(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-02-08
(45)【発行日】2024-02-19
(54)【発明の名称】固体酸化物形燃料電池
(51)【国際特許分類】
H01M 8/04 20160101AFI20240209BHJP
H01M 8/12 20160101ALI20240209BHJP
【FI】
H01M8/04 Z
H01M8/12 101
(21)【出願番号】P 2020161866
(22)【出願日】2020-09-28
【審査請求日】2023-05-19
(73)【特許権者】
【識別番号】000000284
【氏名又は名称】大阪瓦斯株式会社
(74)【代理人】
【識別番号】110001818
【氏名又は名称】弁理士法人R&C
(72)【発明者】
【氏名】佐々木 雅也
(72)【発明者】
【氏名】鈴木 稔
【審査官】笹岡 友陽
(56)【参考文献】
【文献】特開2012-99488(JP,A)
【文献】特開2016-58406(JP,A)
【文献】特開2012-28099(JP,A)
【文献】特開2018-181835(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 8/04
H01M 8/12
(57)【特許請求の範囲】
【請求項1】
収納筐体と、前記収納筐体の内面に設けられる内部断熱材と、前記収納筐体の外面に設けられる外部断熱材とを備え、
前記収納筐体の前記内部断熱材よりも内側の内部空間に、原燃料を水蒸気改質して燃料ガスを生成する改質器と、前記改質器で生成された燃料ガスを用いて発電する複数の燃料電池セルを有するセルスタックと、前記セルスタックから排出されるオフガスを燃焼して、その燃焼熱を前記改質器に与える燃焼部とを備える固体酸化物形燃料電池であって、
前記収納筐体は、複数の壁材が互いに間隔を空けて層状に配置されることで、前記壁材によって隔てられた複数の空間を有する多層構造部分を有し、
前記多層構造部分において、前記燃焼部で発生した燃焼排ガスを含む排気ガスと、前記セルスタック及び前記燃焼部へ供給される空気とが、複数の前記空間に各別に流れることで、前記排気ガスと前記空気との熱交換が前記壁材を介して行われるように構成され、
前記収納筐体の前記多層構造部分の外面に設けられる前記外部断熱材による断熱効果は、前記多層構造部分の温度が高い領域ほど高くなるように形成されている固体酸化物形燃料電池。
【請求項2】
前記収納筐体の前記多層構造部分の外面に設けられる前記外部断熱材の、当該多層構造部分の外面からの厚さは、前記多層構造部分の温度が高い領域ほど厚く形成されている請求項1に記載の固体酸化物形燃料電池。
【請求項3】
前記多層構造部分において、内側の前記空間に前記排気ガスが流れ、外側の前記空間に前記空気が流れる請求項1又は2に記載の固体酸化物形燃料電池。
【請求項4】
前記多層構造部分において、前記排気ガスの流れる方向と、前記空気の流れる方向とが対向している請求項1~3の何れか一項に記載の固体酸化物形燃料電池。
【請求項5】
前記収納筐体の前記多層構造部分の内面に設けられる前記内部断熱材による断熱効果は、前記多層構造部分の温度が高い領域ほど低くなるように形成されている請求項1~4の何れか一項に記載の固体酸化物形燃料電池。
【請求項6】
前記収納筐体の前記多層構造部分の内面に設けられる前記内部断熱材の、当該多層構造部分の内面からの厚さは、前記多層構造部分の温度が高い領域ほど薄く形成されている請求項5に記載の固体酸化物形燃料電池。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、収納筐体と、収納筐体の内面に設けられる内部断熱材と、収納筐体の外面に設けられる外部断熱材とを備え、収納筐体の内部断熱材よりも内側の内部空間に、原燃料を水蒸気改質して燃料ガスを生成する改質器と、改質器で生成された燃料ガスを用いて発電する複数の燃料電池セルを有するセルスタックと、セルスタックから排出されるオフガスを燃焼して、その燃焼熱を改質器に与える燃焼部とを備える固体酸化物形燃料電池に関する。
【背景技術】
【0002】
従来より、酸化物イオンを伝導する膜として固体電解質を用いた固体酸化物形のセルスタックを備えた固体酸化物形燃料電池(SOFC(Solid Oxide Fuel Cell))が知られている。このような固体酸化物形燃料電池の主たる用途の一つとして家庭用のコージェネレーションシステムがある。固体酸化物形燃料電池を用いたコージェネレーションシステムでは、家庭用の給湯暖房需要を賄いながら、大型火力発電所と比べても遜色のない高い発電効率での発電が可能である。
【0003】
この固体酸化物形燃料電池においては、セルスタックは複数の燃料電池セルを積層して構成され、各燃料電池セルにおける固体電解質の片面側に燃料ガスを酸化するための燃料極が設けられ、その他面側に空気(酸化剤ガス)中の酸素を還元するための酸素極が設けられている。この固体酸化物形燃料電池の燃料電池セルの作動温度は約600℃~約800℃と高く、このような高温下において、燃料ガス(改質燃料ガス)中の水素や一酸化炭素、炭化水素と空気中の酸素とが電気化学反応を起こすことによって発電が行われる。
【0004】
特許文献1(特開2007-59377号公報)の
図12には、収納筐体と、収納筐体の内面に設けられる内部断熱材と、収納筐体の外面に設けられる外部断熱材とを備え、収納筐体の内部断熱材よりも内側の内部空間に、原燃料を水蒸気改質して燃料ガスを生成する改質器と、改質器で生成された燃料ガスを用いて発電する複数の燃料電池セルを有するセルスタックと、セルスタックから排出されるオフガスを燃焼して、その燃焼熱を改質器に与える燃焼部とを備えるものが提案されている。
