(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-02-08
(45)【発行日】2024-02-19
(54)【発明の名称】3軸加速度計
(51)【国際特許分類】
G01P 15/18 20130101AFI20240209BHJP
G01P 15/08 20060101ALI20240209BHJP
B81B 3/00 20060101ALI20240209BHJP
【FI】
G01P15/18
G01P15/08 101C
B81B3/00
(21)【出願番号】P 2021514386
(86)(22)【出願日】2019-09-18
(86)【国際出願番号】 US2019051623
(87)【国際公開番号】W WO2020061131
(87)【国際公開日】2020-03-26
【審査請求日】2022-09-02
(32)【優先日】2018-09-21
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】520490417
【氏名又は名称】アナログ ディヴァイスィズ インク
(74)【代理人】
【識別番号】100108453
【氏名又は名称】村山 靖彦
(74)【代理人】
【識別番号】100110364
【氏名又は名称】実広 信哉
(74)【代理人】
【識別番号】100133400
【氏名又は名称】阿部 達彦
(72)【発明者】
【氏名】ジアンロン・ジャン
(72)【発明者】
【氏名】シン・ジャン
【審査官】岡田 卓弥
(56)【参考文献】
【文献】米国特許出願公開第2010/0122579(US,A1)
【文献】米国特許出願公開第2017/0108529(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01P15/00-15/18
B81B 1/00- 7/04
B81C 1/00-99/00
H01L29/84
(57)【特許請求の範囲】
【請求項1】
単一質量の一体型3軸加速度計であって、
4つのアンカーによって基板に結合された前記単一質量のx-y加速度検出部と、
前記x-y加速度検出部内に埋め込まれ
、テザーによって前記x-y加速度検出部に結合されている前記単一質量の
4つのシーソーz軸加速度検出部と、を
含み、
前記4つのアンカーが、前記4つのシーソーz軸加速度検出部よりも前記基板の中心に近い位置に配置された、単一質量の一体型3軸加速度計。
【請求項2】
前記z軸加速度検出部が、前記基板または前記アンカーに直接結合されていない、請求項
1に記載の単一質量の一体型3軸加速度計。
【請求項3】
前記テザーが、ねじりテザーである、請求項
1に記載の単一質量の一体型3軸加速度計。
【請求項4】
前記単一質量の一体型3軸加速度計が、前記単一質量の一体型3軸加速度計のx軸およびy軸のうちの少なくとも1つについて対称である、請求項1に記載の単一質量の一体型3軸加速度計。
【請求項5】
一体型3軸加速度計であって、
基板に結合された
4つのアンカーと、
組み合わせられたx-y加速度検出錘であり、第1
から第4のテザーによって前記アンカーに結合されている、組み合わせられたx-y加速度検出錘と、
前記x-y加速度検出錘内に埋め込まれた第1
から第4のシーソーz軸加速度検出錘であって、
それぞれのシーソーz軸加速度検出錘が第
5のテザーおよび第
6のテザーによって前記x-y加速度検出錘にそれぞれ結合されている、第1
から第4のシーソーz軸加速度検出錘と、を
含み、
前記4つのアンカーが、前記第1から第4のシーソーz軸加速度検出錘よりも前記基板の中心に近い位置に配置される、一体型3軸加速度計。
【請求項6】
前記一体型3軸加速度計が、前記一体型3軸加速度計のx軸およびy軸のうちの少なくとも1つについて対称である、請求項
5に記載の一体型3軸加速度計。
【請求項7】
前記一体型3軸加速度計が、前記一体型3軸加速度計の前記x軸および前記y軸の両方について対称である、請求項
6に記載の一体型3軸加速度計。
【請求項8】
前記第1のテザーが、2軸ボックステザーである、請求項
5に記載の一体型3軸加速度計。
【請求項9】
前記第
5のテザーが、ねじりテザーである、請求項
8に記載の一体型3軸加速度計。
【請求項10】
前記第1
から第4のシーソーz軸加速度検出錘が、前記アンカーまたは前記基板のいずれにも直接結合されていない、請求項
5に記載の一体型3軸加速度計。
【請求項11】
単一質量の一体型3軸加速度計であって、
4つのアンカーによって基板に結合された前記単一質量のx-y加速度検出部と、
前記x-y加速度検出部内に埋め込まれた前記単一質量の
4つのシーソーz軸加速度検出部と、を含み、前記加速度計が、前記加速度計のx軸およびy軸の両方について対称で
あり、
前記4つのアンカーが、前記4つのシーソーz軸加速度検出部よりも前記基板の中心に近い位置に配置される、単一質量の一体型3軸加速度計。
【請求項12】
前記4つのシーソーz軸加速度検出部の各々が、全体が、前記単一質量の一体型3軸加速度計の前記x軸およびy軸によって画定される、前記加速度計の各々の象限に配置されている、請求項
11に記載の単一質量の一体型3軸加速度計。
【請求項13】
前記
4つのシーソーz軸加速度検出部がテザーによって前記x-y検出部に結合されており、前記
4つのシーソーz軸加速度検出部が前記基板または前記アンカーのいずれにも直接結合されていない、請求項
