【発明者】
【氏名】リップスマイヤー、フロリアン
(72)【発明者】
【氏名】リンデマン、マイケル
(72)【発明者】
【氏名】テイラー、キルステン
(72)【発明者】
【氏名】トーマン、アレッサンドラ エレーナ
(72)【発明者】
【氏名】フォルコバ・ヴォルクマー、エカテリーナ
(72)【発明者】
【氏名】チェン、ウェイ・イー
【審査官】高松 大
(56)【参考文献】
【文献】米国特許出願公開第2015/0157274(US,A1)
【文献】特表2019-524822(JP,A)
【文献】特開2019-108379(JP,A)
【文献】国際公開第2018/200560(WO,A1)
【文献】特開2014-108110(JP,A)
【文献】国際公開第2014/178400(WO,A1)
【文献】特開2009-291379(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 10/00
A61B 5/00
G16H 50/20
A61B 5/11
(57)【特許請求の範囲】
【請求項1】
パーキンソン患者の運動症状を評価する方法であって、
センサから、患者の動作データを取得することであって、前記動作データが、受動動作データ及び能動的遂行能力データを含む、前記取得することと、
前記患者の動作データが、障害有りかまたは障害無しかを1つまたは複数のプロセッサによって判定することと、
前記患者の動作データに基づいて、運動系評価を1つまたは複数の前記プロセッサによって生成することであって、前記運動系評価が、障害有りまたは障害無しである、前記生成することと、を含む、前記方法。
【請求項2】
前記センサは、携帯電話またはスマートウォッチを含む、請求項1に記載の方法。
【請求項3】
前記患者の動作データは、ジェスチャパワー、ステップパワー、歩行スパン、病的手指振戦周波数、ジェスチャ時間、転換速度、またはジェスチャスパン持続時間を含む、請求項1に記載の方法。
【請求項4】
前記運動系評価は、EQ-5D-5L健康状態測定値データと高度に相関し、
ジェスチャパワーは、EQ-5D-5L可動性データを示し、
ジェスチャパワー、ステップパワー、歩行スパン、及び病的手指振戦周波数は、EQ-5D-5Lセルフケアデータを示し、
ジェスチャパワー、ステップパワー、及びジェスチャ時間データは、EQ-5D-5L日常活動能力データを示し、
ジェスチャパワー及び/または転換速度は、EQ-5D-5L痛み/不快データを示し、
ジェスチャ時間、ジェスチャスパン持続時間、及び歩行スパンデータは、EQ-5D-5L不安/抑うつデータを示す、請求項3に記載の方法。
【請求項5】
前記患者の能動的遂行能力データは、図形描画、巧緻性、手回し、発話、発声、体位性振戦、静止時振戦、バランス、Uターン、及び認知検査(記号数字モダリティ検査)の少なくとも1つを含む、請求項1に記載の方法。
【請求項6】
前記運動系評価は、クオリティオブライフ(PDQ-39)測定値と高度に相関し、
図形描画、巧緻性、または手回しは、PDQ-39の日常生活動作、コミュニケーション、または可動性データを示し、
発話は、PDQ-39コミュニケーションデータを示し、
Uターンは、PDQ-39可動性データを示す、請求項5に記載の方法。
【請求項7】
前記患者の能動的遂行能力データは、図形描画、巧緻性、手回し、発話、発声、体位性振戦、静止時振戦、バランス、Uターン、及び認知検査(記号数字モダリティ検査)の少なくとも1つを含み、
前記患者の受動動作データは、歩行、腕振り/振戦、及び可動性/社交性の少なくとも1つを含む、請求項1に記載の方法。
【請求項8】
前記運動系評価は、疾患重症度評価(MDS-UPDRS)と高度に相関し、
静止時振戦は、MDS-UPDRS静止時振戦振幅データを示し、
体位性振戦は、MDS-UPDRS静止時振戦振幅データを示し、
バランスは、MDS-UPDRSの静止時振戦データの不変性を示し、
手回しは、MDS-UPDRS手指動作データを示し、
巧緻性は、MDS-UPDRSの指のタッピングデータを示し、
図形描画は、MDS-UPDRS手書きデータを示し、
Uターンは、MDS-UPDRS身体動作緩慢データを示し、
認知検査(記号数字モダリティ検査)は、MDS-UPDRS認知障害データを示し、
発声は、MDS-UPDRS発話障害データを示し、
発話は、MDS-UPDRS唾液及び流涎データを示し、
歩行は、MDS-UPDRS身体動作緩慢データを示す、請求項7に記載の方法。
【請求項9】
患者集団に基づいて、動作データを計算することであって、前記動作データは、受動動作データ及び能動的遂行能力データと、前記運動系評価を障害有りまたは障害無しとして定義する閾値とを含む、前記計算することをさらに含む、請求項1に記載の方法。
【請求項10】
患者の動作及び遂行能力のスコアを計算することと、
前記患者の動作及び/または遂行能力のスコアを前記閾値と比較することと、
前記運動系評価が障害有りかまたは障害無しかを判定することと、をさらに含む、請求項9に記載の方法。
【請求項11】
指令を表示することであって、前記指令は、障害が無い運動系評価に対する非治療である、前記表示することと、
指令を表示することであって、前記指令は、障害が有る運動系評価に対する治療を開始することである、前記表示することと、をさらに含む、請求項10に記載の方法。
【請求項12】
前記運動系評価に基づいて前記治療を計算することであって、前記治療は、治療上有効な量の薬剤を前記患者に与えることである、前記計算すること、をさらに含む、請求項11に記載の方法。
【請求項13】
パーキンソン患者の運動症状を評価するシステムであって、
ディスプレイと、
センサと、
プロセッサと、
メモリであって、前記メモリは前記プロセッサと通信しており、前記プロセッサによって実行されたとき、前記システムに、
前記センサから、患者の動作データを取得することであって、前記動作データが受動動作データ及び能動的遂行能力データを含む、前記取得することと、
前記患者の動作データが、障害有りかまたは障害無しかを判定することと、
前記患者の動作データに基づいて、運動系評価を生成することであって、前記運動系評価が、障害有りまたは障害無しである、前記生成することと、を行わせる命令を格納する、前記メモリと、を備える、前記システム。
【請求項14】
前記患者の受動動作データは、ジェスチャパワー、ステップパワー、歩行スパン、病的手指振戦周波数、ジェスチャ時間、転換速度、及びジェスチャスパン持続時間の少なくとも1つを含む、請求項13に記載のシステム。
【請求項15】
前記運動系評価は、EQ-5D-5L健康状態測定値データと高度に相関し、
ジェスチャパワーは、EQ-5D-5L可動性データを示し、
ジェスチャパワー、ステップパワー、歩行スパン、及び病的手指振戦周波数は、EQ-5D-5Lセルフケアデータを示し、
ジェスチャパワー、ステップパワー、及びジェスチャ時間データは、EQ-5D-5L日常活動能力データを示し、
ジェスチャパワー及び/または転換速度は、EQ-5D-5L痛み/不快データを示し、
ジェスチャ時間、ジェスチャスパン持続時間、及び歩行スパンデータは、EQ-5D-5L不安/抑うつデータを示す、請求項14に記載のシステム。
【請求項16】
前記患者の能動的遂行能力データは、図形描画、巧緻性、手回し、発話、発声、体位性振戦、静止時振戦、バランス、Uターン、及び認知検査(記号数字モダリティ検査)の少なくとも1つを含む、請求項13に記載のシステム。
【請求項17】
前記運動系評価は、クオリティオブライフ(PDQ-39)測定値と高度に相関し、
図形描画、巧緻性、または手回しは、PDQ-39の日常生活動作、コミュニケーション、または可動性データを示し、
発話は、PDQ-39コミュニケーションデータを示し、
Uターンは、PDQ-39可動性データを示す、請求項16に記載のシステム。
【請求項18】
前記患者の能動的遂行能力データは、図形描画、巧緻性、手回し、発話、発声、体位性振戦、静止時振戦、バランス、Uターン、及び認知検査(記号数字モダリティ検査)の少なくとも1つを含み、
前記患者の受動動作データは、歩行、腕振り/振戦、及び可動性/社交性の少なくとも1つを含む、請求項13に記載のシステム。
【請求項19】
前記運動系評価は、疾患重症度評価(MDS-UPDRS)と高度に相関し、
静止時振戦は、MDS-UPDRS静止時振戦振幅データを示し、
体位性振戦は、MDS-UPDRS静止時振戦振幅データを示し、
バランスは、MDS-UPDRSの静止時振戦データの不変性を示し、
手回しは、MDS-UPDRS手指動作データを示し、
巧緻性は、MDS-UPDRSの指のタッピングデータを示し、
図形描画は、MDS-UPDRS手書きデータを示し、
Uターンは、MDS-UPDRS身体動作緩慢データを示し、
認知検査(記号数字モダリティ検査)は、MDS-UPDRS認知障害データを示し、
発声は、MDS-UPDRS発話障害データを示し、
発話は、MDS-UPDRS唾液及び流涎データを示し、
歩行は、MDS-UPDRS身体動作緩慢データを示す、請求項18に記載のシステム。
【請求項20】
前記命令は、前記プロセッサによって読み出されると、前記システムに、
患者集団に基づいて、動作データを計算することであって、前記動作データは、受動動作データ及び能動的遂行能力データと、前記運動系評価を障害有りまたは障害無しとして定義する閾値とを含む、前記計算することと、
患者の動作/遂行能力のスコアを計算することと、
前記患者の動作/遂行能力のスコアを前記閾値と比較することと、
前記運動系評価が障害有りかまたは障害無しかを判定することと、
指令を表示することであって、前記指令は、障害が無い運動系評価に対する非治療である、前記表示することと、
指令を表示することであって、前記指令は、障害が有る運動系評価に対する治療を開始することである、前記表示することと、
前記運動系評価に基づいて前記治療を計算することであって、前記治療は、治療上有効な量の薬剤をパーキンソン病患者に与えることである、前記計算することと、をさらに行わせる、請求項13に記載のシステム。
【発明の詳細な説明】
【技術分野】
【0001】
(関連出願の相互参照)
本出願は、2019年9月17日に出願された米国仮出願第62/901,461号に対する優先権を主張するものであり、この米国仮出願は参照によりその全体が援用される。
【0002】
(技術分野)
本明細書に記載されている態様は、一般に、動作障害、例えばパーキンソン病と診断された患者に使用する医療診断及び分析のためのデジタルヘルスツールに関する。本明細書に記載されているさらなる態様は、受動型センサデータと健康状態測定値との間の関連性を分析する。本明細書に記載されている他の態様は、受動型及び/または能動型センサデータとクオリティオブライフ測定値との間の関連性を分析する。本明細書に記載されているさらに他の態様は、受動型センサデータ及び/または能動型センサデータとパーキンソン病患者の疾患重症度評価との間の関連性を分析する。本明細書に記載されている追加の態様は、例えば、ウェアラブルデバイス及び/またはスマートフォンからのセンサデータを用いて、(受動的に及び/または能動的に)監視された日常の運動行動の信頼性及び妥当性を分析する。
