(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-02-09
(45)【発行日】2024-02-20
(54)【発明の名称】ガス化複合発電設備及びその運転方法
(51)【国際特許分類】
F02C 3/28 20060101AFI20240213BHJP
F02C 7/042 20060101ALI20240213BHJP
F02C 6/00 20060101ALI20240213BHJP
F23K 3/02 20060101ALI20240213BHJP
C10J 3/46 20060101ALI20240213BHJP
【FI】
F02C3/28
F02C7/042
F02C6/00 E
F23K3/02 303
C10J3/46 J
(21)【出願番号】P 2020063372
(22)【出願日】2020-03-31
【審査請求日】2022-12-13
(73)【特許権者】
【識別番号】000006208
【氏名又は名称】三菱重工業株式会社
(74)【代理人】
【識別番号】100112737
【氏名又は名称】藤田 考晴
(74)【代理人】
【識別番号】100140914
【氏名又は名称】三苫 貴織
(74)【代理人】
【識別番号】100136168
【氏名又は名称】川上 美紀
(74)【代理人】
【識別番号】100172524
【氏名又は名称】長田 大輔
(72)【発明者】
【氏名】品田 治
(72)【発明者】
【氏名】林 智弥
【審査官】藤原 弘
(56)【参考文献】
【文献】特開2019-143012(JP,A)
【文献】特開2014-101838(JP,A)
【文献】特開2009-052548(JP,A)
【文献】特開2016-217727(JP,A)
【文献】特開平10-047079(JP,A)
【文献】特開2011-089425(JP,A)
【文献】特開2010-106722(JP,A)
【文献】特開2011-075174(JP,A)
【文献】特開2010-059940(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F02C 3/28
F02C 7/042
F02C 6/10
F23K 23/10
C10J 3/46
(57)【特許請求の範囲】
【請求項1】
炭素含有固体燃料を粉砕して微粉燃料とする粉砕機と、
前記粉砕機で粉砕された微粉燃料をガス化するガス化炉と、
前記ガス化炉でガス化されたガス化ガスを燃焼させる燃焼器と、
前記燃焼器に圧縮空気を供給する圧縮機と、
前記燃焼器で発生した燃焼ガスによって駆動されるガスタービンと、
前記ガスタービンによって駆動されて発電する発電機と、
前記ガスタービンの排ガスの一部を前記粉砕機へ導く排ガス供給流路と、
前記圧縮機から前記燃焼器へ供給する空気量を調整する供給空気量調整手段と、
前記排ガス供給流路を介して前記粉砕機へ供給される前記排ガスの酸素濃度が、前記燃焼器の設定燃焼温度から算出される設定空気量に基づく酸素濃度よりも小さい酸素濃度となるように前記供給空気量調整手段を制御する空気量低減運転を行う制御部と、
を備えているガス化複合発電設備。
【請求項2】
前記制御部は、前記ガス化複合発電設備のプラント負荷が低負荷とされているときに前記空気量低減運転を行うとともに、該低負荷を超えるときは前記設定燃焼温度から算出される前記設定空気量となるように前記供給空気量調整手段を制御する設定空気量運転を行う請求項1に記載のガス化複合発電設備。
【請求項3】
炭素含有固体燃料を粉砕して微粉燃料とする粉砕機と、
前記粉砕機で粉砕された微粉燃料をガス化するガス化炉と、
前記ガス化炉でガス化されたガス化ガスを燃焼させる燃焼器と、
前記燃焼器に圧縮空気を供給する圧縮機と、
前記燃焼器で発生した燃焼ガスによって駆動されるガスタービンと、
前記ガスタービンによって駆動されて発電する発電機と、
前記ガスタービンの排ガスの一部を前記粉砕機へ導く排ガス供給流路と、
前記圧縮機から前記燃焼器へ供給する空気量を調整する供給空気量調整手段と、
前記排ガス供給流路を介して前記粉砕機へ供給される前記排ガスの酸素濃度が、前記燃焼器の設定燃焼温度から算出される設定空気量に基づく酸素濃度よりも小さい酸素濃度となるように前記供給空気量調整手段を制御する空気量低減運転を行う制御部と、
を備え、
前記制御部は、燃料比が所定値よりも小さい炭素含有固体燃料を用いる場合に、前記空気量低減運転に切り換え
るガス化複合発電設備。
【請求項4】
前記供給空気量調整手段は、前記圧縮機に設けられたインレットガイドベーンとされている請求項1から3のいずれかに記載のガス化複合発電設備。
【請求項5】
前記供給空気量調整手段は、前記圧縮機の出口と入口とを接続する再循環流路を備えている請求項1から4のいずれかに記載のガス化複合発電設備。
【請求項6】
