(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-02-09
(45)【発行日】2024-02-20
(54)【発明の名称】光学素子、光学機器および撮像装置
(51)【国際特許分類】
G02B 1/04 20060101AFI20240213BHJP
G02B 3/00 20060101ALI20240213BHJP
B32B 7/023 20190101ALI20240213BHJP
B32B 27/08 20060101ALI20240213BHJP
【FI】
G02B1/04
G02B3/00 Z
B32B7/023
B32B27/08
(21)【出願番号】P 2019011397
(22)【出願日】2019-01-25
【審査請求日】2022-01-17
(31)【優先権主張番号】P 2018049735
(32)【優先日】2018-03-16
(33)【優先権主張国・地域又は機関】JP
【前置審査】
(73)【特許権者】
【識別番号】000001007
【氏名又は名称】キヤノン株式会社
(74)【代理人】
【識別番号】100126240
【氏名又は名称】阿部 琢磨
(74)【代理人】
【識別番号】100223941
【氏名又は名称】高橋 佳子
(74)【代理人】
【識別番号】100159695
【氏名又は名称】中辻 七朗
(74)【代理人】
【識別番号】100172476
【氏名又は名称】冨田 一史
(74)【代理人】
【識別番号】100126974
【氏名又は名称】大朋 靖尚
(72)【発明者】
【氏名】米谷 公一
【審査官】池田 博一
(56)【参考文献】
【文献】特開2016-194610(JP,A)
【文献】米国特許出願公開第2016/0291289(US,A1)
【文献】特開2018-005012(JP,A)
【文献】特開2010-224367(JP,A)
【文献】特開2017-090710(JP,A)
【文献】特開2011-102906(JP,A)
【文献】特開2005-157120(JP,A)
【文献】特開2015-011293(JP,A)
【文献】中国特許出願公開第103913793(CN,A)
【文献】中国特許出願公開第104122611(CN,A)
【文献】中国特許出願公開第101019044(CN,A)
【文献】中国特許出願公開第111435180(CN,A)
(58)【調査した分野】(Int.Cl.,DB名)
G02B 1/04
G02B 3/00
B32B 7/023
B32B 27/08
(57)【特許請求の範囲】
【請求項1】
ガラスからなる第一の基材と、
ガラスからなる第二の基材と、
前記第一の基材と前記第二の基材との間に設けられた第一の樹脂部と、
前記第一の樹脂部に接して設けられた第二の樹脂部と、
前記第二の樹脂部及び、前記第一の基材又は前記第二の基材と接して設けられた、樹脂からなる接着部と、を備える光学素子であって、
前記第一の樹脂部の形状が、中心における厚さが厚く、端部に向かって連続的に薄くなる偏肉形状であり、
前記第二の樹脂部の押し込み弾性率が、1.23GPa以上2.98GPa以下の範囲であり、
前記接着部の押し込み弾性率が、100MPa以上1GPa以下の範囲であり、
前記第一の樹脂部の押し込み弾性率をE1、前記第二の樹脂部の押し込み弾性率をE2、前記接着部の押し込み弾性率をE3としたときに、E3<E2<0.9×E1の関係を満たすことを特徴とする光学素子。
【請求項2】
前記第一の樹脂部及び前記第二の樹脂部は同一の樹脂材料から形成されている請求項1に記載の光学素子。
【請求項3】
前記第一の樹脂部及び前記第二の樹脂部はアクリル樹脂からなる請求項1又は2に記載の光学素子。
【請求項4】
前記E2と前記E1の比であるE2/E1が、0.35以上0.85以下である請求項1乃至3のいずれか1項に記載の光学素子。
【請求項5】
前記第一の樹脂部の前記第二の樹脂部が接して設けられた面の面法線方向における厚さである前記第二の樹脂部の厚さが、15μm以上50μm以下である請求項1乃至4のいずれか1項に記載の光学素子。
【請求項6】
前記第一の樹脂部が、前記第一の基材と接して設けられている請求項1乃至5のいずれか1項に記載の光学素子。
【請求項7】
前記第一の基材が前記第一の樹脂部に対向する面が凸形状であり、
前記第二の基材が前記第一の樹脂部に対向する面が凹形状であり、
前記第一の樹脂部の厚さと第二樹脂部の厚さとの和の最小の厚さをtmin、最大の厚さをtmaxとしたときに、tmax/tminが14以上50以下である請求項6に記載の光学素子。
【請求項8】
前記tmaxが、0.7mm以上1.4mm以下である請求項7に記載の光学素子。
【請求項9】
前記E2と前記E3との差が2.9GPa以下である請求項1乃至8のいずれか1項に記載の光学素子。
【請求項10】
筐体と、該筐体内に複数のレンズからなる光学系を備える光学機器であって、
前記レンズの少なくとも1つが請求項1乃至
9のいずれか1項に記載の光学素子であることを特徴とする光学機器。
【請求項11】
筐体と、該筐体内に複数のレンズからなる光学系と、該光学系を通過した光を受光する撮像素子と、を備える撮像装置であって、
前記レンズの少なくとも1つが請求項1乃至
9のいずれか1項に記載の光学素子であることを特徴とする撮像装置。
【請求項12】
前記撮像装置がカメラであることを特徴とする請求項
11に記載の撮像装置。
【請求項13】
ガラスからなる第一の基材の上に第一の樹脂部を形成する工程と、
前記第一の樹脂部の上に第二の樹脂部を形成する工程と、
前記第二の樹脂部および、ガラスからなる第二の基材の少なくとも一方に接着剤を設け、前記第二の樹脂部及び前記第二の基材と接して設けられる樹脂からなる接着部を形成する工程と、を備え、
前記第一の樹脂部の形状が、中心における厚さが厚く、端部に向かって連続的に薄くなる偏肉形状であり、
前記第二の樹脂部の押し込み弾性率が、1.23GPa以上2.98GPa以下の範囲であり、
前記接着部の押し込み弾性率が、100MPa以上1GPa以下の範囲であり、