11に記載の単一質量の一体型3軸加速度計。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本出願は、2018年9月21日に代理人整理番号G0766.70249US00の下に提出された、「3-AXIS ACCELEROMETER」と題された、2018年9月21日に提出された米国特許出願第16/138,091号の米国特許第120条に基づく利益を主張する継続出願であり、該米国特許出願は、参照によりその全体が本明細書に組み込まれる。
【0002】
本出願は、微小電気機械システム(MEMS)慣性センサに関する。
【背景技術】
【0003】
いくつかの微小電気機械システム(MEMS)慣性検知器は、1つ以上の方向での加速度を測定するために使用され、加速度計と称される。これらの加速度計は、一般に、加速度を経験することに応答して変位する基板にばね式に結合された錘を利用する。ばね式カップリングのため、加速度に応答しての錘(複数可)の発振がよくある。錘(複数可)の変位および/または発振周波数は、静電容量検知技術を使用して測定され、変位または発振を表すアナログ出力信号をもたらす。共振加速度計と呼ばれるいくつかの加速度計は、ドライバを使用して、所定の周波数で錘(複数可)を発振させる。加速度に応答して、錘(複数可)の発振周波数が変化する。所定の駆動周波数からの周波数偏差を測定し得、適用された加速度を決定する。
【0004】
従来の3軸加速度計には、各検知方向に個々の錘を利用するものもある。すなわち、3軸加速度計には、各方向に割り当てられた1つの錘を有する、3つの別個の、かつ機械的に独立した錘が使用される。通常、横方向の錘(例えば、xおよび/またはy軸錘)は、単一の平面において変位および/または発振する。垂直方向の錘(例えば、z軸錘)は、一般に、単一の平面の中または外で変位および/または発振する。
【発明の概要】
【課題を解決するための手段】
【0005】
3軸加速度計は、少なくとも1つの垂直方向に移動する(z)質量と一体化された少なくとも1つの横方向に移動する(x-y)質量を含む単一の一体型質量を含む。垂直方向に移動する質量は、横方向に移動する質量内に位置するシーソー質量として配置される。垂直方向に移動する質量は、1つ以上のねじりばねにより、横方向に移動する質量に機械的に結合され、そして、横方向に移動する質量は、1つ以上の横方向に移動するばねにより、1つ以上のアンカーまたは支持体に機械的に結合される。少なくとも1つの垂直に移動する質量は、3軸加速度計の1つ以上の軸について対称的に配置され得るので、3軸加速度計が平面内対称を有する。3軸加速度計は、様々な有益点を提供し得、その例としては、代替の3軸加速度計構造よりも機械的クロストークまたはノイズによる影響が少なく、かつ代替の3軸加速度計構造よりも小さなチップ面積の小さな占有設置面積を有することが挙げられる。
【0006】
いくつかの実施形態において、単一質量の一体型3軸加速度計は、単一質量のx-y加速度検出部、およびx-y加速度検出部内に埋め込まれた単一質量のシーソーz軸加速度検出部を含む。
【0007】
いくつかの実施形態において、一体型3軸加速度計は、基板に結合されたアンカー、組み合わせられたx-y加速度検出錘、ならびにx-y加速度検出錘内に埋め込まれた第1および第2のシーソーz軸加速度検出錘を含む。組み合わせられたx-y加速度検出錘は、第1のテザーによってアンカーに結合され、第1および第2のシーソーz軸加速度検出錘は、それぞれ、第2のテザーおよび第3のテザーによってx-y加速度検出錘に結合される。
【0008】
いくつかの実施形態において、単一質量の一体型3軸加速度計は、単一質量のx-y加速度検出部、およびx-y加速度検出部内に埋め込まれた単一質量の少なくとも1つのシーソーz軸加速度検出部を含む。加速度計は、加速度計のx軸およびy軸の両方について対称である。
【0009】
本出願の様々な態様および実施形態は、以下の図面を参照して説明され得る。図面は必ずしも縮尺通りに描かれていないことを理解されたい。複数の図に見られるアイテムは、それらが見られるすべての図において同じ参照番号によって示される。
【図面の簡単な説明】
【0010】
【
図1】
図1は、x-y軸錘内に埋め込まれたz軸錘を有する3軸加速度計の一実施形態の上面図である。
【
図2】
図2は、x-y軸錘内に埋め込まれた2つのz軸錘を有する3軸加速度計の一実施形態の上面図である。
【
図3】
図3は、x-y軸錘内に埋め込まれた2つのz軸錘を有する3軸加速度計を表す、
図2の代替実施形態の上面図である。
【
図4】
図4は、x-y軸錘内に埋め込まれた4つのz軸錘を有する3軸加速度計の一実施形態の上面図である。
【
図5】
図5は、x-y軸錘内に埋め込まれた4つのz軸錘を有する3軸加速度計を表す、
図4の代替実施形態の上面図である。
【
図6】
図6は、本出願の非限定的な実施形態による、少なくとも1つの3軸加速度計を含み得る自動車を例示する図である。
【発明を実施するための形態】
【0011】
本発明者らは、各検知軸について複数の独立した錘を有する従来の3軸加速度計が、多くの用途には大きすぎる、および/または高価であることを認識してきた。かかる3軸加速度計は、各錘が異なる検知回路ならびにアンカーおよびばねを必要とするため、かなりの空間(チップの実領域)を占める。いくつかの3軸加速度計は、3方向全てで加速度を検知するために単一の固体錘のみを利用することによって、この問題に対処する。しかしながら、本発明者らは、単一の固体錘が3つの検知方向のいずれかで励起されることがあるため、かかる構造が、適用される加速度の方向にかかわらず、機械的応力および/または機械的クロストークに非常に影響を受けやすいことを認識してきた。この機械的応力および/または機械的クロストークは、加速度計の性能の低下につながるため、望ましくない。
