IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ グーグル インコーポレイテッドの特許一覧

特許7434190画像セマンティックコンテンツを使用したブランド浸透度決定システム
<>
  • 特許-画像セマンティックコンテンツを使用したブランド浸透度決定システム 図1
  • 特許-画像セマンティックコンテンツを使用したブランド浸透度決定システム 図2
  • 特許-画像セマンティックコンテンツを使用したブランド浸透度決定システム 図3
  • 特許-画像セマンティックコンテンツを使用したブランド浸透度決定システム 図4
  • 特許-画像セマンティックコンテンツを使用したブランド浸透度決定システム 図5
  • 特許-画像セマンティックコンテンツを使用したブランド浸透度決定システム 図6
  • 特許-画像セマンティックコンテンツを使用したブランド浸透度決定システム 図7
  • 特許-画像セマンティックコンテンツを使用したブランド浸透度決定システム 図8
  • 特許-画像セマンティックコンテンツを使用したブランド浸透度決定システム 図9
  • 特許-画像セマンティックコンテンツを使用したブランド浸透度決定システム 図10
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-02-09
(45)【発行日】2024-02-20
(54)【発明の名称】画像セマンティックコンテンツを使用したブランド浸透度決定システム
(51)【国際特許分類】
   G06Q 30/02 20230101AFI20240213BHJP
【FI】
G06Q30/02
【請求項の数】 20
(21)【出願番号】P 2020571696
(86)(22)【出願日】2019-01-10
(65)【公表番号】
(43)【公表日】2021-11-11
(86)【国際出願番号】 US2019012972
(87)【国際公開番号】W WO2020131139
(87)【国際公開日】2020-06-25
【審査請求日】2021-01-13
【審判番号】
【審判請求日】2022-09-22
(31)【優先権主張番号】62/783,327
(32)【優先日】2018-12-21
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】502208397
【氏名又は名称】グーグル エルエルシー
【氏名又は名称原語表記】Google LLC
【住所又は居所原語表記】1600 Amphitheatre Parkway 94043 Mountain View, CA U.S.A.
(74)【代理人】
【識別番号】100108453
【弁理士】
【氏名又は名称】村山 靖彦
(74)【代理人】
【識別番号】100110364
【弁理士】
【氏名又は名称】実広 信哉
(74)【代理人】
【識別番号】100133400
【弁理士】
【氏名又は名称】阿部 達彦
(72)【発明者】
【氏名】ヤン・メイスター
(72)【発明者】
【氏名】ブライアン・エドモンド・ブルーウィントン
(72)【発明者】
【氏名】リック・イノウエ
【合議体】
【審判長】佐藤 智康
【審判官】古川 哲也
【審判官】伏本 正典
(56)【参考文献】
【文献】特表2011-519797(JP,A)
【文献】特開2013-167914(JP,A)
【文献】米国特許出願公開第2016/0358190(US,A1)
【文献】米国特許出願公開第2005/0288859(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G06Q10/00-99/00
(57)【特許請求の範囲】
【請求項1】
地理的エリアにわたるブランド浸透度の指標を決定するためのコンピュータ実施方法であって、
1つまたは複数のコンピューティングデバイスによって、地理的エリアを2つ以上の小地域に分割するステップと、
前記1つまたは複数のコンピューティングデバイスによって、各小地域内の1つまたは複数の現場において取り込まれた画像から、各それぞれの小地域内のブランドの検出数を決定するステップと、
前記1つまたは複数のコンピューティングデバイスによって、各小地域のためのブランド浸透指数を生成するステップであって、前記ブランド浸透指数が、前記それぞれの小地域における前記ブランドの前記検出数に基づく、ステップと、
前記1つまたは複数のコンピューティングデバイスによって、メモリ内に各小地域のための前記ブランド浸透指数を記憶するステップと
を含むコンピュータ実施方法。
【請求項2】
前記地理的エリアを2つ以上の小地域に分割するステップにおいて、各小地域内の人口がしきい値を上回ることを保証するように、小地域の数および各小地域の1つまたは複数の境界が決定される、請求項1に記載のコンピュータ実施方法。
【請求項3】
各小地域内の1つまたは複数の現場において取り込まれた画像から、ブランドの検出数を決定するステップが、
前記1つまたは複数のコンピューティングデバイスによって、前記それぞれの小地域に関連付けられた画像の集合を取得するステップと、
前記1つまたは複数のコンピューティングデバイスによって、前記画像の集合のうちの各画像内の前記ブランドに関連付けられたテキストおよびロゴのうちの1つまたは複数を検出するようにトレーニングされている機械学習画像コンテンツ解析モデルにアクセスするステップと、
前記1つまたは複数のコンピューティングデバイスによって、前記機械学習画像コンテンツ解析モデルへの入力として、前記画像の集合を提供するステップと、
前記1つまたは複数のコンピューティングデバイスによって、前記機械学習画像コンテンツ解析モデルへの入力としての前記画像の集合の受信に応答した前記機械学習画像コンテンツ解析モデルの出力として、前記それぞれの小地域内の前記ブランドの前記検出数を表すカウントを受信するステップと
を含む、請求項1または2に記載のコンピュータ実施方法。
【請求項4】
各小地域内の1つまたは複数の現場において取り込まれた前記画像が、路上で動作するカメラによって取り込まれた画像である、請求項1から3のいずれか一項に記載のコンピュータ実施方法。
【請求項5】
前記ブランド浸透指数が、前記ブランドに関連付けられた商品のカテゴリに基づくカテゴリ係数によって重み付けされた、前記それぞれの小地域における前記ブランドの前記検出数に基づく、請求項1から4のいずれか一項に記載のコンピュータ実施方法。
【請求項6】
前記ブランド浸透指数が、人口係数によって重み付けされた、前記それぞれの小地域における前記ブランドの前記検出数に基づき、前記人口係数が、前記小地域内の人口に基づく、請求項1から5のいずれか一項に記載のコンピュータ実施方法。
【請求項7】
各小地域内の1つまたは複数の現場において取り込まれた画像から、ブランドの検出数を決定するステップが、前記1つまたは複数のコンピューティングデバイスによって、別個の地理的位置に関連付けられた複数の画像から検出された実世界の同じ位置にある前記ブランドの検出を重複排除することによって、前記ブランドの前記検出数を精緻化するステップを含む、請求項1から6のいずれか一項に記載のコンピュータ実施方法。
【請求項8】
前記地理的エリアを2つ以上の小地域に分割するステップにおいて、各小地域の境界が、あらかじめ決定されたセルサイズ、およびあらかじめ決定された地理的区分のうちの1つまたは複数に従って定義される、請求項1から7のいずれか一項に記載のコンピュータ実施方法。
【請求項9】
1つまたは複数の現場において取り込まれた前記画像から決定される前記ブランドの各検出が、前記画像内に現れるエンティティの店頭から決定される、請求項1から8のいずれか一項に記載のコンピュータ実施方法。