前記第一の樹脂部の押し込み弾性率をE1、前記第二の樹脂部の押し込み弾性率をE2、前記接着部の押し込み弾性率をE3としたときに、E3<E2<0.9×E1の関係を満たすことを特徴とする光学素子の製造方法。
【請求項14】
前記第一の樹脂部と前記第二の樹脂部が、同一の光硬化性樹脂材料を用いて、それぞれ光が照射されることによって形成される請求項
13に記載の光学素子の製造方法。
【請求項15】
前記第二の樹脂部の硬化反応率が、前記第一の樹脂部の硬化反応率より低い請求項
14に記載の光学素子の製造方法。
【請求項16】
前記接着部が、前記第一の樹脂部及び前記第二の樹脂部に用いた光硬化性樹脂材料とは異なる光硬化性樹脂材料に光が照射されることによって形成される請求項
14または
15に記載の光学素子の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、2つの基材の間に樹脂部が設けられた光学素子に関する。また、それを有する光学機器および撮像装置に関するものである。
【背景技術】
【0002】
近年、光学機器の高性能化の要求に伴って、光学機器の光学系を構成する光学素子(レンズ)には高い性能が求められている。このような光学素子では、例えば、2つの基材(ガラス基材)の間に樹脂を設けて接合されたものが多く用いられている。光学素子に求められる機能は光学機器の光学系によって異なるが、例えば、複数のレンズによって構成される光学系において、球面レンズによって発生する色収差を補正するためのレンズが知られている。
【0003】
例えば、特許文献1には色収差を補正するためのレンズとして、2つの基材の間に、樹脂部と、接着部が積層された光学素子が開示されている。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
特許文献1の光学素子の樹脂部の形状は、中心における厚さが厚く、端部に向かって連続的に厚さが薄くなっている偏肉形状である。偏肉形状は、最も薄い端部の厚さに対する最も厚い中心における厚さとの比(以降、偏肉比とよぶ)が大きいほど、色収差補正の効果を高めることができる。
【0006】
しかしながら、特許文献1に開示された光学素子は、基材、樹脂部および接着部といった各光学要素の材質が異なるため、線膨張係数や弾性率がそれぞれ異なる。各光学要素は、環境温度が変化すると、それぞれ変形の程度が異なる。具体的には、樹脂部と接着部は、基材との界面に近い部分においては線膨張係数が小さい基材に拘束され変形が抑制されるが、基材との界面から離れている部分はそれぞれの線膨張係数に応じた変形をしようとする。そのため、第一の基材と第二の基材に挟まれた樹脂部と接着部は、変形量が大きい領域と小さい領域とが存在することになり、内部歪(応力)が発生する。そして、その応力は各光学要素を剥離しようとする力となる。ここで、基材にシランカップリング処理を施すなどして、基材と樹脂部または接着部との剥離を抑制することは一般的に知られている。しかし、樹脂部と接着部の線膨張係数や弾性率の差により発生する応力への対策はなされておらず、特許文献1に開示された光学素子は、環境温度が変化すると、樹脂部と接着部との間で、端部から剥がれが発生しやすいという課題があった。
【課題を解決するための手段】
【0007】
上記課題を解決するための光学素子は、ガラスからなる第一の基材と、ガラスからなる第二の基材と、前記第一の基材と前記第二の基材との間に設けられた第一の樹脂部と、前記第一の樹脂部に接して設けられた第二の樹脂部と、前記第二の樹脂部及び、前記第一の基材又は前記第二の基材と接して設けられた、樹脂からなる接着部と、を備える光学素子であって、前記第一の樹脂部の形状が、中心における厚さが厚く、端部に向かって連続的に薄くなる偏肉形状であり、前記第二の樹脂部の押し込み弾性率が、1.23GPa以上2.98GPa以下の範囲であり、前記接着部の押し込み弾性率が、100MPa以上1GPa以下の範囲であり、前記第一の樹脂部の押し込み弾性率をE1、前記第二の樹脂部の押し込み弾性率をE2、前記接着部の押し込み弾性率をE3としたときに、E3<E2<0.9×E1の関係を満たすことを特徴とする。
【発明の効果】
【0008】
本発明の光学素子は、第二の樹脂部の弾性率E2が第一の樹脂部の弾性率E1より低いため、接着部の弾性率E3と樹脂部の弾性率の差を小さくすることができる。そのため、環境温度が変化により光学素子に変形が発生しても、樹脂部と接着部との間で発生する応力を従来技術よりも低減することができる。そのため、樹脂部と接着部との間で剥がれが生じにくい光学素子を提供することができる。
【図面の簡単な説明】
【0009】
【
図1】本発明の光学素子の一実施態様を示す概略図である。
【
図2】本発明の光学素子を構成する第一の樹脂部と第二の樹脂部に用いる光硬化性樹脂の化学構造を示す概略図である。
【
図3】本発明の光学素子の製造方法の一実施態様における第一の樹脂部を形成する工程を示す概略図である。
【
図4】本発明の光学素子の製造方法の一実施態様における第二の樹脂部を形成する工程を示す概略図である。
【
図5】本発明の光学素子の製造方法の一実施態様における第二の基材を接合する工程を示す概略図である。
【
図7】実施例7の光学素子における第二の樹脂部の弾性率の測定結果を示した図である。
【発明を実施するための形態】
【0010】
(光学素子)
図1は本発明の光学素子の一実施態様を示す概略図であり、
図1(a)は光軸方向からみた上面図であり、A-A直線は光学素子39の中心を通る直線である。また、
図1(b)は、光学素子39をA-A直線で切断したときの断面図である。
【0011】
光学素子39は、第一の基材13と第二の基材31との間に、第一の樹脂部12と、第二の樹脂部22と、接着部32とが設けられている。以下、凸形状を有する第一の基材13と、第一の樹脂部12と、第二の樹脂部22と、接着部32と、凹形状を有する第二の基材31とが順に積層されている例を用いて説明する。なお、光学素子39の光の入射面は特に限定されず、第一の基材13側、第二の基材31側のどちらからでも光を入射することが可能である。
【0012】