【背景技術】
【0003】
パーキンソン病は、動作を調整する化学物質であるドーパミンを作る脳細胞が機能を停止するか、または死滅するときに発症する。パーキンソン病は、振戦、緩慢さ、こわばり、ならびに歩行障害及びバランス障害を引き起こす可能性があるため、「動作障害」と呼ばれている。この疾患としては、便秘、抑うつ、記憶障害、及びその他の非動作関連症状などの追加の副作用が見られる場合がある。残念ながら、パーキンソン病は進行性であり、症状は時間が経つにつれて徐々に悪化する。パーキンソン病は、米国では100万人近く、世界中では600万人以上が罹患している。
【0004】
現在、パーキンソン病の決定的な検査はない。一般的には、神経系病状の訓練を受けた医師である神経科医は、患者の病歴、患者の徴候及び症状の確認、ならびに神経学的及び身体的検診に基づいて、パーキンソン病を診断することになる。神経科医は、パーキンソン病の診断を確定するために、ドーパミントランスポータスキャンと呼ばれる特定の単一光子放出型コンピュータ断層撮影法などの他の検査を実施することがある。他の異常症を除外するのを促進するために、脳のMRI、CT、超音波検査、及びPETスキャンなどの他の画像検査が使われることもある。しかし、最終的には症状及び神経学的な検診によって適正な診断が下される。
【0005】
パーキンソン病は進行性であるため、早期診断と投薬による早期介入とにより、疾患を遅らせ管理することが望まれている。専門家は、パーキンソン病患者の一般的な健康状態及びクオリティオブライフを測定するために用いられるいくつかの健康調査を通じて、パーキンソン病の進行を追跡するための追加の基準を作り上げた。
【0006】
パーキンソン病(PD)患者の運動障害の重症度は、患者が感じ取るクオリティオブライフ(QoL)に影響を与える。パーキンソン病(及び/またはその他の運動疾患)の患者が自身の症状をコントロールし、クオリティオブライフを維持するのを支援するためには、疾患の進行を診断し評価する、より正確な方法が必要とされている。
【発明の概要】
【0007】
以下では、本明細書に記載された様々な態様の簡略化された概要を示す。この概要は、広範囲な概説ではなく、主要な要素もしくは重要な要素を識別すること、または特許請求の範囲を記述することを意図していない。以下の概要は、以下に提供するより詳細な説明への導入の前置きとして、いくつかの概念を簡略化された形で示しているにすぎない。
【0008】
スマートフォンベース及びスマートウォッチベースのセンサ、ならびに本明細書に開示されている関連するモバイルアプリケーションは、PD患者の日常生活における運動障害を推定する信頼できる有効な手段を構成する。本明細書の開示は、受動的及び/または能動的に獲得された運動行動のセンサデータを通じてPD患者の運動症状を評価し、運動系評価を生成するシステム及び方法を説明する。パーキンソン病患者から収集された受動動作データ及び/または能動的運動能力データを含む動作データは、EQ-5D-5L、PDQ-39、及び/またはMDS-UPDRSの健康状態測定値データと関連する。したがって、収集された受動的及び/または能動的な運動動作データを使用して、PD患者のQoL、健康状態、及び疾患重症度をより正確に予測することができる。生成される運動系評価は、患者調査だけを使用する代わりに、神経内科医及び他の医療専門家に、より正確な治療推奨及び疾患管理プロトコルを提供するために使用できる。
【0009】
前述した従来技術における制限を打開し、本明細書を読んで理解することにより明らかになる他の制限を打開するために、本明細書で説明する態様は、パーキンソン患者の運動症状を評価する方法を対象とし、本方法は、センサから、患者の動作データを取得することを含み得る。動作データは、受動動作を含み得る。いくつかの例では、本方法は、患者の動作データが、障害有りかまたは障害無しかを判定することと、患者の動作データに基づいて、運動系評価を生成することと、を含み得る。運動系評価は、障害有りまたは障害無しであり得る。いくつかの例では、センサは、携帯電話またはスマートウォッチ内にあり得る。他の例では、患者の動作データは、ジェスチャパワー、ステップパワー、歩行スパン、病的手指振戦周波数、ジェスチャ時間、転換速度、及びジェスチャスパン持続時間の少なくとも1つを含み得る。さらに他の例では、運動系評価は、EQ-5D-5L健康状態測定値データと高度に相関している。ジェスチャパワーは、EQ-5D-5L可動性と相関し、またはEQ-5D-5L可動性データを示し得、ジェスチャパワー、ステップパワー、歩行スパン、及び病的手指振戦周波数は、EQ-5D-5Lセルフケアデータを示し得、ジェスチャパワー、ステップパワー、及びジェスチャ時間データは、EQ-5D-5L日常活動能力データと相関し、またはEQ-5D-5L日常活動能力データを示し得、ジェスチャパワー及び/または転換速度は、EQ-5D-5L痛み/不快データを示し得、ジェスチャ時間、ジェスチャスパン持続時間、及び歩行スパンデータは、EQ-5D-5L不安/抑うつデータを示し得る。さらに他の例では、本方法は、患者集団に基づいて、動作データを計算することであって、動作データは、受動動作データと、運動系評価を障害有りまたは障害無しとして定義する閾値とを含む、計算することをさらに含み得る。他の例では、本方法は、患者の動作スコアを計算することと、患者の動作スコアを閾値と比較することと、運動系評価が障害有りかまたは障害無しかを判定することと、をさらに含み得る。他の例では、本方法は、サーバまたはモバイルデバイスで、障害が無い運動系評価に対する非治療であり得る指令を表示すること、または障害が有る運動系評価に対する治療を開始することであり得る指令を表示すること、をさらに含み得る。さらに他の例では、本方法は、運動系評価に基づいて治療を計算することであって、治療は、治療上有効な量の薬剤をパーキンソン病患者に与えることであり得る、計算すること、をさらに含み得る。
【0010】
本明細書に開示されている、パーキンソン患者の運動症状を評価するシステムは、ディスプレイと、センサと、プロセッサと、プロセッサと通信しており、プロセッサによって実行されたとき、システムに、センサから、受動動作データを含む、患者の動作データを取得することと、患者の動作データが、障害有りであり得るかまたは障害無しであり得るかを判定することと、患者の動作データに基づいて、障害有りまたは障害無しであり得る運動系評価を生成することと、を行わせ得る命令を格納する、メモリと、を備え得る。いくつかの例では、本システムは、携帯電話またはスマートウォッチを含み得る。他の例では、患者の受動動作データは、ジェスチャパワー、ステップパワー、歩行スパン、病的手指振戦周波数、ジェスチャ時間、転換速度、及びジェスチャスパン持続時間の少なくとも1つを含み得る。特定の例では、運動系評価は、EQ-5D-5L健康状態測定値データと高度に相関し得、ジェスチャパワーは、EQ-5D-5L可動性データを示し得、ジェスチャパワー、ステップパワー、歩行スパン、及び病的手指振戦周波数は、EQ-5D-5Lセルフケアデータを示し得、ジェスチャパワー、ステップパワー、及びジェスチャ時間データは、EQ-5D-5L日常活動能力データを示し得、ジェスチャパワー及び/または転換速度は、EQ-5D-5L痛み/不快データを示し得、ジェスチャ時間、ジェスチャスパン持続時間、及び歩行スパンデータは、EQ-5D-5L不安/抑うつデータを示し得る。さらに他の例では、命令は、プロセッサによって読み出されると、本システムに、患者集団に基づいて、動作データを計算することであって、動作データは、受動動作データであり得、運動系評価を障害有りまたは障害無しとして定義する閾値を含み得る、計算すること、をさらに行わせ得る。他の例では、本システムは、患者の動作スコアを計算することと、患者の動作スコアを閾値と比較することと、運動系評価が障害有りかまたは障害無しかを判定することと、をさらに含み得る。さらに他の例では、命令は、プロセッサによって読み出されると、本システムに、サーバまたは他のモバイルデバイスで指令を表示することであって、指令は、障害が無い運動系評価に対する非治療であり得る、表示すること、あるいは障害が有る運動系評価に対する治療を開始することである指令を表示すること、をさらに行わせ得、治療上有効な量の薬剤を患者に与えることであり得る治療を運動系評価に基づいて計算し得る。
【0011】
本明細書に開示される別の実施形態では、命令を格納する非一時的な機械可読媒体は、1つまたは複数のプロセッサによって実行されると、1つまたは複数のプロセッサに、センサから患者の動作データ(受動動作データを含む)を取得することと、患者の動作データが、障害有りかまたは障害無しかを判定することと、患者の動作データに基づいて、障害有りまたは障害無しである運動系評価を生成することとを含むステップを実行させることができる。他の例では、患者の動作データは、ジェスチャパワー、ステップパワー、歩行スパン、病的手指振戦周波数、ジェスチャ時間、転換速度、及びジェスチャスパン持続時間の少なくとも1つを含み得る。さらに他の例では、命令はさらに、1つまたは複数のプロセッサに、患者集団の動きのデータに基づいて、運動系評価を障害有りまたは障害無しとして定義する閾値を計算することと、患者の動作スコアを計算することと、患者の動作スコアを閾値と比較することと、運動系評価が障害有りかまたは障害無しかを判定することとを含むステップを実行させることができる。さらに他の例では、命令はさらに、1つまたは複数のプロセッサに、障害の無い運動系評価の非治療である指令を表示することと、障害が有る運動系評価に対する治療を開始する指令を表示することとを含むステップを実行させることができる。さらに別の例では、命令はさらに、1つまたは複数のプロセッサに、治療が、治療上有効な量の薬物をパーキンソン病患者に送達する運動系評価に基づいて治療を計算することを含むステップを実行させることができる。
【0012】
パーキンソン病患者の運動症状を評価するために本明細書に開示される追加の方法は、携帯電話またはスマートウォッチなどのセンサから、能動的遂行能力データを含み得る患者の動作データを取得することと、患者の動作データが、障害有りかまたは障害無しかを判定することと、患者の動作データに基づいて、障害有りまたは障害無しである運動系評価を生成することとを含み得る。いくつかの例では、患者の能動動作データは、図形描画、巧緻性、手回し、発話、発声、体位性振戦、静止時振戦、バランス、Uターン、及び認知検査(記号数字モダリティ検査)の少なくとも1つを含み得る。他の例では、運動系評価は、クオリティオブライフ(PDQ-39)測定値と高度に相関し得、図形描画、巧緻性、または手回しは、PDQ-39日常生活動作、コミュニケーション、または可動性データを示し得、発話は、PDQ-39コミュニケーションデータを示し得、Uターンは、PDQ-39可動性データを示し得る。さらに他の例では、本方法はまた、能動的遂行能力データを含む患者集団の動作データに基づいて、運動系評価を障害有りまたは障害無しとして定義する閾値を計算することを含み得る。いくつかの例では、本方法はまた、患者の遂行能力スコアを計算すること、患者の遂行能力スコアを閾値と比較すること、及び運動系評価が障害有りかまたは障害無しであり得るかを判定することを含み得る。さらに他の例では、本方法は、障害が無い運動系評価に対する非治療であり得る指令を表示すること、または障害が有る運動系評価に対する治療を開始することであり得る指令を表示すること、をさらに含み得る。さらに別の例では、本方法はまた、運動系評価に基づいて治療を計算することであって、治療は、治療上有効な量の薬剤を患者に与えることであり得る、計算すること、を含み得る。