【0012】
この問題に対処するために、いくつかの3軸加速度計は、別個のz軸錘によって囲まれたx-y軸質量を有する一体型錘を利用する。しかしながら、本発明者らは、これらの加速度計が低精度および高z軸オフセット誤差を含む欠点を被ることを認識してきた。単一の外側質量z軸錘は、その旋回軸に関して非対称であり、3軸加速度計においてモーダルクロストークを引き起こす可能性がある。さらに、本発明者らは、かかる構成がz軸錘に対してより大きな信号オフセット誤差をもたらすことを認識してきた、なぜなら、z軸錘は、x-y軸質量がその内部に配置されていない場合よりもその旋回軸からより遠くに必然的に位置決めされるからである。
【0013】
上記を鑑みて、本出願の態様は、z軸加速度の検出のために埋め込まれた錘を有するx-y軸錘を含む一体型3軸加速度計を提供する。かかる配置は、代替設計よりも小さな設置面積で実装され得、かつ低減された機械的クロストークおよびz軸オフセット誤差に起因して、従来の単一質量加速度計に比較して改善された精度を有し得る。
【0014】
本出願の態様によれば、単一質量の一体型3軸加速度計が提供される。加速度計は、平面内を横方向(例えば、xおよびy方向)に移動するように構成されたx-y軸錘を含む。このx-y軸錘は、垂直方向(例えば、z方向)に平面外に旋回するように構成された埋め込み質量を含む。いくつかの実施形態において、埋め込み質量は、x-y平面の中および外を回転するように構成されたシーソー質量である。埋め込みz軸錘がx-y軸錘に組み込まれるため、x-y運動にも貢献する。したがって、加速度計は、単一質量3軸加速度計であると言われ得る。
【0015】
本出願の別の態様によれば、単一質量の一体型3軸加速度計は、z方向において平面の外に移動するように構成される2つ以上の埋め込み質量を有して、平面内をx方向およびy方向に移動するように構成された錘を含む。加速度計は、x軸およびy軸について対称である(本明細書では「平面内対称性」と呼ばれる)ような、1つ以上の軸について対称であり得る。対称構造は、x、yおよびz軸動作モード間の機械的クロストークの発生を減少させ得、かつより良いオフセット性能を提供し得る。
【0016】
本出願のさらに別の態様によれば、単一質量の一体型3軸加速度計は、x-y加速度検出部と、x-y加速度検出部内に埋め込まれたz加速度検出部とを有する単一の錘を含む。加速度計は、加速度計のx軸およびy軸の両方について対称であり得、したがって、平面内対称性を示す。
【0017】
本明細書で使用される「x-y軸錘」は、x-y平面において移動するように構成される質量である。「z軸錘」は、例えば、x-y平面について回転することによって、z方向において移動するように構成される質量である。
【0018】
図1は、本出願の非限定的な実施形態による3軸加速度計の一実施形態を示す。この非限定的な実施形態において、3軸加速度計100は、埋め込みz軸錘を有するx-y軸錘を含む。このx-y軸錘は、基板などの固定された支持体に結合され、かつ埋め込みz軸錘は、x-y軸錘に結合される。図を参照すると、3軸加速度計100は、x-y軸錘110、ならびに第1の部分122および第2の部分124(それぞれ正および負の部分と呼ばれることもある)を含む埋め込みz軸錘120を含む。3軸加速度計100は、基板102、アンカー104、x-yテザー112、およびz-テザー126も含む。
【0019】
基板102は、加速度計のベースとして機能する。すなわち、基板102は、錘を支持し得、さらに錘は、基板102に相対的に移動し得る。基板102は、半導体材料(例えば、シリコン)などの任意の好適な材料で形成され得る。基板は、駆動および/または検知回路、例えば、電極、ドライバ回路、フィルタ回路、または3軸加速度計の動作のための任意の他の回路を含んでもよい。いくつかの実施形態において、アンカー104は、基板の垂直ピラーなどの、基板102の拡張部を表す。しかしながら、代替は可能である。例えば、いくつかの実施形態において、アンカー104は、別個の材料から形成され得る。アンカーそれら自体は、x-yテザー112に接続し得、基板102の上にx-y軸錘(および間接的にz軸錘)を吊り下げる。
【0020】
このx-y軸錘110は、xおよびy方向において加速度を検出するように構成されている。具体的には、x-y軸錘110は、これらの方向における加速度に応答して横方向(xおよびy方向)に移動するように配置される。このx-y軸錘110の結果として生じる移動は、xおよびy方向のうちの少なくとも1つにおける加速度を計算するために測定され得、かつ使用され得る。このx-yテザー112は、x-y軸錘110をアンカー104に結合し、かつxおよびy方向におけるx-y軸錘110の移動を可能にするように配置される。加えて、x-yテザー112は、z方向に硬直しており、x-y軸錘110の機械的クロストークを低減または排除する。このx-yテザー112は、x-y軸錘110に復元力を提供する。この非限定的な例において、x-yテザー112は、第1の方向(例えば、x方向)において圧縮され、さらに第2の平面内方向(例えば、y方向)において回転するボックスばねとして配置される。しかしながら、テザー112の他の構成が可能である。
【0021】
