(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-02-09
(45)【発行日】2024-02-20
(54)【発明の名称】磁気共鳴イメージング装置及びk空間軌跡の収集角度設定方法
(51)【国際特許分類】
A61B 5/055 20060101AFI20240213BHJP
【FI】
A61B5/055 372
(21)【出願番号】P 2019220279
(22)【出願日】2019-12-05
【審査請求日】2022-08-30
【前置審査】
(73)【特許権者】
【識別番号】594164542
【氏名又は名称】キヤノンメディカルシステムズ株式会社
(74)【代理人】
【識別番号】110003708
【氏名又は名称】弁理士法人鈴榮特許綜合事務所
(72)【発明者】
【氏名】竹島 秀則
(72)【発明者】
【氏名】朽名 英明
【審査官】冨永 昌彦
(56)【参考文献】
【文献】特表2009-540874(JP,A)
【文献】特開2017-192582(JP,A)
【文献】米国特許出願公開第2009/0099443(US,A1)
【文献】米国特許出願公開第2017/0261583(US,A1)
【文献】特開2018-175829(JP,A)
【文献】特開2009-050738(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 5/055
(57)【特許請求の範囲】
【請求項1】
非カーテシアン収集に関するk空間軌跡の収集角度を設定する設定部と、
前記k空間軌跡に従い前記非カーテシアン収集を実行する撮像制御部と、を具備し、
前記設定部は、
収集角度とは異なる変数により規定される第1の変数空間に標本点を配置し、
前記第1の変数空間に配置された前記標本点を、前記収集角度により規定される第2の変数空間に、前記収集角度の価値に応じて写像することにより、前記収集角度を設定する、
磁気共鳴イメージング装置。
【請求項2】
前記設定部は、前記標本点を前記第1の変数空間に第1の距離間隔で配置し、前記標本点を前記写像により前記第2の変数空間において前記価値に応じた第2の距離間隔で配置し、前記第2の変数空間において配置された前記標本点の位置を前記収集角度に設定する、請求項1記載の磁気共鳴イメージング装置。
【請求項3】
前記第1の距離間隔は、等間隔である、請求項2記載の磁気共鳴イメージング装置。
【請求項4】
前記第2の距離間隔は、前記収集角度の前記価値が高いほど狭い、請求項2記載の磁気共鳴イメージング装置。
【請求項5】
前記価値は、前記収集角度に対応する前記k空間軌跡が通るカーテシアン格子点間の距離が狭いほど高い、請求項2記載の磁気共鳴イメージング装置。
【請求項6】
前記価値は、前記k空間軌跡の前記収集角度が過去撮像の他のk空間軌跡の収集角度から遠いほど高い、請求項2記載の磁気共鳴イメージング装置。
【請求項7】
前記価値は、前記k空間軌跡の収集時刻が過去撮像の他のk空間軌跡の収集時刻に近いほど高い、請求項2記載の磁気共鳴イメージング装置。
【請求項8】
前記価値は、前記収集角度に対応する前記k空間軌跡が通り且つ画像化範囲に存在するカーテシアン格子点の個数が多いほど高い、又は前記収集角度に対応する前記k空間軌跡のうちの、k空間に設定された円からはみ出る部分が多いほど高い、請求項2記載の磁気共鳴イメージング装置。
【請求項9】
前記画像化範囲を調整する調整部を更に備え、
前記設定部は、前記調整部による前記画像化範囲の調整に連動して前記k空間軌跡の本数及び前記収集角度を設定する、
請求項8記載の磁気共鳴イメージング装置。
【請求項10】
前記設定部は、前記調整部による調整後の前記画像化範囲に基づく写像に応じて前記収集角度を設定する、請求項9記載の磁気共鳴イメージング装置。
【請求項11】
前記k空間軌跡の本数に基づいて撮像時間を決定する決定部と、
前記撮像時間を表示する表示部と、を更に備える、
請求項10記載の磁気共鳴イメージング装置。
【請求項12】
前記第1の変数空間に前記k空間軌跡を配置するための設定画面を表示する表示部を更に備え、
前記設定部は、前記設定画面を介したユーザの指示に従い前記k空間軌跡を前記第1の変数空間に配置する、
請求項1記載の磁気共鳴イメージング装置。
【請求項13】
前記設定画面は、前記第1の変数空間を模した図形要素と前記k空間軌跡を模した図形要素とを含む、請求項12記載の磁気共鳴イメージング装置。
【請求項14】
前記非カーテシアン収集は、2次元又は3次元のラディアル収集、スパイラル収集又はPROPELLER収集である、請求項1記載の磁気共鳴イメージング装置。
【請求項15】
非カーテシアン収集に関するk空間軌跡の収集角度とは異なる変数により規定される第1の変数空間に標本点を配置し、
前記第1の変数空間に配置された前記標本点を、前記収集角度により規定される第2の変数空間に、前記収集角度の価値に応じて写像することにより、前記k空間軌跡の収集角度を設定する、
ことを具備するk空間軌跡の収集角度設定方法。
【請求項16】
非カーテシアン収集に関する、k空間における画像化範囲を設定する設定部と、
前記画像化範囲のk空間での形状に基づいて撮像時間を決定する決定部と、
前記撮像時間を表示する表示部と、
を具備
し、
前記設定部は、前記画像化範囲のk空間での形状に基づいてk空間軌跡の本数を設定し、
前記表示部は、前記k空間軌跡の本数を表示する、
磁気共鳴イメージング装置。
【請求項17】
非カーテシアン収集に関する、k空間における画像化範囲を設定する設定部と、
前記画像化範囲のk空間での形状に基づいて撮像時間を決定する決定部と、
前記撮像時間を表示する表示部と、
を具備
し、
前記表示部は、k空間を模した第1の図形要素及び前記画像化範囲を調整するための第2の図形要素を表示する、
磁気共鳴イメージング装置。
【請求項18】
前記表示部は、前記第1の図形要素及び/又は前記第2の図形要素に、カーテシアン格子点を表示する、請求項
17記載の磁気共鳴イメージング装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の実施形態は、磁気共鳴イメージング装置及びk空間軌跡の収集角度設定方法に関する。
【背景技術】
【0002】
非カーテシアン収集の一つとして、k空間に設定された放射状のk空間軌跡に沿ってデータ収集を行うラディアル法が知られている。ラディアル法におけるk空間軌跡の収集角度の設定方法の一つとして、黄金比(約111.25度)の角度間隔で繰り返しk空間軌跡の収集角度を設定する黄金角ラディアル(golden angle radial)法が知られている。黄金角ラディアル法によれば、k空間においてk空間軌跡を略等間隔に設定することが可能である。これは、k空間軌跡の価値が収集角度に依らず等しいことを前提にしている。収集角度の価値を考慮した場合には黄金角ラディアル法が必ずしも適切とはいえない。
【先行技術文献】
【特許文献】
【0003】
【文献】米国特許出願公開第2015/185301号明細書
【文献】特開2014-210209号公報
【文献】米国特許出願公開第2019/0079154号明細書
【文献】特開2018-42671号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
本発明が解決しようとする課題は、非カーテシアン収集に関するデータ収集の効率を向上することである。
【課題を解決するための手段】
【0005】
実施形態に係る磁気共鳴イメージング装置は、設定部と撮像制御部とを含む。前記設定部は、非カーテシアン収集に関するk空間軌跡の収集角度を設定する。前記設定部は、収集角度とは異なる変数により規定される第1の変数空間に標本点を配置し、前記第1の変数空間に配置された前記標本点を、前記収集角度により規定される第2の変数空間に、前記収集角度の価値に応じて写像することにより、前記収集角度を設定する。前記撮像制御部は、前記k空間軌跡に従い前記非カーテシアン収集を実行する。
【図面の簡単な説明】
【0006】
【
図1】
