IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ レイセオン カンパニーの特許一覧

特許7432764適応作業指示のための組織的認知応答(OCR)フィードバックのシステムおよび方法
<>
  • 特許-適応作業指示のための組織的認知応答(OCR)フィードバックのシステムおよび方法 図1
  • 特許-適応作業指示のための組織的認知応答(OCR)フィードバックのシステムおよび方法 図2
  • 特許-適応作業指示のための組織的認知応答(OCR)フィードバックのシステムおよび方法 図3
  • 特許-適応作業指示のための組織的認知応答(OCR)フィードバックのシステムおよび方法 図4A
  • 特許-適応作業指示のための組織的認知応答(OCR)フィードバックのシステムおよび方法 図4B
  • 特許-適応作業指示のための組織的認知応答(OCR)フィードバックのシステムおよび方法 図5A
  • 特許-適応作業指示のための組織的認知応答(OCR)フィードバックのシステムおよび方法 図5B
  • 特許-適応作業指示のための組織的認知応答(OCR)フィードバックのシステムおよび方法 図6A
  • 特許-適応作業指示のための組織的認知応答(OCR)フィードバックのシステムおよび方法 図6B
  • 特許-適応作業指示のための組織的認知応答(OCR)フィードバックのシステムおよび方法 図6C
  • 特許-適応作業指示のための組織的認知応答(OCR)フィードバックのシステムおよび方法 図7
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-02-07
(45)【発行日】2024-02-16
(54)【発明の名称】適応作業指示のための組織的認知応答(OCR)フィードバックのシステムおよび方法
(51)【国際特許分類】
   G06Q 50/04 20120101AFI20240208BHJP
【FI】
G06Q50/04
【請求項の数】 20
(21)【出願番号】P 2022558397
(86)(22)【出願日】2021-02-05
(65)【公表番号】
(43)【公表日】2023-05-09
(86)【国際出願番号】 US2021016922
(87)【国際公開番号】W WO2021201977
(87)【国際公開日】2021-10-07
【審査請求日】2022-09-27
(31)【優先権主張番号】16/836,529
(32)【優先日】2020-03-31
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】503455363
【氏名又は名称】レイセオン カンパニー
(74)【代理人】
【識別番号】100107766
【弁理士】
【氏名又は名称】伊東 忠重
(74)【代理人】
【識別番号】100070150
【弁理士】
【氏名又は名称】伊東 忠彦
(74)【代理人】
【識別番号】100135079
【弁理士】
【氏名又は名称】宮崎 修
(72)【発明者】
【氏名】ストーン,クリステン エム.
(72)【発明者】
【氏名】ニール,ジェームズ エス.
【審査官】星野 裕
(56)【参考文献】
【文献】特開平05-082026(JP,A)
【文献】特開2019-159941(JP,A)
【文献】特開2019-179506(JP,A)
【文献】特開平11-079663(JP,A)
【文献】米国特許出願公開第2010/0223212(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G06Q 10/00-99/00
(57)【特許請求の範囲】
【請求項1】
方法であって、
製造環境における作業者に関連する複数の入力を取得するステップと、
前記複数の入力に対してファジィ論理プロセスを実行し、複数の出力を生成するステップであって、前記複数の出力は、前記製造環境におけるタスクの作業者によるパフォーマンスに関連し、前記ファジィ論理プロセスにより生成される前記複数の出力のうちの特定の出力は、(i)前記タスクを実行するための指令情報の詳細レベルを示す第1のデフォルト設定、および(ii)ユーザインターフェースのユーザ制御の位置を示す第2のデフォルト設定を有し、前記ファジィ論理プロセスを実行するステップは、前記複数の入力に対してMamdaniファジィ推論システムを実行して、前記第1のデフォルト設定および前記第2のデフォルト設定を生成するステップを有する、ステップと、
電子装置に指示を提供し、前記製造環境において前記作業者が前記タスクを実行する間、前記特定の出力を表示させるステップであって、前記特定の出力は、さらに前記タスクを実行するための指令情報を有し、該指令情報は、最初に、前記第1のデフォルト設定に従って提示され、前記特定の出力は、さらに、前記ユーザ制御を有し、該ユーザ制御は、前記作業者により選択された前記ユーザ制御の前記位置に基づいて、前記指令情報の詳細レベルを調整可能に制御するように構成され、前記ユーザ制御の初期設定は、前記第2のデフォルト設定に従って設定される、ステップと、
を有する、方法。
【請求項2】
前記複数の入力は、
前記作業者が前記タスクを実行する間、前記作業者に装着された第1のセンサにより生成された第1のセンサ情報、および
前記作業者が前記タスクを実行する間、前記作業者の近傍に配置された第2のセンサにより生成された第2のセンサ情報
の少なくとも1つを含む、請求項1に記載の方法。
【請求項3】
前記複数の入力は、前記作業者の認知アセスメントに関する認知アセスメント情報を含む、請求項1に記載の方法。
【請求項4】
前記タスクを実行するための前記指令情報は、前記ファジィ論理プロセスを使用して前記作業者のために最適化される、請求項1に記載の方法。
【請求項5】
さらに、前記複数の出力は、ジョブ負荷バランス情報およびジョブ適合情報の少なくとも1つを含む、請求項1に記載の方法。
【請求項6】
前記作業者は、前記製造環境における複数の作業者の1人であり、
前記複数の入力または前記複数の出力の少なくとも1つは、前記複数の作業者の訓練に関連する、請求項1に記載の方法。
【請求項7】
システムであって、
指令を保管するように構成された少なくとも1つのメモリと、
前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサと、
を有し、
前記少なくとも1つのプロセッサは、前記指令を実行する際に、
製造環境における作業者に関連する複数の入力を取得し、
前記複数の入力に対してファジィ論理プロセスを実行し、複数の出力を生成し、前記複数の出力は、前記製造環境におけるタスクの前記作業者によるパフォーマンスに関連し、前記ファジィ論理プロセスにより生成される前記複数の出力のうちの特定の出力は、(i)前記タスクを実行するための指令情報の詳細レベルを示す第1のデフォルト設定、および(ii)ユーザインターフェースのユーザ制御の位置を示す第2のデフォルト設定を有し、前記少なくとも1つのプロセッサは、前記ファジィ論理プロセスを実行するため、前記複数の入力に対してMamdaniファジィ推論システムを実行して、前記第1のデフォルト設定および前記第2のデフォルト設定を生成するように構成され、および
電子装置に指令を提供し、前記作業者が前記製造環境において前記タスクを実行する間、前記特定の出力を表示させ、前記特定の出力は、さらに前記タスクを実行するための指令情報を有し、該指令情報は、最初に、前記第1のデフォルト設定に従って提示され、前記特定の出力は、さらに前記ユーザ制御を有し、該ユーザ制御は、前記作業者により選択された前記ユーザ制御の前記位置に基づいて、前記指令情報の詳細レベルを調整可能に制御するように構成され、前記ユーザ制御の初期設定は、前記第2のデフォルト設定に従って設定される