【請求項10】
1つまたは複数の現場において取り込まれた前記画像から決定される前記ブランドの各検出が、前記画像内に現れる車両から決定される、請求項1から9のいずれか一項に記載のコンピュータ実施方法。
【請求項11】
前記1つまたは複数のコンピューティングデバイスによって、前記2つ以上の小地域のうちの所与の小地域のための前記ブランド浸透指数に少なくとも部分的に基づいて、前記ブランドに関連付けられた電子コンテンツアイテムを決定するステップであって、前記電子コンテンツアイテムが、前記所与の小地域に関連付けられた電子デバイスに配信および表示するために構成される、ステップをさらに含む、請求項1から10のいずれか一項に記載のコンピュータ実施方法。
【請求項12】
前記1つまたは複数のコンピューティングデバイスによって、1つまたは複数の時間期間にわたる各小地域のための前記ブランド浸透指数における1つまたは複数の動的シフトを示す、シフト係数を決定するステップをさらに含む、請求項1から11のいずれか一項に記載のコンピュータ実施方法。
【請求項13】
コンピューティングシステムであって
地理的エリアを2つ以上の小地域に区分するように構成された、地理的小地域決定システムと、
各小地域内の1つまたは複数の現場において取り込まれた画像から、各それぞれの小地域内のブランドの検出数を決定するように構成された、画像コンテンツ解析エンジンと、
各小地域のためのブランド浸透指数を生成するように構成された、ブランド浸透指数生成システムであって、前記ブランド浸透指数が、前記小地域内の人口に基づく人口係数、または前記ブランドに関連付けられた商品のカテゴリに基づくカテゴリ係数のうちの1つまたは複数によって重み付けされた、前記それぞれの小地域における前記ブランドの前記検出数に基づく、ブランド浸透指数生成システムとを備え、
前記地理的小地域決定システムが、前記地理的エリアを2つ以上の小地域に分割することにおいて、各小地域内の前記人口がしきい値を上回ることを保証するように、小地域の数および各小地域の1つまたは複数の境界を決定するように構成され、
前記コンピューティングシステムが、各小地域のための前記ブランド浸透指数を記憶するように構成された、1つまたは複数の有形のコンピュータ可読媒体をさらに備える、コンピューティングシステム。
【請求項14】
前記画像コンテンツ解析エンジンが、前記地理的エリア内の路上で動作するカメラによって取り込まれた画像の集合のうちの各画像内の前記ブランドに関連付けられたテキストおよびロゴのうちの1つまたは複数を検出するようにトレーニングされている機械学習画像コンテンツ解析モデルを備える、請求項13に記載のコンピューティングシステム。
【請求項15】
前記ブランド浸透指数生成システムが、別個の地理的位置に関連付けられた複数の画像から検出された実世界の同じ位置にある前記ブランドの検出を重複排除することによって、ブランドの前記検出数を精緻化するように構成される、請求項13または14に記載のコンピューティングシステム。
【請求項16】
前記地理的小地域決定システムが、前記地理的エリアを2つ以上の小地域に分割することにおいて、あらかじめ決定されたセルサイズ、およびあらかじめ決定された地理的区分のうちの1つまたは複数に従って、各小地域の前記境界を決定するように構成される、請求項13から15のいずれか一項に記載のコンピューティングシステム。
【請求項17】
前記画像コンテンツ解析エンジンが、前記1つまたは複数の現場において取り込まれた前記画像から、前記画像内に現れる車両またはエンティティの店頭のうちの1つまたは複数から前記ブランドの各検出を決定するように構成される、請求項13から16のいずれか一項に記載のコンピューティングシステム。
【請求項18】
前記2つ以上の小地域のうちの所与の小地域のための前記ブランド浸透指数に少なくとも部分的に基づいて、前記ブランドに関連付けられた電子コンテンツアイテムを決定するように構成された、ターゲット広告システムであって、前記電子コンテンツアイテムが、前記所与の小地域に関連付けられた電子デバイスに配信および表示するために構成される、ターゲット広告システムをさらに備える、請求項13から17のいずれか一項に記載のコンピューティングシステム。
【請求項19】
前記ブランド浸透指数生成システムが、1つまたは複数の時間期間にわたる各小地域のための前記ブランド浸透指数における1つまたは複数の動的シフトを示す、シフト係数を決定するように構成される、請求項13から18のいずれか一項に記載のコンピューティングシステム。
【請求項20】
1つまたは複数のプロセッサによって実行されると、請求項1から12のいずれか一項に記載の方法を前記1つまたは複数のプロセッサに行わせる、コンピュータ実行可能命令を記憶する、1つまたは複数の有形のコンピュータ可読記憶媒体。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、一般に、地理的地域にわたるブランド浸透度の指標を決定することに関する。より詳細には、本開示は、様々な区分された小地域内の複数のジオロケーション画像および対応する位置からのブランド検出の数に基づいて指数を生成する、ブランド浸透度決定システムおよび方法に関する。
【背景技術】
【0002】
画像コンテンツ解析エンジンは、現在、極めて多様なオブジェクトおよびエンティティを検出するために開発および展開されている。これらのエンジンから取得されたデータは、後で検索および解析するために処理されることがあり、そのような処理は、広範囲の適用例に及び、重い計算的負荷を伴うことがある。したがって、解析された画像に関連する有用なデータ、および関係するコンテンツを提供しながら、たとえば、そのようなデータを記憶するために必要とされるコンピュータメモリの量を含む、そのようなデータを記憶するコストを最小限にするための、追加の技術が必要とされる。
【発明の概要】
【課題を解決するための手段】
【0003】
本開示の実施形態の態様および利点については、以下の説明において部分的に記載され、または説明から知ることができ、または実施形態の実践を通して知ることができる。
【0004】
本開示の1つの例示的な態様は、地理的エリアにわたるブランド浸透度の指標を決定するためのコンピュータ実施方法を対象とする。方法は、1つまたは複数のコンピューティングデバイスによって、地理的エリアを2つ以上の小地域に分割するステップを含む。方法はまた、1つまたは複数のコンピューティングデバイスによって、各小地域内の1つまたは複数の現場において取り込まれた画像から、各それぞれの小地域内のブランドの検出数を決定するステップを含む。方法はまた、1つまたは複数のコンピューティングデバイスによって、各小地域のためのブランド浸透指数を生成するステップであって、ブランド浸透指数が、それぞれの小地域におけるブランドの検出数に基づく、ステップを含む。方法はまた、1つまたは複数のコンピューティングデバイスによって、それぞれの小地域のインジケータに関連して、メモリ内に各小地域のためのブランド浸透指数を記憶するステップを含む。
【0005】