【先行技術文献】
【特許文献】
【0005】
【発明の概要】
【発明が解決しようとする課題】
【0006】
固体酸化物形燃料電池のセルスタックは約600℃~約800℃程度の高温で作動させるため、収納筐体の内部をできるだけ高温に保つことが必要である。そのため、セルスタックの周囲を断熱材で取り囲みセルスタックからの放熱量を抑制すること、収納筐体の周囲を断熱材で取り囲むことなどが必要である。加えて、燃焼部で発生した燃焼排ガスを含む排気ガスと、セルスタック及び燃焼部に供給する空気とを熱交換して、収納筐体の内部に供給される空気を予熱しておくことが行われる。例えば、特許文献1の
図11に記載の構成であれば、収納筐体は、複数の壁材が互いに間隔を空けて層状に配置されることで、前記壁材によって隔てられた複数の空間を有する多層構造部分を有し、前記多層構造部分において、前記燃焼部で発生した燃焼排ガスを含む排気ガスと、前記セルスタック及び前記燃焼部へ供給される空気とが、複数の前記空間に各別に流れることで、前記排気ガスと前記空気との熱交換が前記壁材を介して行われるようになっている。
【0007】
このように、収納筐体の内部の温度を高温に保つための対策が幾つか行われているが、更なる対策が求められる。
【0008】
本発明は、上記の課題に鑑みてなされたものであり、その目的は、収納筐体の内部を高温に保つことができ、放熱損失の少ない固体酸化物形燃料電池を提供する点にある。
【課題を解決するための手段】
【0009】
上記目的を達成するための本発明に係る固体酸化物形燃料電池の特徴構成は、収納筐体と、前記収納筐体の内面に設けられる内部断熱材と、前記収納筐体の外面に設けられる外部断熱材とを備え、
前記収納筐体の前記内部断熱材よりも内側の内部空間に、原燃料を水蒸気改質して燃料ガスを生成する改質器と、前記改質器で生成された燃料ガスを用いて発電する複数の燃料電池セルを有するセルスタックと、前記セルスタックから排出されるオフガスを燃焼して、その燃焼熱を前記改質器に与える燃焼部とを備える固体酸化物形燃料電池であって、
前記収納筐体は、複数の壁材が互いに間隔を空けて層状に配置されることで、前記壁材によって隔てられた複数の空間を有する多層構造部分を有し、
前記多層構造部分において、前記燃焼部で発生した燃焼排ガスを含む排気ガスと、前記セルスタック及び前記燃焼部へ供給される空気とが、複数の前記空間に各別に流れることで、前記排気ガスと前記空気との熱交換が前記壁材を介して行われるように構成され、
前記収納筐体の前記多層構造部分の外面に設けられる前記外部断熱材による断熱効果は、前記多層構造部分の温度が高い領域ほど高くなるように形成されている点にある。
ここで、前記収納筐体の前記多層構造部分の外面に設けられる前記外部断熱材の、当該多層構造部分の外面からの厚さは、前記多層構造部分の温度が高い領域ほど厚く形成されていてもよい。
【0010】
上記特徴構成によれば、多層構造部分では高温の排気ガスと低温の空気とが熱交換するため、排気ガスは上流側から下流側へと流れるにつれて空気との熱交換により温度が低下する。その結果、多層構造部分の温度は、排気ガスの上流側に対応する部分が下流側に対応する部分よりも高くなる。そして、収納筐体の多層構造部分の外面に設けられる外部断熱材による断熱効果は、多層構造部分の温度が高い領域ほど高くなるように形成されている。例えば、収納筐体の多層構造部分の外面に設けられる外部断熱材の、その多層構造部分の外面からの厚さは、多層構造部分の温度が高い領域ほど厚く形成されている。つまり、多層構造部分の温度が高い領域から外側への放熱が効果的に抑制される。その結果、多層構造部分よりも内側の、収納筐体の内部空間の温度低下が抑制される。
従って、収納筐体の内部を高温に保つことができ、放熱損失の少ない固体酸化物形燃料電池を提供できる。
【0011】
本発明に係る固体酸化物形燃料電池の別の特徴構成は、前記多層構造部分において、内側の前記空間に前記排気ガスが流れ、外側の前記空間に前記空気が流れる点にある。
【0012】
上記特徴構成によれば、多層構造部分において、内側の空間に高温の排気ガスが流れるため、同じ空間に低温の空気が流れると仮定した場合よりも、多層構造部分よりも内側の、収納筐体の内部空間の温度低下が抑制される。
【0013】
本発明に係る固体酸化物形燃料電池の更に別の特徴構成は、前記多層構造部分において、前記排気ガスの流れる方向と、前記空気の流れる方向とが対向している点にある。
【0014】
上記特徴構成によれば、多層構造部分において、排気ガスと空気との間の温度差を大きく確保した状態で、排気ガスと空気との熱交換を効果的に行わせることができる。
【0015】
本発明に係る固体酸化物形燃料電池の更に別の特徴構成は、前記収納筐体の前記多層構造部分の内面に設けられる前記内部断熱材による断熱効果は、前記多層構造部分の温度が高い領域ほど低くなるように形成されている。
ここで、前記収納筐体の前記多層構造部分の内面に設けられる前記内部断熱材の、当該多層構造部分の内面からの厚さは、前記多層構造部分の温度が高い領域ほど薄く形成されていてもよい。
【0016】
上記特徴構成によれば、多層構造部分の温度が高い領域ほど、外部断熱材による断熱効果は高く形成され且つ内部断熱材による断熱効果は低く形成され、多層構造部分の温度が低い領域ほど、外部断熱材による断熱効果は低く形成され且つ内部断熱材による断熱効果は高く形成される。例えば、多層構造部分の温度が高い領域ほど、外部断熱材は厚く形成され且つ内部断熱材は薄く形成され、多層構造部分の温度が低い領域ほど、外部断熱材は薄く形成され且つ内部断熱材は厚く形成される。その結果、多層構造部分の両側に設けられる外部断熱材及び内部断熱材の合計の厚さを、多層構造部分の全体で一定することができる。