第一の基材13は第一の樹脂部12に対向する面が凸形状であり、例えば、透光性を有するガラスやプラスチックを用いることができる。凸形状の曲率は、光学素子の光学性能に応じて設定することが可能である。第一の基材13の第一の樹脂部12を形成する面は、密着性を良くするためにシランカップリング剤等によりプライマー処理しても構わない。
【0013】
第一の樹脂部12は第一の基材13上に設けられる。
【0014】
第一の樹脂部12の形状は中心付近において厚さが最も厚く、端部に向かって連続的に厚さが薄くなる偏肉形状であることが好ましい。色収差補正の効果を高めることができるためである。ここで第一の樹脂部12の厚さとは、第一の基材13の第一の樹脂部12が形成される面の面法線方向における第一の樹脂部の厚さである。
【0015】
第一の樹脂部12の樹脂は所望の光学特性によって任意に選択することが可能であり、例えば、熱硬化性樹脂もしくは光硬化性樹脂を用いることができる。また、熱硬化性樹脂および光硬化性樹脂には、光学特性を調整する目的で微粒子を分散させた樹脂を用いることもできる。第一の樹脂部12としては、簡便な製造プロセスを採用できるという観点においては、光硬化性樹脂を用いることが好ましい。光硬化性樹脂としては、高い光学特性が得られるという観点においてアクリル樹脂が好ましい。アクリル樹脂としては、
図2に示す化学構造を有するものを用いることができる。
図2において、AはCH
2、C(CH
3)
2、O、SO
2、S、NH、NXより選ばれる。AがNXの場合、Xは(メタ)アクリレート基を含むアルキル基、アリール基、アリル基、カルボニル基であり、Rは(メタ)アクリレート基を含むアルキル基、アルコキシ基、アルキルチオ基から選ばれる基である。なお、これらの基は一つもしくは複数であり、複数の場合同じでも異なるものでもよい。また、アクリロイル基又はメタクリロイル基を有する下記一般式(1)で示される化合物が重合又は共重合したものを用いることができる。
【0016】
【化1】
(式(1)において、X及びYは、それぞれ下記に示される置換基から選択されるいずれかの置換基である。)
【0017】
【化2】
(*は、R
1又はR
2との結合手を表す。)
【0018】
R1及びR2は、それぞれ水素原子、炭素数1乃至2のアルキル基及び(メタ)アクリロイル基から選択されるいずれかの置換基である。Z1及びZ2は、それぞれ水素原子、ハロゲン原子、炭素数1乃至2のアルコキシ基、炭素数1乃至2のアルキルチオ基、無置換の炭素数1乃至2のアルキル基及び下記式(3)に示す置換基から選択されるいずれかの置換基である。
【0019】
【化3】
(式(3)において、**は、結合手を表し、mは、0又は1であり、nは、2乃至4のいずれかの整数であり、Rは、水素又はメチル基である。)
【0020】
a及びbは、それぞれ0乃至2のいずれかの整数である。aが2のとき2つのZ1は、同じであってもよいし異なっていてもよい。bが2のとき2つのZ2は、同じであってもよいし異なっていてもよい。
【0021】
第二の樹脂部22は、第一の樹脂部12の上に設けられる。
【0022】
第二の樹脂部22は、第一の樹脂部12と同一の樹脂から形成されることが好ましい。同一であると、光学素子が色収差補正機能を発揮するための光学設計が容易となるためである。第二の樹脂部22と第一の樹脂部12との樹脂が同一の樹脂から形成されていないと、第二の樹脂部22と第一の樹脂部12の全波長域における屈折率を調整することが難しくなるおそれがある。
【0023】
第二の樹脂部22の弾性率E2は、第一の樹脂部12の弾性率E1より小さい。具体的には、E2/E1が0.9未満である。接着部32に接する第二の樹脂部22の弾性率が、第一の基材13に接する第一の樹脂部12の弾性率より小さいため、環境温度の変化によって変形が生じても、第二の樹脂部が発生する応力を緩和することができる。応力が緩和、低減されることにより、変形しても樹脂部と接着部との間に剥がれが発生しにくくなる。一方、E2/E1が0.9以上であると、E1とE2の差が小さすぎるため、第二の樹脂部による応力の緩和効果を十分に発揮することができない。そのため、環境温度の変化によって変形すると、樹脂部と接着部との間に剥がれが発生する確率が高くなる。また、E2とE3の差は2.9Gpa以下であることが好ましい。より好ましくは1.2GPa以下である。
【0024】
また、前記E2/E1は0.35以上0.85以下であることが好ましい。E2/E1がこの範囲にあることで、変形時における樹脂部および接着部に発生する応力をより低減することができる。応力が低減されることにより、変形しても樹脂部と接着部との間に剥がれが発生しにくくなる。そのため、本発明の光学素子は優れた色収差補正機能を有し、かつ、環境温度の変化による変形が生じても剥がれが生じにくくなる。一方、E2/E1が0.35未満であると光学素子の色収差補正機能が十分でなくなるおそれがある。
【0025】
第一の樹脂部の弾性率E1および第二の樹脂部の弾性率E2は、接着部32の弾性率E3より大きい。また、前述したとおり第二樹脂部の弾性率E2は第一の樹脂部の弾性率E1より小さい。すなわち、E2とE3の差は、E1とE3の差より小さい。そのため、第一の樹脂部より弾性率が低い第二の樹脂部22が存在しない構成を採用すると、E1とE3の差が大きいため、変形時における樹脂部および接着部に発生する応力が低減できない。そのため発生した応力により、樹脂部と接着部との間に剥がれが発生してしまう。
【0026】
第二の樹脂部22の厚さは15μm以上50μm以下であることが好ましい。ここで第二の樹脂部22の厚さとは、第一の樹脂部12の第二の樹脂部22が形成される面の面法線方向における第二の樹脂部の厚さのことである。第二の樹脂部22の厚さが前記範囲を満たす時に、環境温度の変化による変形が生じても、より剥がれが生じにくくなる。ここで、第二の樹脂部22の厚さが15μmより薄いと、変形時に樹脂部に発生する応力を十分に緩和できず、剥がれが発生するおそれがある。一方、第二の樹脂部22の厚さが50μmより厚いと、第二の樹脂部22の厚さ方向で応力分布が発生し、割れが発生するおそれがある。
【0027】