このx-y軸錘110は、様々な好適な形状および寸法を有し得、さらに任意の好適な材料から形成され得る。図示される非限定的な例において、x-y軸錘110は、実質的に長方形の外周を有する、実質的に長方形である。このx-y軸錘の寸法は、任意の好適な寸法であり得る。例えば、x-y軸錘の外周の側面は、各50~500ミクロン(その範囲を有する任意の値を含む)、または任意の他の好適な値であり得る。このx-y軸錘は、シリコンなどの任意の好適な材料で形成され得る。いくつかの実施形態において、x-y軸錘110は、代替の製造プロセスが可能であるが、基板102からエッチングすることによって形成される。いくつかの実施形態において、x-yテザー112は、同じ材料から形成される。例えば、x-y軸錘110およびx-yテザー112は、基板102の共通シリコン層からエッチングされ得る。
【0022】
いくつかの実施形態において、x-y軸錘110は、駆動/検知電極を含み得る。例えば、x-y軸錘110の移動は、x-y軸錘の任意の好適な位置に位置決めされ得るくし型指を使用して検出され得る。例えば、くし型指は、ボックス114によって区切られた領域に位置決めされ得、かつ任意の好適な構成を有し得る。基板102は、対応する駆動/検知電極を含み得る。電極は、x-y軸錘110の移動の静電容量感知を可能にし得る。複数のくし型ドライバを使用する場合、加速度計の改善された正確さおよび精度を提供し得る、差動検知を使用し得る。これらxおよびy軸の各々について別個のくし型ドライバを使用し得る。いくつかの実施形態において、駆動電極は、静止位置の周りにて所定の周波数でx-y軸錘およびz軸錘を発振させるために使用され得る。
【0023】
このz軸錘120は、z-テザー126の旋回軸の別個の側面上のz軸錘120の部分を表す第1の部分122および第2の部分124を有するシーソー質量として配置される。したがって、z軸錘は、x-y平面の中または外に回転するように配置される。第1の部分122は、第2の部分124よりも大きな質量を有する。この質量アンバランスは、適用されたz方向加速度に応答してz軸錘120を回転させる。このz-テザー126は、x-y軸錘の回転に抵抗し、かつz軸錘を静止位置に復元するねじりばねとして配置される。このz-テザー126は、z軸錘をx-y軸錘に結合する。このz軸錘120は、x-y軸錘110のみに結合され、かつ基板102に直接結合されないため、z軸錘120は、x-y軸錘110と共にx-y平面内で移動し、したがってx-y軸錘110の一部とみなされ得る。このz軸錘120は、x軸錘110と共に移動するため、x軸錘110内に埋め込まれる。このz軸錘がx-y軸錘内に埋め込まれると、z軸錘はx-y検知方向に寄与する。しかしながら、z軸錘は、x-y軸錘がz方向検知に寄与しないように、z-テザーによってz方向におけるx-y軸錘から分離される。このz軸錘がx-y軸錘内に埋め込まれているため、それらは、x-y軸錘が単一の錘の1つの部分を表し、かつz軸錘が錘の第2の部分を表すことで、単一の錘を形成すると考えられ得る。したがって、本出願の態様の少なくともいくつかは、3方向における加速度を検知するための単一の一体型錘を提供すると考えられ得、さらに単一の一体型錘は、x-y加速度検出部およびz加速度検出部を含み得ることが理解されるべきである。
【0024】
このz軸錘120は、その移動の検知/駆動を可能にする電極を含み得る。例えば、第1および第2の部分122および124は、導電性であるようにドーピングされ得るか、または導電層(例えば、金属層)を含み得、さらにはz軸錘の下にある基板102上の構造(例えば、電極)を有する静電容量を形成してもよい。静電容量は、z軸錘の静電検知および/または駆動を可能にし得る。
【0025】
図1に示すように、3軸加速度計100は、x軸について対称である。すなわち、x軸と平行な長手方向中心線A-A’の両側で、加速度計は、x-y軸錘110およびz軸錘120の両方を含む等しい質量分布を有する。
図1の実施形態によれば、加速度計100は、y軸について対称ではない。z軸錘がシーソー質量であるため、z軸錘は、y軸の周りの不均等な重量分布を有する。したがって、加速度計は、部分的な平面内対称性、つまり、xおよびy軸のうちの一つについての対称性を有するが、総平面内対称性(xおよびy軸の両方についての対称性)ではない。いくつかの実施形態において、本開示はそれほど限定されていないため、基板、アンカー、ならびに駆動および/または検知電極は、部分的または総平面内対称性、または任意の他の好適な配置を有し得る。
【0026】
数、位置、向き、形状、および材料を含む、テザー112上の変形が可能である。いくつかの実施形態において、x-yテザー112は、別個のx-テザーおよびy-テザーとして配置され得る。すなわち、加速度計100は、x方向におけるx-y軸錘110の変位を可能にするように配置されたx-テザーと、ならびにy方向についてのx-y軸錘の変位を可能にするように配置されたy-テザーとを含み得る。別個のxおよびy-テザーは、x-y軸錘に復元力を提供するように配置された任意の好適なばねであってもよい。例えば、可能なxおよびyテザーには、圧縮ばね、張力ばね、およびボックスばねが含まれるが、これらに限定されるわけではない。このx-yテザー112は、所定の方向におけるx-y軸錘の変位を容易にし、かつその所定の方向における復元力を提供するために、任意の好適な位置および任意の好適な配向で位置付けられ得る。このx-y軸錘の所望の移動を可能にするために、任意の好適な数のx-yテザー、またはxテザーおよびy-テザーを提供し得る。このように、
図1における4つのx-yテザーの例示は、非限定的である。
【0027】
このzテザー126上の変形も可能である。