図1は、本実施形態に係る磁気共鳴イメージング装置の構成を示す図である。
【
図2】
図2は、本実施形態に係るk空間におけるラディアル収集に関するk空間軌跡を示す図である。
【
図4】
図4は、k空間軌跡の疎密のk空間分布の一例を示す図である。
【
図5】
図5は、k空間軌跡の疎密のk空間分布の他の例を示す図である。
【
図6】
図6は、k空間軌跡の疎密のk空間分布の他の例を示す図である。
【
図7】
図7は、磁気共鳴イメージング装置によるGMA法を利用したMR検査の典型的な流れを示す図である。
【
図8】
図8は、仮想変数軸から収集角度軸へのk空間軌跡の写像の一例を示す図である。
【
図9】
図9は、収集角度の設定画面の一例を示す図である。
【
図10】
図10は、k空間におけるラディアル収集に関するk空間軌跡と画像化範囲とを示す図である。
【
図11】
図11は、k空間軌跡の疎密のk空間分布の一例を示す図である。
【
図12】
図12は、応用例1に係るGMA法を利用したMR検査の流れを示す図である。
【
図13】
図13は、応用例2に係るGMA法を利用したMR検査の流れを示す図である。
【
図14】
図14は、画像化範囲の調整のためのGUI画面の一例を示す図である。
【
図15】
図15は、変形例に係るk空間におけるラディアル収集に関するk空間軌跡と画像化範囲とを示す図である。
【発明を実施するための形態】
【0007】
以下、図面を参照しながら本実施形態に係る磁気共鳴イメージング装置及びk空間軌跡の収集角度設定方法を説明する。
【0008】
図1は、本実施形態に係る磁気共鳴イメージング装置1の構成を示す図である。
図1に示すように、磁気共鳴イメージング装置1は、架台11、寝台13、傾斜磁場電源21、送信回路23、受信回路25、寝台駆動装置27、シーケンス制御回路29及びホストコンピュータ(Host Computer)50を有する。
【0009】
架台11は、静磁場磁石41と傾斜磁場コイル43とを有する。静磁場磁石41と傾斜磁場コイル43とは架台11の筐体に収容されている。架台11の筐体には中空形状を有するボアが形成されている。架台11のボア内には送信コイル45と受信コイル47とが配置される。
【0010】
静磁場磁石41は、中空の略円筒形状を有し、略円筒内部に静磁場を発生する。静磁場磁石41としては、例えば、永久磁石、超伝導磁石または常伝導磁石等が使用される。ここで、静磁場磁石41の中心軸をZ軸に規定し、Z軸に対して鉛直に直交する軸をY軸に規定し、Z軸に水平に直交する軸をX軸に規定する。X軸、Y軸及びZ軸は、直交3次元座標系を構成する。
【0011】
傾斜磁場コイル43は、静磁場磁石41の内側に取り付けられ、中空の略円筒形状に形成されたコイルユニットである。傾斜磁場コイル43は、傾斜磁場電源21からの電流の供給を受けて傾斜磁場を発生する。より詳細には、傾斜磁場コイル43は、互いに直交するX軸、Y軸、Z軸に対応する3つのコイルを有する。当該3つのコイルは、X軸、Y軸、Z軸の各軸に沿って磁場強度が変化する傾斜磁場を形成する。X軸、Y軸、Z軸の各軸に沿う傾斜磁場は合成されて互いに直交するスライス選択傾斜磁場Gs、位相エンコード傾斜磁場Gp及び周波数エンコード傾斜磁場Grが所望の方向に形成される。スライス選択傾斜磁場Gsは、任意に撮像断面(スライス)を決めるために利用される。位相エンコード傾斜磁場Gpは、空間的位置に応じて磁気共鳴信号(以下、MR信号と呼ぶ)の位相を変化させるために利用される。周波数エンコード傾斜磁場Grは、空間的位置に応じてMR信号の周波数を変化させるために利用される。なお、以下の説明においてスライス選択傾斜磁場Gsの傾斜方向はZ軸、位相エンコード傾斜磁場Gpの傾斜方向はY軸、周波数エンコード傾斜磁場Grの傾斜方向はX軸であるとする。
【0012】
傾斜磁場電源21は、シーケンス制御回路29からのシーケンス制御信号に従い傾斜磁場コイル43に電流を供給する。傾斜磁場電源21は、傾斜磁場コイル43に電流を供給することにより、X軸、Y軸及びZ軸の各軸に沿う傾斜磁場を傾斜磁場コイル43により発生させる。当該傾斜磁場は、静磁場磁石41により形成された静磁場に重畳されて被検体Pに印加される。
【0013】
送信コイル45は、例えば、傾斜磁場コイル43の内側に配置され、送信回路23から電流の供給を受けて高周波パルス(以下、RFパルスと呼ぶ)を発生する。
【0014】
送信回路23は、被検体P内に存在する対象プロトンを励起するためのRFパルスを、送信コイル45を介して被検体Pに印加するために、送信コイル45に電流を供給する。RFパルスは、対象プロトンに固有の共鳴周波数で振動し、対象プロトンを励起させる。励起された対象プロトンからMR信号が発生され、受信コイル47により検出される。送信コイル45は、例えば、全身用コイル(WBコイル)である。全身用コイルは、送受信コイルとして使用されても良い。
【0015】
受信コイル47は、RF磁場パルスの作用を受けて被検体P内に存在する対象プロトンから発せられるMR信号を受信する。受信コイル47は、MR信号を受信可能な複数の受信コイルエレメントを有する。受信されたMR信号は、有線又は無線を介して受信回路25に供給される。
図1に図示しないが、受信コイル47は、並列的に実装された複数の受信チャネルを有している。受信チャネルは、MR信号を受信する受信コイルエレメント及びMR信号を増幅する増幅器等を有している。MR信号は、受信チャネル毎に出力される。受信チャネルの総数と受信コイルエレメントの総数とは同一であっても良いし、受信チャネルの総数が受信コイルエレメントの総数に比して多くてもよいし、少なくてもよい。
【0016】
受信回路25は、励起された対象プロトンから発生されるMR信号を受信コイル47を介して受信する。受信回路25は、受信されたMR信号を信号処理してデジタルのMR信号を発生する。デジタルのMR信号は、空間周波数により規定されるk空間にて表現することができる。よって、以下、デジタルのMR信号をk空間データと呼ぶことにする。k空間データは、画像再構成に供される生データの一種である。k空間データは、有線又は無線を介してホストコンピュータ50に供給される。
【0017】
なお、上記の送信コイル45と受信コイル47とは一例に過ぎない。送信コイル45と受信コイル47との代わりに、送信機能と受信機能とを備えた送受信コイルが用いられても良い。また、送信コイル45、受信コイル47及び送受信コイルが組み合わされても良い。
【0018】
架台11に隣接して寝台13が設置される。寝台13は、天板131と基台133とを有する。天板131には被検体Pが載置される。基台133は、天板131をX軸、Y軸、Z軸各々に沿ってスライド可能に支持する。基台133には寝台駆動装置27が収容される。寝台駆動装置27は、シーケンス制御回路29からの制御を受けて天板131を移動する。寝台駆動装置27は、例えば、サーボモータやステッピングモータ等の如何なるモータ等を含んでも良い。
【0019】
シーケンス制御回路29は、ハードウェア資源として、CPU(Central Processing Unit)あるいはMPU(Micro Processing Unit)のプロセッサとROM(Read Only Memory)やRAM(Random Access Memory)等のメモリとを有する。シーケンス制御回路29は、処理回路51の撮像条件設定機能512により設定された撮像条件に基づいて傾斜磁場電源21、送信回路23及び受信回路25を同期的に制御し、当該撮像条件に応じたパルスシーケンスに従い被検体PにMR撮像を実行し、被検体Pに関するk空間データを収集する。シーケンス制御回路29は、撮像制御部の一例である。
【0020】
本実施形態に係るシーケンス制御回路29は、k空間充填方式として、非カーテシアン収集を実行する。非カーテシアン収集は、カーテシアン収集とは異なるk空間のスキャン方式であり、例えば、2次元又は3次元のラディアル収集、スパイラル収集又はPROPELLER(periodically rotated overlapping parallel lines with enhanced reconstruction)収集である。非カーテシアン収集に関するk空間軌跡は、k空間におけるk空間軌跡の角度(以下、収集角度と呼ぶ)により特徴付けられる。例えば、ラディアル収集のk空間軌跡は、スポークとも呼ばれ、k空間の原点を放射状に通過する。ラディアル収集のk空間軌跡の収集角度は、k空間原点回りの角度に設定される。