前記供給空気量調整手段は、前記圧縮機に吸入される空気を加熱する加熱手段を備えている請求項1から5のいずれかに記載のガス化複合発電設備。
【請求項7】
前記供給空気量調整手段は、前記圧縮機から前記燃焼器へ導かれる圧縮空気を外部へ放出する放風手段を備えている請求項1から6のいずれかに記載のガス化複合発電設備。
【請求項8】
前記粉砕機の入口又は出口の酸素濃度を低減する酸素濃度低減手段を備えている請求項1から7のいずれかに記載のガス化複合発電設備。
【請求項9】
前記粉砕機の出口側に設けられた酸素濃度計を備え、
前記制御部は、前記酸素濃度計の計測値に基づいて、前記酸素濃度低減手段を制御する請求項8に記載のガス化複合発電設備。
【請求項10】
空気分離装置を備え、
前記酸素濃度低減手段は、前記空気分離装置で生成された窒素を前記粉砕機の入口又は出口に供給する窒素供給流路を備えている請求項8又は9に記載のガス化複合発電設備。
【請求項11】
CO2回収装置を備え、
前記酸素濃度低減手段は、前記CO2回収装置で生成されたCO2を前記粉砕機の入口又は出口に供給するCO2供給流路を備えている請求項8又は9に記載のガス化複合発電設備。
【請求項12】
前記燃焼ガスとは異なる燃焼ガスを生成する燃焼装置を備え、
前記酸素濃度低減手段は、前記燃焼装置で生成された燃焼ガスを前記粉砕機の入口又は出口に供給する燃焼ガス供給流路を備えている請求項8又は9に記載のガス化複合発電設備。
【請求項13】
前記酸素濃度低減手段は、前記燃焼器に水、及び/又は、水蒸気、及び/又は、窒素を添加する添加手段を備えている請求項8又は9に記載のガス化複合発電設備。
【請求項14】
炭素含有固体燃料を粉砕して微粉燃料とする粉砕機と、
前記粉砕機で粉砕された微粉燃料をガス化するガス化炉と、
前記ガス化炉でガス化されたガス化ガスを燃焼させる燃焼器と、
前記燃焼器に圧縮空気を供給する圧縮機と、
前記燃焼器で発生した燃焼ガスによって駆動されるガスタービンと、
前記ガスタービンによって駆動されて発電する発電機と、
前記ガスタービンの排ガスの一部を前記粉砕機へ導く排ガス供給流路と、
前記圧縮機から前記燃焼器へ供給する空気量を調整する供給空気量調整手段と、
を備えたガス化複合発電設備の運転方法であって、
前記排ガス供給流路を介して前記粉砕機へ供給される前記排ガスの酸素濃度が、前記燃焼器の設定燃焼温度から算出された設定空気量に基づく酸素濃度よりも小さい酸素濃度となるように前記供給空気量調整手段を制御する空気量低減運転を行うガス化複合発電設備の運転方法。
【請求項15】
炭素含有固体燃料を粉砕して微粉燃料とする粉砕機と、
前記粉砕機で粉砕された微粉燃料をガス化するガス化炉と、
前記ガス化炉でガス化されたガス化ガスを燃焼させる燃焼器と、
前記燃焼器に圧縮空気を供給する圧縮機と、
前記燃焼器で発生した燃焼ガスによって駆動されるガスタービンと、
前記ガスタービンによって駆動されて発電する発電機と、
前記ガスタービンの排ガスの一部を前記粉砕機へ導く排ガス供給流路と、
前記圧縮機から前記燃焼器へ供給する空気量を調整する供給空気量調整手段と、
を備えたガス化複合発電設備の運転方法であって、
前記排ガス供給流路を介して前記粉砕機へ供給される前記排ガスの酸素濃度が、前記燃焼器の設定燃焼温度から算出された設定空気量に基づく酸素濃度よりも小さい酸素濃度となるように前記供給空気量調整手段を制御する空気量低減運転を行うとともに、燃料比が所定値よりも小さい炭素含有固体燃料を用いる場合に、前記空気量低減運転に切り換えるガス化複合発電設備の運転方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、ガス化複合発電設備及びその運転方法に関するものである。
【背景技術】
【0002】
従来、ガス化複合発電設備として、炭素含有固体燃料である石炭をガス化炉で部分燃焼させてガス化し、ガス化された可燃性ガスを用いてガスタービンを駆動するとともにガスタービンの排熱を利用して発電するガス化複合発電設備(IGCC:Integrated Coal Gasification Combined Cycle)が知られている。
【0003】
乾式給炭方式により石炭をガス化炉に供給するガス化設備では、微粉炭供給設備からガス化炉へ微粉炭を搬送する際の閉塞防止を目的として、微粉炭機で石炭を粉砕して微粉炭とし、乾燥ガスによって微粉炭を乾燥させる。ここで、微粉炭の乾燥には、特に集塵器での微粉炭の自然発火防止の観点から低酸素濃度のガスを使用する必要があり、ガスタービンの排ガスを利用する(特許文献1及び2参照)。
【0004】
特許文献1では、排熱回収ボイラ(HRSG)の上流側と下流側の2箇所から排ガスを抽気し、微粉炭乾燥に必要な温度及び流量に調整することで、プラント効率の最適化を図っている。
【0005】