図1に示す実施形態によれば、z軸錘がx-y平面の外に回転した場合に、このz軸錘120を静止位置に戻す復元力を提供するねじりばねとしてz-テザーを配置し得る。本開示はそれほど限定されないため、zテザーは、任意の好適なねじりばねであってもよい。2つのz-テザー126を
図1に示すが、それに代わる数を提供してもよい。いくつかの実施形態において、x-yテザーおよびz-テザーは、ばねとして配置され得なくてもよく、むしろ、x-y軸錘およびz軸錘を基板の上に吊り下げ、そして質量の各々が移動することを可能にする任意の好適な支持体であり得る。
【0028】
いくつかの実施形態において、テザーの厚さは、1つ以上の検知方向間の望ましくない機械的クロストークに対するそのテザーの感度に影響を及ぼし得る。より具体的には、十分に剛性であるテザーは、望ましくないモードを防止し得る。すなわち、テザーが十分に剛性である場合、機械的クロストークモードは、通常の動作条件によって励起され得ないように十分な高さの周波数である。いくつかの実施形態において、テザー(例えば、x-yテザーおよびz-テザー)は、機械的クロストークを減少させるための好適な材料厚さを有し得る。例えば、テザーの厚さは(
図1のz方向において測定されるように)、2μmより大きく、5μm、8μm、10μm、15μm、20μm、25μm、30μm、2~35μmの間、または任意の他の好適な厚さであり得る。対応して、テザーの厚さは、35μm未満、28μm、23μm、18μm、13μm、9μm、7μm、4μm、および/または任意の他の好適な厚さで有り得る。上述の範囲の組み合わせは、25~35μmの間、10~23μmの間、ならびに5~13μmの間の厚さを含んで考慮されるが、これらに限定されない。もちろん、本開示はそれほど限定されないため、テザーの任意の好適な厚さを使用し得る。
【0029】
いくつかの場合において、テザーの厚さは、テザーが機械的クロストークを減少させるために望ましい剛性を有し得るように、テザーの特定の幅に対応し得る(
図1のx-y平面で測定されるように)。例えば、テザーの厚さと幅との間の比は、0.5より大きく、2、4、6、8、10、15、20、および/または任意の他の好適な比であり得る。対応して、テザーの厚さと幅との間の比は、25未満であり、20、15、10、8、6、4、1、および/または任意の他の好適な比であり得る。上述の範囲の組み合わせは、比0.5および4、10および25、ならびに6および15を含んで考慮されるが、これらに限定されない。もちろん、本開示はそれほど限定されないため、テザーの厚さと幅との間の任意の好適な比が採用されてもよい。
【0030】
図2は、x-y軸錘210および各々が第1の部分222a、222bおよび第2の部分224a、224bを含む2つのz軸錘220a、220bを含む差動z方向加速度検知が可能な3軸加速度計200の別の実施形態を示す。加速度計は、基板202、アンカー204、x-yテザー212、およびz-テザー226も含む。
図1の非限定的な実施形態における基板102と同様に、基板202は加速度計に対するベースとして機能し、かつアンカー204に直接接続される。基板はまた、x-y質量およびz軸錘の移動および/または測定を行うことができるドライバまたは検知素子を含み得る静止プラットフォームとして機能する。アンカー204は、x-yテザー212に接続し、かつ基板202の上にx-y軸錘(および間接的にz軸錘)を吊り下げるように配置される。このx-y軸錘は、横方向(xおよびy方向)に移動するように配置され、この移動は測定され、かつxおよびy方向のうちの少なくとも1つにおける加速度を計算するために使用される。このx-yテザー212は、x-y軸錘をアンカー204に結合し、かつx-y軸錘に復元力を提供するように配置される。詳細に、x-yテザーは、第1の方向(例えば、y方向)において圧縮され、かつ第2の平面内方向(例えば、x方向)において回転するボックスばねとして配置される。
図2の実施形態は、図示されるように、x-yテザーが2つの実施形態において異なって配向される点で、
図1の実施形態とは異なる。このz軸錘220a、220bは、第1の部分222a、222b、および第2の部分224a、224bを有するシーソー質量として配置される。したがって、z軸錘は、x-y平面の中または外に回転し、したがってz方向において移動するように配置される。第1の部分222a、222bは、第2の部分224a、224bよりも大きな質量を有する。これらの質量アンバランスは、適用されたz方向加速度に応答してz軸錘の回転を引き起こす。このz-テザー226は、x-y軸錘の回転に抵抗し、かつz軸錘を静止位置に復元するねじりばねとして配置される。このz-テザーは、z軸錘をx-y軸錘に結合する。
【0031】
図2に示すように、2つのz軸錘220a、220bは、x-y軸錘210内に埋め込まれる。2つのz軸錘は、加速度計200のy軸に対して反対方向に配向される。すなわち、第1の部分222a、222bはy軸から等距離であり、さらに第2の部分224a、224bはy軸から同様に等距離である。
図2の実施形態によれば、2つのz軸錘はまた、加速度計のx軸について対称的に配置される。したがって、2つのz軸錘は、xおよびy軸の両方について等しい質量分布を有する総平面内対称性を示す。すなわち、2つのz軸錘は、長手方向中心線B-B’および横方向中心線C-C’の両側で等しい質量分布を有して対称である。かかる配置は、機械的クロストークを低減し得、加速度計の精度を向上し得る。