【図面の簡単な説明】
【0017】
【
図1】収納筐体の内部空間に設置される複数の機器を示す図である。
【
図2】固体酸化物形燃料電池の縦断面を示す図である。
【
図3】固体酸化物形燃料電池の縦断面を示す図である。
【
図4】コンピュータシミュレーションのモデルを示す図である。
【
図5】コンピュータシミュレーションのモデルを示す図である。
【発明を実施するための形態】
【0018】
以下に図面を参照して本発明の実施形態に係る固体酸化物形燃料電池について説明する。
図1は、収納筐体1の内部空間Sに設置される複数の機器を示す図である。
図2は、固体酸化物形燃料電池の縦断面を示す図である。
図3は、固体酸化物形燃料電池の縦断面を示す図である。
【0019】
本実施形態の固体酸化物形燃料電池は収納筐体1を備える。収納筐体1は、正面構造体2と、背面構造体3と、右側構造体4と、左側構造体5と、天面構造体6と、底面構造体7とで構成される。図示する例では、正面構造体2及び背面構造体3はZ軸方向に対面している。右側構造体4及び左側構造体5はX軸方向に対面している。天面構造体6及び底面構造体7はY軸方向に対面している。
【0020】
固体酸化物形燃料電池は、収納筐体1の内部断熱材Hinよりも内側の内部空間Sに、原燃料を水蒸気改質して燃料ガスを生成する改質器11と、改質器11で生成された燃料ガスを用いて発電する複数の燃料電池セルを有するセルスタックCSと、セルスタックCSから排出されるオフガスを燃焼して、その燃焼熱を改質器11に与える燃焼部14とを備える。内部空間Sにおいて、セルスタックCSの上方に改質器11と燃焼部14とが設けられる。セルスタックCSには電流取出部20が接続され、電流取出部20は収納筐体1の底面構造体7の部分から収納筐体1の外部に引き出される。
【0021】
収納筐体1の内部には、内部空間Sを上側内部空間S1と下側内部空間S2とに仕切る仕切板8が設けられる。仕切板8は、上側内部空間S1と下側内部空間S2との間で気体の流通を可能にする通気孔8aを有する。下側内部空間S2にはセルスタックCS及び熱交換部16が設けられる。上側内部空間S1には改質器11及び燃焼部14が設けられる
。
【0022】
右側構造体4は、収納筐体1の外側から内側に向かって順に第1右側部材4aと第2右側部材4bと第3右側部材4cとを有する。第1右側部材4aと第2右側部材4bと第3右側部材4cとは何れも板状の部材(壁材w)であり、互いに間隔を空けて配置される。後述するように、第1右側部材4aと第2右側部材4bとの間の空間には酸化剤ガス(空気)が流れ、第2右側部材4bと第3右側部材4cとの間の空間には燃焼排ガスを含む排気ガスが流れる。このように、収納筐体1は、複数の壁材wが互いに間隔を空けて層状に配置されることで、壁材wによって隔てられた複数の空間を有する多層構造部分Mを有する。
【0023】
左側構造体5は、収納筐体1の外側から内側に向かって順に第1左側部材5aと第2左側部材5bと第3左側部材5cとを有する。第1左側部材5aと第2左側部材5bと第3左側部材5cとは何れも板状の部材(壁材w)であり、互いに間隔を空けて配置される。後述するように、第1左側部材5aと第2左側部材5bとの間の空間には酸化剤ガスが流れ、第2左側部材5bと第3左側部材5cとの間の空間には燃焼排ガスを含む排気ガスが流れる。
【0024】
正面構造体2は、収納筐体1の外側から内側に向かって順に第1正面部材2aと第2正面部材2bと第3正面部材2cとを有する。第1正面部材2aと第2正面部材2bと第3正面部材2cとは何れも板状の部材(壁材w)であり、互いに間隔を空けて配置される。後述するように、第1正面部材2aと第2正面部材2bとの間の空間には酸化剤ガスが流れ、第2正面部材2bと第3正面部材2cとの間の空間には燃焼排ガスを含む排気ガスが流れる。
【0025】
背面構造体3は、収納筐体1の外側から内側に向かって順に第1背面部材3aと第2背面部材3bと第3背面部材3cとを有する。第1背面部材3aと第2背面部材3bと第3背面部材3cとは何れも板状の部材(壁材w)であり、互いに間隔を空けて配置される。後述するように、第1背面部材3aと第2背面部材3bとの間の空間には酸化剤ガスが流れ、第2背面部材3bと第3背面部材3cとの間の空間には燃焼排ガスを含む排気ガスが流れる。
【0026】
天面構造体6は、収納筐体1の外側から内側に向かって順に第1天面部材6aと第2天面部材6bとを有する。第1天面部材6aと第2天面部材6bとは何れも板状の部材(壁材w)であり、互いに間隔を空けて配置される。後述するように、第1天面部材6aと第2天面部材6bとの間の空間には酸化剤ガスが流れる。
【0027】
底面構造体7は、収納筐体1の外側から内側に向かって順に第1底面部材7aと第2底面部材7bと第3底面部材7cとを有する。第1底面部材7aと第2底面部材7bと第3底面部材7cとは何れも板状の部材(壁材w)であり、互いに間隔を空けて配置される。後述するように、第1底面部材7aと第2底面部材7bとの間の空間には酸化剤ガスが流れ、第2底面部材7bと第3底面部材7cとの間の空間には燃焼排ガスを含む排気ガスが流れる。
【0028】
固体酸化物形燃料電池は、収納筐体1の内面に設けられる内部断熱材Hinと、収納筐体1の外面に設けられる外部断熱材Houtとを備える。例えば、
図2及び