本開示の別の例示的な態様は、コンピューティングシステムを対象とする。コンピューティングシステムは、地理的エリアを2つ以上の小地域に区分するように構成された、地理的小地域決定システムを含む。コンピューティングシステムはまた、各小地域内の1つまたは複数の現場において取り込まれた画像から、各それぞれの小地域内のブランドの検出数を決定するように構成された、画像コンテンツ解析エンジンを含む。コンピューティングシステムはまた、各小地域のためのブランド浸透指数を生成するように構成された、ブランド浸透指数生成システムを含み、ブランド浸透指数が、小地域内の人口に基づく人口係数、またはブランドに関連付けられた商品のカテゴリに基づくカテゴリ係数のうちの1つまたは複数によって重み付けされた、それぞれの小地域におけるブランドの検出数に基づく。地理的小地域決定システムは、地理的エリアを2つ以上の小地域に分割することにおいて、各小地域内の人口がしきい値を上回ることを保証するように、小地域の数および各小地域の1つまたは複数の境界を決定するように構成される。コンピューティングシステムはまた、それぞれの小地域のインジケータに関連して、各小地域のためのブランド浸透指数を記憶するように構成された、1つまたは複数の有形のコンピュータ可読媒体を含む。
【0006】
本開示の別の例示的な態様は、1つまたは複数のプロセッサによって実行されると、1つまたは複数のプロセッサに動作を行わせる、コンピュータ可読命令を記憶する、1つまたは複数の有形の非一時的コンピュータ可読媒体を対象とする。動作は、地理的エリアを2つ以上の小地域に分割することを含む。動作はまた、各小地域内の1つまたは複数の現場において取り込まれた画像から、各それぞれの小地域内のブランドの検出数を決定することを含む。動作はまた、各小地域のためのブランド浸透指数を生成することであって、ブランド浸透指数が、それぞれの小地域におけるブランドの検出数に基づく、ことを含む。動作はまた、それぞれの小地域のインジケータに関連して、メモリ内に各小地域のためのブランド浸透指数を記憶することを含む。動作はまた、2つ以上の小地域のうちの所与の小地域のためのブランド浸透指数に少なくとも部分的に基づいて、ブランドに関連付けられた電子コンテンツアイテムを決定することを含む。電子コンテンツアイテムは、所与の小地域に関連付けられた電子デバイスに配信および表示するために構成される。
【0007】
本開示の他の態様は、様々なシステム、装置、非一時的コンピュータ可読媒体、コンピュータプログラム製品、ユーザインターフェース、および電子デバイスを対象とする。
【0008】
本開示の様々な実施形態のこれらおよび他の特徴、態様、および利点は、以下の説明および添付の特許請求の範囲を参照すると、よりよく理解されよう。本明細書に組み込まれ、本明細書の一部を構成する添付の図面は、本開示の例示的な実施形態を示し、説明とともに、関係する原理を説明するために役立つ。
【0009】
当業者を対象とする実施形態の詳細な説明が、本明細書に記載され、本明細書は添付の図を参照する。
【図面の簡単な説明】
【0010】
図1】本開示の例示的な実施形態による、地理的エリアにわたるブランド浸透度の指標を決定するための例示的なコンピューティングシステムのブロック図である。
図2】本開示の例示的な実施形態による、例示的な画像コンテンツ解析エンジンのブロック図である。
図3】本開示の例示的な実施形態による、画像コンテンツ解析エンジンによって実施された例示的な解析の第1の態様の図である。
図4】本開示の例示的な実施形態による、画像コンテンツ解析エンジンによって実施された例示的な解析の第2の態様の図である。
図5】本開示の例示的な実施形態による、地域ブランド浸透度の例示的な指標の第1の視覚表現の図である。
図6】本開示の例示的な実施形態による、地域ブランド浸透度の例示的な指標の第2の視覚表現の図である。
図7】本開示の例示的な実施形態による、地理的エリアにわたるブランド浸透度の指標を決定するための例示的な方法のフローチャート図である。
図8】本開示の例示的な実施形態による、地理的地域内のブランドの検出数を決定するための例示的な方法のフローチャート図である。
図9】本開示の例示的な実施形態による、画像コンテンツ解析モデルをトレーニングするための例示的な方法のフローチャート図である。
図10】本開示の例示的な実施形態による、例示的なコンピューティングシステムのブロック図である。
【発明を実施するための形態】
【0011】
複数の図にわたって繰り返される参照番号は、様々な実装形態において同じ特徴を識別するものである。
【0012】
本開示に一致するシステムおよび方法は、地理的地域に関連付けられたブランド浸透度の指標を生成および記憶するための特徴を含み得る。より具体的には、開示するシステムおよび方法は、複数のジオロケーション画像からブランド検出を決定するための画像コンテンツ解析モデルを採用することができる。次いで、ブランド浸透指数および関係する指標が、ブランド検出の数および対応する区分された位置に基づいて生成され得る。たとえば、いくつかの実装形態では、ブランド浸透度決定システムは、そのための関連付けられたブランド浸透度の指標が決定され得る地理的地域内の、2つ以上の離散化された小地域の分布を決定するように構成され得る。小地域数および/または境界は、各小地域内の人口がしきい値を上回ることを保証するように決定され得る。各小地域の人口がそのしきい値を上回ることを保証することによって、各小地域のための統計的に関連するブランド指数を記憶する際にかかる計算的負担が低減される。加えて、統計的に有意な数の住民を有する小地域のためのブランド指数のみが記憶されることを保証することによって、開示するシステムおよび方法は、画像コーパスに関連付けられた有用なデータを提供すると同時に、メモリ内にそのデータを記憶するコストを最小限にすることができる。
【0013】
開示する技術の実施形態の実装は、本明細書で説明するシステム、プログラム、または特徴がユーザ情報(たとえば、ユーザの現在の位置、ソーシャルネットワーク、ソーシャルアクション、もしくはアクティビティ、職業、ユーザの選好、または他のユーザ固有の特徴についての情報)、ユーザに関連付けられた1つもしくは複数のコンピューティングデバイスからの画像、および/またはユーザがサーバからコンテンツもしくは通信を送られるか否かを示す制御データの収集を可能にすることができるか否かと、いつそうであるかの両方について、ユーザが選択を行うことを可能にする制御を含み得ることを諒解されたい。加えて、あるデータは、記憶または使用される前に、個人を特定できる情報が除去されるように、1つまたは複数の方法で扱われ得る。たとえば、ユーザの識別情報は、ユーザについての個人を特定できる情報が決定され得ないように扱われ得るか、または、ユーザの地理的位置が汎化され得、その場合、ユーザの特定の位置が決定され得ないように、位置情報が(市、郵便番号、または州レベルなどまで)取得される。したがって、ユーザは、何の情報がユーザについて収集されるか、どのようにその情報が使用されるか、および何の情報がユーザに提供されるかに対する制御を有し得る。他の例では、開示する技法に従って、そのような画像から決定された画像および/またはコンテンツは、人々の画像、街路名および住居の数、ならびに他の個人情報など、個人を特定できる情報が除去されることを保証するように扱われ得る。
【0014】
本開示の態様によれば、1つまたは複数のプロセッサを備えるコンピューティングシステムが、ブランド浸透度決定システムを含む、開示する技術の態様の実装を助けるために使用され得る。概して、ブランド浸透度決定システムは、地理的地域にわたるブランド浸透度の指標を決定するように構成され得る。いくつかの実装形態では、ブランド浸透度決定システムは、地理的小地域決定システム、画像コンテンツ解析エンジン、および/またはブランド浸透指数生成システムを含み得る。
【0015】