ように構成される、システム。
【請求項8】
前記複数の入力は、
前記作業者が前記タスクを実行する間、前記作業者に装着された第1のセンサにより生成された第1のセンサ情報、および
前記作業者が前記タスクを実行する間、前記作業者の近傍に配置された第2のセンサにより生成された第2のセンサ情報
の少なくとも1つを有する、請求項7に記載のシステム。
【請求項9】
前記複数の入力は、前記作業者の認知アセスメントに関連する認知アセスメント情報を含む、請求項7に記載のシステム。
【請求項10】
前記少なくとも1つのプロセッサは、前記ファジィ論理プロセスを使用して、前記作業者用の前記タスクを実行するための前記指令情報を最適化するように構成される、請求項7に記載のシステム。
【請求項11】
前記複数の出力は、さらに、ジョブ負荷バランス情報およびジョブ適合情報の少なくとも1つを含む、請求項7に記載のシステム。
【請求項12】
前記作業者は、前記製造環境における複数の作業者のうちの1人であり、
前記複数の入力または前記複数の出力の少なくとも1つは、前記複数の作業者の訓練に関連する、請求項7に記載のシステム。
【請求項13】
実行の際に、少なくとも1つのプロセッサに以下のことをさせる命令を含む、非一時的なコンピュータ可読媒体:
製造環境における作業者に関連する複数の入力を取得すること、
前記複数の入力に対してファジィ論理プロセスを実行し、複数の出力を生成することであって、前記複数の出力は、前記製造環境におけるタスクの前記作業者によるパフォーマンスに関連し、前記ファジィ論理プロセスにより生成される前記複数の出力のうちの特定の出力は、(i)前記タスクを実行するための指令情報の詳細レベルを示す第1のデフォルト設定、および(ii)ユーザインターフェースのユーザ制御の位置を示す第2のデフォルト設定を有し、前記ファジィ論理プロセスを実行するため、前記少なくとも1つのプロセッサは、前記複数の入力に対してMamdaniファジィ推論システムを実行して、前記第1のデフォルト設定および前記第2のデフォルト設定を生成する、こと、ならびに
前記作業者が前記製造環境において前記タスクを実行する間、電子装置に指令を提供し、前記特定の出力を表示させることであって、前記特定の出力は、さらに前記タスクを実行するための指令情報を含み、該指令情報は、最初に、前記第1のデフォルト設定に従って提示され、前記特定の出力は、さらに、前記ユーザ制御を有し、該ユーザ制御は、前記作業者により選択された前記ユーザ制御の前記位置に基づいて、前記指令情報の前記詳細レベルを調整可能に制御するように構成され、前記ユーザ制御の初期設定は、前記第2のデフォルト設定に従って設定される、こと。
【請求項14】
前記複数の入力は、
前記作業者が前記タスクを実行する間、前記作業者に装着された第1のセンサにより生成された第1のセンサ情報、および
前記作業者が前記タスクを実行する間、前記作業者の近傍に配置された第2のセンサにより生成された第2のセンサ情報
の少なくとも1つを含む、請求項13に記載の非一時的なコンピュータ可読媒体。
【請求項15】
前記複数の入力は、前記作業者の認知アセスメントに関する認知アセスメント情報を含む、請求項13に記載の非一時的なコンピュータ可読媒体。
【請求項16】
前記指令は、実行の際、前記少なくとも1つのプロセッサに、前記ファジィ論理プロセスを使用させ、前記作業者用の前記タスクを実行するための前記指令情報を最適化させる、請求項13に記載の非一時的なコンピュータ可読媒体。
【請求項17】
記複数の出力は、さらに、ジョブ負荷バランス情報およびジョブ適合情報の少なくとも1つを含む、請求項13に記載の非一時的なコンピュータ可読媒体。
【請求項18】
前記複数の入力は、前記作業者の人口統計データを含む、請求項1に記載の方法。
【請求項19】
前記複数の入力は、前記作業者の人口統計データを含む、請求項7に記載のシステム。
【請求項20】
前記複数の入力は、前記作業者の人口統計データを含む、請求項13に記載の非一時的なコンピュータ可読媒体。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、全般に、機械学習システムに関する。より具体的には、本開示は、適応作業指示のための組織的認知応答(OCR)フィードバックのシステムおよび方法に関する。
【背景技術】
【0002】
製造環境の生産現場作業者のような従業員は、しばしば、彼らの仕事に関連するタスクについて訓練を受けたり、指示を受けたりすることが要求される。タスクの例には、ケーブル配線、はんだ付けなどが含まれる。そのような作業には、宣言的、処置的、精神運動的な領域における能力を含む、様々な種類の技能が含まれる。しばしば、そのようなタスクにおける訓練または指導のための手順が存在する。しかしながら、訓練または指導手順のギャップを理解し、是正する手段がほとんどなく、あるいは全くない場合がある。これらのギャップは、各作業者の認知機能、適性、もしくは能力の欠如、訓練もしくは指導手順自体の欠陥、またはそれらの組み合わせなど、多くの因子によるものである。
【発明の概要】
【発明が解決しようとする課題】
【0003】
本開示は、適応作業指示のための組織的認知応答(OCR)フィードバックのシステムおよび方法に関する。
【課題を解決するための手段】
【0004】
第1の実施形態では、本方法は、製造環境における作業者に関連する複数の入力を取得するステップを有する。また、本方法は、前記複数の入力に対してファジィ論理プロセスを実行し、複数の出力を生成するステップを有し、前記複数の出力は、前記製造環境におけるタスクの作業者によるパフォーマンスに関連する。さらに、本方法は、電子装置に指示を提供し、前記製造環境において前記作業者が前記タスクを実行する間、前記複数の出力のうちの特定の出力を表示させるステップを有し、前記特定の出力は、前記タスクを実行するための指令情報を有する。
【0005】
第2の実施形態では、本システムは、指令を保管するように構成された少なくとも1つのメモリと、前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサと、を有する。前記少なくとも1つのプロセッサは、前記指令を実行する際に、製造環境における作業者に関連する複数の入力を取得するように構成される。また、前記少なくとも1つのプロセッサは、前記指令を実行する際に、前記複数の入力に対してファジィ論理プロセスを実行し、複数の出力を生成するように構成され、前記複数の出力は、前記製造環境におけるタスクの前記作業者のパフォーマンスに関連する。また、前記少なくとも1つのプロセッサは、前記指令を実行する際に、電子装置に指令を提供し、前記作業者が前記製造環境において前記タスクを実行する間、前記複数の出力の中の特定の出力を表示させるように構成され、前記特定の出力は、前記タスクを実行するための指令情報を有する。
【0006】
第3の実施形態では、本非一時的なコンピュータ可読媒体は、実行の際に、少なくとも1つのプロセッサが、製造環境における作業者に関連する複数の入力を取得させる命令を含む。また、非一時的なコンピュータ可読媒体は、前記複数の入力に対してファジィ論理プロセスを実行し、複数の出力を生成する指令を含み、前記複数の出力は、前記製造環境におけるタスクの前記作業者によるパフォーマンスに関連する。さらに、非一時的なコンピュータ可読媒体は、実行の際に、前記作業者が前記製造環境において前記タスクを実行する間、電子装置に指令を提供し、前記複数の出力の中の特定の出力を表示させる指令を含み、前記特定の出力は、前記タスクを実行するための指令情報を含む。