図3に示すように、収納筐体1の正面構造体2及び背面構造体3及び右側構造体4及び左側構造体5は、鉛直方向に直立しているのではなく、傾斜して設けられている。そして、その傾斜部分に、外部断熱材Hout及び内部断熱材Hinが設けられる。
【0029】
内部断熱材Hinは、内部正面断熱材H1と内部背面断熱材H2と内部右側断熱材H3と内部左側断熱材H4と内部上側断熱材H5と内部底側断熱材H6とを有する。具体的には、仕切板8よりも上方の上側内部空間S1には、内部上側断熱材H5が設けられる。そして、内部上側断熱材H5で囲われた空間に、改質器11と燃焼部14とが設置される。仕切板8よりも下方の下側内部空間S2には、内部正面断熱材H1と内部背面断熱材H2と内部右側断熱材H3と内部左側断熱材H4と内部底側断熱材H6とが設けられる。そして、内部正面断熱材H1と内部背面断熱材H2と内部右側断熱材H3と内部左側断熱材H4と内部底側断熱材H6とで囲われる空間に、セルスタックCSなどが設置される。
【0030】
外部断熱材Houtは、外部正面断熱材H7と外部背面断熱材H8と外部右側断熱材H9と外部左側断熱材H10と外部上側断熱材H11と外部下側断熱材H12とを有する。具体的には、収納筐体1の正面構造体2の外側に面して外部正面断熱材H7が設けられ、収納筐体1の背面構造体3の外側に面して外部背面断熱材H8が設けられ、収納筐体1の右側構造体4の外側に面して外部右側断熱材H9が設けられ、収納筐体1の左側構造体5の外側に面して外部左側断熱材H10が設けられ、収納筐体1の天面構造体6の外側に面して外部上側断熱材H11が設けられ、収納筐体1の底面構造体7の外側に面して外部下側断熱材H12が設けられる。
【0031】
収納筐体1の底面構造体7には、給気管18と排気管19とが接続されている。
給気管18を通って収納筐体1の内部に導入される酸化剤ガス(空気)は、先ず第1底面部材7aと第2底面部材7bとの間の空間に至る。本実施形態の収納筐体1では、第1底面部材7aと第2底面部材7bとの間の空間は、第1正面部材2aと第2正面部材2bとの間の空間、及び、第1背面部材3aと第2背面部材3bとの間の空間、及び、第1右側部材4aと第2右側部材4bとの間の空間、及び、第1左側部材5aと第2左側部材5bとの間の空間の全てに繋がっている。また、第1天面部材6aと第2天面部材6bとの間の空間も、第1正面部材2aと第2正面部材2bとの間の空間、及び、第1背面部材3aと第2背面部材3bとの間の空間、及び、第1右側部材4aと第2右側部材4bとの間の空間、及び、第1左側部材5aと第2左側部材5bとの間の空間の全てに繋がっている。
【0032】
その結果、第1底面部材7aと第2底面部材7bとの間の空間に導入された酸化剤ガスは、第1正面部材2aと第2正面部材2bとの間の空間を経由して、第1天面部材6aと第2天面部材6bとの間の空間に至る。第1底面部材7aと第2底面部材7bとの間の空間に導入された酸化剤ガスは、第1背面部材3aと第2背面部材3bとの間の空間を経由して、第1天面部材6aと第2天面部材6bとの間の空間に至る。第1底面部材7aと第2底面部材7bとの間の空間に導入された酸化剤ガスは、第1右側部材4aと第2右側部材4bとの間の空間を経由して、第1天面部材6aと第2天面部材6bとの間の空間に至る。第1底面部材7aと第2底面部材7bとの間の空間に導入された酸化剤ガスは、第1左側部材5aと第2左側部材5bとの間の空間を経由して、第1天面部材6aと第2天面部材6bとの間の空間に至る。
【0033】
第2天面部材6bには、導入酸化剤ガス流通管15が接続され、第1天面部材6aと第2天面部材6bとの間の空間を流れる酸化剤ガスが、導入酸化剤ガス流通管15に流れ込むように構成されている。そして、導入酸化剤ガス流通管15は、収納筐体1の内部空間Sに設置され、酸化剤ガスをセルスタックCSの内部に導くように機能する。つまり、導入酸化剤ガス流通管15は、第1天面部材6aと第2天面部材6bとの間の空間を流れる酸化剤ガスを、収納筐体1の内部空間Sに設置されたセルスタックCSへと導く。
【0034】
収納筐体1には給水管9及び原燃料ガス供給管10が接続される。給水管9及び原燃料ガス供給管10は上側内部空間S1に設置される改質器11に接続されて、改質器11へ水及び原燃料ガスを供給する。改質器11では、給水管9から供給される水の気化と原燃料ガスの水蒸気改質とが行われ、水素を主成分とする燃料ガスが生成される。後述するように、改質器11には、その下方にある燃焼部14で発生した燃焼熱が伝達される。
【0035】
導入燃料ガス流通管12は、収納筐体1の内部空間Sに設置され、改質器11で生成さ
れた燃料ガスをセルスタックCSの内部に導く。セルスタックCSが有する複数の固体酸化物形燃料電池セルでは、供給される燃料ガスと酸化剤ガスとの電気化学反応により発電が行われる。その電気化学反応で用いられた後の燃料ガスである排出燃料ガスはセルスタックCSの内部から排出され、収納筐体1の内部空間Sに設置される排出燃料ガス流通管13を通って燃焼部14に導かれる。また、その電気化学反応で用いられた後の酸化剤ガスである排出酸化剤ガスは、セルスタックCSの内部から排出された後、収納筐体1の内部空間Sに設置される排出酸化剤ガス流通管17を流れる。
【0036】
固体酸化物形燃料電池は、導入酸化剤ガス流通管15を流れる酸化剤ガスと、排出酸化剤ガス流通管17を流れる排出酸化剤ガスとが熱交換するように構成される熱交換部16とを備える。熱交換部16で熱交換した後の酸化剤ガスはセルスタックCSの内部に供給されて電気化学反応のために用いられる。
【0037】