【0021】
図1に示すように、ホストコンピュータ50は、処理回路51、メモリ52、ディスプレイ53、入力インタフェース54及び通信インタフェース55を有するコンピュータである。処理回路51は処理部の一例であり、メモリ52は記憶部の一例であり、ディスプレイ53は表示部の一例であり、入力インタフェース54は入力部の一例であり、通信インタフェース55は通信部の一例である。
【0022】
処理回路51は、ハードウェア資源としてCPU等のプロセッサを有する。処理回路51は、磁気共鳴イメージング装置1の中枢として機能する。例えば、処理回路51は、各種プログラムの実行により取得機能511、撮像条件設定機能512、再構成機能513、画像処理機能514及び表示制御機能515を有する。取得機能511は取得部の一例であり、撮像条件設定機能512は設定部、調整部及び決定部の一例であり、再構成機能513は再構成部の一例であり、画像処理機能514は画像処理部の一例であり、表示制御機能515は表示部の一例である。
【0023】
取得機能511において処理回路51は、種々のデータを取得する。例えば、処理回路51は、シーケンス制御回路29により収集された、非カーテシアン収集に関するk空間データを取得する。処理回路51は、シーケンス制御回路29又は受信回路25からk空間データを直接的に取得してもよいし、k空間データを一旦メモリ52に記憶し、当該メモリ52から取得してもよい。
【0024】
撮像条件設定機能512において処理回路51は、自動的又は手動的に撮像条件を設定する。例えば、処理回路51は、撮像条件の一つとして、非カーテシアン収集に関するk空間軌跡の収集角度を設定する。また、処理回路51は、撮像条件の一つとして、画像化範囲(FOV:Field Of View)を設定又は調整してもよい。また、処理回路51は、画像化範囲の形状に基づいて撮像時間を決定してもよい。処理回路51は、これら撮像条件の他、エコー時間TEや繰り返し時間TR等、如何なる撮像条件を設定することも可能である。
【0025】
再構成機能513において処理回路51は、取得機能511により取得されたk空間データに基づいて、被検体Pに関するMR画像を再構成する。例えば、処理回路51は、k空間データにフーリエ変換又は逆フーリエ変換を施してMR画像を生成する。なお再構成法は、フーリエ変換又は逆フーリエ変換に限定されず、パラレルイメージング(parallel imaging)や圧縮センシング、機械学習モデル等が用いられてもよい。
【0026】
画像処理機能514において処理回路51は、MR画像に種々の画像処理を施す。例えば、処理回路51は、ボリュームレンダリングやサーフェスレンダリング、画素値投影処理、MPR(Multi-Planer Reconstruction)処理、CPR(Curved MPR)処理等の画像処理を施す。また、処理回路51は、画像処理として、領域抽出や画像認識、画像解析、位置合わせ等の種々の処理を行うことも可能である。
【0027】
表示制御機能515において処理回路51は、種々の情報をディスプレイ53に表示する。例えば、処理回路51は、再構成機能513により生成されたMR画像、画像処理機能514により生成されたMR画像、収集角度の設定画面等をディスプレイ53に表示する。処理回路51は、MR画像に対して階調処理や拡大/縮小処理、アノテーション付与等の表示処理を適宜行ってもよい。
【0028】
メモリ52は、種々の情報を記憶するHDD(Hard Disk Drive)やSSD(Solid State Drive)、集積回路記憶装置等の記憶装置である。また、メモリ52は、CD-ROMドライブやDVDドライブ、フラッシュメモリ等の可搬性記憶媒体との間で種々の情報を読み書きする駆動装置等であっても良い。例えば、メモリ52は、撮像条件、k空間データ、MR画像、制御プログラム等を記憶する。
【0029】
ディスプレイ53は、表示制御機能515により種々の情報を表示する。例えば、ディスプレイ53は、再構成機能513により生成されたMR画像、画像処理機能514により生成されたMR画像、収集角度の設定画面等を表示する。ディスプレイ53としては、例えば、CRTディスプレイや液晶ディスプレイ、有機ELディスプレイ、LEDディスプレイ、プラズマディスプレイ、又は当技術分野で知られている他の任意のディスプレイが適宜利用可能である。
【0030】
入力インタフェース54は、ユーザからの各種指令を受け付ける入力機器を含む。入力機器としては、キーボードやマウス、各種スイッチ、タッチスクリーン、タッチパッド等が利用可能である。なお、入力機器は、マウス、キーボードなどの物理的な操作部品を備えるものだけに限らない。例えば、磁気共鳴イメージング装置1とは別体に設けられた外部の入力機器から入力操作に対応する電気信号を受け取り、受け取った電気信号を種々の回路へ出力するような電気信号の処理回路も入力インタフェース54の例に含まれる。また、入力インタフェース54は、マイクロフォンにより収集された音声信号を指示信号に変換する音声認識装置でもよい。
【0031】
通信インタフェース55は、LAN(Local Area Network)等を介して磁気共鳴イメージング装置1と、ワークステーションやPACS(Picture Archiving and Communication System)、HIS(Hospital Information System)、RIS(Radiology Information System)等とを接続するインタフェースである。ネットワークIFは、各種情報を接続先のワークステーション、PACS、HIS及びRISとの間で送受信する。
【0032】
なお、上記の構成は一例であって、これに限定されない。例えば、シーケンス制御回路29は、ホストコンピュータ50に組み込まれても良い。また、シーケンス制御回路29と処理回路51とが同一の基板に実装されても良い。また、撮像条件設定機能512は、必ずしも磁気共鳴イメージング装置1の処理回路51に実装されている必要性はない。例えば、磁気共鳴イメージング装置1とは別体の、撮像条件を設定するためのコンピュータに撮像条件設定機能512が実装されればよい。この場合、当該コンピュータにより生成された撮像条件が、ネットワーク又は可搬型記録媒体等を介して磁気共鳴イメージング装置1に供給される。また、メモリ52のうちの撮像条件の記憶領域は、磁気共鳴イメージング装置1に実装されている必要はなく、例えば、磁気共鳴イメージング装置1にネットワークを介して接続された記憶装置に実装されてもよい。
【0033】
本実施形態に係る処理回路51は、撮像条件設定機能512により、黄金角ラディアル法とは異なる方法により、非カーテシアン収集に関するk空間軌跡の収集角度を設定する。より詳細には、処理回路51は、まず、収集角度とは異なる変数により規定される第1の変数空間に標本点を配置する。次に処理回路51は、第1の変数空間に配置された標本点を、収集角度により規定される第2の変数空間に、収集角度の価値に応じて写像することにより、収集角度を設定する。以下、本実施形態に係る収集角度の設定方法をGMA(Golden Mapped Angle)法と呼ぶことにする。
【0034】
GMA法は各k空間軌跡の収集角度の価値(以下、単に価値と呼ぶ)が一定ではないことに着目している。価値は、収集角度の有用性、より詳細には、再構成画像の画質に対する寄与度を意味する。価値が比較的高い収集角度範囲ほどk空間軌跡の密度が大きく設定され、価値が比較的低い収集角度範囲ほどk空間軌跡の密度が小さく設定される。
【0035】
以下、より詳細に価値について説明する。なお、説明を具体的に行うため、2次元のラディアル収集を非カーテシアン収集の一例として説明する。
【0036】