特許文献2では、定格負荷よりも低負荷となる起動時等のようにガスタービンの排ガスの酸素濃度が一時的に既定値よりも増加する場合に、排熱回収ボイラに設置した助燃バーナを起動して酸素濃度を低減するようにしている。
【先行技術文献】
【特許文献】
【0006】
【文献】特開昭61-175241号公報
【文献】特許第4939511号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかし、特許文献2のように助燃バーナの起動によって、ガスタービンの排ガスの酸素濃度を低減することは一つの対策になるが、助燃バーナ用の燃料供給設備が必要となり、機器点数の増加(設備費の高騰)や助燃バーナ用燃料供給による燃料費高騰、プラント効率低下を招く一因となる。
【0008】
本開示は、このような事情に鑑みてなされたものであって、助燃バーナを用いることなく粉砕機で粉砕された微粉燃料の自然発火の可能性を低減することができるガス化複合発電設備及びその運転方法を提供することを目的とする。
【課題を解決するための手段】
【0009】
上記課題を解決するために、本開示のガス化複合発電設備は、炭素含有固体燃料を粉砕して微粉燃料とする粉砕機と、前記粉砕機で粉砕された微粉燃料をガス化するガス化炉と、前記ガス化炉でガス化されたガス化ガスを燃焼させる燃焼器と、前記燃焼器に圧縮空気を供給する圧縮機と、前記燃焼器で発生した燃焼ガスによって駆動されるガスタービンと、前記ガスタービンによって駆動されて発電する発電機と、前記ガスタービンの排ガスの一部を前記粉砕機へ導く排ガス供給流路と、前記圧縮機から前記燃焼器へ供給する空気量を調整する供給空気量調整手段と、前記排ガス供給流路を介して前記粉砕機へ供給される前記排ガスの酸素濃度が、前記燃焼器の設定燃焼温度から算出される設定空気量に基づく酸素濃度よりも小さい酸素濃度となるように前記供給空気量調整手段を制御する空気量低減運転を行う制御部と、を備えている。
【0010】
本開示のガス化複合発電設備の運転方法は、炭素含有固体燃料を粉砕して微粉燃料とする粉砕機と、前記粉砕機で粉砕された微粉燃料をガス化するガス化炉と、前記ガス化炉でガス化されたガス化ガスを燃焼させる燃焼器と、前記燃焼器に圧縮空気を供給する圧縮機と、前記燃焼器で発生した燃焼ガスによって駆動されるガスタービンと、前記ガスタービンによって駆動されて発電する発電機と、前記ガスタービンの排ガスの一部を前記粉砕機へ導く排ガス供給流路と、前記圧縮機から前記燃焼器へ供給する空気量を調整する供給空気量調整手段と、を備えたガス化複合発電設備の運転方法であって、前記排ガス供給流路を介して前記粉砕機へ供給される前記排ガスの酸素濃度が、前記燃焼器の設定燃焼温度から算出された設定空気量に基づく酸素濃度よりも小さい酸素濃度となるように前記供給空気量調整手段を制御する空気量低減運転を行う。
【発明の効果】
【0011】
ガスタービンの燃焼器へ供給する空気量を低減するので、助燃バーナを用いることなく粉砕機で粉砕された微粉燃料の自然発火の可能性を低減することができる。
【図面の簡単な説明】
【0012】
【
図1】本開示の一実施形態に係るガス化複合発電設備を示した概略構成図である。
【
図2】乾燥用ガスの酸素濃度調整方法を示したグラフである。
【
図3】乾燥用ガスの酸素濃度調整方法を示したグラフである。
【発明を実施するための形態】
【0013】
以下に、本開示に係る一実施形態について、図面を参照して説明する。
図1には、本実施形態に係るガス化複合発電設備1が示されている。ガス化複合発電設備(以下「IGCC」という。)1は、空気や酸素を酸化剤としてガス化炉4で石炭をガス化した可燃性ガスを生成する空気燃焼方式を採用している。IGCC1は、ガス化炉4でガス化した生成ガス(ガス化ガス,石炭ガス)をガス精製装置(図示せず)で精製した後の精製ガス(ガス化ガス,石炭ガス)を燃料ガスとしてガスタービン5の燃焼器6へ供給する。
【0014】
ガスタービン5は、燃焼器6と、燃焼器6から燃焼ガスの供給を受けて回転駆動されるタービン11と、タービン11と共通の回転軸8を有する圧縮機7とを備えている。圧縮機7の上流側には、大気からの吸引空気量を調整するIGV(Inlet Guide Vane:供給空気量調整手段)14が設けられている。IGV14の開度は、図示しない制御部によって制御される。
【0015】
IGCC1は、排熱回収ボイラ(HRSG:Heat Recovery Steam Generator)9を通過する排ガスの一部を乾燥用ガスとして導入し、この乾燥用ガスが微粉炭機(粉砕機)10の入口に供給され、また原料となる石炭が10の入口に供給される。微粉炭機10では、乾燥用ガスにより供給された石炭を加熱し、石炭中の水分を除去しながら細かい粒子状に粉砕して微粉炭(微粉燃料)を製造する。
【0016】