熱交換部16では、酸化剤ガス及び排出酸化剤ガスは上方から下方に向かって流れ、導入酸化剤ガス流通管15を流れる酸化剤ガスと、排出酸化剤ガス流通管17を流れる排出酸化剤ガスとが熱交換する。このように、熱交換部16での熱交換により、セルスタックCSの内部に供給される酸化剤ガスの温度が、セルスタックCSの内部の温度(排出酸化剤ガスの温度)に近く、それよりも低い温度になる。その結果、セルスタックCSの内部に供給する酸化剤ガスにより、セルスタックCSの内部から熱を持ち出すことができる。
【0038】
また、セルスタックCSに供給される酸化剤ガスの温度が低過ぎると、セルスタックCSの酸化剤ガスの入口付近の温度が低下して内部抵抗が高くなる。そして、セルスタックCSの酸化剤ガスの入口付近では発電が進まないのに対して、内部抵抗の低い部位では発電が活発になる。このように、セルスタックCSにおいて発電が活発に行われている部位とそうでない部位とが発生することで、セルスタックCSで有効に発電に使用されている面積が減少し、電流密度に偏りが生じることやセル電圧の低下が生じることにつながる。また、発電反応が行われている部分での燃料電池セルの温度が特に上がるため、耐久性の面でも不利となる。
ところが本実施形態の固体酸化物形燃料電池では、熱交換部16での熱交換により、セルスタックCSの内部に供給される酸化剤ガスの温度が、セルスタックCSの内部の温度(排出酸化剤ガスの温度)に近くなるため、そのような問題の発生を回避できる。
【0039】
熱交換部16で熱交換した後の排出酸化剤ガスは、セルスタックCSの下部側でセルスタックCSの周囲の内部空間Sに流出する。例えば、図示は省略するが、熱交換部16の下端付近で排出酸化剤ガス流通管17が内部空間Sに開放され、そこから内部空間Sへ向かって排出酸化剤ガスが放出される。つまり、排出酸化剤ガス流通管17は、セルスタックCSの内部から排出された排出酸化剤ガスをセルスタックCSの周囲の下部側へと導くように構成されている。その結果、電気化学反応で用いられた後にセルスタックCSの内部から排出された排出酸化剤ガスは、セルスタックCSの下部側でセルスタックCSの周囲の内部空間Sに放出され、セルスタックCSの周囲をセルスタックCSの下部側から上部側へ向かって流れた後、燃焼部14において排出燃料ガスを燃焼させるために利用されるようになる。
【0040】
セルスタックCSは、直方体形状になっており、複数の固体酸化物形燃料電池セルの積層方向が水平方向に沿う状態で収納筐体1の内部空間Sに設置される。具体的に説明すると、セルスタックCSは、複数の固体酸化物形燃料電池がZ軸方向に積層されて構成される。そして、セルスタックCSは、Z軸方向の長さが、X軸方向の長さ及びY軸方向の長さよりも短い直方体形状になっている。また、収納筐体1も、Z軸方向の長さが、X軸方向の長さ及びY軸方向の長さよりも短い直方体形状になっている。このような構成を採用することで、固体酸化物形燃料電池セルの積層数に応じて、水平方向でのセルスタックCSの長さ(厚さ)が決まる。つまり、セルスタックCSを薄型化して、それを収納する収納筐体1も薄型化することが可能になる。
【0041】
熱交換部16は、収納筐体1の内部空間Sに設置されたセルスタックCSの4つの側方のうち、水平方向の長さが短い一つの側面に相対して設けられる。収納筐体1の内部空間SでセルスタックCSと熱交換部16とが組み合わされて設置された構造を考えると、熱交換部16は、セルスタックCSの4つの側方のうち、水平方向の長さが短い一つの側面に相対して、即ち、水平方向の長さが長い方向に沿ってセルスタックCSと隣接して設けられる。図示する例では、熱交換部16は、X軸方向に沿ってセルスタックCSと並ぶ状態で設置される。つまり、収納筐体1の内部空間SでセルスタックCSと熱交換部16とが組み合わされて設置された構造の最も薄い部分はセルスタックCSの最も薄い部分と同等になる。その結果、セルスタックCS及び熱交換部16を収納する収納筐体1を薄型化することが可能になる。
【0042】
熱交換部16とセルスタックCSとは間隔を空けて配置されている。そして、熱交換部16とセルスタックCSとの間の空間には、放出された排出酸化剤ガスが流れることができる。
【0043】
導入酸化剤ガス流通管15は、収納筐体1の天面側を構成する天面板状部材としての第2天面部材6bに固定されて鉛直下方に延びる。そして、導入酸化剤ガス流通管15は、途中に熱交換部16を介してセルスタックCSに接続される。つまり、セルスタックCSは、収納筐体1の第2天面部材6bに固定される導入酸化剤ガス流通管15及び熱交換部16を介して、収納筐体1の第2天面部材6bから吊り下げられた形態で設置される。つまり、収納筐体1の内部でセルスタックCSを支えるための支柱などの構造体を特別に設ける必要性が低くなる点で好ましい。
【0044】
収納筐体1の下側内部空間S2では、内部正面断熱材H1が第3正面部材2cに相対して接した状態で設けられ、内部背面断熱材H2が第3背面部材3cに相対して接した状態で設けられ、内部右側断熱材H3が第3右側部材4cに相対して接した状態で設けられ、内部左側断熱材H4が第3左側部材5cに相対して接した状態で設けられ、内部底側断熱材H6が第3底面部材7cに相対して接した状態で設けられる。そして、下側内部空間S2で、内部正面断熱材H1と内部背面断熱材H2と内部右側断熱材H3と内部左側断熱材H4と内部底側断熱材H6とに囲まれた空間に、セルスタックCSと熱交換部16と導入酸化剤ガス流通管15と排出酸化剤ガス流通管17と導入燃料ガス流通管12と排出燃料ガス流通管13とが配置される。このような構成を採用することで、セルスタックCSの温度を所望の温度に維持し易くなる。
【0045】
具体的には、