ここで、第一の樹脂部12の厚さと第二の樹脂部22の厚さとの和は、最も薄い端部の厚さ(最小厚さtmin)に対する最も厚い中心部における厚さ(最大厚さtmax)との比(偏肉比、tmax/tmin)が、14以上50以下であることが好ましい。偏肉比が14未満であると、光学素子の色収差補正機能が十分得られないおそれがある。一方、偏肉比が50より大きくなると、第一の樹脂部および第二の樹脂部の径方向の中心近傍において厚さ方向の応力分布が発生し、割れが発生しやすくなるおそれがある。
【0028】
また、前記tmaxは0.7mm以上1.4mm以下であることは好ましい。前記tmaxが0.7mm未満であると、光学素子の色収差補正機能が十分得られないおそれがある。一方、tmaxが1.4mmより大きくなると、第一の樹脂部12または第二の樹脂部22の厚さ方向で応力分布が発生し、割れが発生しやすくなるおそれがある。
【0029】
接着部32は第二の樹脂部22の上に設けられ、第二の樹脂部22と第二の基材31とを接合させるものである。
【0030】
接着部32は、接着剤からで形成される樹脂からなる。接着部の樹脂は特に限定されず、熱硬化性樹脂でも光硬化性樹脂でも構わない。光硬化性樹脂としては、アクリル系光硬化性樹脂、エポキシ系硬化樹脂等を用いることができる。これらの中では製造プロセス上、樹脂部に変形を生じさせないという観点においてアクリル系光硬化樹脂を用いることが好ましい。また、弾性率が低く軟らかく、第二の樹脂部22および第二の基材31と密着性がよいものが好ましい。接着部32の厚さは特に限定されないが、密着性に優れるという観点において1μm以上30μm以下が好ましい。また、接着部32の弾性率は、100MPa以上1GPa以下が好ましい。
【0031】
第二の基材31は、例えば、透光性を有するガラスやプラスチックを用いることができる。また、第二の基材31は第一の樹脂部12と対向する面に凹形状を有する。また、本実施形態においては、その凹形状と接着部32が接している。第二の基材31の接着部と接合する面は、密着性を良くするためにシランカップリング剤等によりプライマー処理しても構わない。また、第二の基材31は第一の基材13と同じ材質でも構わないし、異なる材質でも構わない。以上、凸形状を有する第一の基材13と、第一の樹脂部12と、第二の樹脂部22と、接着部32と、凹形状を有する第二の基材31とが順に積層されている例を用いて説明したが、各光学要素の配置はこれに限られない。凹形状を有する第二の基材31と、第一の樹脂部12と、第二の樹脂部22と、接着部32と、凸形状を有する第一の基材13とが順に積層されている形態でも構わない。
【0032】
(光学素子の製造方法)
次に、本発明の光学素子の製造方法の一例を図面に基づいて説明する。以下、凸形状を有する第一の基材13と、第一の樹脂部12と、第二の樹脂部22と、接着部32と、凹形状を有する第二の基材31とが順に積層して製造する光学素子の製造方法を用いて説明する。
図3,4および5は本発明の光学素子の製造方法の一実施態様を示した図であり、
図3は第一の樹脂部12を形成する工程を示した概略図である。
【0033】
まず、
図3(a)のように、樹脂の設置面に凸形状を有する第一の基材13と樹脂の設置面に凹形状を有する第一の型(金型)11を用意し、第一の型11および第一の基材13に樹脂12aを塗布する。なお、樹脂12aは、第一の型11および第一の基材13のいずれか一方に塗布する方法でも構わない。第一の型11の材質は特に限定されないが、例えば、超硬合金を用いることができる。樹脂12aとしては、例えば、光エネルギーを与えて硬化可能な光硬化性樹脂もしくは熱エネルギーを与えて硬化可能な熱硬化性樹脂を用いることができる。また、塗布する方法も特に限定されないが、例えば、ディスペンサーを用いることができる。なお、以下の説明では、樹脂12aとして光硬化性樹脂を用いた場合について説明する。
【0034】
次に、
図3(b)のように支持部材14、可動部15および固定部18からなる第一の治具を用意し、第一の基材13の樹脂12aを塗布した面を第一の型11側に向けて第一の治具に設置する。このとき、第一の型11の中心軸と第一の基材13の中心軸とが一致するように可動部15を用いて調整する。
【0035】
続いて、
図3(c)のように第一の基材13の光学有効外部の位置に加圧部材16が接触するように加圧する。加圧部材16は特に限定されないが、例えば、同心円状の均等な距離の複数箇所にゴムを設け、その複数個のゴムと第一の基材13が接触する構成を採用することができる。また、加圧部材16にかける圧力は、使用する樹脂の粘度、基材の形状等により決まるが、0.01~10N/mm
2の範囲であれば充填性、泡の巻き込み等の課題が発生しない。
【0036】
次に、
図3(d)のように支持部材14を移動させて、第一の型11と第一の基材13との相対距離を縮めて樹脂12aを第一の基材13の径方向に充填する。また、樹脂12aが所望の厚さになったところで、支持部材14の移動を終了させる。その後、加圧部材16を第一の基材13上から取り除く。
【0037】
次に、
図3(e)のように、第一の基材13を通して紫外線光源17から紫外線を樹脂12aに照射して第一の基材13上に第一の樹脂部12を形成する。そして、第一の樹脂部12から第一の型11を離型する。ここで、照射に際しては、酸素による光硬化性樹脂の硬化阻害を防止するために、窒素ガスを流し酸素濃度を0.01%以下にすることが好ましい。
【0038】
また、第一の樹脂部12の硬化を促進するために、離型後に、50℃以上の温度で加熱を行いながら紫外線を照射することが好ましい。さらに、第一の樹脂部12の硬化反応率を該樹脂部の厚み方向に一様にするという観点においては、前記加熱は真空中で行う真空加熱であることが好ましい。大気中の酸素による第一の樹脂部12の硬化阻害を抑制できるためである。また、真空度としては20Pa以下が好ましい。なお、第一の樹脂部12の硬化反応率は40%以上80%以下が好ましい。硬化反応率が40%未満であると第一の基材13との密着性が不十分で、第一の樹脂部12に剥がれが生じるおそれがある。一方、硬化反応率が80%を超えると、第一の樹脂部に割れが生じるおそれがある。
【0039】