図2は、ラディアル収集に関するk空間60に設定されるk空間軌跡KTを示す図である。k空間60は、空間周波数ky及び空間周波数kxにより張られる空間である。k空間60のky方向のサイズとkx方向のサイズとは同一に設定される。k空間60には、k空間軌跡KTのスキャン範囲の外周を示す円61が設定される。また、k空間60にはカーテシアン座標系により規定された複数の格子点(カーテシアン格子点とも呼ぶ)62が設定される。例えば、円61の中心はカーテシアン座標系の原点621に一致するように設定される。k空間軌跡KTは、始点が円61上の一点に設定され、終点が、当該始点から原点621を挟んで反対側の一点に設定され、原点621を通過する直線として設定される。k空間軌跡KTの原点621回りの角度が収集角度に規定される。異なる複数の収集角度に関する複数のk空間軌跡KTがk空間60に設定される。+kx方向に延びるk空間軌跡の収集角度が0度に規定され、+ky方向に延びるk空間軌跡の収集角度が90度に規定され、-kx方向に延びるk空間軌跡の収集角度が180度に規定される。ラディアル収集においては円61よりも外側の格子点62については無視される。なお、
図2においては4本のk空間軌跡KTが設定されているが、k空間軌跡KTの設定本数は特に限定されない。
【0037】
k空間60には再構成画像に用いるk空間データの範囲を示す画像化範囲(FOV)が設定される。本実施形態において画像化範囲はk空間60全体に設定されているものとする。円61は、画像化範囲に内接するように設定される。この場合、円61の形状は真円となる。
【0038】
ラディアル収集により得られた各k空間軌跡KTのk空間データは、例えば、グリッド処理の前処理部を経て
図2に示すカーテシアン座標空間に配置される。グリッド処理の前処理部により、複数のk空間軌跡KTのk空間データに基づいて各格子点62のデータ値が得られる。カーテシアン座標空間に配置されたk空間データにフーリエ変換又は逆フーリエ変換が施され、得られたデータに対するグリッド処理の後処理が施されることにより、カーテシアン座標系により表現されるMR画像が再構成される。すなわち、カーテシアン座標系の格子点62相当の分解能があれば、k空間軌跡の本数又は密度が十分である。
【0039】
図3は、k空間の原点621周辺の拡大図である。
図3に示すように、各k空間軌跡KTは複数の格子点62を通過する。k空間軌跡KTが通過する隣接する2つの格子点62間の距離は当該k空間軌跡KTの収集角度に応じて異なる。例えば、収集角度「0度」のk空間軌跡KT(0度)が通過する隣接する2つの格子点62間の距離が「1」である場合、収集角度「45度」のk空間軌跡KT(45度)が通過する隣接する2つの格子点62間の距離は「√2」である。k空間軌跡KT(0度)及びKT(45度)が同一長さであるので、k空間軌跡KT(0度)が通過する格子点62の個数は、k空間軌跡KT(45度)が通過する格子点62の個数よりも多いこととなる。従って格子点62相当の分解能を得るためには、必ずしも収集角度が均等になるようにk空間軌跡KTを設定する必要はないことがわかる。この場合、収集角度の価値は、k空間軌跡が通過するカーテシアン格子点間の距離が狭いほど高いといえる。
【0040】
図4は、k空間軌跡の疎密のk空間分布の一例を示す図である。
図4に示すように、k空間軌跡が通過するカーテシアン格子点間の距離が短い収集角度については、価値が高く、k空間軌跡が密に設定される。k空間軌跡が通過するカーテシアン格子点間の距離が長い収集角度については、価値が低く、k空間軌跡が疎に設定される。k空間軌跡が密に設定される収集角度範囲においては、隣接するk空間軌跡間の角度間隔が比較的狭く設定され、k空間軌跡が疎に設定される収集角度範囲においては、隣接するk空間軌跡間の角度間隔が比較的広く設定される。例えば、収集角度「45度」付近の収集角度範囲における収集角度間隔は、収集角度「0度」及び「90度」付近の収集角度範囲における収集角度間隔に比して広く設定される。
【0041】
このように、収集角度の価値の高い範囲については密にk空間軌跡を配置し且つ価値の低い角度範囲については疎にk空間軌跡を配置することにより、効率良くデータ収集を行うことができる。
【0042】
「密」に対応する収集角度間隔及び「疎」に対応する収集角度間隔は、任意の値に設定可能である。なお、収集角度間隔は、「密」及び「疎」の2段階で設定されてもよいが、3以上の複数段階で設定されてもよいし、下限値から上限値に亘る連続値で設定されてもよい。この下限値及び上限値については任意に設定可能である。
【0043】
価値は、k空間軌跡が通過するカーテシアン格子点の個数に基づいて設定される事に限定されず、種々の観点(以下、価値観点と呼ぶ)により設定可能である。例えば、対象撮像により収集されたk空間データと過去撮像により収集されたk空間データとに基づいてMR画像を生成する場合がある。この場合、価値は、例えば、k空間軌跡の設定対象の撮像(以下、対象撮像と呼ぶ)のk空間軌跡と過去撮像のk空間軌跡の収集角度との近接性に基づいて設定されるとよい。価値観点は、収集角度の価値の定義の仕方を意味する。
【0044】
図5は、k空間軌跡の疎密のk空間分布の他の例を示す図である。
図5に示すように、過去撮像のk空間軌跡KTPに近い収集角度は、価値が低く、対象撮像のk空間軌跡が疎に設定される。k空間軌跡KTPから遠い収集角度は、価値が高く、対象撮像のk空間軌跡が密に設定される。
【0045】
なお、過去撮像のk空間軌跡は、対象撮像のk空間軌跡よりも何フレーム時間的に前でもよい。また、対象撮像の収集角度の価値を設定するに際しては、過去撮像のk空間軌跡を幾つ考慮してもよい。例えば、
図5においては、簡単のため、過去撮像の1本のk空間軌跡に対する対象撮像の収集角度の価値を示しているが、同様のアルゴリズムにより、過去撮像の2本以上のk空間軌跡に対する対象撮像の収集角度の価値が設定されてもよい。
【0046】
上記の通り、
図5において価値は、過去撮像のk空間軌跡の収集角度との場所的近接性に基づいて設定されるものとした。しかしながら、過去撮像のk空間軌跡の収集角度との時間的近接性に基づいて価値が設定されてもよい。
【0047】
図6は、k空間軌跡の疎密のk空間分布の他の例を示す図である。
図6において、対象撮像のフレームを「t」と表記し、「t」に対してn(整数)フレーム前の過去撮像のフレームを「t-n」と表記することとする。
図6においては、対象撮像の収集角度の価値の設定に際して、対象撮像フレームtから1フレーム前の過去撮像のk空間軌跡KT(t-1)と5フレーム前の過去撮像のk空間軌跡KT(t-5)とを考慮するものとする。
【0048】
図6に示すように、5フレーム前のk空間軌跡KT(t-5)周辺の収集角度範囲は、1フレーム前のk空間軌跡KT(t-1)周辺の収集角度範囲に比して、価値が高く、対象撮像のk空間軌跡が密に設定される。このように、このように、対象撮像の収集角度が、時間的に離れた過去撮像のk空間軌跡KT(t-n)に対して場所的に近いほど価値が高く設定され、k空間軌跡が密に設定される。対象撮像のk空間軌跡の収集時刻が、過去撮像のk空間軌跡KT(t-n)の収集時刻から離れているほど、価値が低く設定される。
【0049】
なお、過去撮像のフレームは対象撮像のフレームに対して幾つ前のフレームでもよい。また、対象撮像の収集角度の価値を設定するに際しては、過去撮像のk空間軌跡を幾つ考慮してもよい。例えば、
図6においては、簡単のため、1フレーム前の1本のk空間軌跡KT(t-1)と5フレーム前の1本のk空間軌跡KT(t-5)とに対する対象撮像の収集角度の価値を示しているが、同様のアルゴリズムにより、2~4フレーム前のk空間軌跡が考慮されてもよいし、6フレーム以上前のk空間軌跡が考慮されてもよい。
【0050】
次に、本実施形態に係る磁気共鳴イメージング装置1によるGMA法を利用したMR検査の流れについて説明する。
【0051】
図7は、磁気共鳴イメージング装置1によるGMA法を利用したMR検査の典型的な流れを示す図である。なお、