図2の実施形態によれば、2つのz軸錘220a、220bの出力を組み合わせ得、z方向における加速度を示す単一の出力信号を作成する。例えば、2つのz軸錘出力の差を取り得(すなわち、差動検出)、単一のz軸錘信号に関連付けられたノイズおよびオフセット誤差を低減する。かかる配置は、単一のz軸錘を有する加速度計と比較して精度を向上させ得る。もちろん、本開示はそれほど限定されないため、2つのz軸錘信号の任意の好適な組み合わせまたは処理が使用され得る。
【0032】
図2の実施形態によれば、x-y軸錘210は、2つのz軸錘220a、220bを取り囲み、かつ総平面内対称性を有する。すなわち、x-y軸錘は、長手方向中心線B-B’および横方向中心線C-C’に対して等しい質量分布を有する。したがって、加速度計200は、機械的クロストークの影響を受けにくくなり得る。
図2に示すように、x-y軸錘は、基板に固定されたアンカー204に結合されるボックスばねとして配置されたx-yテザー212によって基板202に結合される。これらx-yテザーおよびアンカーは、加速度計が総平面内対称性を有するようにxおよびy軸の両方について対称的に配置される。
【0033】
図3は、x-y軸錘310および各々が第1の部分322a、322bおよび第2の部分324a、324bを含む2つのz軸錘320a、320bを備える3軸加速度計300を表す、
図2の代替実施形態を示す。加速度計300はまた、基板302、アンカー304、x-yテザー312、およびz-テザー326も含む。
図1の非限定的な実施形態における基板102と同様に、基板302は加速度計に対するベースとして機能し、かつアンカー304に直接接続される。基板はまた、x-y軸錘およびz軸錘を移動し、および/またはその移動を測定し得るドライバまたは検知素子を含み得る静止プラットフォームとして機能する。アンカー304は、x-yテザー312に接続し、かつ基板302の上にx-y軸錘(および間接的にz軸錘)を吊り下げるように配置される。このx-y軸錘は、横方向(xおよびy方向)に移動するように配置され、この移動は測定され、かつxおよびy方向のうちの少なくとも1つにおける加速度を計算するために使用される。このx-yテザー312は、x-y軸錘をアンカー304に結合し、かつx-y軸錘に復元力を提供するように配置される。詳細に、x-yテザーは、第1の方向(例えば、x方向)において圧縮され、かつ第2の平面内方向(例えば、y方向)において回転するボックスばねとして配置される。
図3の実施形態は、図示されるように、x-yテザーが2つの実施形態において異なって配向される点で、
図2の実施形態とは異なる。このz軸錘320a、320bは、第1の部分322a、322b、および第2の部分324a、324bを有するシーソー質量として配置される。したがって、z軸錘は、x-y平面の中または外に回転し、したがってz方向において移動するように配置される。第1の部分322a、322bは、第2の部分324a、324bよりも大きな質量を有する。これらの質量アンバランスは、適用されたz方向加速度に応答してz軸錘の回転を引き起こす。このz-テザー326は、x-y軸錘の回転に抵抗し、かつz軸錘を静止位置に復元するねじりばねとして配置される。このz-テザーは、z軸錘をx-y軸錘に結合する。
【0034】
図3に示すように、2つのz軸錘320a、320bは、
図2と同様の態様でx-y軸錘310内に埋め込まれる。2つのz軸錘は、加速度計300のy軸に対して反対方向に配向される。すなわち、第1の部分322a、322bはy軸から等距離であり、第2の部分324a、324bはy軸から同様に等距離である。
図2の実施形態によれば、2つのz軸錘はまた、加速度計のx軸について対称的に配置される。したがって、2つのz軸錘は、長手方向中心線D-D’および横方向中心線E-E’の両側に等しい質量分布を有する総平面内対称性を示す。
図3の実施形態によれば、かつ
図2の実施形態と同様に、2つのz軸錘320a、320bの出力を組み合わせ得、z方向において加速度を示す単一の出力信号を作成する。
【0035】
図3の実施形態によれば、x-y軸錘310は、2つのz軸錘320a、320bを取り囲み、
図2の実施形態と同様の総平面内対称性を有する。すなわち、x-y軸錘は、長手方向中心線D-D’および横方向中心線E-E’に対して等しい質量分布を有する。したがって、加速度計300は、機械的クロストークの影響を受けにくくなり得る。
図3に示すように、x-y軸錘は、基板に固定されたアンカー304に結合されるボックスばねとして配置されたx-yテザー312によって基板302に結合される。これらx-yテザーおよびアンカーは、加速度計が総平面内対称性を有するようにxおよびy軸の両方について対称的に配置される。
図2の実施形態とは対照的に、x-yテザー312およびアンカー304は、
図2のx-yテザー212に対して直交して配向される。したがって、アンカーは、加速度計の中心からさらに離れて配置され、かつ2つのz軸錘は、x-y軸錘のより大きな相対面積を占め得、結果としてより多くの質量を有する。より大きな質量を有するz軸錘は、前述したように望ましくないモードの影響を軽減することによって機械的クロストークを低減し得る、より厚いテザーを利用することができる場合がある。
【0036】