図3に示すように、導入酸化剤ガス流通管15及び排出酸化剤ガス流通管17及び導入燃料ガス流通管12及び排出燃料ガス流通管13はセルスタックCSの正面側に接続されている。また、
図3に示すように、内部正面断熱材H1には第1凹部H1aと第2凹部H1bとが形成されている。そして、第1凹部H1aの部分で、排出燃料ガス流通管13はセルスタックCSの正面側に接続され、且つ、排出酸化剤ガス流通管17はセルスタックCSの正面側に接続される。また、第2凹部H1bの部分で、導入燃料ガス流通管12はセルスタックCSの正面側に接続され、且つ、導入酸化剤ガス流通管15はセルスタックCSの正面側に接続される。
【0046】
収納筐体1の上側内部空間S1では、内部上側断熱材H5が設けられる。内部上側断熱材H5は、改質器11及び燃焼部14の上部と側部(正面側の側部と背面側の側部)とを覆うように設けられている。また、上側内部空間S1では、第3正面部材2cには正面排気口2dが設けられ、第3背面部材3cには背面排気口3dが設けられ、第3右側部材4cには右側排気口4dが設けられ、第3左側部材5cには左側排気口5dが設けられている。
【0047】
燃焼部14では、排出燃料ガス流通管13を通って供給される排出燃料ガスに含まれる燃料成分が、仕切板8に形成される通気孔8aを介して上側内部空間S1に流入し、燃焼部14の通気部14aを通って供給された排出酸化剤ガスに含まれる酸素を用いて燃焼される。
【0048】
燃焼部14で発生した燃焼排ガスを含む排気ガスは、第3右側部材4cに形成される右側排気口4dを通って第2右側部材4bと第3右側部材4cとの間の空間へと流出し、第3左側部材5cに形成される左側排気口5dを通って第2左側部材5bと第3左側部材5cとの間の空間へと流出する。また、燃焼部14で発生した燃焼排ガスを含む排気ガスは、内部上側断熱材H5と第2天面部材6bとの間の空間に流れ込み、その空間から、第3正面部材2cに形成される正面排気口2dを通って第2正面部材2bと第3正面部材2cとの間の空間へと流出し、第3背面部材3cに形成される背面排気口3dを通って第2背面部材3bと第3背面部材3cとの間の空間へと流出する。
【0049】
そして、第2正面部材2bと第3正面部材2cとの間の空間を下方へ流れる燃焼排ガスを含む排気ガス、第2背面部材3bと第3背面部材3cとの間の空間を下方へ流れる燃焼排ガスを含む排気ガス、第2右側部材4bと第3右側部材4cとの間の空間を下方へ流れる燃焼排ガスを含む排気ガス、第2左側部材5bと第3左側部材5cとの間の空間を下方へ流れる燃焼排ガスを含む排気ガスは、第2底面部材7bと第3底面部材7cとの間の空間を経由して排気管19に至り、収納筐体1から排出される。このように、収納筐体1では、内部空間Sへと導入される酸化剤ガスが、内部空間Sから排出される燃焼排ガスを含む排気ガスと熱交換する、即ち、内部空間Sへと導入される酸化剤ガスの予熱が行われるように構成されている。
【0050】
以上のように、収納筐体1の正面構造体2及び背面構造体3及び右側構造体4及び左側構造体5のそれぞれは、複数の壁材wが互いに間隔を空けて層状に配置されることで、壁材wによって隔てられた複数の空間を有する多層構造部分Mを有する。そして、その多層構造部分Mにおいて、燃焼部14で発生した燃焼排ガスを含む排気ガスと、セルスタックCS及び燃焼部14へ供給される空気とが、複数の空間に各別に流れることで、排気ガスと空気との熱交換が壁材wを介して行われるように構成されている。また、多層構造部分Mにおいて、内側(内部断熱材Hin側)の空間に排気ガスが流れ、外側(外部断熱材Hout側)の空間に空気が流れる。多層構造部分Mにおいて、排気ガスの流れる方向と、空気の流れる方向とが対向している。
【0051】
正面構造体2の場合、第1正面部材2aと第2正面部材2bと第3正面部材2cとが多層構造部分Mに対応する。背面構造体3の場合、第1背面部材3aと第2背面部材3bと第3背面部材3cとが多層構造部分Mに対応する。右側構造体4の場合、第1右側部材4aと第2右側部材4bと第3右側部材4cとが多層構造部分Mに対応する。左側構造体5の場合、第1左側部材5aと第2左側部材5bと第3左側部材5cとが多層構造部分Mに対応する。
【0052】
本実施形態において、収納筐体1の正面構造体2及び背面構造体3及び右側構造体4及び左側構造体5のそれぞれに設けられている多層構造部分Mでは、上方から下方に向かって高温の排気ガスが流れる。そのため、各多層構造部分Mでは、上方が下方よりも温度が高くなっている。そして、収納筐体1の多層構造部分Mの外面に設けられる外部断熱材Houtによる断熱効果は、多層構造部分Mの温度が高い領域ほど高くなるように形成されている。例えば、本実施形態の場合、熱伝導率が均一な外部断熱材Houtを用いて、収納筐体1の多層構造部分Mの外面に設けられる外部断熱材Houtの、その多層構造部分Mの外面からの厚さ(即ち、法線方向の厚さ)は、多層構造部分Mの温度が高い領域ほど厚く形成されている。本実施形態の場合、多層構造部分Mの外面に設けられる外部断熱材Houtは、上方が下方よりも厚く形成されている。つまり、温度が高い領域の多層構造部は厚い外部断熱材Houtで覆われるため、温度が高い領域の多層構造部分Mからの放熱が効果的に抑制される。
【0053】
加えて、収納筐体1の多層構造部分Mの内面に設けられる内部断熱材Hinによる断熱効果は、多層構造部分Mの温度が高い領域ほど低くなるように形成されている。例えば、本実施形態の場合、熱伝導率が均一な内部断熱材Hinを用いて、収納筐体1の多層構造部分Mの内面に設けられる内部断熱材Hinの、その多層構造部分Mの内面からの厚さ(法線方向の厚さ)は、多層構造部分Mの温度が高い領域ほど薄く形成されている。つまり、本実施形態では、多層構造部分Mの温度が高い領域ほど、外部断熱材Houtは厚く形成され且つ内部断熱材Hinは薄く形成され、多層構造部分Mの温度が低い領域ほど、外部断熱材Houtは薄く形成され且つ内部断熱材Hinは厚く形成される。