いくつかの実装形態では、地理的小地域決定システムは、地理的エリアを2つ以上の小地域に分割するように構成され得る。小地域は、たとえば、ブランド浸透度の1つまたは複数の所望の指標に基づいて、あらかじめ決定された、または動的に決定されたサイズおよび/または境界を有し得る、地理的地域内の離散化セルに対応し得る。たとえば、いくつかの実装形態では、ブランド浸透度決定システムは、地理的エリアを2つ以上の小地域に分割することにおいて、特定のセルサイズおよび/または特定の地理的区分のうちの1つまたは複数に従って、各小地域の境界を決定するように構成され得る。たとえば、地理的エリアを小地域に区分する1つの方法は、地理的エリアの上に置かれたグリッドの実装に対応し得る。いくつかの実装形態では、グリッドにおける各セルは、所与の形状(たとえば、正方形、長方形、円、5角形、6角形、または他の多角形)によって特徴付けられ得る。いくつかの実装形態では、グリッドにおける各セルは、あらかじめ決定された、または動的に決定された距離(たとえば、メートル、キロメートル、マイル、または他の好適な変数の単位で測定された値)を有する、1つまたは複数の寸法(たとえば、幅、長さ、高さ、および/または直径寸法)によって特徴付けられ得る。いくつかの実装形態では、それぞれの小地域に対応するセルのグリッドは、サイズが均一であり得るが、他の実施形態では、セルのサイズが変動し得る。
【0016】
いくつかの実装形態では、地理的小地域決定システムは、地理的エリアを2つ以上の小地域に分割することにおいて、各小地域内の人口がしきい値を上回ることを保証するように、小地域の数および各小地域の境界を決定するように構成され得る。各小地域の人口がそのしきい値を上回ることを保証することによって、各地域のための有用なブランド指数を記憶する際にかかる計算的負担が低減される。
【0017】
小地域境界のサイズが、(たとえば、セルの均一なグリッドの形態の場合のように)均一であるとき、または小地域境界のサイズが、あらかじめ決定されている(たとえば、郵便番号、近隣の境界、町/地区の境界、州の境界、国の境界などに対応するものなど、あらかじめ決定された地理的区分に対応する)とき、小地域の数は、その人口がしきい値を超えない小地域を除外することによって低減され得る。
【0018】
いくつかの実装形態では、本明細書で説明するような人口は、地理的エリアに関連付けられた、国勢調査のデータまたは他のあらかじめ定義されたデータベースから決定されたものなど、所与の地理的エリア内の人々の数に対応し得る。この例では、各小地域内の人口がしきい値を上回ることを保証するとき、地理的小地域決定システムは、各小地域が、各小地域における人々の数(x)に対応するしきい値によって定義された人口を有するように、各小地域の数および/または境界を決定することができる。
【0019】
地理的小地域決定システムをさらに参照すると、他の実装形態では、本明細書で説明するような人口は、所与の地理的エリアにおける人々に関連付けられた商品の決定された数-たとえば、住宅、車両、企業、電子デバイス、またはそのような商品の特定のカテゴリもしくはサブセットの数に対応し得る。この例では、各小地域内の人口がしきい値を上回ることを保証するとき、地理的小地域決定システムは、各小地域が、各小地域における商品(たとえば、住宅、車両、企業、電子デバイスなど)の数(y)に対応するしきい値によって定義された人口を有するように、各小地域の数および/または境界を決定することができる。
【0020】
地理的小地域決定システムをさらに参照すると、他の実装形態では、本明細書で説明するような人口は、特定の地理的エリア内の現場について取得された画像の決定された数、および/またはそのような画像内の商品、エンティティなどの検出数に対応し得る。この例では、各小地域内の人口がしきい値を上回ることを保証するとき、地理的小地域決定システムは、各小地域が、各小地域における画像および/または画像内の検出されたオブジェクトの数(z)に対応するしきい値によって定義された人口を有するように、各小地域の数および/または境界を決定することができる。
【0021】
小地域のサイズが、人口密度(または、対応するブランド検出の密度)に基づいて動的に決定されるように、地理的エリアを小地域に区分することによって、ブランド検出の人口がほとんどまたは全くない小地域に対応するセルを含む尤度が低減される。これは、関連付けられたブランド指数を有する多数の小地域があるが、各小地域がとても少数の住民を有するので、それらの小地域からのデータが統計的に関連しないというシナリオを回避することによって、少なくとも部分的に達成される。同様に、より多数のブランド検出を有する小地域内のセルのサイズが、ブランド検出の分布レベル内の差異を維持するために適切なサイズを保証する助けになるように決定され得る。これは、有意なブランド浸透度指標が地理的エリアについて決定され得ることを保証する助けになり得る。したがって、セルサイズは、異なる地域に基づいて変動し得る。たとえば、セルサイズは、都市の位置において小さくなり得、都市のエリアから郊外のエリアへ、および地方のエリアへ移行するとき、徐々に大きくなり得る。
【0022】
いくつかの実装形態では、画像コンテンツ解析エンジンは、各小地域内の1つまたは複数の現場において取り込まれた画像から、各それぞれの小地域内のブランドの検出数を決定するように構成され得る。いくつかの実施形態では、1つまたは複数の現場において取り込まれた画像は、かなり大規模な画像の集合を含み得る。いくつかの実施形態では、画像の集合は、路上で動作するカメラによって、各小地域内の1つまたは複数の現場において取り込まれていることがある。たとえば、路上で動作するカメラは、車両に搭載され、車両が地理的地域内の1つまたは複数の街路位置を横断中である間、画像の集合を取得するように構成され得る。画像の集合は、たとえば、複数の別個の写真画像、および/またはビデオからの画像のシーケンスを含み得る。いくつかの実装形態では、そのような画像には、各画像を取り込んだときのカメラに関連付けられた地理的位置を表す1つまたは複数の地理的識別子を用いて、ジオタグが付けられる。
【0023】
いくつかの実装形態では、画像コンテンツ解析エンジンは、1つまたは複数の機械学習画像コンテンツ解析モデルを記憶するか、含むか、またはそれにアクセスすることができる。たとえば、画像コンテンツ解析モデルは、ニューラルネットワーク(たとえば、フィードフォワードネットワーク、リカレントニューラルネットワーク、畳み込みニューラルネットワークなど)、または他の多層非線形モデル、回帰ベースモデルなど、様々な機械学習モデルであり得るか、またはさもなければそれらを含み得る。
【0024】
機械学習画像コンテンツ解析モデルは、地理的エリアに関連付けられた画像の集合のうちの各画像内のブランドに関連付けられたテキストおよび/またはロゴを検出するようにトレーニングされていることがある。いくつかの実装形態では、機械学習画像コンテンツ解析モデルは、テキスト化(text transcription)識別および/またはロゴマッチング識別を実装するようにトレーニングされていることがある。たとえば、テキスト化および/またはロゴは、テキスト化および/またはロゴオプションのあらかじめ決定されたデータセットにおいて識別されたテキストおよび/またはロゴオプション(たとえば、特定のタイプのラベルに関連付けられたテキストおよび/またはロゴの名称(たとえば、車両メーカの名称))とマッチングされ得る。
【0025】