【0013】
本明細書に開示されている、パーキンソン患者の運動症状を評価する追加のシステムは、ディスプレイと、センサと、プロセッサと、プロセッサと通信しており、プロセッサによって実行されたとき、システムに、センサから、能動的遂行能力データを含む、患者の動作データを取得することと、を行わせ得る命令を格納する、メモリと、を備え得る。いくつかの例では、本システムは、患者の動作データが、障害有りかまたは障害無しであり得るかを判定することと、患者の動作データに基づいて、障害有りまたは障害無しであり得る運動系評価を生成することと、を含み得る。特定の例では、本システムは、携帯電話またはスマートウォッチを含み得る。他の例では、患者の能動動作データは、図形描画、巧緻性、手回し、発話、発声、体位性振戦、静止時振戦、バランス、Uターン、及び認知検査(記号数字モダリティ検査)の少なくとも1つを含み得る。さらに他の例では、運動系評価は、クオリティオブライフ(PDQ-39)測定値と高度に相関し得、図形描画、巧緻性、または手回しは、PDQ-39日常生活動作、コミュニケーション、または可動性データを示し得、発話は、PDQ-39コミュニケーションデータを示し得、Uターンは、PDQ-39可動性データを示し得る。さらに他の例では、命令は、プロセッサによって読み出されると、本システムに、患者集団に基づいて、動作データを計算することであって、動作データは、能動的遂行能力データと、運動系評価を障害有りまたは障害無しとして定義する閾値とを含み得る、計算すること、をさらに行わせ得る。他の例では、本システムは、患者の遂行能力スコアを計算することと、患者の遂行能力スコアを閾値と比較することと、運動系評価が障害有りかまたは障害無しかを判定することと、をさらに含み得る。さらに他の例では、命令は、プロセッサによって読み出されると、本システムに、サーバまたは他のモバイルデバイスで指令を表示することであって、指令は、障害が無い運動系評価に対する非治療であり得る、表示すること、あるいは障害が有る運動系評価に対する治療を開始することである指令を表示すること、をさらに行わせ得、治療上有効な量の薬剤を患者に与えることであり得る治療を運動系評価に基づいて計算し得る。
【0014】
本明細書に開示される別の実施形態では、命令を格納する非一時的な機械可読媒体は、1つまたは複数のプロセッサによって実行されると、1つまたは複数のプロセッサに、センサから患者の動作データ(能動的遂行能力データを含み得る)を取得することと、患者の動作データが、障害有りかまたは障害無しかを判定することと、患者の動作データに基づいて、障害有りまたは障害無しである運動系評価を生成することとを含むステップを実行させることができる。他の例では、患者の能動動作データは、図形描画、巧緻性、手回し、発話、発声、体位性振戦、静止時振戦、バランス、Uターン、及び認知検査(記号数字モダリティ検査)の少なくとも1つを含み得る。さらに他の例では、命令はさらに、1つまたは複数のプロセッサに、能動的遂行能力データを含む、患者集団の動きのデータに基づいて、運動系評価を障害有りまたは障害無しとして定義する閾値を計算することと、患者の能動的遂行能力スコアを計算することと、患者の能動的遂行能力スコアを閾値と比較することと、運動系評価が障害有りかまたは障害無しかを判定することとを含むステップを実行させることができる。さらに他の例では、命令はさらに、1つまたは複数のプロセッサに、障害の無い運動系評価の非治療である指令を表示することと、障害が有る運動系評価に対する治療を開始する指令を表示することとを含むステップを実行させることができる。さらに別の例では、命令はさらに、1つまたは複数のプロセッサに、治療が、治療上有効な量の薬物をパーキンソン病患者に送達する運動系評価に基づいて治療を計算することを含むステップを実行させることができる。
【0015】
パーキンソン病患者の運動症状を評価するために本明細書に開示される他の方法は、携帯電話またはスマートウォッチなどのセンサから、受動動作データ及び/または能動的遂行能力データを含み得る患者の動作データを取得することと、患者の動作データが、障害有りかまたは障害無しかを判定することと、患者の動作データに基づいて、障害有りまたは障害無しである運動系評価を生成することとを含み得る。いくつかの例では、患者の能動的遂行能力データは、図形描画、巧緻性、手回し、発話、発声、体位性振戦、静止時振戦、バランス、Uターン、及び認知検査(記号数字モダリティ検査)の少なくとも1つを含み得、患者受動動作データは、歩行、腕振り/振戦、可動性/社交性のうち少なくとも1つを含むことができる。他の例では、運動系評価は、疾患重症度評価(MDS-UPDRS)と高度に相関し得、静止時振戦は、MDS-UPDRS静止時振戦振幅データを示し得、体位性振戦は、MDS-UPDRS静止時振戦振幅データを示し得、バランスは、MDS-UPDRSの静止時振戦データの不変性を示し得、手回しは、MDS-UPDRS手指動作データを示し得、巧緻性は、MDS-UPDRSの指のタッピングデータを示し得、図形描画は、MDS-UPDRS手書きデータを示し得、Uターンは、MDS-UPDRS身体動作緩慢データを示し得、認知検査(記号数字モダリティ検査)は、MDS-UPDRS認知障害データを示し得、発声は、MDS-UPDRS発話障害データを示し得、発話は、MDS-UPDRS唾液及び流涎データを示し得、歩行は、MDS-UPDRS身体動作緩慢データを示し得る。さらに他の例では、本方法はまた、受動動作データ及び/または能動的遂行能力データを含む患者集団の動作データに基づいて、運動系評価を障害有りまたは障害無しとして定義する閾値を計算することを含み得る。いくつかの例では、本方法はまた、患者の動作/遂行能力スコアを計算すること、患者の動作/遂行能力スコアを閾値と比較すること、及び運動系評価が障害有りかまたは障害無しであり得るかを判定することを含み得る。さらに他の例では、本方法は、障害が無い運動系評価に対する非治療であり得る指令を表示すること、または障害が有る運動系評価に対する治療を開始することであり得る指令を表示すること、をさらに含み得る。さらに別の例では、本方法はまた、運動系評価に基づいて治療を計算することであって、治療は、治療上有効な量の薬剤を患者に与えることであり得る、計算すること、を含み得る。
【0016】
本明細書に開示されている、パーキンソン患者の運動症状を評価する他のシステムは、ディスプレイと、センサと、プロセッサと、プロセッサと通信しており、プロセッサによって実行されたとき、システムに、センサから、受動動作データ及び/または能動的遂行能力データを含む、患者の動作データを取得することと、を行わせ得る命令を格納する、メモリと、を備え得る。いくつかの例では、本システムは、患者の動作データが、障害有りかまたは障害無しであり得るかを判定することと、患者の動作データに基づいて、障害有りまたは障害無しであり得る運動系評価を生成することと、を含み得る。特定の例では、本システムは、携帯電話またはスマートウォッチを含み得る。他の例では、患者の能動的遂行能力データは、図形描画、巧緻性、手回し、発話、発声、体位性振戦、静止時振戦、バランス、Uターン、及び認知検査(記号数字モダリティ検査)の少なくとも1つを含み得、患者受動動作データは、歩行、腕振り/振戦、可動性/社交性のうち少なくとも1つを含むことができる。他の例では、運動系評価は、疾患重症度評価(MDS-UPDRS)と高度に相関し得、静止時振戦は、MDS-UPDRS静止時振戦振幅データを示し得、体位性振戦は、MDS-UPDRS静止時振戦振幅データを示し得、バランスは、MDS-UPDRSの静止時振戦データの不変性を示し得、手回しは、MDS-UPDRS手指動作データを示し得、巧緻性は、MDS-UPDRSの指のタッピングデータを示し得、図形描画は、MDS-UPDRS手書きデータを示し得、Uターンは、MDS-UPDRS身体動作緩慢データを示し得、認知検査(記号数字モダリティ検査)は、MDS-UPDRS認知障害データを示し得、発声は、MDS-UPDRS発話障害データを示し得、発話は、MDS-UPDRS唾液及び流涎データを示し得、歩行は、MDS-UPDRS身体動作緩慢データを示し得る。さらに他の例では、命令は、プロセッサによって読み出されると、本システムに、患者集団に基づいて、動作データを計算することであって、動作データは、受動動作データ及び/または能動的遂行能力データと、運動系評価を障害有りまたは障害無しとして定義する閾値とを含み得る、計算すること、をさらに行わせ得る。他の例では、本システムは、患者の動作/遂行能力スコアを計算することと、患者の動作/遂行能力スコアを閾値と比較することと、運動系評価が障害有りかまたは障害無しかを判定することと、をさらに含み得る。さらに他の例では、命令は、プロセッサによって読み出されると、本システムに、サーバまたは他のモバイルデバイスで指令を表示することであって、指令は、障害が無い運動系評価に対する非治療であり得る、表示すること、あるいは障害が有る運動系評価に対する治療を開始することである指令を表示すること、をさらに行わせ得、治療上有効な量の薬剤を患者に与えることであり得る治療を運動系評価に基づいて計算し得る。
【0017】
本明細書に開示される別の実施形態では、命令を格納する非一時的な機械可読媒体は、1つまたは複数のプロセッサによって実行されると、1つまたは複数のプロセッサに、センサから患者の動作データ(受動動作データ及び/または能動的遂行能力データを含み得る)を取得することと、患者の動作データが、障害有りかまたは障害無しかを判定することと、患者の動作データに基づいて、障害有りまたは障害無しである運動系評価を生成することとを含むステップを実行させることができる。他の例では、患者の能動的遂行能力データは、図形描画、巧緻性、手回し、発話、発声、体位性振戦、静止時振戦、バランス、Uターン、及び認知検査(記号数字モダリティ検査)の少なくとも1つを含み得、患者受動動作データは、歩行、腕振り/振戦、可動性/社交性のうち少なくとも1つを含むことができる。他の例では、運動系評価は、疾患重症度評価(MDS-UPDRS)と高度に相関し得、静止時振戦は、MDS-UPDRS静止時振戦振幅データを示し得、体位性振戦は、MDS-UPDRS静止時振戦振幅データを示し得、バランスは、MDS-UPDRSの静止時振戦データの不変性を示し得、手回しは、MDS-UPDRS手指動作データを示し得、巧緻性は、MDS-UPDRSの指のタッピングデータを示し得、図形描画は、MDS-UPDRS手書きデータを示し得、Uターンは、MDS-UPDRS身体動作緩慢データを示し得、認知検査(記号数字モダリティ検査)は、MDS-UPDRS認知障害データを示し得、発声は、MDS-UPDRS発話障害データを示し得、発話は、MDS-UPDRS唾液及び流涎データを示し得、歩行は、MDS-UPDRS身体動作緩慢データを示し得る。さらに他の例では、命令はさらに、1つまたは複数のプロセッサに、受動動作データ及び/または能動的遂行能力データを含む、患者集団の動きのデータに基づいて、運動系評価を障害有りまたは障害無しとして定義する閾値を計算することと、患者の動作/遂行能力スコアを計算することと、患者の動作/遂行能力スコアを閾値と比較することと、運動系評価が障害有りかまたは障害無しかを判定することとを含むステップを実行させることができる。さらに他の例では、命令はさらに、1つまたは複数のプロセッサに、障害の無い運動系評価の非治療である指令を表示することと、障害が有る運動系評価に対する治療を開始する指令を表示することとを含むステップを実行させることができる。さらに別の例では、命令はさらに、1つまたは複数のプロセッサに、治療が、治療上有効な量の薬物をパーキンソン病患者に送達する運動系評価に基づいて治療を計算することを含むステップを実行させることができる。