微粉炭機10にて製造された微粉炭は、乾燥用ガスにより集塵器12へ搬送される。集塵器12の内部では、乾燥用ガス等のガス成分と微粉炭(粒子成分)とが分離され、ガス成分は誘引ファン13を介して排熱回収ボイラ9の出口から排気される。集塵器12には、集塵器12内の酸素濃度を計測する酸素濃度センサ12aが設けられている。
【0017】
集塵器12で分離された粒子成分の微粉炭は、重力により落下してビン15を介してホッパ17へと供給される。
【0018】
ホッパ17内に回収された微粉炭は、ASU(空気分離装置:Air Separation Unit)20から加圧搬送用として導入した窒素ガス(搬送用ガス)により、ガス化炉4内へ搬送される。
【0019】
ガス化炉4には、生成ガスの原料として微粉炭及びチャーが供給される。ガス化炉4では、ガスタービン5の圧縮機7から供給される圧縮空気及び空気分離装置20から供給される酸素、又はこれらのどちらか一方を酸化剤として、微粉炭及びチャーをガス化した生成ガスが製造される。ガス化炉4で生成された生成ガスは、ガス精製設備(図示せず)へと導かれる。
【0020】
ガス精製設備で硫黄物等を除去した精製ガスは、ガスタービン5の燃焼器6に供給され、圧縮機7から導かれた圧縮空気とともに燃焼し、高温高圧の燃焼ガスが生成される。燃焼ガスは、タービン11へと導かれてタービン11を回転駆動する。回転駆動されたタービン11は、タービン11の回転軸に連結されたガスタービン発電機(図示せず)を駆動して発電を行う。
【0021】
タービン11から排出された高温の排ガスは、排熱回収ボイラ9に供給され、蒸気を生成する熱源として使用される。排熱回収ボイラ9で生成された蒸気は、図示しない発電用の蒸気タービン等に供給される。排熱回収ボイラ9で蒸気生成に使用された排ガスは、脱硝装置等により必要な処理を施した後、大気へ排気される。
【0022】
排熱回収ボイラ9で蒸気生成に使用された排ガスは、一部が微粉炭機10の乾燥用ガスとして抽出される。この乾燥用ガスには、脱硝等の処理を施した排ガスが用いられる。具体的に説明すると、排熱回収ボイラ9の脱硝装置(図示せず)の直下流あたりに接続された高温排ガス抽気流路(排ガス供給流路)22と、高温排ガス抽気流路22よりも下流側に接続された低温排ガス抽気流路(排ガス供給流路)23とが設けられている。高温排ガス抽気流路22と低温排ガス抽気流路23とは下流側で合流排ガス抽気流路24に合流されている。合流排ガス抽気流路24の下流側は、微粉炭機10に接続されている。
【0023】
高温排ガス抽気流路22と低温排ガス抽気流路23とには、それぞれ、流量計22a,23aと温度調節用のダンパ22b,23bが設けられている。各流量計22a,23aの計測値は制御部に送信される。制御部では、各流量計22a,23aの計測値と、微粉炭機10の微粉炭排出流路26に設けた温度センサ26aの計測値とに基づいて、各ダンパ22b,23bの開度を制御する。これにより、微粉炭機10に供給される乾燥用ガスの温度と流量が調整される。
【0024】
制御部は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、及びコンピュータ読み取り可能な記憶媒体等から構成されている。そして、各種機能を実現するための一連の処理は、一例として、プログラムの形式で記憶媒体等に記憶されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。なお、プログラムは、ROMやその他の記憶媒体に予めインストールしておく形態や、コンピュータ読み取り可能な記憶媒体に記憶された状態で提供される形態、有線又は無線による通信手段を介して配信される形態等が適用されてもよい。コンピュータ読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等である。
【0025】
<乾燥用ガス酸素濃度調整1>
次に、微粉炭機10へ供給される乾燥用ガスの酸素濃度の調整方法について
図2を用いて説明する。
図2において、横軸はプラント負荷、縦軸は下方側がガスタービン5へ供給される空気量を調整するIGV開度、上方側が微粉炭機10へ供給される乾燥用ガスの酸素濃度を示す。破線で示された線が、設定空気量運転M0を示し、燃焼器6の設定燃焼温度及び燃料ガス組成(発熱量)から算出されるIGV14の設定IGV開度と、この設定IGV開度から決まる設定酸素濃度が示されている。乾燥用ガスの酸素濃度は、集塵器12の酸素濃度センサ12aによって計測される酸素濃度に相当する。一般に、IGCC1の設計時に、プラント負荷に応じて燃焼器6の設定燃焼温度が決定され、この設定燃焼温度に応じて精製ガスの組成から必要な空気量が算出され、破線で示すように設定IGV開度が決まる。設定IGV開度は、制御部にプログラムされる。
【0026】
これに対して、本実施形態では、実線で示すようにIGV開度を制御する。具体的には、破線で示した設定酸素濃度に相当する空気量よりも小さい空気量となるようにIGV開度を制御する(空気量低減運転M1)。これにより、