【0054】
上述のように、収納筐体1の多層構造部分Mを構成する正面構造体2及び背面構造体3及び右側構造体4及び左側構造体5は、鉛直方向に直立しているのではなく、傾斜して設けられている。そして、本実施形態の固体酸化物形燃料電池では、多層構造部分Mの厚さと、その多層構造部分Mの外面からの外部断熱材Houtの厚さと、その多層構造部分Mの内面からの内部断熱材Hinの厚さとの合計は一定である。つまり、外部断熱材Hout及び内部断熱材Hinの厚さは、多層構造部分Mの温度の高低に応じて変化しているが、多層構造部分M及び外部断熱材Hout及び内部断熱材Hinの全体で見ると、図中の鉛直上下方向で、それら合計の厚さは一定である。
尚、上述した収納筐体1の多層構造部分Mを構成する正面構造体2及び背面構造体3及び右側構造体4及び左側構造体5の傾斜角度は適宜設計可能である。
【0055】
次に、本実施形態の固体酸化物形燃料電池で採用する外部断熱材Hout及び内部断熱材Hinの効果を確認するために行ったコンピュータシミュレーションについて
図4を参照して説明する。
【0056】
図4(a)は実施例のモデルを示す図であり、
図4(b)は比較例のモデルを示す図である。これらのモデルは、収納筐体1をその両側から内部断熱材Hinと外部断熱材Houtとで挟んだ構造になっている。
【0057】
実施例のモデルでは、多層構造部分Mの温度が高い領域ほど、外部断熱材Houtは厚く形成され且つ内部断熱材Hinは薄く形成され、多層構造部分Mの温度が低い領域ほど、外部断熱材Houtは薄く形成され且つ内部断熱材Hinは厚く形成されている。具体的には、
図4(a)に示すように、L1t=22.4mm、L1b=46.4mm、L2t=40.8mm、L2b=16.8mmとした。つまり、実施例のモデルでは、内部断熱材Hin及び外部断熱材Houtの合計の厚さを63.2mmに設定した。
【0058】
比較例では、多層構造部分Mの温度が高い領域と温度が低い領域とで、外部断熱材Hout及び内部断熱材Hinの厚さに変化はなく、一定にしている。具体的には、
図4(b)に示すように、内部断熱材Hinの厚さを40mmで一定とし、外部断熱材Houtの厚さを30mmで一定とした。つまり、比較例のモデルでは、内部断熱材Hin及び外部断熱材Houtの合計の厚さを70mmに設定した。
【0059】
シミュレーション対象とする内部断熱材Hin及び外部断熱材Houtの高さは
図4に示すように250mmである。多層構造部分Mは、厚さが各1mmの3枚のSUS板の壁材wが、互いに1.5mmの間隔を空けて層状に配置されることで、壁材wによって隔てられた複数の空間を有する。そして、図中の左側の空間に排気ガスが流れ、図中の右側の空間に空気が流れる。
【0060】
〔シミュレーションの設定条件〕
多層構造部分Mの一方の空間に流入する排気ガスは、入口温度が410℃であり、組成は、CO2が5.1%、H2Oが22.1%、窒素が65.2%、酸素が7.6%である。多層構造部分Mの他方の空間に流入する空気は、入口温度が100℃であり、組成は、酸素21%、窒素79%である。これらの条件は、以下で運転した場合を想定したものとなっている。即ち、改質器11に供給される原燃料ガスは天然ガスであり、水蒸気改質におけるS/C=2.5であり、燃料利用率は80%であり、空気利用率は45%である。そして、セルスタックCSのDC出力は770Wであり、平均セル電圧は0.8Vである。
【0061】
各部材の熱伝導率は以下の通りである。
内部断熱材Hin及び外部断熱材Hout:0.033W/(m・K)
多層構造部分Mの壁材wであるSUS板:26.4W/(m・K)
【0062】
境界条件は以下の通りである。
内部断熱材Hinの表面(図中の左側):600℃等温条件
外部断熱材Houtの表面(図中の右側):熱伝達率20W/(m2・K)、外部温度40℃
モデルの上下端:排気ガス及び空気の流路部を除き、断熱条件
【0063】
このときのシミュレーション結果を以下の表1に示す。
実施例及び比較例のモデルにおいて、排気ガス出口温度及び空気出口温度はほぼ同じである。外部断熱材Houtからの放熱量Q-outは、実施例のモデルで132W/m2であり、比較例のモデルで131W/m2である。このように、実施例のモデルでの内部断熱材Hin及び外部断熱材Houtの合計の厚さ(63.2mm)は、比較例のモデルでの内部断熱材Hin及び外部断熱材Houtの合計の厚さ(70mm)よりも薄いにも関わらず、外部断熱材Houtからの放熱量を十分に抑制できていることが分かる。
【0064】
内部断熱材Hinの表面(図中の左側)を600℃等温としている(即ち、内部断熱材Hinの表面が600℃になるように入熱量が定まる)が、内部断熱材Hinへの入熱量Q-inは、実施例のモデルで226W/m2であり、比較例のモデルで192W/m2というように相違している。これは、実施例のモデルにおいて、内部断熱材Hinの厚さは多層構造部分Mの温度が高い領域(モデルの排気ガス入口付近)ほど薄く形成されており、その厚さは比較例のモデルの内部断熱材Hinよりも薄くなっているため、内部断熱材Hinへ熱が入り易くなったためだと考えられる。
【0065】
【0066】
尚、
図6のように、内部断熱材Hinへの入熱量Q-inを、実施例及び比較例の各モデルにおいて上側入熱量Q-high及び下側入熱量Q-lowというように上下に分けて数値化した場合、以下の表2のような数値になる。この表2から分かるように、内部断熱材Hinの下側への入熱量Q-lowは、実施例(106W/m