【0018】
これらの特徴を、他の多くの特徴と共に、以下に、より詳細に説明する。
【0019】
本明細書に記載されている態様及びその利点のより完全な理解は、添付の図面を考慮して、以下の説明を参照することによって得ることができる。図面では、同様の参照番号は同様の特徴を示す。
【図面の簡単な説明】
【0020】
図1】本明細書に記載されている1つ以上の例示的な態様を実施するのに使用し得るカスタムコンピューティングシステム及びアーキテクチャを示す。
図2A】本明細書に記載されている1つ以上の例示的な態様による、能動動作及び受動動作デジタルバイオマーカデータを分析し、運動系評価を決定するためのプロセスを概念的に示すフローチャートである。
図2B】本明細書に開示されているシステム及び方法による、デジタルバイオマーカの能動検査及び受動検査のためのプロセスを概念的に示すフローチャートである。
図3A】不安/抑うつ、可動性、痛み/不快、セルフケア、及び日常活動能力の5つのカテゴリにわたるEQ-5D-5Lクオリティオブライフ領域スコアのサンプル研究分布をグラフで示す。
図3B図3Aにグラフで示されたEQ-5D-5L領域スコアを表示する。
図4A】本明細書に開示されるシステム及び方法による、図3Aにグラフ表示されたセルフケアのEQ-5D-5Lカテゴリに相関するデジタルバイオマーカセンサアプリケーション及び関連する動作によって収集されたデータ分布を描写する。
図4B】本明細書に開示されたシステム及び方法による、デジタルバイオマーカセンサアプリケーションによって収集されたデータ分布と、図3Aにグラフ表示された可動性のEQ-5D-5Lカテゴリに相関する関連した動きとを描写する。
図4C】本明細書に開示されたシステム及び方法による、デジタルバイオマーカセンサアプリケーションによって収集されたデータ分布と、図3Aにグラフ表示された日常活動能力のEQ-5D-5Lカテゴリに相関する関連動作を描写する。
図4D】本明細書に開示されるシステム及び方法による、図3Aにグラフ表示された痛み/不快のEQ-5D-5Lカテゴリに相関するデジタルバイオマーカセンサアプリケーション及び関連する動作によって収集されたデータ分布を描写する。
図4E】本明細書に開示されたシステム及び方法による、図3Aにグラフ表示された不安/抑うつのEQ-5D-5Lカテゴリに相関するデジタルバイオマーカセンサアプリケーション及び関連する動きによって収集されたデータ分布を描写する。
図5A】本明細書に開示されるシステム及び方法による、PDQ-39クオリティオブライフ次元スコアと、デジタルバイオマーカセンサアプリケーションによって得られる選択された受動動作との相関を描写する。
図5B】スクリーニング訪問時のPDQ-39次元スコアの分布(箱ひげ図)をグラフ化して示す。
図5C】本明細書に開示されるシステム及び方法による、デジタルバイオマーカセンサアプリケーションの更新版の能動検査スイートを示す。
図5D】本明細書に開示されるシステム及び方法による、デジタルバイオマーカセンサアプリケーションの更新版によって得られたPDQ-39クオリティオブライフ次元スコアと選択された能動型センサ機能との間の相関を描写する。
図5E】本明細書に開示されるシステム及び方法による、図5Cのデジタルバイオマーカセンサアプリケーションの更新版の能動検査スイートを利用したテスト患者のデータ分布及び関連する人口統計を示す。分布は平均+SDとして表示される。
図5F】本明細書に開示されたシステム及び方法による、PDQ-39項目における障害者と非障害者との間の能動型センサスイート差異をグラフ化して示す。
図5G】本明細書に開示されたシステム及び方法による、PDQ-39項目における障害者と非障害者との間の能動型センサスイート差異をグラフ化して示す。
図5H】本明細書に開示されたシステム及び方法による、PDQ-39項目における障害者と非障害者との間の能動型センサスイート差異をグラフ化して示す。
図5I】本明細書に開示されたシステム及び方法による、PDQ-39項目における障害者と非障害者との間の能動型センサスイート差異をグラフ化して示す。
図6A】本明細書に開示されるシステム及び方法による、MDS-UPDRS複合スコア及びデジタルバイオマーカセンサアプリケーションによって得られた選択された受動動作の相関を示す。
図6B-1】本明細書に開示されるシステム及び方法による、MDS-UPDRS複合スコア及びデジタルバイオマーカセンサアプリケーションによって得られた選択された受動動作の障害相関に関するスピアマン相関及びマンホイットニー検定を示す。
図6B-2】本明細書に開示されるシステム及び方法による、MDS-UPDRS複合スコア及びデジタルバイオマーカセンサアプリケーションによって得られた選択された受動動作の障害相関に関するスピアマン相関及びマンホイットニー検定を示す。
図6B-3】本明細書に開示されるシステム及び方法による、MDS-UPDRS複合スコア及びデジタルバイオマーカセンサアプリケーションによって得られた選択された受動動作の障害相関に関するスピアマン相関及びマンホイットニー検定を示す。
図6C】本明細書に開示されるシステム及び方法による、MDS-UPDRS複合スコア及びデジタルバイオマーカセンサアプリケーションによって得られた選択された受動動作に対する被験者の相関についての動作緩慢総分布をグラフにして示す。
図6D】本明細書に開示されるシステム及び方法による、デジタルバイオマーカセンサアプリケーションによって得られたMDS-UPDRSアパシー及びPron/Sup左手の動きスコアに相関する被験者の座位上肢動作をグラフにして示す。
図6E】本明細書に開示されるシステム及び方法による、デジタルバイオマーカセンサアプリケーションによって得られたMDS-UPDRSアパシー及びPron/Sup左手の動きスコアに相関する被験者の座位上肢動作をグラフにして示す。
図6F】本明細書に開示されるシステム及び方法による、デジタルバイオマーカセンサアプリケーションによって得られたMDS-UPDRS歩行、固縮、及びベッドから出る/車/深い椅子のスコアと相関する被験者の下肢動作をグラフにして示す。
図6G】本明細書に開示されるシステム及び方法による、デジタルバイオマーカセンサアプリケーションによって得られたMDS-UPDRS歩行、固縮、及びベッドから出る/車/深い椅子のスコアと相関する被験者の下肢動作をグラフにして示す。
図6H】本明細書に開示されるシステム及び方法による、デジタルバイオマーカセンサアプリケーションによって得られたMDS-UPDRS歩行、固縮、及びベッドから出る/車/深い椅子のスコアと相関する被験者の下肢動作をグラフにして示す。
図7A】本明細書に開示されたシステム及び方法による、デジタルバイオマーカセンサアプリケーションの更新版の、能動及び受動検査組合せを示す。
図7B】本明細書に開示されるシステム及び方法による、図7Aのデジタルバイオマーカセンサアプリケーションの更新版の能動的及び受動的な検査スイートを組み合わせて利用した検査患者のデータ分布及び関連する人口統計学を描写する。
図7C】本明細書に開示されるシステム及び方法による、図7Aの更新されたデジタルバイオマーカセンサアプリケーションによって得られた収集された能動的及び受動的データの付着結果をグラフにして示す。
図7D】本明細書に開示されるシステム及び方法による、図7Aの更新されたデジタルバイオマーカセンサアプリケーションによって得られた能動データの検査-再検査信頼性をグラフにして示す。
図7E】ベースライン時の対応するMDS-UPDRS項目と有意に相関する予測されたセンサの特徴とを描写する。
図7F】本明細書に開示されたシステム及び方法による、センサの特徴と対応するMDS-UPDRS項目スコアとの関係の例を図式化して示す。
図7G】本明細書に開示されたシステム及び方法による、センサの特徴と対応するMDS-UPDRS項目スコアとの関係の例を図式化して示す。
図7H】本明細書に開示されたシステム及び方法による、センサの特徴と対応するMDS-UPDRS項目スコアとの関係の例を図式化して示す。
【発明を実施するための形態】
【0021】
様々な実施形態の以下の説明では、本明細書の一部を形成し、本明細書に記載されている態様が実施され得る様々な実施形態の例として示された添付の図面を参照する。他の実施形態を利用してもよく、記載されている態様及び実施形態の範囲から逸脱することなく、構造的及び機能的な修正を行ってもよいことを理解されたい。本明細書に記載されている態様は、他の実施形態が可能であり、様々な方法で実施または実行されることが可能である。また、本明細書で使用される表現及び用語は、説明を目的としたものであり、限定的なもの見なすべきでないことを理解されたい。むしろ、本明細書で用いる語句及び用語には、その最も広い解釈及び意味を与えるべきである。「含む(including)」、「含む(comprising)」、及びこれらの変形の使用は、その後に列挙される項目及びそれらの等価物、ならびに追加の項目及びそれらの等価物を包含することを意味する。「取り付けられた」、「接続された」、「結合された」、「配置された」、「係合された」という用語及び同様の用語の使用は、直接的な及び間接的な取り付け、接続、結合、配置、及び係合の両方を含むことを意味する。
【0022】
本明細書に記載される主題の概略紹介として、スマートフォン、スマートウォッチ、ウェアラブル、または同様のデバイスを使用するジェスチャ認識を使用して、パーキンソン病と診断された個人の運動兆候及び症状重症度を評価し、その後、パーキンソン病患者のクオリティオブライフ尺度(PDQ-39)、及び/または健康状態(EQ-5D-5L)、及び/または疾患重症度評価(MDS-UPDRS)と相互に関連付けることができる。
【0023】