図4は、第二の樹脂部22を形成する工程を示した概略図である。
【0040】
まず、
図4(a)のように、樹脂設置面が凹形状を有する第二の型21と、第一の樹脂部12に樹脂22aを塗布する。なお、樹脂22aは、第二の型21および第一の樹脂部12のいずれか一方に塗布する方法でも構わない。第二の型21の材質は特に限定されないが、例えば、超硬合金を用いることができる。また、塗布する方法も特に限定されないが、例えば、ディスペンサーを用いることができる。ここで樹脂22aは樹脂12aと同一の樹脂でも構わない。
【0041】
次に、
図4(b)のように支持部材24、可動部25および固定部28からなる第二の治具を用意し、第一の基材13を、第一の樹脂部12が形成された面を第二の型21側に向けて第二の治具に設置する。このとき、第二の型21の中心軸と第一の基材13の中心軸とが一致するように可動部25を用いて調整する。
【0042】
続いて、
図4(c)のように第一の基材13の光学有効外部の位置に加圧部材26が接触するように加圧する。加圧部材26は特に限定されないが、例えば、同心円状の均等な距離の複数箇所にゴムを設け、その複数個のゴムと第一の基材13が接触する構成を採用することができる。また、加圧部材26にかける圧力は、使用する樹脂の粘度、基材の形状等により決まるが、0.01~10N/mm
2の範囲であれば充填性、泡の巻き込み等の課題が発生しない。
【0043】
次に、
図4(d)のように支持部材24を移動させて、第二の型21と第一の基材13との相対距離を縮めて樹脂22aを第一の基材13の径方向に充填する。また、所望の厚みになったところで、支持部材24の移動を終了させる。その後、加圧部材26を第一の基材13上から取り除く。
【0044】
次に、
図4(e)のように、第一の基材13を通して紫外線光源17から紫外線を樹脂12aに照射して第一の樹脂部12上に第二の樹脂部22を形成する。そして、第二の樹脂部22から第二の型21を離型する。ここで、照射に際しては、酸素による光硬化性樹脂の硬化阻害を防止するために、窒素ガスを流し酸素濃度を0.01%以下にすることが好ましい。ここで、第二の樹脂部22の硬化反応率は第一の樹脂部12より低くする。第二の樹脂部22の硬化反応率は第一の樹脂部12より低くすることによって、第二の樹脂部22の弾性率E2を第一の樹脂部12の弾性率E1より小さくすることができる。
【0045】
なお、第二の樹脂部22の硬化反応率を第一の樹脂部12の硬化反応率より低くする条件であれば、第二の樹脂部22の硬化を促進するために、離型後に、加熱を行いながら紫外線を照射しても構わない。ここで、第二の樹脂部22の硬化反応率を該樹脂部の厚さ方向に一様にするという観点においては、前記加熱は真空中で行う真空加熱であることが好ましい。大気中の酸素による第二の樹脂部22の硬化阻害を抑制できるからである。ここで、真空度としては100Pa以下が好ましい。
【0046】
図5は第二の基材31を接合する工程を示す概略図である。
【0047】
まず、凹面形状を有する第二の基材31を用意する。そして、
図5(a)のように、第二の樹脂部22と、第二の基材31に接着剤32aを塗布する。ここで接着剤32aは、光エネルギーを与えて硬化可能な光硬化性接着剤もしくは熱エネルギーを与えて硬化可能な熱硬化性接着剤を用いることができる。また、塗布する方法も特に限定されないが、例えば、ディスペンサーを用いることができる。なお、以下の説明では、光硬化性接着剤を用いた場合について説明する。
【0048】
次に、
図5(b)のように第二の基材31を第二の樹脂部22上に塗布された接着剤32aと対向、接近させる。
【0049】
さらに、
図5(c)のように接着剤32aの厚みが、所望の厚みになるように第一の基材13と第二の基材31とを接近させて、第一の基材13および第二の基材31の径方向に接着剤32を充填する。
【0050】
そして、最後に
図5(d)のように、紫外線光源33により接着剤32aを硬化させ、接着部32を形成する。接着部32を介して第二の樹脂部22と第二の基材31とが接合される。
【0051】
以上の工程により、
図1に示した本発明の光学素子を製造することができる。なお、凸形状を有する第一の基材13と、第一の樹脂部12と、第二の樹脂部22と、接着部32と、凹形状を有する第二の基材31とが順に積層されている例を用いて説明したが、各光学要素の配置はこれに限られない。凹形状を有する第二の基材31と、第一の樹脂部12と、第二の樹脂部22と、接着部32と、凸形状を有する第一の基材13とが順に積層されている形態でも構わない。
【0052】
(撮像装置)
図6は、本発明の撮像装置の好適な実施形態の一例である、一眼レフデジタルカメラの構成を示している。
図6において、カメラ本体602と光学機器であるレンズ鏡筒601とが結合されているが、レンズ鏡筒601はカメラ本体602対して着脱可能ないわゆる交換レンズである。
【0053】
被写体からの光は、レンズ鏡筒601の筐体620内の撮影光学系の光軸上に配置された複数のレンズ603、605などからなる光学系を介して撮影される。本発明の光学素子は例えば、レンズ603、605に用いることができる。
【0054】
ここで、レンズ605は内筒604によって支持されて、フォーカシングやズーミングのためにレンズ鏡筒601の外筒に対して可動支持されている。
【0055】
撮影前の観察期間では、被写体からの光は、カメラ本体の筐体621内の主ミラー607により反射され、プリズム611を透過後、ファインダレンズ612を通して撮影者に撮影画像が映し出される。主ミラー607は例えばハーフミラーとなっており、主ミラーを透過した光はサブミラー608によりAF(オートフォーカス)ユニット613の方向に反射され、例えばこの反射光は測距に使用される。また、主ミラー607は主ミラーホルダ640に接着などによって装着、支持されている。不図示の駆動機構を介して、撮影時には主ミラー607とサブミラー608を光路外に移動させ、シャッタ609を開き、撮像素子610にレンズ鏡筒601から入射した撮影光像を結像させる。また、絞り606は、開口面積を変更することにより撮影時の明るさや焦点深度を変更できるよう構成される。