図7においてk空間充填方式はラディアル法であるとする。
【0052】
図7に示すように、まず、処理回路51は、撮像条件設定機能512の実現により、GMA法を利用してラディアル収集に関するk空間軌跡の収集角度を設定する(ステップSA1-SA3)。具体的には、処理回路51は、標本点を第1の変数空間に設定し(ステップSA1)、標本点を第2の変数空間に写像し(ステップSA2)、第2の変数空間での標本点の位置を収集角度に設定する(ステップSA3)。
【0053】
第1の変数空間は、収集角度とは異なる仮想の変数(以下、仮想変数と呼ぶ)により規定される空間である。第2の変数空間は、収集角度により規定される空間である。第2の変数空間の次元数は、2次元のラディアル法の場合、1次元であり、3次元のラディアル法の場合、2次元である。第1の変数空間の次元数は、第2の変数空間の次元数と同一であってもよいし、異なっていてもよい。すなわち、第1の変数空間の次元数は、例えば、2次元のラディアル法の場合、1であり、3次元のラディアル法の場合、1又は2である。
【0054】
以下、
図8を参照しながら、2次元のラディアル法を例にしてステップSA1-SA3について説明する。この場合、第1の変数空間は、一次元の仮想変数により規定される軸であり、仮想変数軸と称することにする。第2の変数空間は、一次元の収集角度により規定される軸であり、収集角度軸と称することにする。
【0055】
図8は、仮想変数軸71から収集角度軸72への標本点の写像の一例を示す図である。仮想変数軸71は所定の数値範囲(長さ)を有する。数値範囲は、任意の値に設定可能であるが、例えば、
図8に示すように、下限「0」から上限「1」までの範囲に設定される。仮想変数軸71上の位置は仮想変数を表す。収集角度軸72は所定の角度範囲を有する。角度範囲は、任意の値に設定可能であるが、例えば、
図8に示すように、下限「0度」から上限「180度」までの範囲に設定される。収集角度軸72上の位置は収集角度を表す。仮想変数「0」は収集角度「0度」に対応する。
【0056】
図8に示すように、処理回路51は、n個の標本点KT1k(1≦k≦n)を仮想変数軸71に第1の距離間隔D1kで配置し、n個の標本点KT1kを収集角度軸72に写像することにより、価値に応じた第2の距離間隔D2kで配置し、収集角度軸72において配置されたn個の標本点KT2k各々の位置を収集角度に設定する。具体的には、まず仮想変数軸71の数値範囲と仮想変数軸71上での隣接する2つの標本点KT1k間の距離間隔D1kとが設定される。各距離間隔D1kは、例えば、等間隔に設定される。次に、仮想変数軸71の数値範囲と距離間隔D1kとに従い、仮想変数軸71に標本点KT1kが点列として配置される。各標本点KT1kは一のk空間軌跡の位置を示すシンボルである。各標本点KT1kが収集角度軸72に写像される。写像により、仮想変数軸71上の各標本点KT1kが収集角度軸72上の各標本点KT2kに変換される。収集角度軸72上の各標本点KT2kの位置が特定され、特定された位置が収集角度に設定される。これにより収集角度集合が設定されることとなる。写像により、例えば、等間隔D1kに配置されたn個の標本点KT1kの集合が、収集角度の価値に応じて非等間隔D2kに配置されたn個の収集角度KT2kの集合に変換されることとなる。例えば、間隔D21は、間隔D22に比して狭いので、間隔D21に対応する収集角度の価値が高いことを意味する。
【0057】
ここで、仮想変数をx、収集角度をθで表記すると、仮想変数xから収集角度θへの写像は関数θ=f(x)のように表される。写像関数fの勾配df/dxは収集角度の価値、換言すれば、収集角度の重みを表す。なお、収集角度軸72上でのk空間軌跡KT2の距離間隔D2が均等である場合、勾配df/dxはxによらない定数に相当する。
【0058】
写像関数fは、上記の価値観点とパラメータとに応じて設計可能である。上記の通り、価値観点は、1.k空間軌跡が通過するカーテシアン格子点の個数、2.過去撮像のk空間軌跡に対する場所的近接性、3.過去撮像のk空間軌跡に対する時間的近接性、の3種類に大別される。換言すれば、価値観点は写像関数fの種類を決定付ける一の要素である。パラメータは、写像関数fの勾配df/dxやバイアス等である。
【0059】
価値観点1の場合、k空間軌跡が通るカーテシアン格子点間の距離が狭いほど、当該k空間軌跡の収集角度の価値が高い。価値観点1の場合、勾配df/dxは、k空間軌跡が通過するカーテシアン格子点の個数が多い収集角度ほど大きくなるように、少ない収集角度ほど小さくなるように設定される。具体的には、勾配df/dxは、格子点の距離間隔に応じた値に設定されるとよい。例えば、勾配df/dxは1/√2から1までの範囲に設定される。このとき、収集角度θ=45度及び135度について、勾配df/dxは最小値=1/√2に設定され、収集角度θ=0度、90度及び180度について、勾配df/dxは最大値=1に設定される。
【0060】
価値観点2の場合、対象撮像のk空間軌跡の収集角度が過去撮像の他のk空間軌跡の収集角度から遠いほど、当該対象撮像のk空間軌跡の収集角度の価値が高い。価値観点2の場合、勾配df/dxは、過去撮像のk空間軌跡に対して場所的に近い収集角度ほど大きくなるように、遠い収集角度ほど小さくなるように設定される。具体的には、勾配df/dxは、1/2から1までの範囲に設定される。
【0061】
価値観点3の場合、対象撮像のk空間軌跡の収集時刻が過去撮像の他のk空間軌跡の収集時刻に近いほど、当該対象撮像のk空間軌跡の収集角度の価値が高い。価値観点3の場合、勾配df/dxは、過去撮像のk空間軌跡に対して時間的に近い収集角度ほど大きくなるように、遠い収集角度ほど小さくなるように設定される。具体的には、勾配df/dxは、1/2から1までの範囲に設定される。
【0062】
例えば、価値観点1での写像関数fの導出方法を簡単に説明する。まず、k空間に設定された円と、カーテシアン格子点を通りky軸及びkx軸に平行な線(以下、格子線と呼ぶ)とを設定する。次に、円と各格子線とが交差する角度を算出し、算出された角度に基づいて、各格子点において許容できるサンプリング密度を決定する。そして各格子点におけるサンプリング密度を補間することにより写像関数fが求まる。補間は、例えば、スプライン関数が適当であるが、これに限らず如何なる一次関数、二次関数又はより高次の関数により補間されてもよい。
【0063】
写像関数fの導出方法は上記方法に限定されず、例えば、収集角度θから仮想変数xへの写像関数gを決定し、写像関数gの逆関数として写像関数fを算出してもよい。写像関数gは任意の方法により決定されればよい。また、写像関数fは、複数の仮想変数を入力して複数の収集角度を出力するように学習されたニューラルネットワークでもよい。
【0064】
上記の説明においては価値観点1、価値観点2及び価値観点3を独立に説明したが、価値観点1、価値観点2及び価値観点3は互いに排他的ではなく両立可能である。すなわち、価値観点1、価値観点2及び価値観点3のうちの2種又は3全てを組み合わせてもよい。
【0065】
上記の説明においては二次元ラディアル収集を例にして写像について説明したが、三次元ラディアル収集にも拡張可能である。三次元ラディアル収集としては、スタック・オブ・スターズ収集やクッシュボール収集が利用可能である。スタック・オブ・スターズ収集は二次元ラディアル収集の例として述べた方法を用いることができる。クッシュボール収集の場合、収集角度が第1の偏角と第2の偏角との組み合わせにより規定される。従って、収集角度軸は、第1の偏角に関する第1の収集角度軸と第2の偏角に関する第2の収集角度軸とを有する。これに対応して、仮想変数軸は、第1の偏角に対応する第1仮想変数x1に関する第1の仮想変数軸と第2の偏角に対応する第2の仮想変数x2に関する第2の仮想変数軸とを有する。例えば、第1の偏角「45度」且つ第2の偏角「45度」の場合、カーテシアン格子点間の距離間隔は最長であり、第1の偏角「0度」且つ第2の偏角「0度」の場合、カーテシアン格子点間の距離間隔は最短である。よって勾配df/dx1及び勾配df/dx2は1/√3~1の範囲に設定されるとよい。