図2にて一点鎖線で示した微粉炭の自然発火のおそれがある限界酸素濃度(例えば13体積%)を下回るように制御することができる。換言すると、プラント負荷の全体にわたって限界酸素濃度を超える場合には、
図2に示すようにプラント負荷の全体にわたって破線で示した設定IGV開度よりも小さくなるようにIGV14を制御する。
【0027】
このように、IGV開度を制御して空気量低減運転M1を行うことによって、乾燥用ガスの酸素濃度すなわち微粉炭機10や集塵器12における酸素濃度を低減することができる。したがって、特許文献2のような助燃バーナを用いることなく微粉炭機10で粉砕された微粉炭の自然発火の可能性を低減することができる。
【0028】
<乾燥用ガス酸素濃度調整2>
また、
図3のように制御することもできる。すなわち、IGCC1の起動時などの低負荷時に排熱回収ボイラ9を流れる排ガスの酸素濃度が上昇する。このような場合には、
図3に示すように、低負荷時のみIGV開度を破線で示した設定IGV開度よりも小さくなるように制御して空気量低減運転M1を行う。空気量低減運転M1を行う低負荷の設定値A1は、定格の50%以下、または40%以下とされる。
一方で、設定値A1以上の高負荷側では、設定IGV開度を用いた設定空気量運転M0を行う。これにより、高負荷側ではプラント効率を所望値に維持することができる。
【0029】
また、本実施形態は以下のように変形することができる。
<変形例1>
亜瀝青炭や褐炭等の低品位炭のように石炭の燃料比(固定炭素/揮発分)が所定値(例えば高品位炭の燃料比)よりも小さい場合には、自然発火が発生する可能性が高くなるので、設定空気量運転M0から空気量低減運転M1に切り換える運転を行うこととしても良い。燃料比の所定値としては、例えば0.7~1.2が用いられる。
【0030】
例えば高品位炭のように燃料比が所定値よりも大きい場合には制御部において設定空気量運転M0が選択され、例えば低品位炭のように燃料比が所定値よりも小さい場合には制御部において空気量低減運転M1が選択される。設定空気量運転M0と空気量低減運転M1との切り換えは、石炭の燃料比等の性状を検出するセンサの計測値に基づいて行っても良いし、オペレータの手動によって行っても良い。あるいは、IGCC1の運転中に、酸素濃度センサ12aにて計測した酸素濃度が所定値(13体積%)を超えた場合に設定空気量運転M0から空気量低減運転M1に切り換えるようにしても良い。
【0031】
<変形例2>
図4に示すように、ASU(酸素濃度低減手段)20にて製造された窒素を微粉炭機10の入口側に供給しても良い。具体的には、ASU20にて製造された窒素を供給する窒素供給流路30を合流排ガス抽気流路24に接続する。窒素供給流路30に窒素弁30aを設け、流量計30bの計測値を参照しながら制御部によって窒素弁30aの開度を制御する。
これにより、乾燥用ガスの酸素濃度を低減することができ、微粉炭の自然発火の可能性を低減することができる。
なお、微粉炭機10の出口側(集塵器12の上流側)に窒素供給流路30を接続することとしても良い。これにより、微粉炭機10の下流側に設けられた集塵器12やビン15、ホッパ17などにおける自然発火の可能性を低減することができる。
また、酸素濃度センサ12aにて計測した酸素濃度が所定値(13体積%)を超えないように、窒素弁30aを制御するようにしても良い。
【0032】
<変形例3>
図5に示すように、ガス化炉4から導かれた石炭ガス(生成ガス)から、ガス精製装置に設置されるCO2を回収するCO2回収装置(酸素濃度低減手段)32を備えることとしても良い。この場合には、CO2回収装置32にて回収されたCO2を微粉炭機10の入口側に供給する。具体的には、CO2回収装置32にて回収されたCO2を供給するCO2供給流路33を合流排ガス抽気流路24に接続する。CO2供給流路33にCO2弁33aを設け、流量計33bの計測値を参照しながら制御部によってCO2弁33aの開度を制御する。
これにより、IGV開度制御による空気量低減運転M1に加えて、乾燥用ガスの酸素濃度を低減することができ、微粉炭の自然発火の可能性を低減することができる。
【0033】
なお、微粉炭機10の出口側(集塵器12の上流側)にCO2供給流路33を接続することとしても良い。これにより、微粉炭機10の下流側に設けられた集塵器12やビン15、ホッパ17などにおける自然発火の可能性を低減することができる。
また、酸素濃度センサ12aにて計測した酸素濃度が所定値(13体積%)を超えないように、CO2弁33aを制御するようにしても良い。
【0034】
<変形例4>