【0007】
他の技術的特徴は、以下の図面、説明、および特許請求の範囲から、当業者には容易に理解される。
【0008】
本開示をより完全に理解するため、添付図面と併せて以下の記載が参照される。
【図面の簡単な説明】
【0009】
図1】本開示による適応作業指示のための組織的認知応答(OCR)フィードバックを測定し使用するための例示的なシステムを示した図である。
図2】本開示による適応作業指示のためのOCRフィードバックを測定し使用するための装置の例を示した図である。
図3】本開示による適応作業指示のためのOCRフィードバックを測定し使用するための例示的なプロセスを示した図である。
図4A】本開示による、作業者が手動入力を提供できる例示的なユーザインターフェースの異なるビューを示した図である。
図4B】本開示による、作業者が手動入力を提供できる例示的なユーザインターフェースの異なるビューを示した図である。
図5A】本開示による図3のプロセスに使用され得る例示的な機能を示した図である。
図5B】本開示による図3のプロセスに使用され得る例示的な機能を示した図である。
図6A】本開示による、作業者が手動入力を提供できる別の例示的なユーザインターフェースの異なるビューを示した図である。
図6B】本開示による、作業者が手動入力を提供できる別の例示的なユーザインターフェースの異なるビューを示した図である。
図6C】本開示による、作業者が手動入力を提供できる別の例示的なユーザインターフェースの異なるビューを示した図である。
図7】本開示による適応作業指示のためのOCRフィードバックを測定し使用するための例示的な方法を示した図である。
【発明を実施するための形態】
【0010】
以下に記載の図1乃至図7、および本特許出願において本発明の原理を説明するために使用される各種実施形態は、単なる例示に過ぎず、本発明の範囲を限定するものと解してはならない。当業者には、本発明の原理が、好適に配置された装置またはシステムの任意の種類で実施できることが理解される。
【0011】
前述のように、製造部門の従業員は、しばしば、自らの仕事に関連するタスクについての訓練や指示を受けることが要求される。本願において、「訓練」は、一般にタスクを実施する前に学習された情報を表し、「指示(指令)」は、一般に、タスクの実施中に参照される情報を表す。そのような作業における訓練または指導のための手順が存在し得るが、訓練または指導の手順におけるギャップを理解し、是正するための手段は、ほとんどまたは全くない場合がある。既存の手順の一つは、「現場歩き」である。これにより、マネージャーまたはリーダーは、実際の業務プロセスを観察し、社員と関わり、作業プロセスに関する知識を習得し、継続的な改善の機会を探ることができる。しかしながら、現場歩きは、手動プロセスであり、自動でフィードバックは形成されない。別の手順またはプロセスは、「時間調査」である。これは、タイミング装置を用いて、人の作業を直接観察し、測定する構造化されたプロセスであり、適格な作業者が定められた性能レベルで作業する際に、作業を完了するために必要な時間が構築される。しかしながら、時間調査では、極めて限定的な結果しか得られない。現在のところ、ウェアラブルセンサの経験データと人的要因データとの収集を統合し、フィードバックに従い、動的にタスク命令を変更するフィードバックを提供する製造空間は、ほとんどまたは全く存在しない。
【0012】
本開示は、適応作業指示のための組織的認知応答(OCR)フィードバックを測定し、使用するシステムおよび方法を提供する。「組織的認知応答」および「OCR」は、人々に提供される情報(訓練情報または指示など)に応答し、人々が適応する方法を表す。以下にさらに詳細に示すように、開示されたシステムおよび方法は、センサ、認知アセスメント技術、および他のソースから収集された情報を使用し、その情報を適用して、生産フロアのような製造現場において、標準化された作業指示で作業を行う作業者のためのフィードバック機構が提供される。指示が標準化された情報であっても、収集された情報を使用して、指示がより個別化され、各作業者により適したものとなるように適応できる。また、収集された情報は、同じ活動を繰り返し行うことで疲れを感じる可能性のある作業者の燃え尽き、疲労、またはその他の問題の検出に使用できる。開示された実施形態は、製造設定に関連して説明されているが、本開示の原理は、任意の技能訓練または指導環境に組み込むことができることが留意される。
【0013】
図1には、本開示による適応作業指示のOCRフィードバックを測定し、使用するための例示的なシステム100を示す。図1に示すように、システム100は、複数のユーザ装置102a~102d、少なくとも1つのネットワーク104、少なくとも1つのサーバ106、および少なくとも1つのデータベース108を有する。ただし、部材の他の組み合わせおよび配置を使用してもよいことに留意する必要がある。
【0014】
この例では、各ユーザ装置102a~102dは、ネットワーク104に結合され、またはネットワーク104を介して通信される。各ユーザ装置102a~102dとネットワーク104との間、またはそれらを含む通信は、有線または無線接続を介するなど、任意の好適な方法で実施されてもよい。各ユーザ装置102a~102dは、少なくとも一人のユーザにより使用される任意の好適な装置またはシステムを表し、サーバ106またはデータベース108に情報が提供され、あるいはサーバ106またはデータベース108から情報が受信される。情報の例には、認知アセスメント情報、センサデータ、訓練情報などが含まれてもよい。任意の好適な数およびタイプのユーザ装置102a~102dが、システム100において使用されてもよい。この特定の例では、ユーザ装置102aは、デスクトップコンピュータを表し、ユーザ装置102bは、ラップトップコンピュータを表し、ユーザ装置102cは、スマートフォンを表し、ユーザ装置102dは、タブレットコンピュータを表す。しかしながら、スマートグラス、スマートウォッチ、ウェアラブルセンサ、フィットネストラッカ等のような、任意の他のまたは追加のタイプのユーザ装置が、システム100内で使用されてもよい。各ユーザ装置102a~102dは、情報を送信および/または受信するように構成された任意の好適な構造を含む。
【0015】
ネットワーク104は、システム100の各種部材間の通信を容易にする。例えば、ネットワーク104は、インターネットプロトコル(IP)パケット、フレームリレーフレーム、非同期転送モード(ATM)セル、またはネットワークアドレス間の他の好適な情報を通信してもよい。ネットワーク104は、1つ以上のローカルエリアネットワーク(LAN)、大都市エリアネットワーク(MAN)、ワイドエリアネットワーク(WAN)、インターネットのようなグローバルネットワークの全部もしくは一部、または1つ以上の場所における任意の他の通信システムもしくはシステムを含んでもよい。また、ネットワーク104は、任意の好適な通信プロトコルに従って作動されてもよい。
【0016】