【0066】
上記の説明においてはラディアル収集を例にして写像について説明したが、2次元スパイラル収集や3次元スパイラル収集にも適用可能である。3次元スパイラル収集としては、コーン形状のk空間軌跡によるコーン収集等も可能である。また、2次元PROPELLER収集や3次元のStack-of-PROPELLERs収集にも適用可能である。
【0067】
仮想変数軸71へのk空間軌跡KT1nの配置は、例えば、収集角度の設定のためのGUI(Graphical User Interface)画面(以下、設定画面と呼ぶ)を介して行われる。処理回路51は、設定画面を介したユーザの指示に従い、k空間軌跡KT1nを仮想変数軸71に配置する、
【0068】
図9は、収集角度の設定画面I1の一例を示す図である。
図9に示すように、設定画面I1は、表示欄I11、等間隔ボタンI12、非等間隔ボタンI13、GUI図形要素I14及びGUI図形要素I16を有する。表示欄I11には対象撮像においてデータ収集する予定のk空間軌跡の本数が表示される。等間隔ボタンI12は仮想変数軸においてk空間軌跡を等間隔に配置するためのGUIボタンである。非等間隔ボタンI13は仮想変数軸においてk空間軌跡を非等間隔に配置するためのGUIボタンである。GUI図形要素I14は、第1の変数空間である仮想変数軸を模した図形要素である。GUI図形要素I14には、写像前の標本点に対応する図形要素I15が重畳される。GUI図形要素I16は、第2の変数空間である収集角度軸を模した図形要素である。GUI図形要素I16には、写像後の標本点に対応する図形要素I17が重畳される。以下、GUI図形要素I14は、仮想変数軸と同義であるので、単に仮想変数軸I14と呼び、図形要素I15は、写像前の標本点と同義であるので、単に標本点I15と呼び、GUI図形要素I16は、収集角度軸と同義であるので、単に収集角度軸I16と呼び、図形要素I17は、写像後の標本点と同義であるので、単に標本点I17と呼ぶ。
【0069】
例えば、ユーザは、入力インタフェース54を介して、仮想変数軸I14上での標本点I15の距離間隔と写像の種類と写像のパラメータとを設定する。標本点I15の距離間隔は、例えば、入力インタフェース54を介して数値が指定される。仮想変数軸I14の長さは、入力インタフェース54を介して、写像の種類と写像のパラメータとを選択することにより設定される。そして等間隔ボタンI12が押下された場合、処理回路51は、設定された距離間隔と写像の種類と写像のパラメータとに従い複数の標本点I15を仮想変数軸I14に配置する。仮想変数軸I14に配置された標本点I15の個数が、k空間軌跡数として表示欄I11に表示される。
【0070】
また、表示欄I11に、入力インタフェースを介して、本数に対応する数値が入力されてもよい。表示欄I11に本数が入力され且つ等間隔ボタンI12が押下された場合、処理回路51は、入力された本数の標本点I15を仮想変数軸I14に等間隔で配置する。
【0071】
不等間隔ボタンI13が押下された場合、処理回路51は、仮想変数軸I14に標本点I15を非等間隔で配置する。例えば、処理回路51は、ユーザにより入力インタフェース54を介して指定された、仮想変数軸I14の位置に標本点I15を配置する。これにより、ユーザの自由裁量で標本点I15を仮想変数軸I14に配置することができる。また、非等間隔ボタンI13が押下された場合、処理回路51は、本数の標本点I15を、所定の規則に従い仮想変数軸I14に非等間隔で配置する。所定の規則としては、例えば、ビット・リバ-ス(bit reverse)や乱数を用いた手法が用いられればよい。
【0072】
仮想変数軸I14に複数の標本点I15が配置された場合、処理回路51は、配置された標本点I15を、収集角度軸I16に写像する。具体的には、処理回路51は、仮想変数軸I14上の各標本点I15の位置に対応する仮想変数を特定し、特定された仮想変数に写像関数を適用して収集角度を算出する。写像関数は、価値観点毎に予め設定されている。ユーザは、例えば、入力インタフェース54を介して、複数の価値観点の中から所望の価値観点を指定する。処理回路51は、指定された価値観点に対応する写像関数に基づき写像を行う。処理回路51は、算出された収集角度に対応する、収集角度軸I16上の位置に、写像後の標本点I17を配置する。処理回路51は、収集角度軸I16上の標本点I17の位置を収集角度として設定する。典型的には、k空間軌跡I17の入力インタフェース54を介した位置調整は制限されている。
【0073】
ステップSA3が行われるとシーケンス制御回路29は、ステップSA3において設定された収集角度のk空間軌跡に沿ってラディアル収集を実行する(ステップSA4)。
【0074】
ステップSA4が行われると処理回路51は、再構成機能513の実行により、画像再構成を実行する(ステップSA5)。ステップSA5において処理回路51は、ステップSA4において収集されたk空間データに基づいて被検体Pに関するMR画像を再構成する。再構成されたMR画像は、処理回路51による表示制御機能515の実現により、ディスプレイ53に表示される。
【0075】
以上により、
図7に示す、GMA法を利用したMR検査が終了する。
【0076】
上記の説明の通り、本実施形態に係る磁気共鳴イメージング装置1は、処理回路51とシーケンス制御回路29とを有する。処理回路51は、非カーテシアン収集に関するk空間軌跡の収集角度を設定する。処理回路51は、収集角度とは異なる変数により規定される第1の変数空間に、標本点を配置し、第1の変数空間に配置された標本点を、収集角度により規定される第2の変数空間に、収集角度の価値に応じて写像することにより、収集角度を設定する。シーケンス制御回路29は、設定された収集角度のk空間軌跡に従い非カーテシアン収集を実行する。
【0077】
上記の構成によれば、処理回路51は、収集角度の価値を考慮してk空間軌跡の収集角度を設定することができる。収集角度の価値を考慮した場合、考慮しない場合に比して、カーテシアン格子点の分解能程度のデータ収集を、少ないk空間軌跡数で効率的に行うことができる。換言すれば、同一本数のk空間軌跡に基づく再構成画像の画質を比較すれば、収集角度の価値を考慮した場合の方が、考慮しない場合に比して、価値の高い収集角度を密にデータ収集できるので画質が向上する。
【0078】
また、上記の構成によれば、処理回路51は、収集角度の価値が考慮されたk空間軌跡を第2の変数空間に直接的に設定するのではない。処理回路51は、まず第1の変数空間に標本点を設定し、価値を第2の変数空間に反映する写像により、当該標本点を第2の変数空間に配置する。第1の変数空間は、収集角度設定用の仮想変数により規定されており、収集角度の価値は反映されていない。第1の変数空間において標本点を等間隔に配置することは、物理的意味や分解能的意味、効率的意味において等間隔であることを意味する。ユーザは、これら意味を考慮して第1の変数空間に標本点を配置すればよく、価値的意味を考慮する必要はない。よって上記の構成によれば、データ収集効率の良い収集角度を簡便に設定することが可能である。
【0079】
(応用例1)
上記の説明においてk空間全体に画像化範囲が設定されるものとした。しかしながら、本実施形態はこれに限定されない。応用例1に係る処理回路51は、k空間に任意の画像化範囲を設定し、画像化範囲の形状に応じてk空間軌跡の収集角度を設定するものとする。以下、応用例1に係る磁気共鳴イメージング装置及びk空間軌跡の収集角度設定方法について説明する。なお以下の説明において、本実施形態と略同一の機能を有する構成要素については、同一符号を付し、必要な場合にのみ重複説明する。
【0080】
図10は、k空間に設定される、ラディアル収集に関するk空間軌跡と画像化範囲とを示す図である。
図10に示すように、k空間60に画像化範囲65が設定される。画像化範囲65は、再構成画像の出力画像範囲を示し、FOV(Field Of View)とも称される。画像化範囲65のサイズは、再構成画像のサイズに対応し、マトリクスサイズとも称される。