【実施例】
【0056】
次に、実施例を挙げて本発明の光学素子、およびその製造方法を具体的に説明するが、本発明は、以下の実施例により限定されるものではない。
【0057】
まず、本発明の光学素子は以下の方法を用いて評価した。その評価方法について記載する。
【0058】
(硬化反応率の測定方法)
第一の樹脂部および第二の樹脂部の硬化反応率は、フーリエ変換赤外分光分析装置(FTIR、PerkinElmer社製、商品名:Spectrum One)を用いて測定した。具体的には、FTIRによって得られた樹脂の吸光スペクトルの炭素の二重結合に係るピーク面積を求め、以下の式を用いて算出した。
【0059】
【数1】
S1:硬化状態における二重結合に係るピーク面積
S2:硬化状態における二重結合に係らないピーク面積
S3:未硬化状態における二重結合に係るピーク面積
S4:未硬化状態における二重結合に係らないピーク面積
【0060】
(弾性率の測定方法)
第一の樹脂部、第二の樹脂部および接着部の弾性率は、室温(23℃±2℃)にて、ナノインデンター(Keysight Technologies社製、商品名:Nanoindenter G200)を用いて評価した。なお、第一の樹脂部と第二の樹脂部は同一の樹脂からなるが、その境界は顕微鏡等で確認できるものであった。
【0061】
(高温耐久試験後の剥がれ評価)
光学素子を60℃に設定した恒温槽に2時間入れて、恒温槽から取り出す。その後、室温(23℃±2℃)にて光学素子の端部における樹脂部と接着部の剥がれの有無を光学顕微鏡にて観察した。剥がれが確認されたものをC、確認されなかったものをAとした。
【0062】
(光学特性)
光学素子を光学系に組み込んだカメラを作製し、RGBの3色で縞模様の形成されたプレートを各色ごとに撮影した。撮影した写真と前記プレート(実物)を比較し、各色の解像度の値を画像処理ソフトで計測し1色でも色収差ずれが基準値を超えるものがあれば、光学特性はCとした。また、色収差ずれが基準値と同じ値であったものをB、基準値未満であったものをAとした。
【0063】
(実施例1)
図1に例示した光学素子を
図3乃至
図5に示した工程で作製した。第一の基材13には、硝材(株式会社オハラ社製、商品名:S-FPM2)を球面形状に加工したφ41mmのものを用いた。第一の型11は超硬合金(富士ダイス株式会社製、商品名:F10)を鏡面加工したものであり、第一の樹脂部の形状を反転したものである。ここで第一の樹脂部の形状は、第一の樹脂部の中心における最大厚さが0.985mm、端部における最小厚さが35μm、中心から該端部までの距離が18.75mmとした。樹脂12aにはアクリル系の紫外線硬化樹脂を用いた。
【0064】
まず、ディスペンサー(武蔵エンジニアリング社製、商品名:SMP-3)を用いて第一の基材13と第一の型11に樹脂12aを塗布した(
図3(a))。次いで、支持部材14、可動部15および固定部18からなる第一の治具を用意し、第一の基材の樹脂12aを塗布した面を第一の型11側に向けて第一の治具に設置した。このとき、第一の型11の中心軸と第一の基材13の中心軸との距離が20μm以下になるように可動部15を用いて調整した(
図3(b))。次いで、第一の基材13の光学有効外部の位置である中心からの距離18.95mmの位置に加圧部材16が接触するように、200Nで加圧した(
図3(c))。さらに、支持部材14を移動させて、第一の型11と第一の基材13との相対距離を縮めて樹脂12aを第一の基材13の径方向に充填した。また、端部における樹脂12aの厚さが35μmになったところで、支持部材14の移動を終了させた。その後、加圧部材16を第一の基材13上から取り除いた(
図3(d))。次に、第一の基材13を通して紫外線光源17から紫外線を樹脂12aに照射して第一の基材13上に第一の樹脂部12を形成した(
図3(e))。ここで紫外線の照射量は10Jであった。そして、第一の樹脂部12から第一の型11を離型した。なお、照射に際しては、窒素ガスを流し酸素濃度を0.01%以下にした状態で行った。このときの第一の樹脂部の硬化反応率は40%であった。
【0065】
また、離型後に第一の樹脂部の硬化を促進するために、真空度10Pa、温度90℃の条件で真空加熱を行いながら、紫外線の照射を行った。ここで紫外線の照射量は10Jであった。真空加熱を行った後の第一の樹脂部の硬化反応率は70%であった。
【0066】
次に厚さ15μmの第二の樹脂部を第一の樹脂部上に形成した。第二の型21は超硬合金(富士ダイス株式会社製、商品名:F10)を鏡面加工したものであり、第一の樹脂部および第二の樹脂部の形状を反転したものである。ここで第二の樹脂部の形状は、厚さ15μm、中心から端部までの距離が18.75mmとした。
【0067】
次に、第一の樹脂部および第二の樹脂部の形状を反転した第二の型21と、前記第一の樹脂部12に樹脂22aをディスペンサーを用いて塗布した(
図4(a))。続いて、支持部材24、可動部25および固定部28からなる第二の治具を用意し、第一の基材13上に形成された第一の樹脂部12を第二の型21側に向けて第二の治具に設置した(
図4(b))。このとき、第二の型21の中心軸と第一の基材13の中心軸との距離が20μm以下になるように可動部25を用いて調整した。続いて、第一の基材13の光学有効外部の位置に加圧部材26が接触するように200Nで加圧した(
図4(c))。次に、支持部材24を移動させて、第二の型21と第一の基材13との相対距離を縮めて樹脂22aを第一の基材13の径方向に充填した。また、樹脂22aの厚さが15μmになったところで、支持部材24の移動を終了させた。その後、加圧部材26を第一の基材13上から取り除いた((
図4(d))。次に、第一の基材13を通して紫外線光源17から紫外線を樹脂22aに照射して第一の樹脂部12上に第二の樹脂部22を形成した(
図4(e))。ここで紫外線の照射量は10Jであった。そして、第二の樹脂部22から第二の型21を離型した。ここで、照射に際しては、窒素ガスを流し酸素濃度を0.01%以下にした状態で行った。このときの第一の樹脂部の硬化反応率は40%であった。すなわち、第二の樹脂部22の硬化反応率は第一の樹脂部12より低かった。