サーバ106は、ネットワーク104に結合され、データベース108に結合され、またはデータベース108と通信する。サーバ106は、データベース108からの情報の検索、およびその情報の処理をサポートする。当然のことながら、データベース108は、サーバ106内で使用され、情報が保管されてもよく、その場合、サーバ106は、情報自体を保管してもよい。特に、サーバ106は、適応作業指示用のOCRフィードバックを測定し使用するための情報を処理する。サーバ106は、適応作業指示のためのOCRフィードバック情報を処理するように構成された任意の好適な構造を含む。いくつかの実施形態では、サーバ106は、1または2以上のプロセッサ、1または2以上のメモリ、および1または2以上の通信インターフェースを含む。しかしながら、サーバ106は、任意の好適な方法で実施され、記述された機能を実施してもよいことが留意される。また、ここではサーバとして記載されているが、サーバ106を実際に実施する装置は、1もしくは2以上のデスクトップコンピュータ、ラップトップコンピュータ、サーバコンピュータ、または他の計算もしくはデータ処理装置、またはシステムを表してもよいことが留意される。
【0017】
データベース108は、サーバ106およびユーザ装置102a~102dにより、使用、生成、または収集された各種情報を保管する。例えば、データベース108は、認知アセスメント情報、センサデータ、訓練情報等を記憶してもよい。データベース108は、情報を保管し検索する任意の好適な技術をサポートしてもよい。
【0018】
適応作業指示のためのOCRフィードバックを測定し使用する記載された機能を提供するため、システム100を実施する多くの想定される方法があることが留意される。例えば、いくつかの実施形態では、サーバ106およびデータベース108は、共通のエンティティにより所有され、操作され、または管理される。他の実施形態では、サーバ106およびデータベース108は、異なるエンティティにより所有され、操作され、または管理される。しかしながら、本開示は、任意の特定の組織的実施に限定されるものではない。
【0019】
図1には、適応作業指示のためのOCRフィードバックを測定し使用するシステム100の一例を示すが、図1に対して、各種変更を加えてもよい。例えば、システム100は、任意の数のユーザ装置102a~102d、ネットワーク104、サーバ106、およびデータベース108を含んでもよい。また、図1には、1つのデータベース108がネットワーク104に結合されることが示されているが、任意の数のデータベース108が、サーバ106によりアクセス可能な任意の場所に存在してもよく、各データベース108は、サーバ106に直接的または間接的に結合されてもよい。また、図1には、OCRフィードバックが適応作業指示のため、測定され使用される動作環境の一例が示されているが、この機能は、任意の他の好適なシステムで使用されてもよい。
【0020】
図2には、本開示による適応作業指示のためのOCRフィードバックを測定し、使用する例示的装置200を示す。装置200の1または2以上の例は、例えば、図1のサーバ106の機能の少なくとも一部を実施するために使用されてもよい。ただし、サーバ106の機能は、他の任意の好適な方法で実施されてもよい。また、図1におけるユーザ装置102a~102dの1または2以上の機能の少なくとも一部を実施するために、同様のまたは同じ部材の配置が使用されてもよい。ただし、各ユーザ装置102a~102dの機能は、任意の他の好適な方法で実施されてもよい。
【0021】
図2に示すように、装置200は、少なくとも1つの処理装置202、少なくとも1つの記憶装置204、少なくとも1つの通信ユニット206、および少なくとも1つの入力/出力(I/O)ユニット208を含む、計算装置またはシステムを表す。処理装置202は、メモリ210にロード可能な命令を実行してもよい。処理装置202は、任意の好適な配置の任意の好適な数およびタイプのプロセッサ、または他の装置を有する。処理装置202の例には、1または2以上のマイクロプロセッサ、マイクロコントローラ、デジタル信号プロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、または別個の回路が含まれる。
【0022】
メモリ210および恒久記憶装置212は、記憶装置204の一例であり、これは、情報(データ、プログラムコード、および/または、一時的もしくは恒久的な他の好適な情報など)を保管し、容易に検索することができる任意の構造を表す。メモリ210は、ランダムアクセスメモリ、または任意の他の好適な揮発性もしくは不揮発性記憶装置を表してもよい。恒久記憶装置212は、読み出し専用メモリ、ハードドライブ、フラッシュメモリ、または光ディスクのような、データの長期間の保管を支援する1もしくは2以上の部材または装置を有してもよい。
【0023】
通信ユニット206は、他のシステムまたは装置との通信を支援する。例えば、通信ユニット206は、ネットワーク104のような有線または無線ネットワーク上の通信を容易にする、ネットワークインターフェースカードまたは無線トランシーバを有し得る。通信ユニット206は、任意の好適な物理的または無線通信リンクを介した通信を支援してもよい。
【0024】
I/Oユニット208は、データの入出力を可能にする。例えば、I/Oユニット208は、キーボード、マウス、キーパッド、タッチスクリーン、または他の好適な入力装置を介して、ユーザ入力のための接続を提供してもよい。また、I/Oユニット208は、ディスプレイ、プリンタ、または他の好適な出力装置に、出力を送信してもよい。ただし、装置200がローカルI/Oを必要としない場合、例えば、装置200が遠隔的にアクセス可能な場合、I/Oユニット208は、省略されてもよいことが留意される。
【0025】
いくつかの実施形態では、処理装置202によって実行される命令は、前述のサーバ106の機能を実施する命令を含み得る。例えば、処理装置202によって実行される命令は、適応型作業指令のためにOCRフィードバックを測定し使用する命令を含み得る。
【0026】
図2には、適応作業指示のためのOCRフィードバックを測定し使用する装置200の一例を示すが、図2に対して、各種変更を加えてもよい。例えば、計算装置およびシステムは、多種多様な構成で提供され、図2では、この開示は、任意の特定の計算装置またはシステムに限定されない。
【0027】
図3には、本開示による適応作業指示のためのOCRフィードバックを測定し、使用する例示的なプロセス300を示す。説明を容易にするため、図3のプロセス300は、図1のサーバ106により実行されるように記載され、これは、図2の装置200を使用して実施され得る。しかしながら、プロセス300は、任意の好適なシステムにおける任意の好適な装置の使用を含んでもよい。
【0028】
図3に示すように、プロセス300は、複数のプロセス入力310の受信を含み、これらは、各種プロセス動作330に対する入力として収集され、提供される。実行の際、プロセス動作330は、複数のプロセス出力340を生成し、その一部はフィードバックされ、プロセス入力310を更新または改善するためにフィードバックされ得る。
【0029】
プロセス入力310は、多様な群の情報を有し、これらは、適応作業指示のためのOCRフィードバックを測定し使用するために使用できる。以下に説明するように、プロセス入力310は、異なる入力方法を使用して、異なる時間で収集され得る。プロセス入力310は、プロセス動作330による検索のため、データベース108のような、1または2以上のデータベースに保管することができる。説明を容易にするため、プロセス入力310は、一般に、ここでは複数のカテゴリーに編成される。しかしながら、カテゴリーは厳密に定められず、いくつかの入力情報は、複数のカテゴリーに関係してもよい。