【0081】
応用例1においては画像化範囲65のky方向のサイズがk空間60のサイズに比して短く設定されるものとする。この場合、画像化範囲65は横長の矩形状を有する。k空間軌跡を設定する際、上記実施形態と同様、円61の一端から原点を通り他点に至るようにk空間軌跡KTが設定される。すなわち、一部が画像化範囲65からはみ出るようにk空間軌跡が設定される。設定されたk空間軌跡に沿ってラディアル収集が行われk空間データが収集される。収集されたk空間データのうち、画像化範囲65からはみ出た部分を破棄してもよい。画像を得るために、収集したk空間データに対して画像再構成が行われる。
【0082】
図11は、k空間軌跡の疎密のk空間分布の一例を示す図である。
図11に示すように、画像化範囲65が空間周波数ky方向に関して短縮している場合、画像化範囲65は矩形状である。画像化範囲65が扁平であるほど、収集角度「0度」、「90度」及び「180度」周辺の収集角度の価値と、収集角度「45度」及び「135度」周辺の収集角度の価値とが乖離することとなる。k空間軌跡が画像化範囲65からはみ出る収集角度は、価値が低く、k空間軌跡が疎に設定される。k空間軌跡が画像化範囲65に収まる収集角度は、価値が高く、k空間軌跡が密に設定される。他の観点から言えば、画像化範囲65内においてk空間軌跡が通過する格子点の個数が少ない収集角度は、価値が低く、k空間軌跡が疎に設定される。画像化範囲65内においてk空間軌跡が通過する格子点の個数が多い収集角度は、価値が高く、k空間軌跡が密に設定される。
【0083】
なお、画像化範囲がk空間全体に設定されている場合、すなわち、画像化範囲が等方形状である場合、全てのk空間軌跡が画像化範囲に収まることとなる。この場合、応用例1に係る価値観点においては、収集角度に依らず価値は均一である。この場合、上記の価値観点1、価値観点2及び価値観点3のうちの1以上の価値観点に従い収集角度の価値が設定されればよい。
【0084】
図12は、応用例1に係るGMA法を利用したMR検査の流れを示す図である。なお、
図12においてk空間充填方式はラディアル法であるとする。
【0085】
図12に示すように、処理回路51は、撮像条件設定機能512の実現により、画像化範囲(FOV)を設定する(ステップSB1)。
【0086】
ステップSB1が行われると処理回路51は、標本点を第1の変数空間に設定し(ステップSB2)、標本点を第2の変数空間に写像し(ステップSB3)、第2の変数空間での標本点の位置を収集角度に設定する(ステップSB4)。ステップSB2、SB3及びSB4は、価値観点が異なる以外は、それぞれ
図7のステップSA1、SA2及びSA3と同一である。
【0087】
ステップSB4が行われるとシーケンス制御回路29は、ステップSB4において設定された収集角度のk空間軌跡に沿ってラディアル収集を実行する(ステップSB5)。なお、k空間軌跡が画像化範囲からはみ出る収集角度については、k空間軌跡が画像化範囲に収まる収集角度に比して、リードアウト傾斜磁場の印加間隔が短く設定されるとよい。これによりk空間軌跡が画像化範囲からはみ出る収集角度については、オーバーサンプリングすることとなり、画像化範囲のk空間データ量を十分に確保することができる。
【0088】
ステップSB5が行われると処理回路51は、再構成機能513の実行により、画像再構成を実行する(ステップSB6)。ステップSB6において処理回路51は、ステップSA4において収集されたk空間データから、ステップSB1において設定された画像化範囲からはみ出る部分を除去する。そして処理回路51は、残りのk空間データに基づいて、画像化範囲に関するMR画像を再構成する。再構成されたMR画像は、処理回路51による表示制御機能515の実現により、ディスプレイ53に表示される。
【0089】
【0090】
上記の説明の通り、応用例1に係る処理回路51は、画像化範囲の形状に応じて収集角度の価値を変更する。例えば、画像化範囲が空間周波数ky方向に関して短縮している場合、画像化範囲は矩形状である。画像化範囲がk空間全体に亘る場合、画像化範囲は等方形状である。画像化範囲が扁平であるほど、収集角度「0度」、「90度」及び「180度」周辺の収集角度の価値と、収集角度「45度」及び「135度」周辺の収集角度の価値とが乖離することとなる。よって、画像化範囲が扁平であるほど、収集角度「0度」、「90度」及び「180度」周辺の収集角度範囲と収集角度「45度」及び「135度」周辺の収集角度範囲とにおける角度方向に対するk空間軌跡の密度の差が大きくても許容されることとなる。そこで、画像化範囲が扁平であるほど、k空間軌跡の本数、換言すれば、読出エンコードステップ数を減らすことができるので、撮像時間を短縮することができる。また、k空間軌跡の本数を減らさない場合、価値の高い収集角度範囲に、角度方向に対してより密にk空間軌跡を設定することができるので、画質を向上することができる。上記の通り、応用例1によれば、非カーテシアン収集に関するデータ収集の効率を向上することができる。
【0091】
(応用例2)
応用例2は応用例1の発展である。応用例2に係る処理回路51は、画像化範囲の調整のためのGUI画面を表示する。以下、応用例2に係る磁気共鳴イメージング装置及びk空間軌跡の収集角度設定方法について説明する。なお以下の説明において、応用例1と略同一の機能を有する構成要素については、同一符号を付し、必要な場合にのみ重複説明する。
【0092】
図13は、応用例2に係るGMA法を利用したMR検査の流れを示す図である。なお、
図13においてk空間充填方式はラディアル法であるとする。
【0093】
図13に示すように、処理回路51は、撮像条件設定機能512の実現により、画像化範囲(FOV)を設定する(ステップSC1)。ステップSC1が行われると処理回路51は、撮像条件設定機能512の実現により、k空間軌跡の本数及び収集角度を設定する(ステップSC2)。ステップSC2が行われると処理回路51は、撮像条件設定機能512の実現により、撮像時間を決定する(ステップSC3)。ステップSC3が行われると処理回路51は、表示制御機能515の実現により、撮像時間を表示する(ステップSC4)。
【0094】
ここで、
図14を参照しながら、ステップSC1-SC4を詳細に説明する。
図14は、画像化範囲の調整のためのGUI画面(以下、調整画面と呼ぶ)I2の一例を示す図である。
図14に示すように、調整画面I2は、k空間を模した図形要素I21、画像化範囲を調整するためのGUI図形要素I22、撮像時間の表示欄I23、k空間軌跡の本数の表示欄I24及び確定ボタンI25を有する。ステップSC1において処理回路51は、表示制御機能515の実現により、調整画面I2をディスプレイ53に表示する。なお、図形要素I21は、k空間と同義であるので、単にk空間I21と呼び、GUI図形要素I22は、画像化範囲と同義であるので、単に画像化範囲I22と呼ぶことにする。
【0095】
ステップSC1において処理回路51は、調整画面I2を介して画像化範囲I22を調整する。
図14に示すように、k空間I21には画像化範囲I22が実際の位置関係に従い重畳されている。ユーザは、入力インタフェース54を介して画像化範囲I22の縦サイズ(空間周波数ky方向のサイズ)及び/又は横サイズ(空間周波数kx方向のサイズ)を調整する。縦サイズ及び/又は横サイズを調整することにより画像化範囲I22を縦又は横にシフトさせることも可能である。典型的には、画像化範囲I22の縦サイズが調整され、横サイズは調整されない。画像化範囲I22の縦サイズの調整は、k空間における画像化範囲の形状の調整と同義である。
【0096】
ステップSC2において処理回路51は、ステップSC1における画像化範囲の調整に連動してk空間軌跡の本数及び収集角度を設定する。具体的には、処理回路51は、調整後の画像化範囲に基づいて、応用例1に係る価値観点のもとでの写像関数fを決定する。そして、処理回路51は、写像関数fに応じてk空間軌跡の収集角度集合を決定する。具体的には、まず、