いくつかの実装形態では、ブランドは、特定の商品のカテゴリ(たとえば、車両、企業エンティティタイプ、ベンダー支払いタイプ、衣服、靴など)に関連付けられ得る。より詳細には、いくつかの例では、画像コンテンツ解析エンジンは、1つまたは複数の現場において取り込まれた画像から、画像内に現れるエンティティの店頭から、ブランドの各検出を決定するように構成され得る。エンティティの店頭におけるブランド検出の例には、限定はしないが、エンティティ自体に関連付けられたブランド名(たとえば、ファーストフード店、コンビニエンスストア、ガソリンスタンド、食料品店、薬局のタイプ、または企業エンティティの他のタイプ)、エンティティに関連付けられたベンダー支払いタイプ(たとえば、エンティティが1つまたは複数のそれぞれのクレジットカード会社などからの支払いを受け入れることを示す、名称および/またはロゴの検出)などが含まれ得る。他の例では、画像コンテンツ解析エンジンは、1つまたは複数の現場において取り込まれた画像から、画像内に現れる車両から、ブランドの検出を決定するように構成され得る。他の例では、画像コンテンツ解析エンジンは、1つまたは複数の現場において取り込まれた画像から、画像内に現れる1つまたは複数の掲示板から、ブランドの検出を決定するように構成され得る。本システムおよび方法が、開示する技術の趣旨および範囲内にとどまりながら、画像およびブランドのこれらおよび多数の他の例に適用され得ることを諒解されたい。
【0026】
画像コンテンツ解析エンジンの例示的な態様をさらに参照すると、機械学習画像コンテンツ解析モデルは、機械学習画像コンテンツ解析モデルへの入力として、画像の集合における各画像を受信するように構成され得る。画像の集合の受信に応答して、機械学習画像コンテンツ解析モデルは、画像内に現れる1つまたは複数のブランドの検出に関連付けられた出力データを生成するように構成され得る。たとえば、機械学習コンテンツ解析モデルは、各検出されたブランドに関連付けられたバウンディングボックスを生成するように構成され得る。出力データは、追加または代替として、各検出されたブランドに関連付けられた1つまたは複数のラベルを含むことができ、各ラベルが、ブランドの何らかの態様(たとえば、ブランド名、および/またはブランドに関連付けられた1つもしくは複数の商品のカテゴリ)に関連付けられたセマンティックタグを提供する。画像内で検出された車両の例では、検出された車両に関連付けられた1つまたは複数のラベルは、車両モデルラベル(たとえば、カムリ)、車両メーカラベル(たとえば、トヨタ)、車両クラスラベル(たとえば、セダン)、車両色ラベル(たとえば、白)、または他の識別子を含み得る。いくつかの実装形態では、出力データは、追加または代替として、検出されたブランドがそのバウンディングボックス内で正しく検出される確率を表す、信頼性スコアを含み得る。そのような出力データが、画像の集合にわたって集約されて、地理的地域内、またはその特定の小地域内のブランドの検出数を表すカウントが決定され得る。
【0027】
いくつかの実装形態では、ブランド浸透指数生成システムは、各小地域のためのブランド浸透指数を生成するように構成され得る。いくつかの実装形態では、ブランド浸透指数は、それぞれの小地域におけるブランドの検出数に基づく。いくつかの実装形態では、ブランドの検出数を表すカウントは、限定はしないが、小地域内の人口に基づく人口係数、ブランドに関連付けられた商品のカテゴリに基づくカテゴリ係数、小地域内のブランドのためのソース位置(たとえば、販売代理店、店など)の数に基づくソース係数を含む、1つまたは複数の係数によって重み付けされ得る。いくつかの実装形態では、ブランド浸透指数は、ブランド容量(たとえば、エリアにおいて検出されたすべてのブランドの総数、またはエリア内の人口に基づく可能な検出の総数)、および/またはブランド飽和度(たとえば、エリアにおける同様のブランドの検出の量または指数)に対応し得るか、あるいはそれらを表す他の変数を決定するために使用され得る。いくつかの実装形態では、ブランド浸透指数は、特定のカテゴリにおけるブランドの顕著性の表現(たとえば、セダン、高級車、すべての車などのカテゴリにおける、車両メーカ/モデルの検出数)として決定され得る。
【0028】
いくつかの実装形態では、ブランド浸透指数生成システムは、別個の地理的位置に関連付けられた複数の検出を重複排除することによって、ブランドの検出数を精緻化するように構成され得る。そのような精緻化プロセスは、開示するシステムおよび方法が、ブランド検出を決定するための大規模画像コーパスに関連付けられ得る、潜在的な不均衡および差異の影響をより受けないようにしながら、開示する技法内の精度および有用性を高める助けになり得る。たとえば、精緻化は、地理的エリアのいくつかの部分が他の部分よりも顕著になる形になり得る、潜在的な偏りの量を低減する助けになり得る。
【0029】
いくつかの実装形態では、ブランド検出の潜在的な不均衡は、(たとえば、写真を撮影したオペレータ、車両または人間の速度によって影響を受ける)異なる位置において入手可能な画像の総数における差異、画像が撮影されたときに存在した時間、状況、および気象パターンにおける差異、ならびに各ブランドオブジェクトの視界可視領域(visibility viewshed)が原因で生じ得る。
【0030】
しかしながら、これらの問題は、オペレータ/車両経路の知識、画像が撮影された時間、各画像からのジオロケーションおよび姿勢情報、ならびに各検出のための画像内の検出ボックスを使用して、ブランド検出データを精緻化することによって、着実に解決され得る。次いで、各検出ボックスが明確な実世界の位置に関連付けられ得、小地域内の検出に関連付けられた別個の位置の数がカウントされ得るので、取得された検出を重複排除することが可能になる。
【0031】
特に車両の場合、いくつかのブランド発生に関して可能性のある別の懸念は、それらのブランド発生が、必ずしも所与の地理的エリアに住んでいる人々に関連付けられるとは限らない場合があることである。しかしながら、このことは、大部分の移動がローカルであり、取得された画像検出のコーパス全体で優位を占めるべきであるので、有意な誤差の原因になるとは予想されない。しかしながら、いくつかのシナリオでは、そのエリアのローカルである人々/住宅/車両/その他に基づくか、単にそのエリアを通って移動中である人々/住宅/車両/その他に基づくかにかかわらず、すべての検出を含めることが望ましい結果になり得る。
【0032】
本開示の別の態様によれば、コンピューティングシステムは、地域ブランド浸透度データベース内に、各小地域のために生成されたブランド浸透指数を記憶するように構成され得る。地域ブランド浸透度データベースは、たとえば、1つまたは複数の有形の非一時的コンピュータ可読媒体、または他の好適なコンピュータプログラム製品を含む、メモリに対応し得る。いくつかの実装形態では、各小地域のためのブランド浸透指数は、それぞれの小地域のインジケータに関連して、地域ブランド浸透度データベース内に記憶され得る。いくつかの実装形態では、小地域または対応する指数が、ブランド浸透度の1つまたは複数の指標に従って、最も優位な小地域から最も優位でない小地域へと(または、その逆も同様に)示す方法で記憶されるように、複数の小地域のためのブランド浸透指数が、ブランド浸透度データベース内で順序付けされ得る。
【0033】
いくつかの実装形態では、ブランド浸透指数生成システムは、地域ブランド浸透度データベース内に記憶された指数値が経時的にどのように変化するかを追跡することができる。たとえば、ブランド浸透指数生成システムは、1つまたは複数の時間期間にわたる各小地域のためのブランド浸透指数における1つまたは複数の動的シフトを示す、シフト係数を決定するように構成され得る。システムは、決定されたシフト係数があらかじめ決定されたしきい値レベルを超えるとき、フラグ、通知、および/または自動システム調整を生成するように構成され得る。これらのシフト係数および関連する通知が、成功したブランド浸透、またはよりターゲットを絞ったブランド浸透が望まれるエリアの識別を助けるために使用され得る。
【0034】