【0030】
プロセス入力310の1つのカテゴリーは、認知アセスメント情報311である。認知アセスメント情報311は、作業者に対して実施される1または2以上の認知アセスメントの結果として形成される情報を含む。認知アセスメントは、様々な形態を取り得る。いくつかの実施形態では、各作業者は、1または2以上の認知アセスメントモジュール312と相互作用し、これは、作業者に関する健康または急性の認知能力情報を判定するために実行される(ワークステーション、タブレット、または携帯電話上のような)コンピュータベースアプリケーションである。特定の実施形態では、各認知アセスメントモジュール312は、作業者が楽しめるように設計された短いゲームまたはクイズとして提供される。例えば、1つの認知アセスメントモジュール312は、シンボルが現れるとすぐにタッチスクリーンディスプレイ上のシンボルをタップするように作業者に指示することにより、作業者の反応をテストしてもよい。別の認知アセスメントモジュール312は、できるだけ速やかに、数字の群を配置するように、作業者に指示してもよい。さらに別の認知アセスメントモジュール312は、外観の違いに基づいて、漫画のような「エイリアン」生物間を区別するように、作業者に指示してもよい。
【0031】
各認知アセスメントモジュール312は、作業者が、数分以内のような迅速な時間で完了するように設計することができる。各作業者は、各作業シフトの開始時に、就業日を通じた複数の回数で、作業者の疲労が検出されるときはいつでも、または他の任意の好適なスケジュールに従って、または任意の他の好適な時間に、1または2以上の認知アセスメントモジュール312を完遂するように要求されてもよい。作業者が認知アセスメントモジュール312を完遂したときはいつでも、後にプロセス動作330により使用するため、データベース(データベース108など)に結果を保管することができる。
【0032】
また、認知アセスメントには、1または2以上の認知アセスメント評価313を含めることができる。各認知アセスメント評価313は、各作業者によって実施され、作業者の認知機能および作業タスクに対する適性を評価するように設計された、質問またはメンタル運動を含むことができる。いくつかの実施形態では、認知アセスメント評価313は、質問票のように構成することができ、「あなたの現在の仕事量はどのくらい興味深い/楽しいか」または「あなたが仕事により深く関わっていると感じる日はどのくらいあるか」というような質問を含めることができる。認知アセスメント評価313は、通常、認知アセスメントモジュール312よりも少ない頻度で、各作業者により完遂される。例えば、作業者は、雇用の開始時、年1回、作業者の業績問題が特定されたとき、または任意の他の好適なスケジュールに従って、または任意の他の好適な時期に、各々の認知アセスメント評価313を完遂してもよい。作業者が認知アセスメント評価313を完了したときはいつでも、後にプロセス動作330により使用されるため、結果をデータベース(データベース108など)に保管することができる。
【0033】
プロセス入力310の別のカテゴリーは、ヒューマン入力情報315である。ヒューマン入力情報315は、作業者の人口統計学的データ316と、作業者による手入力317とを含む。人口統計学的データ316は、年齢、性別、身長、体重、労働経験、健康状態、眼の処方のような、人口統計学的情報を含み得る。人口統計学的データ316は、雇用開始時、新たな雇用ポジションの開始時、または任意の他の好適なスケジュールに従って、または他の好適な時間に、作業者(または作業者の代理の他の人)により、入力できる。一旦収集されると、人口統計学的データ316は、プロセス動作330による後の使用のため、データベース(データベース108など)に保管され得る。
【0034】
手動入力317は、作業者が作業タスクを実施している間、作業者により入力され、または実施される情報または動作を含むことができ、このタスクは、(とりわけ)作業者の環境の変更を可能にするように使用されてもよい。手動入力317の一例は、電子的に提供される一組の作業指示において制御を操作する作業者である。作業者は、(グラフィカルユーザーインターフェースまたは「GUI」におけるスライダコントロールのスライダ素子を移動させることにより)制御を操作し、作業者にとって好ましい方法で、作業指示の表示を変更することができる。作業者が1または2以上の手動入力317を実施する際、手動入力317、現在の状態、および所望の結果の間の相関を引き出すため、作業者によって何の手動入力317が実施され、いつ手動入力317が実行され、手動入力317が実施された場合、どんな他の事象またはアクティビティが生じるかについての情報が収集され、保管できる。
【0035】
ユーザから手動入力317が得られる各種方法が存在する。図4Aおよび4Bには、本開示により作業者が手動入力317を提供できる、例示的なユーザインターフェース400の異なる図を示す。説明を容易にするため、ユーザインターフェース400は、ユーザ装置102a~102dの1つのディスプレイ上に示されていることが記載されている。しかしながら、ユーザインターフェース400は、任意の好適なシステムにおける任意の好適なデバイスの使用を含んでもよい。
【0036】
図4Aおよび図4Bに示すように、ユーザインターフェース400は、指令情報区画402および制御区画404を有する。指令情報区画402は、製造関連タスクを実行する命令に関連付けられた情報を示す。大部分の製造施設には、標準化され、事前承認された一連の作業指示書があり、部品の組み立てまたは製品の検査のような、各製造タスクが実施される。多くの場合、各作業者が従うべき指示が提供され、全ての作業者が同じ指示に従い、同じタスクを実施するように統一される。いくつかの複雑な組立タスクでは、ステップの数は、数百または数千に及ぶことがあり、作業者が指示を参照することは、しばしば、成功のために重要となる。
【0037】
しかしながら、異なる作業者が、異なる方法でプロセス指令情報を受け、異なるレベルの経験と既存の知識を持ち、異なるペースで仕事をするような場合がある。従って、制御区画404は、ユーザ制御区画406を含み、該ユーザ制御区画406により、作業者は、指令情報区画402における情報の表示を制御する手動入力317を提供できる。ユーザ制御装置406は、(ユーザ制御装置406を上下にスライドすることなどにより)作業者により操作され、作業者は、その作業者にとって最も有益な情報のレベルを選択できる。
【0038】
図4Aでは、作業者は、ユーザ制御装置406をより高い位置に移動した。より高い位置に応答して、ユーザインターフェース400は、指令情報区画402におけるより高いレベルでの指令情報を示す。すなわち、指令情報区画402は、比較的詳細に示されており、ここでは、これは、指令情報区画402において高密度に配置された多くの種類の情報、および複数の図を含む。このレベルの情報は、一部の作業者にとっては閉口するものであり、これにより、作業者が仕事をやめたり、ステップを無視したりすることが生じ得る。
【0039】
一方、図4Bでは、作業者は、ユーザ制御装置406をより低い位置に移動した。これに応答して、ユーザインターフェース400は、指令情報区画402において抑制されたレベルの指令情報を示す。すなわち、指令情報区画402は、ここでは、比較的少ない図、および少ない文章またはより単純な文章を含む、比較的少ない詳細を示す。このレベルの情報は、一部の作業者にとっては容易に理解できるが、他の作業者(より経験のある作業者など)には、このレベルの情報は、単純すぎると感じる場合がある。