図1は、本明細書に記載されている1つ以上の例示的な態様を実施するのに使用し得るカスタムネットワークアーキテクチャ及びデータ処理デバイスの一例を示す。様々なネットワークノード103、105、107、108及び109が、インターネット等の広域ネットワーク(WAN)101を介して相互接続され得る。加えてまたは代わりに、プライベートイントラネット、企業ネットワーク、LAN、無線ネットワーク、及びパーソナルネットワーク(PAN)等を含む他のネットワークを使用してもよい。ネットワーク101は、例示を目的としたものであり、より少ないまたは追加のコンピュータネットワークで置き換えられてもよい。ローカルエリアネットワーク(LAN)は、任意の既知のLANトポロジのうちの1つ以上を有してよく、イーサネット等の様々な異なるプロトコルのうちの1つ以上を使用してよい。デバイス103、105、107、108、109、及び他のデバイス(図示せず)は、ツイストペア線、同軸ケーブル、光ファイバ、電波、または他の通信媒体を介してネットワークのうちの1つ以上に接続されてよい。
【0024】
本明細書で使用され、図面に示されている「ネットワーク」という用語は、リモートストレージデバイスが1つ以上の通信路を介して互いに結合されているシステムだけでなく、ストレージ機能を有するシステムに随時結合することができるスタンドアロンデバイスも指す。したがって、「ネットワーク」という用語は、「物理ネットワーク」だけでなく、全ての物理ネットワークにわたって存在する(単一のエンティティに帰せられる)データから構成される「コンテンツネットワーク」をも含む。
【0025】
構成要素としては、データサーバ103、ウェブサーバ105、及びクライアントデバイス107~109があり得る。データサーバ103は、本明細書に記載されている1つ以上の例示的な態様を実行するためのデータベース及び制御ソフトウェアの全体的なアクセス、制御、及び管理を提供する。データサーバ103は、ウェブサーバ105に接続されてもよく、ユーザは、ウェブサーバ105を通じて、要求されたデータとインタラクションし、そのデータを取得する。あるいは、データサーバ103は、それ自体がウェブサーバとして機能し、インターネットに直接接続されてもよい(この場合、デバイス105は不要である)。データサーバ103は、直接もしくは間接接続を介して、またはいくつかの他のネットワークを介して、ネットワーク101(例えば、インターネット)を通してウェブサーバ105に接続されてもよい。ユーザは、リモートコンピュータ107~109を使用して、例えば、アプリケーション、モバイルアプリ、ウェアラブルアプリ、またはウェブブラウザを使用して、ウェブサーバ105によってホストされる1つ以上の外部公開ウェブサイト及び/またはウェブサービスを介してデータサーバ103に接続し、データサーバ103とインタラクトすることができる。クライアントコンピュータ107~109は、データサーバ103に記憶されたデータにアクセスするために、データサーバ103と共同して使用されてもよく、または他の目的に使用されてもよい。例えば、クライアントデバイス107、108から、ユーザは、当技術分野で知られているように、インターネットブラウザを使用して、または(インターネット等の)コンピュータネットワークを介してウェブサーバ105及び/またはデータサーバ103と通信するソフトウェアアプリケーションを実行することにより、ウェブサーバ105にアクセスし得る。
【0026】
サーバとアプリケーションとは、同じ物理マシン上で組み合わされてもよく、別々の仮想アドレスもしくは論理アドレスを保持する場合もあれば、別個の物理マシン上に常駐する場合もある。図1は、使用することができるネットワークアーキテクチャの一例を示しているにすぎず、当業者は、本明細書でさらに説明するように、使用される特定のネットワークアーキテクチャ及びデータ処理デバイスが、それらが提供する機能を変えてもよいこと、及びその機能に対して副次的であることを理解されよう。例えば、ウェブサーバ105及びデータサーバ103によって提供されるサービスは、単一のサーバにまとめられてもよい。
【0027】
各構成要素103、105、107、108、109は、ウェブベースの実装にアクセスする任意のタイプの既知のコンピュータ、サーバ、もしくはデータ処理デバイス、あるいは本明細書でさらに説明するように、特別目的のソフトウェアと統合されたカスタムデバイス、例えば、モバイルもしくはスマートフォン、スマートウォッチ、または他のウェアラブルデバイスであってもよい。データサーバ103は、例えば、データサーバ103の全体的な動作を制御するプロセッサ111を含み得る。データサーバ103は、さらに、RAM113、ROM115、ネットワークインタフェース117、入力/出力インタフェース119(例えば、キーボード、マウス、ディスプレイ、プリンタ等)、及びメモリ121を含み得る。I/O119は、データまたはファイルの読み出し、書き込み、表示、及び/または印刷のための様々なインタフェースユニット及びドライブを含み得る。メモリ121は、データ処理デバイス103の動作全体を制御するためのオペレーティングシステムソフトウェア123と、本明細書に記載の態様を実施するようにデータサーバ103に指示するための制御ロジック125と、本明細書に記載の他の態様と共に使用してもよいし使用しなくてもよい、二次的な機能、サポート機能、及び/または他の機能を提供する他のアプリケーションソフトウェア127と、をさらに記憶してもよい。制御ロジックは、本明細書ではデータサーバソフトウェア125と呼ばれることもある。データサーバソフトウェアの機能性は、制御ロジックにコード化されたルールに基づいて自動的に行われた操作もしくは決定、システムに入力を提供するユーザによって手動で行われた操作もしくは決定、及び/またはユーザ入力に基づく自動処理の組み合わせ(例えば、クエリ、データ更新等)を指してよい。
【0028】
メモリ121はまた、第1のデータベース129及び第2のデータベース131を含む、本明細書で説明される1つ以上の態様の実行において使用されるデータを記憶してよい。一部の実施形態では、第1のデータベースは、(例えば、別個のテーブル、レポート等として)第2のデータベースを含んでよい。つまり、情報は、システム設計に応じて、単一のデータベースに記憶されてもよく、または異なる論理データベース、仮想データベース、もしくは物理データベースに分離されてもよい。デバイス105、107、109は、デバイス103に関して説明されたのと同様または異なるアーキテクチャを有してよい。当業者は、本明細書で説明されるデータ処理デバイス103(またはデバイス105、107、109)の機能性が、例えば、複数のコンピュータにわたって処理負荷を分散して、地理的位置、ユーザアクセスレベル、サービス品質(QoS)等に基づいてトランザクションを分離するよう、複数のデータ処理デバイスにわたって展開されてもよいことを認識するであろう。
【0029】
本明細書に記載されている1つ以上の態様は、本明細書で記載される1つ以上のコンピュータまたは他のデバイスによって実行される、1つ以上のプログラムモジュール等、コンピュータが使えるデータもしくはコンピュータ可読データ及び/またはコンピュータ実行可能命令において具体化されてもよい。一般に、プログラムモジュールは、コンピュータまたは他のデバイスのプロセッサで実行されたときに特定のタスクを実行する、または特定の抽象データ型を実装する、ルーチン、プログラム、オブジェクト、コンポーネント、データ構造等を含む。モジュールは、後に実行のためコンパイルされるソースコードプログラミング言語で書かれてもよく、またはHTMLもしくはXMLなどの(ただし、これらに限定されない)スクリプト言語で書かれてもよい。コンピュータ実行可能命令は、ハードディスク、光ディスク、リムーバブル記憶媒体、ソリッドステートメモリ、RAMなどのコンピュータ可読媒体に記憶することができる。当業者によって理解されるように、プログラムモジュールの機能性は、様々な実施形態において、必要に応じて組み合わされ、または分散させてもよい。加えて、機能性は、ファームウェアまたは、集積回路、フィールドプログラマブルゲートアレイ(FPGA)、及びこれらに類するもの等のハードウェア同等物において全体的または部分的に具体化されてもよい。1つ以上の態様をより効果的に実装するために、特定のデータ構造を使用することがあり、そのようなデータ構造は、本明細書に記載するコンピュータ実行可能命令及びコンピュータ使用可能データの範囲内で企図される。
本明細書に記載されている態様は、一般に、動作障害、例えばパーキンソン病と診断された患者に使用する医療診断及び分析のためのデジタルヘルスツールに関する。本明細書に記載されているさらなる態様は、パーキンソン病を有する個人における運動徴候及び症状重症度を評価すること、ならびに受動型センサデータと健康状態(EQ-5D-5L)測定値との間の関連性を分析することのために使用することができる。本明細書に記載されている他の態様は、パーキンソン病を有する個人における運動徴候及び症状重症度を評価すること、ならびに受動型/能動型センサデータのクオリティオブライフ(QoL)(PDQ-39)測定値の間の関連性を分析することのために使用することができる。本明細書に記載されている追加の態様は、パーキンソン病を有する個人における運動徴候及び症状重症度を評価すること、ならびにパーキンソン病患者に対する能動型/受動型センサデータと疾患重症度評価(MDS-UPDRS)との間の関連性を分析することのために使用することができる。本明細書に記載されている追加の態様では、例えば、パーキンソン病を有する個人における運動徴候及び症状重症度を評価するために、ウェアラブルデバイス及び/またはスマートフォンからのセンサデータを用いて、(受動的に及び/または能動的に)監視された日常の運動行動の信頼性及び妥当性を分析する。日常生活における運動機能は、運動疾患の重症度を反映する生態学的に最も妥当であるものの1つだが、客観的に定量化することは困難である。
【0030】
図2Aは、本明細書に記載されている1つ以上の例示的な態様による、能動動作及び受動動作デジタルバイオマーカデータを分析し、運動系評価を決定するためのプロセスを概念的に示すフローチャートである。プロセス200のステップの一部または全ては、本明細書に記載された1つ以上のコンピューティングデバイスを使用して実行することができる。様々な実施形態において、以下に記載されるステップの一部または全ては、必要に応じて組み合わせ、及び/またはサブステップに分割することができる。
【0031】
ステップ202で、1つ以上の患者集団の受動動作データ及び/または能動的遂行能力データを収集し得る。一般に、「動作データ」は、受動動作データ及び/または能動的遂行能力データを含むことができる。データは、本明細書に記載されているように、患者が使用する、ウェアラブルデバイス及び/またはスマートフォン、または他のモバイルデバイスなど、様々なソースから取得され得る。動作データにはまた、ユーザの年齢、性別など、各患者の様々な特性が含まれ得る。特定の患者集団の患者は、1つ以上の共通の特性を有し得る。これらの特性には、年齢、現在の病状、疾患、意思能力、認知能力、以前のQoLスコア、施された治療などが含まれ得るが、これらに限定されない。例えば、第1の患者集団のメンバはPDを有し、50歳未満であり得、一方、第2の患者集団の患者もまたPDを有するが、50歳以上である。別の例では、第1の患者集団の患者には第1の治療が処方され得、一方、第2の患者集団の患者には第2の治療が処方され得る。また一方、患者集団を決定するために、任意の数の患者集団を使用してもよいこと、及び/または特性の任意の特定の組み合わせを使用してもよいことに留意されたい。このように、患者集団は、異なる集団の患者を必要に応じて分析及び/または比較することができるように、共通の特性を有する1人以上の患者を含むことができる。