図6に示すように、補助ボイラのバーナ等の燃焼装置(酸素濃度低減手段)35を備えることとしても良い。この場合には、燃焼装置35にて発生した燃焼ガスを微粉炭機10の入口側に供給する。具体的には、燃焼装置35にて発生した燃焼ガスを供給する燃焼ガス供給流路36を合流排ガス抽気流路24に接続する。燃焼ガス供給流路36に燃焼ガス弁36aを設け、流量計36bの計測値を参照しながら制御部によって燃焼ガス弁36aの開度を制御する。
これにより、IGV開度制御による空気量低減運転M1に加えて、乾燥用ガスの酸素濃度を低減することができ、微粉炭の自然発火の可能性を低減することができる。
なお、微粉炭機10の出口側(温度センサ26aの上流側)に燃焼ガス供給流路36を接続することとしても良い。これにより、微粉炭機10の下流側に設けられた集塵器12やビン15、ホッパ17などにおける自然発火の可能性を低減することができる。
また、酸素濃度センサ12aにて計測した酸素濃度が所定値(13体積%)を超えないように、燃焼ガス弁36aを制御するようにしても良い。
【0035】
<変形例5>
図7に示すように、燃焼器6に水、水蒸気、又は窒素を添加する添加手段38を設けても良い。燃焼器6に水、水蒸気又は窒素を添加することで、燃焼ガスの酸素濃度を低減することができる。これは、IGV開度制御による空気量低減運転M1に加えて行うことができる。これにより、微粉燃料の自然発火の可能性を低減することができる。なお、添加手段38に弁を設け、この弁を制御するようにしても良い。
また、酸素濃度センサ12aにて計測した酸素濃度が所定値(13体積%)を超えないように、水、水蒸気、又は窒素の添加量を制御するようにしても良い。
【0036】
<変形例6>
図8に示すように、燃焼器6へ供給する空気を調整する手段として、圧縮機7の出口側に制御部によって制御される放風弁(放風手段)40を設けても良い。放風弁40は、圧縮機7の出口と燃焼器6の入口との間に接続された放風流路(放風手段)41に設けられている。放風流路41の下流側は大気に開放されている。
【0037】
放風弁40を開とすることによって、圧縮機7から燃焼器6へ導かれる圧縮空気の一部を大気へ放出することで、燃焼器6へ導かれる空気量を低減することができる。これにより、
図2及び
図3を用いて説明した空気量低減運転M1を行うことができる。放風弁40の制御は、
図1を用いて説明したIGV開度の制御に代えて、又はIGV開度の制御とともに用いることができる。
【0038】
<変形例7>
図9に示すように、燃焼器6へ供給する空気を調整する手段として、圧縮機7の出口と圧縮機7の入口とを接続する再循環流路44を設けても良い。再循環流路44の下流側は、IGV14の上流側に接続されている。再循環流路44には、制御部によって制御される再循環弁45が設けられている。
【0039】
再循環弁45を開とすることによって、圧縮機7からの吐出空気の一部を再循環させることで、昇温された圧縮機7からの吐出空気で圧縮機7に吸入される空気を加熱することによって吸入空気の密度を小さくすることで、燃焼器6へ導かれる空気量を低減することができる。これにより、
図2及び
図3を用いて説明した空気量低減運転M1を行うことができる。再循環弁45の制御は、
図1を用いて説明したIGV開度の制御に代えて、又はIGV開度の制御とともに用いることができる。
【0040】
<変形例8>
図10に示すように、燃焼器6へ供給する空気を調整する手段として、IGV14の上流側に熱交換器(加熱手段)47を設けても良い。熱交換器47では、蒸気と大気(空気)とが熱交換される。これにより、圧縮機7に吸入される空気が加熱される。蒸気としては、IGCC1で発生した蒸気や、外部の補助ボイラ等で発生した蒸気を用いることができる。制御部は、蒸気を熱交換器47に流す流量やタイミング等を制御することによって、圧縮機7へ導かれる空気の加熱のタイミングと量を決定する。
【0041】
圧縮機7に吸入される空気を熱交換器47で加熱することによって吸入空気の密度を小さくすることで、燃焼器6へ導かれる空気量を低減することができる。これにより、
図2及び
図3を用いて説明した空気量低減運転M1を行うことができる。熱交換器47へ蒸気を供給する制御は、
図1を用いて説明したIGV開度の制御に代えて、又はIGV開度の制御とともに用いることができる。また、熱交換器47に供給する加熱媒体としては、蒸気に代えて加熱された給水としても良い。また、熱交換器47へ蒸気(又は給水)を供給する経路に弁を設け、この弁を制御するようにしても良い。
【0042】
なお、上述した実施形態及び変形例では、炭素含有固体燃料として石炭を用いて説明したが、再生可能な生物由来の有機性資源として使用されるバイオマスとしてもよく、例えば、間伐材、廃材木、流木、草類、廃棄物、汚泥、タイヤ及びこれらを原料としたリサイクル燃料(ペレットやチップ)などを使用することも可能である。また、石炭とともにバイオマスやリサイクル燃料を用いてもよい。
【0043】