【0040】
タスクを実施する全体的な指令は、各レベルの詳細において実質的に同じである。従って、指令情報区画402が単一の画像において、あまり細部を示さない場合、ユーザは、複数の画像をレビューして、タスク用の全ての指令を受信する必要がある。しかしながら、指令情報区画402において情報を提示する方法は、各種方法で変更することができる。一例としての変更には、単一のスクリーン上の多少の情報;異なる色のテキスト、フォント、またはフォントサイズ;スクリーン上の情報の配置(例えば、画像の上部のテキスト、画像の下側のテキスト、または画像と重畳するテキスト)などが含まれ得る。これらの変更は、特定の作業者が、その作業者に最も適した方法で情報を解釈するのに役立つ。
【0041】
図4Aおよび4Bには、例示的なユーザインターフェース400の異なる図を示す。作業者は、手動入力を提供することができるが、図4Aおよび4Bに対して各種変更が加えられてもよい。例えば、製造指令は、テキスト、イメージ、図面、ダイアグラム等として提示される、広範な情報を含むことができ、これらの図は、本開示の範囲を限定するものではない。
【0042】
再度図3を参照すると、プロセス入力310の別のカテゴリーは、センサ情報320である。センサ情報320は、作業者が彼らの職務を遂行する環境で動作する1または2以上のセンサにより生成される情報を含むことができる。いくつかの実施形態では、センサ情報320は、ウェアラブルセンサ情報321および外部センサ情報322を有する。
【0043】
ウェアラブルセンサ情報321は、スマートグラス、スマートウォッチ、フィットネストラッカ等のような、作業者が装着する1または2以上のセンサにより生成される情報を含む。ウェアラブルセンサ情報321は、通常の場合、作業者の体温、脈拍、血圧、姿勢または位置(立位、座位など)、作業者の動きの速度または方向のような、作業者に直接関連する情報である。ウェアラブルセンサ情報321は、作業者が作業者の仕事に関連するタスクを実施する間、連続的にまたは断続的に収集することができ、保管のためデータベース(データベース108など)に、リアルタイムでまたは非リアルタイムで送信することができる。一旦収集されると、このタイプの作業者情報は、プロセス300で使用され、作業中に、作業者の現在の健康状態または位置が、作業者が行う動作と関連付けられる。
【0044】
外部センサ情報322は、作業者の環境(作業者の近傍など)内にあるが、作業者が直接装着しないセンサにより生成される情報を含む。そのようなセンサは、室温、光、ノイズ等を検出し測定する環境センサ;製品またはプロセスパラメータ(機械速度、タンク圧力、材料量またはスループットなど)を測定する機械センサ;および作業者の外部環境の状態を測定する任意の他の好適なセンサを含むことができる。外部センサ情報322は、作業者が作業者の仕事に関連するタスクを実施する間、連続的にまたは断続的に収集することができ、保管のため、データベース(データベース108など)にリアルタイムでまたは非リアルタイムで送信することができる。いくつかの外部センサ情報322(特に、光およびノイズレベル)は、作業者の現在の身体的、感情的、または精神的な状態(これらが、ウェアラブルセンサ情報321として検出され収集されてもよい)に直接影響を及ぼすことができ、従って、作業者が訓練または指示に反応する方法において、重要な役割を果たしてもよい。
【0045】
プロセス入力310の別のカテゴリーは、ベースライン送達可能情報325である。ベースライン送達可能情報325は、プロセス300における入力および出力の両方として使用できる情報の広範なカテゴリーである。いくつかの実施形態では、ベースライン送達可能情報325は、訓練プラットフォーム情報326、作業指示情報327、および労働配置情報328を含む。
【0046】
訓練プラットフォーム情報326は、はんだ付け訓練、安全訓練、セクシャルハラスメント訓練、倫理訓練等のような、任意の種類の作業者訓練に使用できる情報を含む。訓練プラットフォーム情報326は、訓練中の指令に使用される訓練指令材料、訓練後の作業者の特性を示す訓練アセスメント材料(テスト、クイズ、作業者テスト結果など)等を含むことができる。
【0047】
作業指示情報327は、作業者が職務遂行中に使用する指示情報を含む。特に、作業指示情報327は、作業者が工場のフロアで能動的にジョブタスクを実行する際に従う、実際の組のプロセス指示を含むことができる。例えば、図4A図4Bの指令情報区画402に示されるテキストおよび図面情報は、作業指示情報327の例である。
【0048】
労働配置情報328は、作業者の作業環境、および作業者が割り当てられるタスクに関連する情報を含む。例えば、労働配置情報328は、作業タスクが精神的または身体的に困難なタスクであるかどうかを示すことができる。また、労働配置情報328は、作業環境が汚れた作業環境、危険な環境、または低光環境であるかどうかを示すことができる。
【0049】
各種タイプのベースライン送達可能情報325は、プロセス300に通知するための入力として使用することができ、プロセス300からの結果を用いて、ベースライン送達可能情報325を更新または修正することができる。例えば、トレーニングプラットフォーム情報326は、作業者が特定の作業タスクについてあまり経験がないことを示してもよい。いったんこのトレーニングプラットフォーム情報326がプロセス300に入力されると、プロセス動作330は、出力を生成してもよく、これは、未熟な作業者が指示に従うことができるように、極めて初歩的なレベルである作業指示情報327を提示する必要があることを示してもよい。
【0050】
プロセス動作330は、該プロセス動作330において予備処理データ331とも呼ばれる、1または2以上のプロセス入力310を取得する。予備処理されたデータ331は、OCRデータ332、人口統計学データ333、および個々の作業者の特性データ334を含むことができ、各々は、プロセス入力310の異なる組み合わせまたはサブセットを表し得る。
プロセス動作330の各実行中に、予備処理されたデータ331の各種組み合わせが使用され得る。
【0051】
プロセス動作330が(例えばサーバ106により)実行され、後処理データ335が生成され、これは、以下に詳しく説明するように、データ分析336を含むことができる。後処理データ335は、データベース(例えばデータベース108)に収集され保管され、1または2以上のプロセス出力340として使用され得る。プロセス動作330の実施の結果として、プロセス出力340の各種組み合わせを生成することができる。例えば、プロセス出力340は、作業者は、彼らの作業タスクを効率的に、正確に、かつ積極的に実行することができるよう、作業者の環境、訓練、指導セット、または健康を最適化することに関連する情報を含むことができる。
【0052】
プロセス動作330は、ファジィ論理のような、1または2以上の機械学習またはデータ分析アルゴリズムを含む。ファジィ論理は、人工知能の一種であり、「ファジィ」(曖昧にまたは不正確に定められた)クラスを使用して、時間の経過に伴う関係および接続を定め、将来の行動について予測する。ファジィ論理は、多くの種類の制御システム、産業システム、および製造環境における問題解決に適する。変数がゼロおよび1としてのみ表現されるバイナリ論理とは対照的に、ファジィ論理の各変数は、(ゼロと1の間の任意の位置のように)範囲の度合いの値を有することができる。ファジィ論理システムは、ゼロと1との間のインターバル内にある各入力変数(各プロセス入力310のような)のメンバシップの程度の大きさを表すグラフのような、メンバシップ関数を使用することができる。変数xのメンバシップの程度は、記号μ(x)で表すことができる。