【0032】
ステップ204で、運動系評価を計算し得る。本明細書に記載されている様々な動作データ収集技法のいずれかを用いて、患者集団の各患者に対する障害有りまたは障害無しの運動系評価を計算することができる。いくつかの実施形態では、特定の患者に対する運動系評価は、本明細書に記載されるように、患者に対する時系列にわたる動作データの収集を含む。患者の運動系評価には、以前に収集した動作データ及び/または経時的に収集された新しい動作データに基づく事前の運動系評価が含まれ得る。
【0033】
ステップ206で、治療効果を判定し得る。治療効果は、必要に応じて、患者別に及び/または患者集団別に判定することができる。特定の患者に対する治療効果は、患者の空間作業記憶のスコアに基づいて、患者に対して判定されてもよい。患者集団に対する治療効果は、患者集団の各患者に対する運動系評価に基づいて判定されてもよい。治療効果を判定するために、必要に応じて、様々な統計的手法のいずれかを用いることができる。例えば、患者集団に対する現在の運動系評価を、患者集団に対する1つ以上の過去の運動系評価と比較してもよい。現在の運動系評価と過去の運動系評価の1つ以上との差分、経時変化率、運動系評価の移動平均、及び/または他の任意の統計的尺度を用いて、治療効果を評価することができる。治療効果を患者集団間で比較することも可能である。例えば、年齢で分けられた患者集団に薬剤を投与して、患者の運動系評価への薬剤の効果を、患者の年齢に基づいて判定することができる。第2の例では、第1の患者集団に第1の薬剤を投与し得、第2の患者集団にプラセボを投与し得る。第1の患者集団と第2の患者集団との間の運動系評価の差の変化を利用して、第1の薬剤を含む治療の効果を判定することができる。第3の例では、第1の患者集団に第1の薬剤を投与し得、第2の患者集団に第2の薬剤を投与し得る。第1の患者集団と第2の患者集団との間の運動系評価の差の変化を利用して、第1の薬剤と第2の薬剤とのどちらがPD症状を改善する点で有効であるかを判断することができる。第4の例では、第1の患者集団に第1の投薬量で薬剤を投与し得、第2の患者集団に第2の投薬量で同じ薬剤を投与し得る。患者集団の運動系評価における改善の違い(またはその欠如)を利用して、薬剤の特定の投薬量の有効性を判定することができる。ただし、運動系評価に影響を与える様々な病状を有した患者集団間の比較など、必要に応じて、任意の比較を利用して治療効果を判定できることに留意されたい。
【0034】
ステップ208で、治療推奨を生成し得る。治療推奨は、治療の有効性及び/または特定の患者集団の特性に基づいて生成され得る。治療勧告は、特定の患者集団と共通する特定の特性を有した患者に対して一般化され、及び/または的を絞られ得る。例えば、特定の薬剤が50歳未満のPD患者の運動系評価の改善に効果的である場合、生成される治療推奨には、50歳未満のPD患者に対してその薬剤の特定の投薬量を含めることができる。同様に、その特定の薬剤が50歳以上のPD患者の運動系評価の改善に効果的でない場合、治療推奨には、これらの特性を有する患者に対してその薬剤を含めることはできない。患者集団に対して生成された治療推奨は、本明細書に記載されているように、その患者集団と共通する特性を有した特定の患者に対して治療を推奨し及び/または施すために使用され得る。
【0035】
次に図2Bを参照すると、本明細書に開示されているシステム及び方法による、デジタルバイオマーカの能動的遂行能力検査及び受動検査のためのプロセスを概念的に示すフローチャートが示されている。プロセス210のステップの一部または全ては、本明細書に記載された1つ以上のコンピューティングデバイスを使用して実行することができる。様々な実施形態において、以下に記載されるステップの一部または全ては、必要に応じて組み合わせ、及び/またはサブステップに分割することができる。先述のとおり、「動作データ」は、一般に、受動動作データ及び/または能動的遂行能力データを含むことができる。
【0036】
ステップ211で、受動データを収集し得る。受動データは、患者によって動作するモバイルデバイス内に配置された加速度計、ジャイロスコープ、磁力計、及びこれらに類するものなどの1つ以上のセンサを使用して収集することができる。モバイルデバイスには、携帯電話機、スマートウォッチ、活動量計、及びこれらに類するものなど、通常、患者に携帯される任意のコンピューティングデバイスが含まれ得る。収集された受動データには、患者によって行われた様々な動作と、その動作に関する測定基準とが含まれ得る。これらの動作及び測定基準には、ジェスチャ時間、ジェスチャパワー、歩行での転換、頻度非対称、ステップパワー、ステップ周波数変動、歩行比率、転換角度、転換速度、病的手指振戦(pht)周波数、ステップ周波数、パワー変動、及び本書に記載されている他の任意の受動動作が含まれるが、これらに限定されない。受動データは、患者の普段の活動中に捕獲され得る。
【0037】
ステップ212で、能動的遂行能力データを収集し得る。能動的遂行能力データは、患者によって動作するモバイルデバイス内に配置された加速度計、ジャイロスコープ、磁力計、及びこれらに類するものなどの1つ以上のセンサを使用して収集することができる。能動的遂行能力データは、患者が本明細書に記載されている1つ以上の医学的検査及び/または検診に取り組んでいる間に収集されてもよい。収集される能動的遂行能力データは、図形描画、巧緻性検査、手回し、発話検査、発声検査、体位性振戦、静止時振戦、バランス、Uターン、認知の記号数字モダリティ検査(SDMT)、及び本明細書に記載されている他の任意の能動的遂行能力動作などであるが、これらに限定されない、様々な作業を含むことが可能である。能動的遂行能力データは、患者が検査及び/または検診に取り組んでいる特定の時間帯に収集されてもよい。
【0038】
ステップ214で、収集した動作データを処理し得る。収集された動作データを、モバイルデバイスによって処理してもよい。他の例では、収集された動作データを、サーバ(例えば、クラウド、バックエンドサーバなど)にアップロードし、そのサーバによって処理してもよい。収集されたセンサデータは、年齢及び性別で補正される場合がある。検査-再検査信頼性が、クラス内相関係数を使用して評価されてもよい。様々な実施形態では、収集データは、特定の期間にわたって集計される。例えば、受動動作データを、移行する7日間にわたって平均化することができる。収集データを集計することで、患者の健康状態を評価するための運動症状進行の測定値の信号対ノイズ比を向上させることができる。様々な実施形態では、収集データは、データの一部が、データが収集された時間と関連している時間領域にあり得る。収集データは、フーリエ変換など、様々な手法のいずれかを使用して周波数領域に変換することができる。収集データの周波数領域表現から、様々なノイズ特徴を識別すること、及び/または差し引くことが可能である。例えば、患者は、特定の手の大きさを有した68歳の男性であり得、収集データは手振りを示すことがある。その患者と同じ大きさの手を持つ人の手指振戦を示すノイズ信号を特定することが可能である。このノイズ信号を、手振りの際に患者が手を揺さぶることによって引き起こされる捕獲データ中のノイズを除去するために、周波数領域表現から差し引くことができる。このようにして、捕獲データの周波数領域表現において、測定されたジェスチャデータの品質を向上させるために、周波数領域表現をノイズ除去することが可能である。その後、逆フーリエ変換などの様々な手法のいずれかを使用して、捕獲データのノイズ除去された周波数領域表現を時間領域に変換し直すことができる。このように、収集データを、必要に応じて、周波数領域及び/または時間領域の両方で分析するために処理することができる。さらに、収集データからノイズを差し引くことで、収集データの信号対ノイズ比を向上させ、それによって処理を改善することが可能になり得る。これは、ジェスチャパワーなど、患者の手足の意図しない動き(例えば、振戦)により、モバイルデバイス内のセンサが、実行中のジェスチャとは関係しない加速度の大きな変化を読み取る可能性がある特定の活動を判断する際に特に有用であり得る。
【0039】
ステップ216で、患者集団の閾値、及び患者の受動動作/能動的遂行能力スコアを計算し得る。ここでも、「動作データ」は、受動動作データ及び/または能動的遂行能力データを含むことができる。患者集団閾値は、特定の患者集団によって決定されて、どの特定の動作または遂行能力スコアが障害有りまたは障害無しであると定義されるかを定義する特定の閾値を確立するために使用され得る。動作スコア及び/または遂行能力スコアは、患者の日々の活動を通じてのベースラインクオリティオブライフを示し得る。いくつかの実施形態では、動作スコアは、収集された受動データ(すなわち、日常活動)に基づいて計算される。ステップ216では、能動的遂行能力動作データに基づいて、遂行能力スコアをも計算し得る。能動的遂行能力スコアは、特定の作業を実行する際のスキルのベースラインレベルを示し得る。多くの実施形態では、能動的遂行能力スコアは、能動的遂行能力動作データに基づいて計算される。いくつかの実施形態では、能動的遂行能力スコアは、能動的遂行能力作業に関連する受動活動の動作スコアに基づいて計算することができる。例えば、能動的遂行能力作業が円を描くことである場合、ジェスチャ及びジェスチャパワーに関連する受動動作は、患者が円を描く能力を示し得る。このように、患者が作業を実行する必要なしに、特定の作業に対する能動的遂行能力スコアを計算することができる。同様に、受動データ及び/または能動的遂行能力データに基づいて作業について計算された動作スコア及び/または遂行能力スコアを使用して、作業における患者の遂行能力を予測し及び/または分析することができる。
【0040】
ステップ218で、動作スコア及び/または遂行能力スコアに基づいて、運動系評価を決定し得る。本明細書に記載されている様々な受動/能動動作データ収集技法のいずれかを用いて、障害有りまたは障害無しの運動系評価を決定することができる。
【0041】