本開示の別の態様によれば、いくつかの実装形態では、コンピューティングシステムはまた、地域ブランド浸透度データベースおよび電子コンテンツデータベースに結合された、ターゲット広告システムを含み得る。ターゲット広告システムは、電子コンテンツデータベースから電子コンテンツアイテムを決定するように構成され得る。電子コンテンツアイテムは、2つ以上の小地域のうちの所与の小地域のためのブランド浸透指数に少なくとも部分的に基づいて、ブランドに関連付けられ得る。電子コンテンツアイテムは、所与の小地域に関連付けられた電子デバイスに配信および表示するために構成され得る。たとえば、小地域に関連付けられた電子デバイスは、小地域内に位置する実際の住所に関連付けられたIPアドレスまたは他の識別子を用いて動作する電子デバイスに対応し得る。他の例では、小地域に関連付けられた電子デバイスは、小地域に住んでいるユーザによって所有されるか、または(モバイルコンピューティングデバイスなどの場合であり得るように)小地域において現在動作中である、電子デバイスに対応し得る。
【0035】
本開示の別の態様によれば、いくつかの実装形態では、コンピューティングシステムはまた、電子的な方法とは対照的に物理的な方法で、ユーザにブランドコンテンツをサービスするための実際の住所を決定する助けになり得る、逆ジオコーディング機能を含み得る。より詳細には、ブランド浸透度決定システムおよび/またはターゲット広告システムは、より詳細には、地理的エリア内の小地域に対応するセルを、それらのセル/小地域内の実際の住所にマッピングするように構成された、逆ジオコーディングシステムを含み得る。逆ジオコーディングシステムは、セル/小地域に関連付けられた様々な地理的座標(たとえば、緯度値および経度値)を、それらのエリア内の、またはさもなければそれらのエリアに関連付けられた、実際の住所にマッピングする、データベースおよび/またはシステムを活用することができる。これらの実際の住所は、それぞれのセル/小地域の他のインジケータ、および対応する決定されたブランド浸透指数とともに、メモリ内に(たとえば、地域ブランド浸透度データベース内に)記憶され得る。次いで、特定のセル/小地域について決定されたブランド浸透度の指標が、それらのセル/小地域内の実際の住所への選択された配送のためのコンテンツアイテム(たとえば、ターゲット広告郵便物)を決定するために使用され得る。
【0036】
ユーザに配信される電子コンテンツを動的に決定または調整する際に、開示するブランド浸透指数を利用することによって、広告主は、より正確に最も好適な視聴者を製品のターゲットにすることができる。より詳細には、電子コンテンツは、特定のブランドの平均を下回る浸透度、および/または競合ブランドの平均を上回る浸透度を有する地理的エリア内のユーザに配信するために、戦略的に決定され得る。いくつかの実装形態では、ターゲット広告システムによって実施されるさらなる解析は、限定はしないが、ブランド浸透度の様々なしきい値レベルなど、1つまたは複数の変数に関して、浸透度指標を決定することができる。
【0037】
本明細書で説明するシステムおよび方法は、いくつかの技術的効果および利益を提供し得る。たとえば、コンピューティングシステムは、収集された画像の大規模コーパスに関連付けられた、有意なオブジェクト検出データを生成する、ブランド浸透度決定システムを含み得る。より詳細には、画像内の商品、サービスなどに関連付けられたブランドの検出は、計算的に実行可能な方法で、ブランド容量、ブランドの顕著性、ブランド飽和度などを表す、ブランド指数の統計的に関連する指標に相関され得る。加えて、これらのブランド浸透度の指標は、追加のまたは代替データ指標を決定するために、空間(たとえば、様々な地理的地域)および時間(たとえば、様々なウィンドウ-時刻、曜日、月など)にわたって、有利に追跡および集約され得る。
【0038】
開示する技術のさらなる技術的効果および利益は、各小地域内の人口がしきい値を上回ることを保証するように、地理的エリア内の小地域の数および/または境界を決定するように構成され得る、地理的小地域決定システムの統合に関係する。各小地域の人口がそのしきい値を上回ることを保証することによって、各小地域のための統計的に関連するブランド指数を記憶する際にかかる計算的負担が低減される。加えて、統計的に有意な数の住民を有する小地域のためのブランド指数のみが記憶されることを保証することによって、開示するシステムおよび方法は、画像コーパスに関連付けられた有用なデータを提供すると同時に、メモリ内にそのデータを記憶するコストを最小限にすることができる。したがって、計算技術における特定の改善が、開示する技術に従って達成され得る。
【0039】
開示する技術のまたさらなる技術的効果および利益は、開示する技術がターゲット広告システムの適用例内で統合されるとき、実現され得る。広告主は、一般に、正確に最も好適な視聴者を製品および/またはサービスのターゲットにする方法を決定する問題に直面している。この問題は、多数の変数を伴うことがあり、その場合、様々な人口統計、文化の相違、インフラストラクチャ、および他の留意事項が作用するようになる。地理的区分および対応するブランド浸透度の計算効率の良い有意な指標を生成するためのシステムおよび方法を提供することによって、そのような技術が、場合によっては他の人口統計学的インジケータと組み合わせて、消費者への電子コンテンツのターゲット配信のための広告戦略を動的に開発するために使用され得る。
【0040】
次に、図を参照しながら、本開示の例示的な実施形態についてさらに詳細に説明する。
【0041】
図1は、本開示の例示的な実施形態による、地理的エリアにわたるブランド浸透度の指標を決定するための例示的なコンピューティングシステム100のブロック図を示す。概して、コンピューティングシステム100は、ブランド浸透度決定システム102と、地域ブランド浸透度データベース110と、ターゲット広告システム112とを含み得る。いくつかの実装形態では、地域ブランド浸透度データベース110は、たとえば、1つまたは複数の有形の非一時的コンピュータ可読媒体、または他の好適なコンピュータプログラム製品を含む、メモリに対応し得る。
【0042】
いくつかの実装形態では、ブランド浸透度決定システム102およびターゲット広告システム112、ならびにそれらの様々な構成要素は、所望の機能を提供するために利用されるコンピュータ論理を含み得る。ブランド浸透度決定システム102およびターゲット広告システム112は、ハードウェア、ファームウェア、および/または汎用プロセッサを制御するソフトウェアにおいて実装され得る。たとえば、いくつかの実装形態では、ブランド浸透度決定システム102およびターゲット広告システム112は、記憶デバイス上に記憶され、メモリ内にロードされ、1つまたは複数のプロセッサによって実行される、プログラムファイルを含み得る。他の実装形態では、ブランド浸透度決定システム102およびターゲット広告システム112は、RAMハードディスク、または光もしくは磁気媒体など、有形のコンピュータ可読記憶媒体内に記憶される、コンピュータ実行可能命令の1つまたは複数のセットを含む。
【0043】
図1をより詳細に参照すると、ブランド浸透度決定システム102は、地理的地域にわたるブランド浸透度の指標を決定するように構成され得る。いくつかの実装形態では、ブランド浸透度決定システム102は、地理的小地域決定システム104、画像コンテンツ解析エンジン106、および/またはブランド浸透指数生成システム108を含み得る。
【0044】