以上説明した各実施形態に記載のガス化複合発電設備及びその運転方法は、例えば以下のように把握される。
【0044】
本開示の一態様に係るガス化複合発電設備(1)は、炭素含有固体燃料を粉砕して微粉燃料とする粉砕機(10)と、前記粉砕機で粉砕された微粉燃料をガス化するガス化炉(4)と、前記ガス化炉でガス化されたガス化ガスを燃焼させる燃焼器(6)と、前記燃焼器に圧縮空気を供給する圧縮機(7)と、前記燃焼器で発生した燃焼ガスによって駆動されるガスタービン(5)と、前記ガスタービンによって駆動されて発電する発電機と、前記ガスタービンの排ガスの一部を前記粉砕機へ導く排ガス供給流路(22,23,24)と、前記圧縮機から前記燃焼器へ供給する空気量を調整する供給空気量調整手段(14)と、前記燃焼器の設定燃焼温度から算出される設定空気量よりも小さい空気量となるように前記供給空気量調整手段を制御する空気量低減運転を行う制御部と、を備えている。
【0045】
燃焼器へ供給される吸入空気量を小さくすることによって燃焼ガスの酸素濃度を低減することができる。そこで、燃焼器の設定燃焼温度から決まる設定空気量よりも小さい空気量とすることによって、設定時よりも酸素濃度を低減することとした。酸素濃度が低減された燃焼ガスはガスタービンを経て排ガス供給流路を介して粉砕機へと導かれる。これにより、助燃バーナを用いることなく粉砕機で粉砕された微粉燃料の自然発火の可能性を低減することができる。
なお、燃焼器の設定燃焼温度は、一般に、ガス化複合発電設備のプラント負荷、より具体的にはガスタービンの負荷に応じて決まる。そして、設定燃焼温度が決まると、ガス化された精製ガスなどの燃料ガスの組成から燃焼器で必要な空気量が決まる。
【0046】
本開示の一態様に係るガス化複合発電設備(1)では、前記制御部は、前記ガス化複合発電設備のプラント負荷が低負荷とされているときに前記空気量低減運転を行うとともに、該低負荷を超えるときは前記設定燃焼温度から算出される前記設定空気量となるように前記供給空気量調整手段を制御する設定空気量運転を行う。
【0047】
プラント負荷が低負荷となると、ガスタービンからの排ガスの酸素濃度が増加する傾向にあるので、プラント負荷が低負荷のときに空気量低減運転を行うことが好ましい。一方で、プラント負荷が低負荷を超える場合は、設定空気量運転を行うことによってプラント効率を所望値に維持することができる。
なお、低負荷としては、定格の50%以下、または40%以下とされる。また、低負荷には、ガス化複合発電設備の起動時も含まれる。
【0048】
本開示の一態様に係るガス化複合発電設備(1)では、前記制御部は、燃料比が所定値よりも小さい炭素含有固体燃料を用いる場合に、前記空気量低減運転に切り換える。
【0049】
燃料比(固定炭素/揮発分)が所定値よりも小さい炭素含有固体燃料を用いる場合には、微粉燃料としたときに自然発火が発生する可能性が高くなる。そこで、燃料比が所定値よりも小さい炭素含有固体燃料を用いる場合には空気量低減運転に切り換えることとした。これにより、自然発火の可能性を低減することができる。
燃料比が所定値よりも大きい炭素含有固体燃料を用いる場合には、空気量低減運転を行わずに設定空気量運転を行うことができる。
燃料比の所定値としては、例えば0.7~1.2とされる。
【0050】
本開示の一態様に係るガス化複合発電設備(1)では、前記供給空気量調整手段は、前記圧縮機に設けられたインレットガイドベーン(14)とされている。
【0051】
供給空気量調整手段として圧縮機に設けられたインレットガイドベーン(IGV)を用いることによって、空気量低減運転時に吸入空気量を低減することができる。
【0052】
本開示の一態様に係るガス化複合発電設備(1)では、前記供給空気量調整手段は、前記圧縮機の出口と入口とを接続する再循環流路(44)を備えている。
【0053】
圧縮機の出口と入口とを接続する再循環流路を設けることによって、吐出空気を再循環させることで空気量低減運転時に燃焼器へ導かれる空気量を低減することができる。
【0054】
本開示の一態様に係るガス化複合発電設備(1)では、前記供給空気量調整手段は、前記圧縮機に吸入される空気を加熱する加熱手段(47)を備えている。
【0055】
圧縮機に吸入される空気を加熱手段で加熱することによって吸入空気の密度を小さくすることで、空気量低減運転時に燃焼器へ導かれる空気量を低減することができる。
【0056】
本開示の一態様に係るガス化複合発電設備(1)では、前記供給空気量調整手段は、前記圧縮機から前記燃焼器へ導かれる圧縮空気を外部へ放出する放風手段(40,41)を備えている。
【0057】
圧縮機から燃焼器へ導かれる圧縮空気を外部へ放出することによって、空気量低減運転時に燃焼器へ導かれる空気量を低減することができる。
【0058】
本開示の一態様に係るガス化複合発電設備(1)では、前記粉砕機の入口又は出口の酸素濃度を低減する酸素濃度低減手段(20)を備えている。