ステップ220で、治療方針を決定し得る。動作スコア及び/または遂行能力スコアに基づいて、運動系評価を生成することができる。運動系評価では、患者の運動系が障害有りなのかそれとも障害無しなのか示され得る。患者の受動動作スコア及び能動的遂行能力スコアを、特定の患者集団からの確立された動作スコア及び遂行能力スコアのセットと比較することができる。前述の通り、閾値は、特定の患者集団によって決定されて、どの特定の動作または遂行能力スコアが障害有りまたは障害無しであると定義されるかを定義する特定の閾値を確立するために使用され得る。例えば、確立され患者集団閾値と比較されて、動作スコアが動作スコア閾値を超え、遂行能力スコアが遂行能力スコア閾値を超えた場合、運動系評価は、患者に障害が無いことを示すことができる。同様に、確立され患者集団閾値と比較されて、動作スコア及び遂行能力スコアの両方が関連閾値未満である場合、運動系評価は、患者の動作に障害が有ることを示すことができる。患者の障害状態は、二値フラグ(例えば、障害有りまたは障害無し)及び/または患者の障害状態の段階的なランク付けであってもよい。例えば、動作スコア及び/または遂行能力スコアの閾値を超える患者は、患者の個々の遂行能力スコアにかかわらず、動作スコア及び/または遂行能力スコアが動作/遂行能力スコア閾値未満である患者よりも障害が少ない(及び/またはクオリティオブライフが高い)可能性がある。患者の運動系評価が障害有りかまたは障害無しかを判定することにより、患者の治療のための推奨または指令を、動作障害の重症度に基づいて、決定することができる。このような治療は、パーキンソン病の治療のための治療上有効な量の医薬を含むことができる。そのような治療の非限定的な例には、レボドパ、シネメット、サフィナミド、カルビドパ、ドーパミンアゴニスト、COMT阻害剤、MAO-B阻害剤、アマンタジン、抗コリン剤等が含まれ得る。いくつかの実施形態では、治療方針は、理学療法、実行すべき作業、及び/または患者が実行すべき他の活動を含むことができる。
【0042】
ステップ222で、決定された治療(複数可)を施し得る。決定された治療方針に基づいて治療を施してもよい。提供される治療は、本明細書に記載される1つ以上の薬剤の治療上有効な用量を投与することを含み得る。治療上有効な投与量は、受動動作スコア及び/または能動的遂行能力スコアに基づいて決定されてもよい。例えば、患者が手指振戦のためにクオリティオブライフが低下している場合、治療上有効な量の適切な薬剤を投与して手指振戦の頻度を減らし、それによって患者のクオリティオブライフを向上させることができる。第2の例では、ジェスチャの力が弱い患者に対しては、患者の総合的な力を向上させるために、特定の身体動作を施されてもよい。患者の力が向上するにつれて、患者のジェスチャパワーの向上を経時的に測定し、追跡することができる。患者が改善し続けるにつれて、患者の運動系評価と全体的なクオリティオブライフとを改善し続けるために、より高度な身体動作が患者に施されてもよい。
【0043】
(実施例1)
EQ-5D-5Lは、PD患者の評価に用いられる自己評価式の健康状態に関連したQoL質問票である。このスケールは、1)可動性、2)セルフケア、3)日常活動能力、4)痛み/不快、及び5)不安/抑うつを含む5成分スケールでQoLを測定する。各レベルは、その領域の障害の程度を表すスケールで等級付けされる(すなわち、歩行に問題なし、少し問題あり、中程度の問題あり、重度の問題あり、または歩行不可)。質問票には、PD患者が自分の健康状態を表すために1~100の数字を選択する総合健康スケールもあり、100が想像しうる最高の状態である。EQ-5D-5Lは、11111(完全な健康状態)から55555(最悪の健康状態)まで、各スケールの1レベルを組み合わせることによって定義される3125通りの健康状態を含んでいる。
【0044】
前述の通り、本明細書に開示される一態様によれば、PDと最近診断された患者の運動行動は、スマートフォン及び/またはスマートウォッチなどのウェアラブルデバイスからのセンサを用いて日常生活で測定して、スマートデバイスを使用してPD患者を評価することができる。日常生活における運動機能は、運動疾患の重症度を反映する生態学的に最も妥当であるものの1つだが、客観的に定量化することは困難である。最近PDと診断された患者の運動行動を監視することにより、これらの個人の日常生活における受動的に監視された運動行動のスマートフォンベース及びスマートウォッチベースの測定を介して、治療プロトコルを決定することができる。本明細書に記載されているシステム及び方法によれば、運動行動評価は、患者のEQ-5D-5L自己評価式健康状態質問票と相互に関連し得る。
【0045】
本明細書に開示されているように、総合的なデジタルバイオマーカスマートフォンアプリケーションを使用して、新規に診断されたパーキンソン患者の運動症状を収集し評価した。個人の運動データを収集し、患者のQoL調査データに関連付けられた運動系評価を生成した。評価の正確性及び信憑性は、患者のEQ-5D-5L自己評価式健康状態質問票からのデータを相互参照することで確認した。
【0046】
図3Aは、不安/抑うつ、可動性、痛み/不快、セルフケア、及び日常活動能力の5つのカテゴリにわたるEQ-5D-5L領域スコアのサンプル研究分布をグラフで示す。本研究は、平均年齢59.9±9.2歳の191名で構成した。PD診断は、前もって医用画像によって確認した。個々のEQ-5D-5Lスコアは、障害有り(スコア>0)と障害無し(スコア=0)とに分類した。EQ-5D-5Lスコアについてロジスティック回帰を行った(EQ-5D-5Lを従属変数とし、センサデータの残差、年齢、性別、年齢*性別を独立変数とした)。その後、本明細書に開示されたモバイルアプリケーションにより、スマートフォンを用いたゲートの受動測定とスマートウォッチを介して収集した手の動作データとにより患者の動作データを収集し、2週間間隔で平均化した。センサデータは対数変換し、人口統計学的に補正した(年齢、性別、及び年齢/性別の相互作用を共変量とする線形回帰)。ほとんどの障害は痛み/不快の領域に見られ、中程度の障害が日常活動能力及び不安/抑うつに見られ、少ない障害が可動性及びセルフケアに見られた。図4A図4Eに示すように、受動動作データは、例えば、ジェスチャパワー、ステップパワー、歩行スパン、病的手指振戦(pht)周波数、ジェスチャ時間、転換速度、及びジェスチャスパン持続時間を含むように様々な設計区分にわたって収集した。
【0047】
図4A図4Eに示すように、被験者の手の動作と歩行の特徴データとは、全てのEQ-5D-5L領域での患者の困難さの判断と有意に相関していた。具体的には、本明細書に記載されているモバイルアプリケーションは、患者の受動動作データの収集及び処理後に、評価した動作障害が、EQ-5D-5L自己評価式健康状態質問票の患者の痛み/不快領域、日常活動能力及び不安/抑うつにおける中程度の障害、ならびに可動性における低い障害と直接相関することが示されたと判定した。したがって、本明細書に開示されたアプリケーションは、ジェスチャパワーがEQ-5D-5L可動性データを示すPD患者、ジェスチャパワー、ステップパワー、歩行スパン、及び病的手指振戦周波数がEQ-5D-5Lセルフケアデータを示すPD患者、ジェスチャパワー、ステップパワー、及びジェスチャ時間データがEQ-5D-5L日常活動能力データを示すPD患者、ならびにジェスチャパワー及び/または転換速度がEQ-5D-5L痛み/不快データを示すPD患者の運動系評価の生成に使用することができる。
【0048】
(実施例2)
パーキンソン病質問票-39(PDQ-39)は、パーキンソン病の健康関連の質を評価するために用いられる自己評価式のQoL質問票である。PDQ-39は、可動性、日常生活動作、精神的安定、スティグマ、社会的支援、認知、コミュニケーション、及び身体的不快を含み、それぞれにいくつかのサブ項目がある、8つの主要なQoLの次元にわたって患者の困難さを評価するために使用する。QoLの次元は、5段階の序列システム、すなわち、0=全くない、1=時々、2=時々、3=よくある、4=いつもある、で採点することができる。
【0049】
各PDQ-39次元の合計スコアは、0(全く困難がない)から100(常に困難がある)までの範囲とすることができる。次元スコアは、各次元におけるサブ項目の合計を求め、100を乗じることで算出することができる。スコアが低いほど、QoLが高いことを反映している可能性がある。全体的なPDQ-39スコアは、次元スコアの合計を8で割ったものとして計算することができる。PDQ-39質問票は、医療従事者及び社会的介護の専門家が、パーキンソン病が人のクオリティオブライフに及ぼす広範な影響を判断し、パーキンソン病の治療後の変化を検出するために再評価するのを支援するのに使用する。
【0050】
早期パーキンソン病(PASADENA)の参加者におけるプラシネズマブの有効性を評価するための第II相試験に参加した最近診断された248人(2年未満)の受動動作データを、本明細書に開示したシステム及び方法を使用して分析した。スマートフォンを介して収集した歩行データ、及びスマートウォッチを介して収集した手の動作データの受動測定結果を、本明細書に開示したモバイルアプリケーションを使用して評価した。モバイルアプリケーションで受動動作データを収集し、データを2週間間隔で平均化した。収集したセンサデータを対数変換し、人口統計に対して修正した。センサ機能とデータ分析との関連性を、回帰分析及びスピアマン相関を使用して、被験者のPDQ-39次元スコアと比較した。図5Aに示すように、受動データ収集には、ジェスチャ時間、ジェスチャパワー、歩行、ステップ、及び転換などが含まれる。図5Aにも示すように、被験者の受動的な手の動作の特徴は、PDQ-39コミュニケーション及び可動性の次元で困難さの患者の判断と有意に関連していた。分析した受動歩行データは、患者のPDQ-39可動性及び身体的不快の次元とも有意に相関していた。
【0051】
さらに、248人のPD個人からの能動動作データをスマートフォン及び/またはスマートウォッチを介して収集し、本明細書に開示したモバイルアプリケーションを使用して分析した。スクリーニングでのPDQ-39次元スコアの被験者分布を図5Bにグラフで示し、スコアが高いほど動作障害の増加を示している。PDを有する検査群の被験者では、PDQ-39の影響はほとんど認められなかった。図5Bに示すように、PDQ-39によって測定される全体的なQoLは、検査集団において比較的高く(すなわち、PDQ-39インデックス及び領域スコアが低い)、いくつかのPDQ-39次元スコアの範囲の切り捨てをもたらした。例えば、項目レベルでは、PD患者の50%が大部分の項目で困難がないと回答しており、特に下肢の可動性障害及び社会的支援の欠如に関する項目はほとんど賛同を得られなかった。このコホートでは、PD患者は主に身体的不快(すなわち、痛みまたはけいれん)及びPDに関連した精神的安定及びスティグマへの影響(「隠さなければならない」、「将来が心配」、「不安や抑うつを感じる」)、記憶障害、集中力の問題、日常生活における主に上半身関連の動作の困難さ(例えば、はっきりと字を書く、ボタンや靴ひもの操作が難しい)を報告した。
【0052】
モバイルアプリケーションには、動作緩慢、振戦/動作緩慢、振戦、硬直/姿勢動揺、及び認知を評価する能動検査機能が搭載されている。図5Cに示すように、収集した能動動作には、図形描画、巧緻性、手回し、発話、発声、体位性振戦、静止時振戦、バランス、Uターン、及び認知の記号数字モダリティ検査(SDMT)が含まれる。能動動作検査を、本明細書に開示したモバイルアプリケーションを使用して被験者に施した。能動検査ごとにあらかじめ定義したセンサベースの特徴を1つ抽出し、2週間の間隔で平均を取り、その後、PDQ-39の次元スコア及びインデックススコア(スピアマン相関)、ならびにPDQ-39の項目を非障害(スコア=0)と障害(スコア≧0)とに分類して比較した(マンホイットニーU検定)。