【0068】
次に、第二の基材31を用意して、第二の樹脂部22に光硬化性の接着剤32a(協立化学産業社製、商品名;WR8807LK)を塗布した(
図5(a))。次に、第二の基材31を第二の樹脂部22上に塗布された接着剤32aと対向、接近させた(
図5(b))。さらに、第一の基材13と第二の基材31との距離を接近させることにより、接着剤の厚みが15μmになるように充填した(
図5(c))。そして、最後に紫外線光源33により接着剤32aを硬化させ、接着部32を介して第二の樹脂部22と第二の基材31とが接合した(
図5(d))。以上の工程により、実施例1の光学素子を作製した。
【0069】
光学素子の製造条件は表1にまとめた。
【0070】
なお、得られた光学素子の第一の樹脂部の厚さと第二の樹脂部の厚さの和は、中心における最大厚さが1.0mm、端部における最小厚さが50μm、偏肉比は20であった。
【0071】
【0072】
続いて、実施例1の光学素子の評価を行った。
【0073】
実施例1の光学素子は、高温耐久試験後に剥がれは確認されなかった。
【0074】
また、第1の樹脂部の弾性率E1は3.5GPa、第二の樹脂部の弾性率E2は1.23GPa、すなわちE2/E1は0.35であった。また接着部の弾性率は174MPaであった。
【0075】
また、光学素子を光学系に組み込んだカメラを作製し、RGBの3色で縞模様の形成されたプレートを各色ごとに撮影した色収差を評価したところ、Aであった。
【0076】
光学素子の評価結果は表2にまとめた。
【0077】
【0078】
(実施例2)
第二の樹脂部22を形成する工程において、第二の樹脂部から第二の型を離型した後に、真空度10Pa、温度75℃の条件で真空加熱を行った点以外は、実施例1と同様の製造方法で実施例2の光学素子を作製した。
【0079】
光学素子の製造条件は表1にまとめた。
【0080】
なお、得られた光学素子の第一の樹脂部の厚さと第二の樹脂部の厚さの和は、中心における最大厚さが1.0mm、端部における最小厚さが50μm、偏肉比は20であった。また第二の樹脂部の硬化反応率は60%であった。
【0081】
実施例2の光学素子は、高温耐久試験後に剥がれは確認されなかった。
【0082】
また、第1の樹脂部の弾性率E1は3.5GPa、第二の樹脂部の弾性率E2は2.98GPa、すなわちE2/E1は0.85であった。また接着部の弾性率は174MPaであった。
【0083】
また、光学素子を光学系に組み込んだカメラを作製し、RGBの3色で縞模様の形成されたプレートを各色ごとに撮影した色収差を評価したところ、Aであった。
【0084】
光学素子の評価結果は表2にまとめた。
【0085】
(実施例3)
第一の樹脂部の形状が、中心における最大厚さが0.95mm、端部における最小厚さが0μm、第二の樹脂部の厚さが50μmになるように、第一の型および第二の型の形状を変更した点以外は、実施例1と同様の製造方法で実施例3の光学素子を作製した。
【0086】
光学素子の製造条件は表1にまとめた。
【0087】
なお、得られた光学素子の第一の樹脂部の厚さと第二の樹脂部の厚さの和は、中心における最大厚さが1.0mm、端部における最小厚さが50μm、偏肉比は20であった。
【0088】
実施例3の光学素子は、高温耐久試験後に剥がれは確認されなかった。
【0089】
また、第1の樹脂部の弾性率E1は3.5GPa、第二の樹脂部の弾性率E2は1.23GPa、すなわちE2/E1は0.35であった。また接着部の弾性率は174MPaであった。
【0090】
また、光学素子を光学系に組み込んだカメラを作製し、RGBの3色で縞模様の形成されたプレートを各色ごとに撮影した色収差を評価したところ、Aであった。
【0091】
光学素子の評価結果は表2にまとめた。
【0092】
(実施例4)
第一の樹脂部の形状が、中心における最大厚さが0.685mm、端部における最小厚さが35μm、第二の樹脂部の厚さが15μmになるように、第一の型および第二の型の形状を変更した点以外は、実施例2と同様の方法で実施例4の光学素子を作製した。
【0093】
光学素子の製造条件は表1にまとめた。
【0094】
なお、得られた光学素子の第一の樹脂部の厚さと第二の樹脂部の厚さの和は、中心における最大厚さが0.7mm、端部における最小厚さが50μm、偏肉比は14であった。
【0095】
実施例4の光学素子は、高温耐久試験後に剥がれは確認されなかった。
【0096】
また、第1の樹脂部の弾性率E1は3.5GPa、第二の樹脂部の弾性率E2は2.98GPa、すなわちE2/E1は0.85であった。また接着部の弾性率は174MPaであった。
【0097】
また、光学素子を光学系に組み込んだカメラを作製し、RGBの3色で縞模様の形成されたプレートを各色ごとに撮影した色収差を評価したところ、Aであった。
【0098】
光学素子の評価結果は表2にまとめた。
【0099】
(実施例5)
第一の樹脂部の形状が、中心における最大厚さが1.385mm、端部における最小厚さが13μm、第二の樹脂部の厚さが15μmになるように、第一の型および第二の型の形状を変更した点以外は、実施例2と同様の方法で実施例5の光学素子を作製した。
【0100】
実施例5の光学素子は、高温耐久試験後に剥がれは確認されなかった。
【0101】
光学素子の製造条件は表1にまとめた。
【0102】
なお、得られた光学素子の第一の樹脂部の厚さと第二の樹脂部の厚さの和は、中心における最大厚さが1.4mm、端部における最小厚さが28μm、偏肉比は50であった。
【0103】
また、第1の樹脂部の弾性率E1は3.5GPa、第二の樹脂部の弾性率E2は2.98GPa、すなわちE2/E1は0.85であった。また接着部の弾性率は174MPaであった。
【0104】
また、光学素子を光学系に組み込んだカメラを作製し、RGBの3色で縞模様の形成されたプレートを各色ごとに撮影した色収差を評価したところ、Aであった。
【0105】
光学素子の評価結果は表2にまとめた。
【0106】
(実施例6)