図4は、x-y軸錘410および各々が第1の部分422a、422b、422c、422d、ならびに第2の部分424a、424b、424c、424dを含む4つのz軸錘420a、420b、420c、420dを備えて、総平面内対称性を示す3軸加速度計400の別の実施形態を示す。加速度計はまた、基板402、アンカー404、x-yテザー412、z-テザー426、指414、正極416a、および負極416bを含む。このx-y軸錘410は、横方向(xおよびy方向)に並進するように配置される。このz軸錘420a、420b、420c、420dの各々は、x-y軸錘に対して平面の外に回転するように配置される。第1の部分422a、422b、422c、422dの各々は、第2の部分424a、424b、424c、424dの各々よりも大きい質量を有し、その結果、z方向において加速度に供される場合にz軸錘が回転する。
【0037】
図4に示すように、アンカー404は基板402に固定され、x-yテザー412に接続されるように配置される。このx-yテザーは、ボックスばねとして配置され、x-y軸錘を基板の上に吊り下げ、かつx-y軸錘410がxおよびy方向に移動することを可能にしながら、x-y軸錘を静止位置に戻す復元力を提供する。このz-テザー426は、ねじりばねとして配置され、z軸錘を基板の上に吊り下げ、かつx-y軸錘をz軸錘420a、420b、420c、420dに機械的に連結する。このz-テザーはまた、z軸錘がx-y平面の外に回転した場合に、z軸錘の各々を静止位置に戻す復元力も提供する。指414は、x-y軸錘に結合され、またはいくつかの実施形態において、x-y軸錘の一部を表し、x-y軸錘が移動する場合に、x-y軸錘と共に移動する。指は、基板402に固定されてかつ指414と電極との間の距離を測定するために使用され得る正極416aと負極416bとの間に配置される。例えば、それらの電極は、指とx-y軸錘の特定の位置に対応し得るそれらの電極との間の静電容量を測定するために使用し得る。電極416a、416bはまた、加速度を検出するために、特定の周波数でx-y軸錘を駆動し、かつその周波数の変化を測定するように使用され得る。もちろん、本開示はそれほど限定されないため、加速度を測定するための任意の好適な機能のために電極および指を使用してもよい。
【0038】
図4の実施形態によれば、4つのz軸錘420a、420b、420c、420dの各々は、基板上に配置された対応する電極(例えば、正極および負極と呼ばれることもある第1および第2の電極)を有し得る。正極は、z軸錘の第1の部分422a、422b、422c、422dの近くに位置決めされ得、負極は、第2の部分424a、424b、424c、424dの近くに位置決めされ得、さらに逆もまた同様である。電極は、基板とz軸錘とによって形成された静電容量を検出し得る。いくつかの実施形態において、正および負極は、所定の周波数でz軸錘を駆動し、適用された加速度に応答して周波数の変化を測定するために使用され得る。いくつかの実施形態において、z軸錘の各々からの信号は、加速度計の精度を向上させるために、差動信号またはいくつかの他の組み合わせとして組み合わせられ得る。例えば、平面内回転の場合、対向する側のz軸錘の各々は、別個のz軸錘間の差動信号を使用することによってキャンセルされ得る回転に応答して反対方向に移動し得る。この例によれば、共通モード信号またはノイズは、差動信号の組み合わせの使用によってキャンセルされ得る。
【0039】
図4に示すように、加速度計400は、形状において正方形である。すなわち、基板402は正方形であり、すべての構成要素が基板上に配置され、基板の境界内に収まる。かかる配置は、x、y、およびz方向間のノイズおよび機械的クロストークの低減をさらに促進し得る。
図4の実施形態によれば、構成要素の各々は、加速度計が総平面内対称性を有するように、xおよびy軸の各々について対称的に配向される。すなわち、構成要素は、長手方向中心線F-F’および横方向線G-G’の両側で等しい質量分布を有して対称である。この場合、加速度計はまた、機械的クロストークに対する影響されやすさをさらに低減し得る正方形として対称性を有する。例えば、前述したように、z軸錘は、質量の各々が加速度計の対向する側面またはコーナーで、平面内回転などの外乱に対して反対に応答し得るため、共通モードノイズをキャンセルし得る。
【0040】
図4に示す実施形態によれば、アンカー404が中心の近くに配置され得るように、z軸錘420a、420b、420c、420dが配置され得る。基板の中心に近いアンカーは、基板上の熱または機械的応力によって引き起こされ得るオフセット誤差の傾向を少なくし得る。すなわち、基板が任意の歪みを受ける場合、中心は基板の端部よりも著しく歪む可能性が低い。したがって、中心に対してz軸錘の内側に配置されたアンカーでは、オフセット誤差を低減または排除し得る。
【0041】
図5は、x-y軸錘410および各々が第1の部分522a、522b、522c、522d、ならびに第2の部分524a、524b、524c、524dを含む、4つのz軸錘520a、520b、520c、520dを備える3軸加速度計500を表す、
図4の代替の実施形態を示す。加速度計は、基板502、アンカー504、x-yテザー512、およびz-テザー526も含む。このx-y軸錘510は、横方向(xおよびy方向)に並進するように配置される。このz軸錘520a、520b、520c、520dの各々は、x-y軸錘に対して平面外に回転するように配置される。第1の部分522a、522b、522c、522dの各々は、第2の部分524a、524b、524c、524dの各々よりも大きい質量を有しており、その結果、z方向の加速度に供される場合にz軸錘が回転する。アンカー504は、基板502に固定され、x-yテザー512に接続されるように配置される。このx-yテザーは、ボックスばねとして配置され、x-y軸錘を基板の上に吊り下げ、かつx-y軸錘を静止位置に戻す復元力を提供しながら、x-y軸錘510がxおよびy方向に移動することを可能にする。このz-テザー526は、ねじりばねとして配置され、z軸錘を基板の上に吊り下げ、x-y軸錘をz軸錘520a、520b、520c、520dに機械的に結合し、z軸錘がx-y平面の外に回転される場合に静止位置に戻る復元力も提供する。