2)と比較例(107W/m
2)とでほとんど差が無い。つまり、本実施形態の固体酸化物形燃料電池の構成を考えた場合、収納筐体1の内部空間Sの下方に設置されるセルスタックCSから内側断熱材の下側へと移動する熱量は、実施例のモデルと比較例のモデルとでほとんど差が無いと言える。従って、実施例のモデルを用いた場合、比較例のモデルと比べてセルスタックCSの温度が低下するといった問題及びセルスタックCSからの放熱量が増えるといった問題は生じないと言える。
【0067】
【0068】
以上のように、本実施形態の固体酸化物形燃料電池では、収納筐体1の多層構造部分Mの外面に設けられる外部断熱材Houtの、その多層構造部分Mの外面からの厚さは、多層構造部分Mの温度が高い領域ほど厚く形成されている。その結果、上記表2の「外部断熱材Houtからの放熱量Q-out」の数値で示したように、多層構造部分Mから外側への放熱、特に多層構造部分Mの温度が高い領域から外側への放熱が効果的に抑制される。従って、多層構造部分Mよりも内側の、収納筐体1の内部空間Sの温度低下が抑制される。また、放熱量を増やすことなく、多層構造部分Mの内外に設けられる内側断熱材Hin及び外側断熱材Houtの合計厚さを減らすことができ、収納筐体1の薄型化を実現できる。
【0069】
<別実施形態>
<1>
上記実施形態では、固体酸化物形燃料電池の構成について具体例を挙げて説明したが、その構成については適宜変更可能である。
例えば、収納筐体1の内部空間Sにおける各機器(改質器11、セルスタックCS、燃焼部14など)の設置場所は適宜変更可能である。また、各機器の形状なども適宜変更可能である。
【0070】
<2>
上記実施形態では、同一種類の(即ち、熱伝導率が同一の)外部断熱材Houtの厚さ及び同一種類の内部断熱材Hinの厚さを連続的に変化させる(即ち、各断熱材による断熱効果を連続的に変化させる)場合を説明したが、本発明はそのような場合に限定されない。例えば、
図6に例示するように、同一種類の外部断熱材Houtの厚さ及び同一種類の内部断熱材Hinの厚さを段階的に(ステップ状に)変化させることで、断熱材による断熱効果を段階的に変化させてもよい。
【0071】
或いは、熱伝導率が異なる複数種の断熱材を併せて用いれば、外部断熱材Hout及び内部断熱材Hinの厚さを変化させずに一様にしながら、外部断熱材Hout及び内部断熱材Hinの中で断熱効果の高い部分と断熱効果の低い部分とを形成することもできる。例えば、多層構造部分Mに面して設けられる外部断熱材Houtの厚さを一定にしながら、多層構造部分Mの温度が高い領域に面して熱伝導率の小さい(即ち、断熱効果の高い)材料を用いた外部断熱材Houtを設置し、多層構造部分Mの温度が低い領域に面して熱伝導率の大きい(即ち、断熱効果の低い)材料を用いた外部断熱材Houtを設置することができる。また、多層構造部分Mに面して設けられる内部断熱材Hinの厚さを一定にしながら、多層構造部分Mの温度が高い領域に面して熱伝導率の大きい(即ち、断熱効果の低い)材料を用いた内部断熱材Hinを設置し、多層構造部分Mの温度が低い領域に面して熱伝導率の小さい(即ち、断熱効果の高い)材料を用いた内部断熱材Hinを設置することができる。
【0072】
<3>
上記実施形態では、収納筐体1の4つの側面を構成する正面構造体2及び背面構造体3及び右側構造体4及び左側構造体5のそれぞれの多層構造部分Mに、多層構造部分Mの温度が高い領域ほど断熱効果が高くなるように形成されている外部断熱材Hout、及び、多層構造部分Mの温度が高い領域ほど断熱効果が低くなるように形成されている内部断熱材Hinが設けられる例を説明したが、本発明はそのような例に限定されない。例えば、収納筐体1の正面構造体2及び背面構造体3の合計2面や、右側構造体4及び左側構造体5の合計2面などに上記外部断熱材Hout及び上記内部断熱材Hinが設けられる構成を採用してもよい。
【0073】
<4>
上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用でき、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変できる。
【産業上の利用可能性】
【0074】
本発明は、収納筐体の内部を高温に保つことができ、放熱損失の少ない固体酸化物形燃料電池に利用できる。
【符号の説明】
【0075】
1 :収納筐体
2a :第1正面部材(壁材 w)
2b :第2正面部材(壁材 w)
2c :第3正面部材(壁材 w)
3a :第1背面部材(壁材 w)
3b :第2背面部材(壁材 w)
3c :第3背面部材(壁材 w)
4a :第1右側部材(壁材 w)
4b :第2右側部材(壁材 w)
4c :第3右側部材(壁材 w)
5a :第1左側部材(壁材 w)
5b :第2左側部材(壁材 w)
5c :第3左側部材(壁材 w)
11 :改質器
14 :燃焼部
CS :セルスタック
H1 :内部正面断熱材(内部断熱材 Hin)
H2 :内部背面断熱材(内部断熱材 Hin)
H3 :内部右側断熱材(内部断熱材 Hin)
H4 :内部左側断熱材(内部断熱材 Hin)
H7 :外部正面断熱材(外部断熱材 Hout)
H8 :外部背面断熱材(外部断熱材 Hout)
H9 :外部右側断熱材(外部断熱材 Hout)
H10 :外部左側断熱材(外部断熱材 Hout)
Hin :内部断熱材
Hout :外部断熱材
M :多層構造部分
S :内部空間
w :壁材