第一の樹脂部の形状が、中心における最大厚さが0.94mm、端部における最小厚さが0μm、第二の樹脂部の厚さが60μmになるように、第一の型および第二の型の形状を変更した点以外は、実施例1と同様の製造方法で実施例6の光学素子を作製した。
【0107】
光学素子の製造条件は表1にまとめた。
【0108】
なお、得られた光学素子の第一の樹脂部の厚さと第二の樹脂部の厚さの和は、中心における最大厚さが1.0mm、端部における最小厚さが60μm、偏肉比は16.7であった。
【0109】
実施例6の光学素子は、高温耐久試験後に剥がれは確認されなかった。
【0110】
また、第1の樹脂部の弾性率E1は3.5GPa、第二の樹脂部の弾性率E2は1.23GPa、すなわちE2/E1は0.35であった。また接着部の弾性率は174MPaであった。
【0111】
また、光学素子を光学系に組み込んだカメラを作製し、RGBの3色で縞模様の形成されたプレートを各色ごとに撮影した色収差を評価したところ、Bであった。
【0112】
光学素子の評価結果は表2にまとめた。
【0113】
(実施例7)
実施例7の光学素子の製造方法は、第一の樹脂部と第二の樹脂部の形成を1つの工程で行っている点で他の実施例と異なる。第一の樹脂部12から第一の型11を離型するまでは実施例1と同様の方法であるが、第一の型を離型した後に、大気雰囲気(酸素濃度は約20%)で90℃で加熱を行いながら紫外線を照射した。このような工程にすることで、形成された樹脂部の表面側の硬化反応率を第一の基材と接する側に比べて低くすることができる。これは、形成された樹脂部の表面側が、大気中の酸素により硬化が阻害されるためである。その結果、形成された樹脂部の表面側は、第一の基材と接する側に比べて弾性率が低くなる。すなわち、形成された樹脂部は、表面側に弾性率が低い第二の樹脂部を、第一の基材と接する側に弾性率が高い第一の樹脂部を有することになる。
【0114】
実施例7における第一の樹脂部の形状は、中心における最大厚さが0.966mm、端部における最小厚さが16μmであった。また、第二の樹脂部の厚さが34μmであった。また、第一の樹脂部の第二の樹脂部と接する部分の硬化反応率は60%であった。
【0115】
光学素子の製造条件は表1にまとめた。
【0116】
なお、得られた光学素子の第一の樹脂部の厚さと第二の樹脂部の厚さの和は、中心における最大厚さが1.0mm、端部における最小厚さが50μm、偏肉比は20であった。
【0117】
実施例7の光学素子は、高温耐久試験後に剥がれは確認されなかった。
【0118】
また、第一の樹脂部の弾性率E1は第一の基材に接する部分が3.5GPaであった。第二の樹脂部の弾性率E2は、第二の樹脂部の厚さをtとし、接着部と接する部分をt=0としたときに、
0≦t≦15μmのとき:E2=1.23GPa、E2/E1=0.35
15μm<t≦34μmのとき:1.23GPa<E2≦2.98GPa、0.35<E2/E1≦0.85
であった。このように第二の樹脂部の弾性率は厚さ方向に分布をもつ場合においても、剥がれに対して効果があるという結果となった。この結果を
図7に示す。
【0119】
また、光学素子を光学系に組み込んだカメラを作製し、RGBの3色で縞模様の形成されたプレートを各色ごとに撮影した色収差を評価したところ、Aであった。
【0120】
光学素子の評価結果は表2にまとめた。
【0121】
(比較例1)
第二の樹脂部の形成を行わなかった点以外は、実施例1と同様の製造方法で比較例1の光学素子を作製した。
【0122】
光学素子の製造条件は表1にまとめた。
【0123】
なお、得られた光学素子の樹脂部の厚さは、中心における最大厚さが1.0mm、端部における最小厚さが50μm、偏肉比は20であった。
【0124】
比較例1の光学素子は、高温耐久試験後に光学素子の端部において、第一の樹脂部と接着部との間で剥がれが確認された。
【0125】
また、第一の樹脂部の弾性率は、第一の基材と接する部分と、接着部と接する部分ともに3.5GPaと一様な値であった。
【0126】
また、高温耐久試験を行う前に、光学素子を光学系に組み込んだカメラを作製し、RGBの3色で縞模様の形成されたプレートを各色ごとに撮影した色収差を評価したところ、Aであった。
【0127】
光学素子の評価結果は表2にまとめた。
【0128】
(比較例2)
第二の樹脂部の形成において、第二の樹脂部22から第二の型21を離型したあとに、真空加熱をしながら紫外線照射を行った点以外は、実施例1と同様の製造方法で比較例2の光学素子を作製した。なお、真空加熱中の紫外線照射量は10Jであった。また、真空加熱中の真空度は10Pa、加熱温度は82℃であった。そして、第二の樹脂部の硬化反応率は65%であった。
【0129】
光学素子の製造条件は表1にまとめた。
【0130】
なお、得られた光学素子の第一の樹脂部の厚さと第二の樹脂部の厚さの和は、中心における最大厚さが1.0mm、端部における最小厚さが50μm、偏肉比は20であった。
【0131】
比較例2の光学素子は、高温耐久試験後に光学素子の端部において、第一の樹脂部と接着部との間で剥がれが確認された。
【0132】
また、第1の樹脂部の弾性率E1は3.5GPa、第二の樹脂部の弾性率E2は3.15GPa、すなわちE2/E1は0.90であった。また接着部の弾性率は174MPaであった。
【0133】
また、高温耐久試験を行う前に、光学素子を光学系に組み込んだカメラを作製し、RGBの3色で縞模様の形成されたプレートを各色ごとに撮影した色収差を評価したところ、Aであった。
【0134】
光学素子の評価結果は表2にまとめた。
【0135】
以上の結果より、第一の樹脂部の弾性率E1と第二の樹脂部の弾性率をE2との比E2/E1が0.9未満であって、接着部の弾性率E3とE3<E2の関係を満たす光学素子は高温耐久試験後に剥がれが生じないことが分かった。また、これらの光学素子は光学特性も良好であった。
【符号の説明】
【0136】
12 第一の樹脂部
12a 樹脂
13 第一の基材
22 第二の樹脂部
22a 樹脂
31 第二の基材
32 接着部
39 光学素子
39A 光学素子
39B 光学素子