【0042】
図5に示す実施形態によれば、加速度計500は、x-y軸錘510の外縁部の近くに配置され、かつx-y軸錘と一緒に移動するようにx-y軸錘に結合された指を含み得る。このx-y軸錘指および電極の位置および/または周波数を測定するために、正極および負極を使用し得る。同様に、加速度計は、z軸錘520a、520b、520c、520dの下の基板上に配置されて、z軸錘の位置および/または周波数を検出する電極を含み得る。
【0043】
図5に示すように、加速度計500は正方形であり、かつ総平面内対称性を有する。すなわち、構成要素は、長手方向中心線H-H’および横方向中心線I-I’の両側で等しい質量分布を有して対称である。したがって、加速度計は、特定の加速度(例えば、平面内回転)に応答して共通モードノイズを拒絶し得、前述のように加速度計の精度を向上させ得る減少された機械的クロストークを受け得る。
【0044】
図5の実施形態によれば、z軸錘は、周囲に向かうよりも加速度計の中心に近い大きい質量を有してよく、場合によっては著しく大きい質量を有し得る。例えば、前述のように、第1の部分522a、522b、522c、522dは、第2の部分524a、524b、524c、524dの各々よりも大きい質量を有し得る。かかる構成は、z軸錘520a、520b、520c、520dと共に、より厚いばねの使用を容易にし得、その使用は、機械的クロストークをさらに減少させ得る。
【0045】
本出願のいくつかの実施形態のいくつかのアプリケーションは、限定されるものではないが、自動車、装着型装置、および機械の健全性監視を含む、低または高加速環境を備える。
図6は、本明細書に記載のタイプの3軸加速度計が車に採用される非限定的な例を示す。
図6の例において、自動車600は、有線または無線接続によって車の車載コンピュータ604に接続される制御ユニット601を含む。制御ユニット601は、本明細書に記載されるタイプの少なくとも1つの3軸加速度計を含み得る。非限定的な例として、少なくとも1つの3軸加速度計は、駆動方向および/または駆動方向に直交する加速度を検知し得る。少なくとも1つの3軸加速度計は、例えば、自動車600のサスペンションの状態を監視するのに有用であり得る垂直加速度を検知するように構成されてもよい。制御部601は、車載コンピュータ604から電力および制御信号を受信し得、さらに本明細書で説明した種類の出力信号を車載コンピュータ604に供給し得る。
【0046】
単一質量加速度計における機械的クロストークの減少は、特定の用途において望ましい場合がある従来の製品よりもはるかに小さいパッケージで達成され得る。いくつかの実施形態において、加速度計は、0.5mm2より大きなダイ面積を有し得、0.75mm2、1mm2、1.25mm2、1.5mm2、1.75mm2、2mm2、2.5mm2、3mm2であり得、および任意の他の好適な面積を有し得る。対応して、加速度計は、3.5mm2未満であり得、2.75mm2、2.25mm2、2mm2、1.75mm2、1.5mm2、1.25mm2、1mm2、0.75mm2であり得、および/または任意の他の好適な面積で有り得る。上述の範囲の組み合わせは、0.5および1.75mm2、1および2.25mm2、ならびに1.5および3.5mm2を含んで考慮されるが、これらに限定されない。もちろん、本開示はそれほど限定されないため、任意の好適なダイ面積が使用され得る。
【0047】
本教示は、様々な実施形態および実施例と併せて説明されているが、本教示がかかる実施形態または実施例に限定されることは意図されない。逆に、本教示は、当業者であれば理解されるように、様々な代替、修正、および等価物を包含する。したがって、前述の説明および図面は例としてのみである。
【0048】
「およそ」および「約」という用語は、いくつかの実施形態では目標値の±20%以内、いくつかの実施形態では目標値の±10%以内、いくつかの実施形態では目標値の±5%以内、なおもいくつかの実施形態では目標値の±2%以内を意味するために使用され得る。「およそ」および「約」という用語は、目標値を含み得る。
【符号の説明】
【0049】
100、200、300、400、500 3軸加速度計
102、202、302、402、502 基板
104、204、304、404、504 アンカー
110、210、310、410、510 x-y軸錘
112、212、312、412、512 x-yテザー
114 ボックス
414 指
416a 正極
416b 負極
120、220a、220b、320a、320b、420a、420b、420c、420d、520a、520b、520c、520d 埋め込みz軸錘
122、222a、222b、322a、322b、422a、422b、422c、422d、522a、522b、522c、522d 第1の部分
124、224a、224b、324a、324b、424a、424b、424c、424d、524a、524b、524c、524d 第2の部分
126、226、326、426、526 z-テザー
600 自動車
601 制御ユニット
604 車載コンピュータ