【0053】
いくつかの実施形態では、プロセス動作330は、Mamdaniファジィ推論システムの実施を含むことができる。Mamdaniファジィ推論システムは、各入力変数を、三角形関数、台形関数、単一関数、シグモイド関数、およびガウス関数などを含む、複数の種類のメンバシップ関数の1つに変換する。図5Aおよび5Bには、本開示による図3のプロセスにおいて使用され得る、一例としての関数501および502を示す。特に、図5Aには、台形関数501の例を示す。図において、μ(x)は、下限a、上限d、下側支持限界b、および上側支持限界cにより定められ、ここで、a<b<c<dである。図5Bには、三角形関数502の例を示す。図において、μ(x)は、下限a、上限b、および値mにより定められ、ここで、a<m<bである。
【0054】
プロセス出力340は、プロセス動作330の実行により生成された結果または所見を表す。前述のように、プロセス出力340は、作業者の環境、訓練、命令セット、または健康のような、作業者に関連する最適化条件に関する情報を含む。特に、プロセス出力340は、予測情報(作業者の認知作業負荷または負荷など)を含み、これは、作業者がタスクで失敗する可能性、または環境条件が失敗を引き起こし易い場合を予測し、是正措置を実施することを可能にする。説明を容易にするため、プロセス出力340は、一般に、複数のカテゴリーに編成される。ただし、カテゴリーは、厳密に定められるものではなく、一部の出力情報は、複数のカテゴリーに関連してもよい。
【0055】
プロセス出力340の一つのカテゴリーは、最適化情報341である。最適化情報341は、作業者が作業関連タスクを実施する際に、作業者に提供される指示情報の種類および量を最適化することに関する情報を含む。最適化情報の一例は、ユーザ制御装置406のカスタマイズされたデフォルト設定、および図4Aおよび図4Bの指令情報区画402のカスタマイズされたレベルの情報である。時間の経過とともに、プロセス動作330は、フィードバックを通じて、その種類のタスクに対して、特定の環境(時刻、曜日、および物理的環境を含み得る)において特定の作業者にとって最も有益なものを学習し、指示を提示する際に、詳細のレベルを予備選択できる。特定の例として、プロセス動作330は、作業者が特定の作業タスクについてあまり経験がないことを判断してもよい。従って、プロセス動作330は、自動的に、指令情報区画402に極めて基本的なレベルで指示を提示するため、最適化情報341を生成し、未熟な作業者は、容易に指示に従うことができる。これは、作業者の成功と作業者の満足を促進することができる。作業者は、ユーザ制御406を動かすことにより、予備選択されたレベルを受け入れ、または無効にすることができる。作業者は、ユーザ制御406を動かすことにより、いつでも手動で無効化することができ、これは、プロセス動作330が後にフィードバックを改良するために使用できる、新たなプロセス入力310を表す。
【0056】
プロセス出力340の別のカテゴリーは、訓練アドバイザー情報342である。訓練アドバイザー情報342を用いて、どの訓練がより効果的であり、各作業者に対してあまり効果的でないかを理解することができ、その結果、各作業者または作業者のグループに対して、訓練を最適化またはカスタマイズすることができる。例えば、プロセス動作330は、(収集されたデータ分析336を通して)傾向を同定し、1つの種類のタスクに対して、作業者がそのタスクに対して訓練されていた場合であっても、複数の作業者があまり機能していないことを判断してもよい。複数の作業者は、(単に1人または2人の作業者よりも)あまり機能していないため、訓練アドバイザー情報342は、訓練自体が不十分であるという結論と、そのタスク用の訓練プラットフォーム情報326を改善するための推奨とを有してもよい。
【0057】
出力情報の追加のカテゴリーは、ジョブ負荷バランス情報343、およびジョブ適合情報344を含む。ジョブ負荷バランス情報343は、各職務において、好適な数の作業者がいるかどうか、あるいは何人かの作業者を再配置するべきかどうかに関する。ジョブ適合情報344は、各作業者が(適正な熟練、訓練能力、身体的能力のような)現在割り当てられている職務に適合しているかどうかに関する。ジョブ適合情報344の例には、いつ作業者が操作の際に失敗する可能性があり、従って、再作業が生じるかを予測する通知が含まれ得る。通知は、一般に、作業者が特定の作業を行っている際、もしくは一日の特定の時間に作業している際に、作業者の血圧または心拍数が増加すること、または作業者が特定のプロセスの間、同じ工程をスキップする傾向があることを判断する、プロセス動作330の結果として生じ得る。従って、ジョブ適合情報344は、作業者がそのタスクから解放されること、休憩がスケジュール化されること等の提案を含んでもよい。
【0058】
図3には、適応作業指示のためのOCRフィードバックを測定し、使用するプロセス300の一例を示すが、図3に対して、各種変更を加えられてもよい。例えば、図3における各種動作は、重複したり、並列に生じたり、異なる順序で行われたり、あるいは任意の回数で生じてもよい。
【0059】
図6A図6Cには、本開示による、別の例のユーザインターフェース600の異なる図を示す。作業者は、手動入力を提供することができる。説明を容易にするため、ユーザインターフェース600は、ユーザ装置102a~102dの1つのディスプレイ上に示されるものとして説明される。しかしながら、ユーザインターフェース600は、任意の好適なシステムにおける任意の好適な装置の使用を含んでもよい。
【0060】
図6A乃至図6Cに示すように、ユーザインターフェース600は、指令情報区画602と、ユーザ制御606を含む制御区画604とを有する。ユーザ制御606により、作業者は、指令情報区画602における作業指示の視認状態(色、テキスト、画像、CADモデルなど)を変更することができ、これにより、作業者が好適な情報テーマを使用してタスクを実行することが可能となる。図6Aでは、ユーザ制御606が「テキストのみ」位置に移動され、その結果、指令情報区画602は、テキスト命令のみを示す。図6Bでは、ユーザ制御区画606が「集約テキストおよび画像」位置に移動され、その結果、指令情報区画602は、いくつかのテキストおよび1または2以上の画像を示す。図6Cでは、ユーザ制御区画606が「拡張テキストおよび画像」位置に移動され、その結果、指令情報区画602は、追加のテキストおよび画像を示す。
【0061】
いくつかの実施形態では、ユーザ制御606または別のユーザ制御の作動で、視認性(明視状態と隠された可視状態の間など)を切り替えることができ、あるいは、タッチスクリーンボタンのように、他の制御装置または部材の機能を切り替えることができる。また、いくつかの実施形態では、ユーザ制御606または他のユーザ制御の作動の結果、指令情報区画602に示される背景またはフォントの色の変化が生じ得る。これは、眼精疲労または色盲の作業者、あるいは背景照明のレベルが異なる環境で作業する作業者に有益である。特定の実施形態では、データテーブル(例えば、データベース108)に、ユーザプリファレンスが収集、保管され、作業者が自身のログイン認証を使用して指令ワークステーションにログインした際に検索される。ログインによって、その作業者に専用のコンテンツビューが自動的に表示される。