いくつかの実装形態では、地理的小地域決定システム104は、地理的エリアを2つ以上の小地域に分割するように構成され得る。小地域は、たとえば、ブランド浸透度の1つまたは複数の所望の指標に基づいて、あらかじめ決定された、または動的に決定されたサイズおよび/または境界を有し得る、地理的地域内の離散化セルに対応し得る。たとえば、いくつかの実装形態では、ブランド浸透度決定システム102は、地理的エリアを2つ以上の小地域に分割することにおいて、特定のセルサイズおよび/または特定の地理的区分のうちの1つまたは複数に従って、各小地域の境界を決定するように構成され得る。たとえば、地理的エリアを小地域に区分する1つの方法は、地理的エリアの上に置かれたグリッドの実装に対応し得る。いくつかの実装形態では、グリッドにおける各セルは、所与の形状(たとえば、正方形、長方形、円、5角形、6角形、または他の多角形)によって特徴付けられ得る。いくつかの実装形態では、グリッドにおける各セルは、あらかじめ決定された、または動的に決定された距離(たとえば、メートル、キロメートル、マイル、または他の好適な変数の単位で測定された値)を有する、1つまたは複数の寸法(たとえば、幅、長さ、高さ、および/または直径寸法)によって特徴付けられ得る。いくつかの実装形態では、それぞれの小地域に対応するセルのグリッドは、サイズが均一であり得るが、他の実施形態では、セルのサイズが変動し得る。
【0045】
いくつかの実装形態では、地理的小地域決定システム104は、地理的エリアを2つ以上の小地域に分割することにおいて、各小地域内の人口がしきい値を上回ることを保証するように、小地域の数および各小地域の境界を決定するように構成され得る。各小地域の人口がそのしきい値を上回ることを保証することによって、各地域のための有用なブランド指数を記憶する際にかかる計算的負担が低減される。
【0046】
小地域境界のサイズが、(たとえば、セルの均一なグリッドの形態の場合のように)均一であるとき、または小地域境界のサイズが、あらかじめ決定されている(たとえば、郵便番号、近隣の境界、町/地区の境界、州の境界、国の境界などに対応するものなど、あらかじめ決定された地理的区分に対応する)とき、小地域の数は、その人口がしきい値を超えない小地域を除外することによって低減され得る。
【0047】
いくつかの実装形態では、本明細書で説明するような人口は、地理的エリアに関連付けられた、国勢調査のデータまたは他のあらかじめ定義されたデータベースから決定されたものなど、所与の地理的エリア内の人々の数に対応し得る。この例では、各小地域内の人口がしきい値を上回ることを保証するとき、地理的小地域決定システム104は、各小地域が、各小地域における人々の数(x)に対応するしきい値によって定義された人口を有するように、各小地域の数および/または境界を決定することができる。
【0048】
地理的小地域決定システム104をさらに参照すると、他の実装形態では、本明細書で説明するような人口は、所与の地理的エリアにおける人々に関連付けられた商品の決定された数-たとえば、住宅、車両、企業、電子デバイス、またはそのような商品の特定のカテゴリもしくはサブセットの数に対応し得る。この例では、各小地域内の人口がしきい値を上回ることを保証するとき、地理的小地域決定システム104は、各小地域が、各小地域における商品(たとえば、住宅、車両、企業、電子デバイスなど)の数(y)に対応するしきい値によって定義された人口を有するように、各小地域の数および/または境界を決定することができる。
【0049】
地理的小地域決定システム104をさらに参照すると、他の実装形態では、本明細書で説明するような人口は、特定の地理的エリア内の現場について取得された画像の決定された数、および/またはそのような画像内の商品、エンティティなどの検出数に対応し得る。この例では、各小地域内の人口がしきい値を上回ることを保証するとき、地理的小地域決定システム104は、各小地域が、各小地域における画像および/または画像内の検出されたオブジェクトの数(z)に対応するしきい値によって定義された人口を有するように、各小地域の数および/または境界を決定することができる。
【0050】
小地域のサイズが、人口密度(または、対応するブランド検出の密度)に基づいて動的に決定されるように、地理的エリアを小地域に区分することによって、ブランド検出の人口がほとんどまたは全くない小地域に対応するセルを含む尤度が低減される。これは、関連付けられたブランド指数を有する多数の小地域があるが、各小地域がとても少数の住民を有するので、それらの小地域からのデータが統計的に関連しないというシナリオを回避することによって、少なくとも部分的に達成される。同様に、より多数のブランド検出を有する小地域内のセルのサイズが、ブランド検出の分布レベル内の差異を維持するために適切なサイズを保証する助けになるように決定され得る。これは、有意なブランド浸透度指標が地理的エリアについて決定され得ることを保証する助けになり得る。したがって、セルサイズは、異なる地域に基づいて変動し得る。たとえば、セルサイズは、都市の位置において小さくなり得、都市のエリアから郊外のエリアへ、および地方のエリアへ移行するとき、徐々に大きくなり得る。
【0051】
いくつかの実装形態では、画像コンテンツ解析エンジン106は、各小地域内の1つまたは複数の現場において取り込まれた画像から、各それぞれの小地域内のブランドの検出数を決定するように構成され得る。いくつかの実施形態では、1つまたは複数の現場において取り込まれた画像は、図2に示されるような、かなり大規模な画像の集合120を含み得る。いくつかの実施形態では、画像の集合120は、路上で(at street level)動作するカメラによって、各小地域内の1つまたは複数の現場において取り込まれていることがある。たとえば、路上で動作するカメラは、車両に搭載され、車両が地理的地域内の1つまたは複数の街路位置を横断中である間、画像の集合120を取得するように構成され得る。画像の集合120は、たとえば、複数の別個の写真画像、および/またはビデオからの画像のシーケンスを含み得る。いくつかの実装形態では、画像の集合120には、各画像を取り込んだときのカメラに関連付けられた地理的位置を表す1つまたは複数の地理的識別子を用いて、ジオタグが付けられる。
【0052】
いくつかの実装形態では、画像コンテンツ解析エンジン106は、1つまたは複数の機械学習画像コンテンツ解析モデル122を記憶するか、含むか、またはそれにアクセスすることができる。たとえば、画像コンテンツ解析モデル122は、ニューラルネットワーク(たとえば、フィードフォワードネットワーク、リカレントニューラルネットワーク、畳み込みニューラルネットワークなど)、または他の多層非線形モデル、回帰ベースモデルなど、様々な機械学習モデルであり得るか、またはさもなければそれらを含み得る。
【0053】
機械学習画像コンテンツ解析モデル122は、地理的エリアに関連付けられた画像の集合120のうちの各画像内のブランドに関連付けられたテキストおよび/またはロゴを検出するようにトレーニングされていることがある。いくつかの実装形態では、機械学習画像コンテンツ解析モデル122は、テキスト化識別および/またはロゴマッチング識別を実装するようにトレーニングされていることがある。たとえば、テキスト化および/またはロゴは、テキスト化および/またはロゴオプションのあらかじめ決定されたデータセットにおいて識別されたテキストおよび/またはロゴオプション(たとえば、特定のタイプのラベルに関連付けられたテキストおよび/またはロゴの名称(たとえば、車両メーカの名称))とマッチングされ得る。
【0054】