【0053】
能動検査センサの機能と収集されたデータとは、意外にも相関し、PDQ-39スコアを予測した。例えば、図5Cに示すように、様々なセンサの特徴は、日常生活動作、コミュニケーション、及び可動性を含む被験者のPDQ-39次元と相関があった。特に、利き手の巧緻性と利き手の回内/回外の機能とは、被験者の日常生活動作PDQ-39領域と直接相関し、予測した。図5Cを参照されたい。これらの能動検査の機能はまた、コミュニケーション及び可動性PDQ-39領域とも相関し、予測した。図5Cを参照されたい。この比較ではサンプル数が85と少ないにもかかわらず、非利き手の図形描画機能でも同様の相関と予測のパターンが観察された。PDQ-39コミュニケーション領域は、アプリケーションの発話センサ機能の変化と相関があり、これを予測し、PDQ-39可動性領域は、Uターン検査センサ機能と相関があり、これを予測することがわかった。図5Cを参照されたい。精神的安定、認知、及びスティグマは、検査センサ機能との相関が低いことを示した。身体の不快と社会的支援とは、事前に選択したどの検査センサ機能とも有意に相関しなかった。
【0054】
図5F図5Iに示すように、アプリケーションの能動検査機能はまた、PDQ-39の項目レベルの分析とも相関があった。家の中を動き回るのが困難なことは、転換速度が遅くなったことと関連しており、手の動きを必要とする日常生活動作の困難さは、指のタッピングが不規則であること、及び手を返す速度の低下と関連していた。指のタッピング動作のより大きな不規則性が、書くことの問題(不規則性の54%の増加)または食物の切断(不規則性の59%の増加、両方ともp<.001)を報告する患者に観察された。全体として、片手での活動の困難さは、図5F及び図5Gに示すように、利き手での能動検査の機能値が低いことに関連していた。その一方で、両手を必要とする活動の困難さは、図5H及び図5Iに示すように、非利き手での能動検査における遂行能力の低下と関連していた。
【0055】
モバイルアプリケーション及び関連する能動検査/センサ機能は、個人のPDQ-39評価によって確認されたように、被験者の運動症状の重症度を正確に判定した。重要なことに、モバイルアプリケーションは、特に日常生活動作、コミュニケーション、及び可動性のPDQ-39領域で、被験者の障害レベルが比較的低いにもかかわらず、差異を検出した。本明細書に開示された知見は、パーキンソン病がより進行した個人においては、アプリケーション分析がより強力である可能性を示唆している。
【0056】
(実施例3)
The Movement Disorder Societyの統一パーキンソン病評価スケール(MDS-UPDRS)は、パーキンソン病の長期的な疾患経過にわたって重症度を監視し、医療従事者に臨床的な推奨を提供するために設計された包括的なQoL評価である。MDS-UPDRS評価には、PDに関連する運動症状及び非運動症状の両方を評価するための50の包括的な質問が含まれている。MDS-UPDRSは、総和スコアを持つ4つのパートを含む。評価の構成要素は、パートI 日常生活の非運動体験(13項目)、パートII 日常生活の運動体験(13項目)、パートIII 運動検診(18項目)、及びパートIV 運動合併症(6項目)を含む。パートIは、関連のある患者及び介護者の適切な情報をもとに調査員が評価するいくつかの行動に関するパートIAと、患者のみによって完結するパートIBとの2つの構成要素を含む。各サブスケールは0~4の評価を有し、0=正常、1=軽微、2=軽度、3=中等度、4=重度である。スコアが高いほど、パーキンソン病症状の重症度及び影響度が高いことを示す。
【0057】
前述の通り、早期パーキンソン病(PASADENA)の参加者におけるプラシネズマブの有効性を評価するための第II相試験に参加した最近診断された248人(2年未満)の受動動作データを、本明細書に開示したシステム及び方法を使用して分析した。能動検査によるデータ及び連続的な受動動作データを、本明細書に開示したモバイルアプリケーションを使用して、スマートフォン及び/またはスマートウォッチを介して収集した。収集したセンサデータは、年齢及び性別で補正した。センサ機能とデータ分析との関連性を、複合スコアについてスピアマン相関を用いて、被験者のMDS-UPDRS項目データスコアと比較した。(スピアマン相関及びマンホイットニー検定(=0「非障害」、>0「障害」)。図6Aに示すように、受動データ収集には、ジェスチャ時間、ジェスチャパワー、歩行での転換、周波数非対称、ステップパワー、ステップ周波数変動、歩行比率、転換角度、転換速度、病的手指振戦(pht)周波数、ステップ周波数及び/またはパワー変動が含まれる。図6A及び図6Bにも示すように、収集した受動データは、MDS-UPDRSパートIIIスコア及び残留動作緩慢と有意な相関があった。
【0058】
さらに、250人のPD個人からの能動動作データ及び受動動作データをスマートフォン及び/またはスマートウォッチを介して収集し、本明細書に開示したモバイルアプリケーションを使用して分析した。図7Aに示すように、モバイルアプリケーションには、歩行、腕の振り/振戦、及び可動性/社交性データの連続的な受動監視に加えて、動作緩慢、振戦/動作緩慢、振戦、硬直/姿勢動揺、及び認知を評価する能動検査機能が搭載されている。収集した能動動作には、具体的に、図形描画、巧緻性、手回し、発話、発声、体位性振戦、静止時振戦、バランス、Uターン、及び認知の記号数字モダリティ検査(SDMT)が含まれる。収集したセンサデータは、年齢及び性別で補正し、クラス内相関係数を用いて検査-再検査信頼性を評価した。センサデータは、ベースラインの訪問を中心に+/-7日間の平均を取った。図7Bを参照されたい。その後、能動動作データ及び受動動作データをMDS-UPDRS項目及びサブスケールスコアとスピアマン相関によって比較し、非障害(スコア=0)と障害(スコア≧0)とに分類した。
【0059】
図7Cに示すように、平均アドヒアランスは高く、最初の2週間の研究中に実施された全ての可能な能動検査の93%(中央値)と、毎日7時間以上の受動監視データとを収集した。検査-再検査信頼性を、クラス内相関係数(ICC)を用いて評価した。図7Dに示すように、能動検査の検査-再検査信頼性(連続する2つの14日平均でのICC)は高かった(中央値0.95、範囲0.90~0.99)。
【0060】
図7Eに示すように、能動検査センサ及び受動検査センサの機能と収集データとは、驚くべきことに、MDS-UPDRS項目及びサブスケールスコアと相関し、予測可能であった。例えば、平均動作エネルギは、MDS-UPDRSの静止時振戦の振幅及び体位性振戦のスコアと相関した。動揺軌道(バランス)は、MDS-UPDRSの振戦の恒常性のスコアと相関した。最大速度は、MDS-UPDRS手指動作スコアと相関した。タップタイム(巧緻性)の変動は、MDS-UPDRSの指タッピングスコアと相関した。正方形持続時間(図形描画)は、MDS-UPDRS手書きスコアに相関した。転換速度(Uターン)は、MDS-UPDRSの身体動作緩慢スコアに相関した。SDMTの正答率は、MDS-UPDRSの認知障害スコアと相関した。音声ジッタ(発声)は、MDS-UPDRS発話障害スコアに相関した。発話変動は、MDS-UPDRSの唾液及び流涎のスコアと相関した。そして、受動転換速度は、MDS-UPDRSの身体動作緩慢スコアと相関した。要約すれば、全ての能動検査は、MDS-UPDRSの項目スコアと有意な相関を示し、r=-0.24(p<.001;認知検査)からr=.61(p<.001;静止時振戦)に及ぶ。日常生活中の平均受動転換速度は、MDS-UPDRSパートIII(r=-.26、p<.001)及び動作緩慢複合スコア(r=-.34、p<.001)と有意な相関があった。
【0061】
図7F図7Hは、さらに、センサ機能と対応するMDS-UPDRS項目スコアとの間の関係の例を示す。例えば、図7F及び図7Gに示すように、図形描画は、MDS-UPDRS手書きスコアと相関し、静止時振戦データはMDS-UPDRS静止時振戦振幅スコアと相関する。図7Hに示すように、手回しの速さは、MDS-UPDRSの手指動作項目のスコアと相関があった。さらに、MDS-UPDRSで障害が無いことを示した者(個人A)は、MDS-UPDRSのスコアがより高い者(個人C)に比べ、手回しセンサ機能でより速い転換速度とより大きい転換振幅とを示した。臨床的に明らかな症状が無い個人でも、手指の転換に著しい障害を示すことがある(個人B)。
【0062】
モバイルアプリケーション及び関連する能動検査/センサ機能は、被験者の運動症状の重症度を正確に判定した。本明細書で開示された遠隔監視アプローチは、高頻度の徴候及び症状評価を可能にする。このことは、スマートフォン/スマートウォッチのセンサが高感度であることと相まって、臨床研究及び患者の健康状態の評価における運動症状進行の計測において、信号対ノイズを向上させる可能性がある。本書に記載されたシステム及び方法に従って、PDの中核症状を遠隔で、継続的に、かつ客観的に、包括的な測定を行うことにより、PD患者の機能に関するこれまでにない知見をもたらすようになる。
【0063】
患者の運動系評価が障害有りかまたは障害無しかを判定することにより、本明細書に記載のシステムは、動作障害の重症度に基づいて、患者の治療に対する追加の推奨または指令を組み込むことができる。このような治療は、パーキンソン病の治療のための治療上有効な量の医薬を含むことができる。そのような治療の非限定的な例には、レボドパ、シネメット、サフィナミド、カルビドパ、ドーパミンアゴニスト、COMT阻害剤、MAO-B阻害剤、アマンタジン、抗コリン剤等が含まれ得る。
【0064】
本明細書に開示された新規のモバイルアプリケーションによって収集及び処理された受動及び能動動作データは、パーキンソン病症状の遠隔デジタル監視の実現可能性を検証し、症状の重症度、疾患の進行、及び潜在的な治療プロトコルに関する信頼できる有効な情報を医療専門家に提供することになる。
【0065】
本発明は、ある特定の態様において説明されてきたが、多くの追加の修正及び変形が当業者には明らかであろう。特に、特定のアプリケーションの要件により適した方法で同様の結果を得るために、上述の様々な処理のいずれかを別の順序で、及び/または(異なるコンピューティングデバイス上で)並行して実行することができる。したがって、本発明は、本発明の範囲及び趣旨から逸脱することなく、具体的に説明した以外の方法で実施することができることが理解されよう。したがって、本発明の実施形態は、全ての点で例示であって、制限的なものではないと考えられるべきである。したがって、本発明の範囲は、図示された実施形態によってではなく、添付の特許請求の範囲及びその均等物によって決定されるべきものである。
図1
図2A
図2B
図3A
図3B
図4A
図4B
図4C
図4D
図4E
図5A
図5B
図5C
図5D
図5E
図5F
図5G
図5H
図5I
図6A
図6B-1】
図6B-2】
図6B-3】
図6C
図6D
図6E
図6F
図6G
図6H
図7A
図7B
図7C
図7D
図7E
図7F
図7G
図7H