【0062】
図6A図6Cには、作業者が手動入力を提供できる別の例のユーザインターフェース600の異なる図を示すが、図6A図6Cに対して各種変更が加えられてもよい。例えば、製造指令は、テキスト、画像、図面、ダイアグラムなどとして提示される広範な情報を含み、これらの図は、本開示の範囲を限定するものではない。
【0063】
図7には、本開示による適応作業指示のためのOCRフィードバックを測定し使用する一例としての方法700を示す。説明を容易にするため、図7の方法700は、図3のプロセス300を使用して、図1のサーバ106(図2の装置200を用いて実施されてもよい)により実施されるものとして記載されている。しかしながら、方法700は、任意の好適なシステムにおける任意の好適な装置およびプロセスの使用を含んでもよい。
【0064】
図7に示すように、ステップ702において、製造環境における作業者に関する複数の入力が取得される。これは、例えば、複数のプロセス入力310を取得するサーバ106を有し、これは、データベース108に保管され、1または2以上のセンサから送信され、または任意の他の好適な場所から送信される。いくつかの実施形態では、複数の入力は、作業者がタスクを実施する間、作業者に装着された少なくとも1つのセンサにより生成されたセンサ情報(ウェアラブルセンサ情報321など)、作業者がタスクを実施する間、作業者の近傍に配置された少なくとも1つのセンサにより生成されたセンサ情報(外部センサ情報322など)、またはこれらの組み合わせ、を含むことができる。いくつかの実施形態では、複数の入力は、認知アセスメント情報311のような、作業者の認知アセスメントに関する認知アセスメント情報を含むことができる。
【0065】
ステップ704では、複数の入力に対してファジィ論理プロセスが実施され、複数の出力が生成される。複数の出力は、製造環境におけるタスクの作業者によるパフォーマンスに関連する。これは、例えば、ファジー論理プロセスを含み得るプロセス動作330を実行するサーバ106を含み、複数のプロセス出力340が生成されてもよい。いくつかの実施形態では、複数の出力340は、ジョブ負荷バランス情報、ジョブ適合情報、またはその両方を含み得る。
【0066】
ステップ706では、電子装置に指示が与えられ、作業者が製造環境でタスクを実施する間、複数の出力の中で指定された出力が表示される。指定された出力には、タスクを実施するための命令情報が含まれる。これは、例えば、作業者に使用される電子装置に命令を提供するサーバ106を含み、電子装置は、タスクを実施するための命令情報を表示してもよい。タスクを実施するための命令情報は、ファジィ論理プロセスを使用して、作業者に最適化することができる。また、いくつかの実施形態では、指定された出力は、ユーザ制御を含み、作業者は、電子装置上に表示される命令情報の詳細なレベルを制御できる。
【0067】
図7は、適応作業指示のためのOCRフィードバックを測定し使用する方法700の一例を示すが、図7に対して各種変更が加えられてもよい。例えば、一連のステップとして示されているが、図7における各種ステップは、重複したり、並列に生じたり、異なる順序で行われたり、あるいは任意の回数で生じてもよい。
【0068】
いくつかの実施形態では、本特許出願に記載されている各種機能は、コンピュータ可読プログラムコードから形成され、コンピュータ可読媒体に具現化された、コンピュータプログラムにより実現されまたは支援される。「コンピュータ可読プログラムコード」という用語には、ソースコード、オブジェクトコード、および実行可能コードを含む、任意の種類のコンピュータコードが含まれる。「コンピュータ可読媒体」という用語には、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、ハードディスクドライブ、コンパクトディスク(CD)、ディジタルビデオディスク(DVD)、または任意の他の種類のメモリのような、コンピュータによりアクセス可能な任意の種類の媒体が含まれる。「非一時的」コンピュータ可読媒体からは、一時的な電気信号または他の信号を伝送する、有線、無線、光、または他の通信リンクが除外される。非一時的コンピュータ可読媒体には、データが恒久的に保管され得る媒体、およびデータが保管され、後に上書きできる媒体、例えば書換え可能な光ディスクまたは消去可能な記憶装置が含まれる。
【0069】
本特許出願を通して使用される特定の用語および語句の定義を示すことは有意である。「アプリケーション」および「プログラム」という用語は、好適なコンピュータコード(ソースコード、オブジェクトコード、または実行可能コードを含む)における実施に適合された、1または2以上のコンピュータプログラム、ソフトウェアコンポーネント、命令のセット、手順、機能、オブジェクト、クラス、インスタンス、関連データ、またはそれらの一部を表す。「通信する」という用語、ならびにその派生語は、直接的通信と間接的通信の両方を包含する。「含む」および「有する」という用語、ならびにその派生語は、限定のない包含を意味する。「または」という用語は、および/またはの意味を含む。「関(連)する」という用語およびその派生語は、内部に含まれ、相互接続され、含有し、内部に含有され、接続され、結合され、または相互に伝達可能にされ、協働し、相互に挟まれ、並列し、近接し、結合され、有し、特性を有し、関係を有するなど、を含むことを意味し得る。「~の少なくとも1つ」という用語は、項目のリストに使用される場合、リスト化された項目の1または2以上の異なる組み合わせが使用されてもよく、リスト内の1つの項目のみが必要とされてもよいことを意味する。例えば、「A、BおよびCの少なくとも1つ」は、A、B、C、AおよびB、AおよびC、BおよびC、ならびにAおよびBおよびCの任意の組み合わせを含む。
【0070】
本願の記載は、任意の特定の素子、ステップ、または機能が、特許請求の範囲に含まれる必要のある必須のまたは重要な要素であることを意味するものと解されてはならない。特許の主題の範囲は、許可請求項によってのみ定められる。また、いかなる請求項も、添付の特許請求の範囲または請求項要素に対して、特許法第112条(f)を適用するものではない。ただし、特定の特許請求の範囲において、「手段」または「ステップ」という正確な用語が明示的に使用され、その後に機能を特定する特定の語句が続く場合を除く。(これに限られるものではないが、)請求項内の「メカニズム」、「モジュール」、「装置」、「ユニット」、「構成部材」、「素子」、「部材」、「機器」、「機械」、「システム」、「プロセッサ」、または「制御装置」のような用語の使用は、請求項自体の特徴により、さらに修正または強化されたものとして、当業者に知られた構造を表し、特許法第112条(f)を援用することを意図するものではないことが理解され、意図される。
【0071】
本開示は、特定の実施形態および全般に関連する方法について記載されているが、当業者には、これらの実施形態および方法の変更、置換が明らかである。従って、前述の一実施形態の記載は、本開示を定義したり、限定したりするものではない。また、以下の特許請求の範囲によって定義されるように、本開示の思想および範囲から逸脱することなく、他の変更、置換、および変更が可能である。
図1
図2
図3
図4A
図4B
図5A
図5B
図6A
図6B
図6C
図7