【0059】
上記の空気量低減運転に加えて、粉砕機の入口又は出口の酸素濃度を低減する酸素濃度低減手段を設けることで、微粉燃料の自然発火の可能性をさらに低減することができる。
【0060】
本開示の一態様に係るガス化複合発電設備(1)では、前記粉砕機の出口側に設けられた酸素濃度計(12a)を備え、前記制御部は、前記酸素濃度計の計測値に基づいて、前記酸素濃度低減手段を制御する。
【0061】
粉砕機の出口側に設けた酸素濃度計の計測値に基づいて酸素濃度を低減することで、より確実に微粉燃料の自然発火の可能性を低減することができる。
【0062】
本開示の一態様に係るガス化複合発電設備(1)では、空気分離装置(20)を備え、前記酸素濃度低減手段は、前記空気分離装置で生成された窒素を前記粉砕機の入口又は出口に供給する窒素供給流路(30)を備えている。
【0063】
空気分離装置(ASU:Air Separation Unit)にて生成された窒素を粉砕機の入口又は出口に供給することで、酸素濃度を低減することができる。これにより、微粉燃料の自然発火の可能性を低減することができる。なお、窒素としては、窒素を主成分とする窒素ガスが用いられる。
粉砕機の出口に窒素を供給する場合には、粉砕機の下流側に設けられた集塵機やビン、ホッパなどにおける自然発火の可能性を低減することができる。
【0064】
本開示の一態様に係るガス化複合発電設備(1)では、CO2回収装置(32)を備え、前記酸素濃度低減手段は、前記CO2回収装置で生成されたCO2を前記粉砕機の入口又は出口に供給するCO2供給流路(33)を備えている。
【0065】
CO2回収装置にて生成されたCO2を粉砕機の入口又は出口に供給することで、酸素濃度を低減することができる。これにより、微粉燃料の自然発火の可能性を低減することができる。なお、CO2としては、CO2を主成分とするCO2ガスが用いられる。
粉砕機の出口にCO2を供給する場合には、粉砕機の下流側に設けられた集塵機やビン、ホッパなどにおける自然発火の可能性を低減することができる。
【0066】
本開示の一態様に係るガス化複合発電設備(1)では、前記燃焼ガスとは異なる燃焼ガスを生成する燃焼装置(35)を備え、前記酸素濃度低減手段は、前記燃焼装置で生成された燃焼ガスを前記粉砕機の入口又は出口に供給する燃焼ガス供給流路(36)を備えている。
【0067】
燃焼装置にて生成された燃焼ガス(燃焼器で発生した燃焼ガスとは異なる燃焼ガス)を粉砕機の入口又は出口に供給することで、酸素濃度を低減することができる。これにより、微粉燃料の自然発火の可能性を低減することができる。
粉砕機の出口に燃焼ガスを供給する場合には、粉砕機の下流側に設けられた集塵機やビン、ホッパなどにおける自然発火の可能性を低減することができる。
燃焼装置としては、例えば補助ボイラのバーナなどが挙げられる。
【0068】
本開示の一態様に係るガス化複合発電設備(1)では、前記酸素濃度低減手段は、前記燃焼器に水、及び/又は、水蒸気、及び/又は、窒素を添加する添加手段(38)を備えている。
【0069】
燃焼器に水、及び/又は、水蒸気、及び/又は、窒素を添加することで、燃焼ガスの酸素濃度を低減することができる。これにより、微粉燃料の自然発火の可能性を低減することができる。
【0070】
本開示の一態様に係るガス化複合発電設備(1)の運転方法は、炭素含有固体燃料を粉砕して微粉燃料とする粉砕機と、前記粉砕機で粉砕された微粉燃料をガス化するガス化炉と、前記ガス化炉でガス化されたガス化ガスを燃焼させる燃焼器と、前記燃焼器に圧縮空気を供給する圧縮機と、前記燃焼器で発生した燃焼ガスによって駆動されるガスタービンと、前記ガスタービンによって駆動されて発電する発電機と、前記ガスタービンの排ガスの一部を前記粉砕機へ導く排ガス供給流路と、前記圧縮機から前記燃焼器へ供給する空気量を調整する供給空気量調整手段と、を備えたガス化複合発電設備の運転方法であって、前記燃焼器の設定燃焼温度から算出された設定空気量よりも小さい空気量となるように前記供給空気量調整手段を制御する空気量低減運転を行う。
【符号の説明】
【0071】
1 IGCC(ガス化複合発電設備)
4 ガス化炉
5 ガスタービン
6 燃焼器
7 圧縮機
9 排熱回収ボイラ
10 微粉炭機(粉砕機)
12a 酸素濃度センサ
14 IGV(供給空気量調整手段)
20 ASU(空気分離装置)
22 高温排ガス抽気流路(排ガス供給流路)
23 低温排ガス抽気流路(排ガス供給流路)
24 合流排ガス抽気流路(排ガス供給流路)
30 窒素供給流路
32 CO2回収装置(酸素濃度低減手段)
33 CO2供給流路
35 燃焼装置(酸素濃度低減手段)
38 添加手段
40 放風弁(放風手段)
41 放風流路(放風手段)
44 再循環流路
47 熱交換器(加熱手段)