図9の設定画面I1等を用いて、写像関数fの種類及びパラメータと仮想変数軸上の標本点間隔(第1の距離間隔)とに従い仮想変数軸に標本点集合が配置されている。次に、ユーザは、入力インタフェース54等を介して画像化範囲の調整を行う。応用例1の手法により、調整後の画像化範囲の形状に応じて写像関数fがリアルタイムで決定される。決定された写像関数fに従い、標本点集合が収集角度軸に写像される。収集角度軸に配置された標本点の個数がk空間軌跡の本数として計数される。写像関数fの種類及びパラメータと仮想変数軸上の標本点間隔とを変更しない場合、画像化範囲の調整に連動して、k空間軌跡の本数が増減することになる。
【0097】
ステップSC3において処理回路51は、k空間軌跡数に基づいて撮像時間を決定する。ステップSC4において処理回路51は、決定された撮像時間を表示欄I23に表示し、k空間軌跡の本数を表示欄I24に表示する。すなわち、画像化範囲の調整に連動して表示欄I23に表示される撮像時間及び表示欄I24に表示されるk空間軌跡数をリアルタイムで更新する。
【0098】
上記の通り、画像化範囲の形状と撮像時間とには相関関係がある。画像化範囲が等方形状から外れると、k空間軌跡が画像化範囲からはみ出るので、収集角度の価値が等方ではなくなる。すなわち、画像化範囲が等方形状から外れるほど、k空間軌跡を減らすことができる。k空間軌跡数が少ない撮像時間が短くなるので、画像化範囲が等方形状から外れるほど撮像時間を短くすることができる。換言すれば、処理回路51は、画像化範囲のk空間における形状に応じて撮像時間を変化させることができる。
【0099】
ステップSC4が行われると処理回路51は、ユーザにより入力インタフェース54を介して確定ボタンI23が押下されることを待機する(ステップSC5)。ユーザは、GUI画面I2を観察して、画像化範囲や撮像時間、k空間軌跡数等の撮像条件を確認し、納得するまで画像化範囲図形を操作して画像化範囲を調整する。画像化範囲の調整が終了するとユーザは、入力インタフェース54を介して確定ボタンI23を押下する。確定ボタンI23が押下されることを契機として処理回路51は、調整後の画像化範囲、k空間軌跡本数及び収集角度を対象撮像の撮像条件として確定する。
【0100】
確定された場合(ステップSC5:Yes)、シーケンス制御回路29は、ステップSC5において確定された撮像条件に含まれる収集角度のk空間軌跡に沿ってラディアル収集を実行する(ステップSC6)。
【0101】
ステップSC6が行われると処理回路51は、再構成機能513の実行により、画像再構成を実行する(ステップSC7)。ステップSC7において処理回路51は、ステップSC6において収集されたk空間データに基づいて画像化範囲に関するMR画像を再構成する。再構成されたMR画像は、処理回路51による表示制御機能515の実現により、ディスプレイ53に表示される。
【0102】
【0103】
応用例2によれば、処理回路51は、画像化範囲の調整に連動して、画像化範囲の形状に応じて撮像時間をリアルタイムで決定し、撮像時間をディスプレイ53に表示する。具体的には、画像化範囲の形状に応じてk空間軌跡の本数が増減され、これに応じて、k空間軌跡の本数に依存する撮像時間も増減される。このように応用例2によれば、収集角度の価値を考慮することにより、画像化範囲の形状に応じた、収集効率的に最適な撮像時間を決定することができる。
【0104】
(変形例)
応用例2においては画像化範囲が等方形状でない場合、k空間に設定される円は真円であり、k空間軌跡のうち画像化範囲からはみ出る部分についてもデータ収集が行われるものとした。しかしながら、本実施形態はこれに限定されない。
【0105】
図15は、変形例に係るk空間60に設定される、ラディアル収集に関するk空間軌跡KTと画像化範囲65とを示す図である。
図15に示すように、k空間60にはky方向長さがkx方向長さに比して短い矩形の画像化範囲65が設定されているとする。画像化範囲65に内接するように、ラディアル収集のスキャン範囲を示す円66が設定される。この場合、円66は楕円となる。
【0106】
円66が楕円である場合であっても、GMA法により各k空間軌跡の収集角度を決定することが可能である。k空間軌跡KTは楕円66内に設定されるので、収集角度に応じて長さが異なる。すなわち、収集角度に応じてk空間軌跡KTが通過するカーテシアン格子点の個数が異なる。収集角度の価値としては、k空間軌跡KTが通過するカーテシアン格子点の個数が少ない角度範囲ほど価値が低く、k空間軌跡KTが通過するカーテシアン格子点の個数が多い角度範囲ほど価値が高い。換言すれば、k空間軌跡KTの長さが短い角度範囲ほど価値が低く、k空間軌跡KTの長さが長い角度範囲ほど価値が高い。価値が低い角度範囲についてはk空間軌跡が疎に設定され、価値が高い角度範囲についてはk空間軌跡が密に設定される。
【0107】
k空間軌跡KTは楕円66内に設定されるので、収集角度に応じて長さが異なる。k空間軌跡KTの長さは、データ収集においては、リードアウト傾斜磁場のバンド幅に対応する。従って、データ収集時においてシーケンス制御回路29は、収集角度毎にリードアウト傾斜磁場のバンド幅を変えながらラディアル収集を行えばよい。
【0108】
(他の変形例)
上記の少なくとも一の実施形態においてk空間軌跡は、k空間に設定された円の一端からk空間中心を通り他端に至る直線であるとした。しかしながら、本実施形態はこれに限定されない。k空間軌跡は、例えば、UTE(Ultrashort TE)の収集においてしばしば使われるように、円の中途又はk空間中心を始点として円上の点を終点とする直線でもよい。これによりGRA法を利用したMR検査においてTE時間を短縮することができる。
【0109】
以上説明した少なくとも1つの実施形態によれば、非カーテシアン収集に関するデータ収集の効率を向上することができる。
【0110】
上記説明において用いた「プロセッサ」という文言は、例えば、CPU、GPU、或いは、特定用途向け集積回路(Application Specific Integrated Circuit:ASIC))、プログラマブル論理デバイス(例えば、単純プログラマブル論理デバイス(Simple Programmable Logic Device:SPLD)、複合プログラマブル論理デバイス(Complex Programmable Logic Device:CPLD)、及びフィールドプログラマブルゲートアレイ(Field Programmable Gate Array:FPGA))等の回路を意味する。プロセッサは記憶回路に保存されたプログラムを読み出し実行することで機能を実現する。なお、記憶回路にプログラムを保存する代わりに、プロセッサの回路内にプログラムを直接組み込むよう構成しても構わない。この場合、プロセッサは回路内に組み込まれたプログラムを読み出し実行することで機能を実現する。また、プログラムを実行するのではなく、論理回路の組合せにより当該プログラムに対応する機能を実現しても良い。なお、本実施形態の各プロセッサは、プロセッサごとに単一の回路として構成される場合に限らず、複数の独立した回路を組み合わせて1つのプロセッサとして構成し、その機能を実現するようにしてもよい。さらに、
図1における複数の構成要素を1つのプロセッサへ統合してその機能を実現するようにしてもよい。
【0111】
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
【符号の説明】
【0112】
1 磁気共鳴イメージング装置
11 架台
13 寝台
21 傾斜磁場電源
23 送信回路
25 受信回路
27 寝台駆動装置
29 シーケンス制御回路
41 静磁場磁石
43 傾斜磁場コイル
45 送信コイル
47 受信コイル
50 ホストコンピュータ
51 処理回路
52 メモリ
53 ディスプレイ
54 入力インタフェース
55 通信インタフェース
131 天板
133 基台
511 取得機能
512 撮像条件設定機能
513 再構成機能
514 画像処理機能
515 表示制御機能