いくつかの実装形態では、ブランドは、特定の商品のカテゴリ(たとえば、車両、企業エンティティタイプ、ベンダー支払いタイプ、衣服、靴など)に関連付けられ得る。より詳細には、いくつかの例では、画像コンテンツ解析エンジン106は、1つまたは複数の現場において取り込まれた画像の集合120から、画像内に現れるエンティティの店頭から、ブランドの各検出を決定するように構成され得る。エンティティの店頭におけるブランド検出の例には、限定はしないが、エンティティ自体に関連付けられたブランド名(たとえば、ファーストフード店、コンビニエンスストア、ガソリンスタンド、食料品店、薬局のタイプ、または企業エンティティの他のタイプ)、エンティティに関連付けられたベンダー支払いタイプ(たとえば、エンティティが1つまたは複数のそれぞれのクレジットカード会社などからの支払いを受け入れることを示す、名称および/またはロゴの検出)などが含まれ得る。他の例では、画像コンテンツ解析エンジン106は、1つまたは複数の現場において取り込まれた画像から、画像の集合120内に現れる車両から、ブランドの検出を決定するように構成され得る。他の例では、画像コンテンツ解析エンジン106は、1つまたは複数の現場において取り込まれた画像の集合120から、画像内に現れる1つまたは複数の掲示板から、ブランドの検出を決定するように構成され得る。本システムおよび方法が、開示する技術の趣旨および範囲内にとどまりながら、画像およびブランドのこれらおよび多数の他の例に適用され得ることを諒解されたい。
【0055】
図2に示されるような画像コンテンツ解析エンジン106の例示的な態様をさらに参照すると、機械学習画像コンテンツ解析モデル122は、機械学習画像コンテンツ解析モデル122への入力として、画像の集合120における各画像を受信するように構成され得る。画像の集合120の受信に応答して、機械学習画像コンテンツ解析モデル122は、画像内に現れる1つまたは複数のブランドの検出に関連付けられた出力データ124(たとえば、検出データ)を生成するように構成され得る。たとえば、機械学習コンテンツ解析モデル122は、各検出されたブランドに関連付けられたバウンディングボックスを生成するように構成され得る。出力データ124は、追加または代替として、各検出されたブランドに関連付けられた1つまたは複数のラベルを含むことができ、各ラベルが、ブランドの何らかの態様(たとえば、ブランド名、および/またはブランドに関連付けられた1つもしくは複数の商品のカテゴリ)に関連付けられたセマンティックタグを提供する。画像内で検出された車両の例では、検出された車両に関連付けられた1つまたは複数のラベルは、車両モデルラベル(たとえば、カムリ)、車両メーカラベル(たとえば、トヨタ)、車両クラスラベル(たとえば、セダン)、車両色ラベル(たとえば、白)、または他の識別子を含み得る。いくつかの実装形態では、出力データ124は、追加または代替として、検出されたブランドがそのバウンディングボックス内で正しく検出される確率を表す、信頼性スコアを含み得る。そのような出力データ124が、画像の集合にわたって集約されて、地理的地域内、またはその特定の小地域内のブランドの検出数を表すカウントが決定され得る。
【0056】
再び図1を参照すると、ブランド浸透指数生成システム108は、各小地域のためのブランド浸透指数を生成するように構成され得る。いくつかの実装形態では、ブランド浸透指数は、それぞれの小地域におけるブランドの検出数に基づく。いくつかの実装形態では、ブランドの検出数を表すカウントは、限定はしないが、小地域内の人口に基づく人口係数、ブランドに関連付けられた商品のカテゴリに基づくカテゴリ係数、小地域内のブランドのためのソース位置(たとえば、販売代理店、店など)の数に基づくソース係数を含む、1つまたは複数の係数によって重み付けされ得る。いくつかの実装形態では、ブランド浸透指数は、ブランド容量(たとえば、エリアにおいて検出されたすべてのブランドの総数、またはエリア内の人口に基づく可能な検出の総数)、および/またはブランド飽和度(たとえば、エリアにおける同様のブランドの検出の量または指数)に対応し得るか、あるいはそれらを表す他の変数を決定するために使用され得る。いくつかの実装形態では、ブランド浸透指数は、特定のカテゴリにおけるブランドの顕著性の表現(たとえば、セダン、高級車、すべての車などのカテゴリにおける、車両メーカ/モデルの検出数)として決定され得る。
【0057】
いくつかの実装形態では、ブランド浸透指数生成システム108は、別個の地理的位置に関連付けられた複数の検出を重複排除することによって、ブランドの検出数を精緻化するように構成され得る。そのような精緻化プロセスは、開示するシステムおよび方法が、ブランド検出を決定するための大規模画像コーパスに関連付けられ得る、潜在的な不均衡および差異の影響をより受けないようにしながら、開示する技法内の精度および有用性を高める助けになり得る。たとえば、精緻化は、地理的エリアのいくつかの部分が他の部分よりも顕著になる形になり得る、潜在的な偏りの量を低減する助けになり得る。
【0058】
いくつかの実装形態では、ブランド検出の潜在的な不均衡は、(たとえば、写真を撮影したオペレータ、車両または人間の速度によって影響を受ける)異なる位置において入手可能な画像の総数における差異、画像が撮影されたときに存在した時間、状況、および気象パターンにおける差異、ならびに各ブランドオブジェクトの視界可視領域が原因で生じ得る。
【0059】
しかしながら、これらの問題は、オペレータ/車両経路の知識、画像が撮影された時間、各画像からのジオロケーションおよび姿勢情報、ならびに各検出のための画像内の検出ボックスを使用して、ブランド検出データを精緻化することによって、着実に解決され得る。次いで、各検出ボックスが明確な実世界の位置に関連付けられ得、小地域内の検出に関連付けられた別個の位置の数がカウントされ得るので、取得された検出を重複排除することが可能になる。
【0060】
特に車両の場合、いくつかのブランド発生に関して可能性のある別の懸念は、それらのブランド発生が、必ずしも所与の地理的エリアに住んでいる人々に関連付けられるとは限らない場合があることである。しかしながら、このことは、大部分の移動がローカルであり、取得された画像検出のコーパス全体で優位を占めるべきであるので、有意な誤差の原因になるとは予想されない。しかしながら、いくつかのシナリオでは、そのエリアのローカルである人々/住宅/車両/その他に基づくか、単にそのエリアを通って移動中である人々/住宅/車両/その他に基づくかにかかわらず、すべての検出を含めることが望ましい結果になり得る。
【0061】
本開示の別の態様によれば、コンピューティングシステム100は、地域ブランド浸透度データベース110内に、各小地域のために生成されたブランド浸透指数を記憶するように構成され得る。地域ブランド浸透度データベース110は、たとえば、1つまたは複数の有形の非一時的コンピュータ可読媒体、または他の好適なコンピュータプログラム製品を含む、メモリに対応し得る。いくつかの実装形態では、各小地域のためのブランド浸透指数は、それぞれの小地域のインジケータに関連して、地域ブランド浸透度データベース110内に記憶され得る。いくつかの実装形態では、小地域または対応する指数が、ブランド浸透度の1つまたは複数の指標に従って、最も優位な小地域から最も優位でない小地域へと(または、その逆も同様に)示す方法で記憶されるように、複数の小地域のためのブランド浸透指数が、地域ブランド浸透度データベース110内で順序付けされ得る。
【0062】
いくつかの実装形態では、ブランド浸透指数生成システム108は、地域ブランド浸透度データベース110内に記憶された指数値が経時的にどのように変化するかを追跡することができる。たとえば、ブランド浸透指数生成システム108は、1つまたは複数の時間期間にわたる各小地域のためのブランド浸透指数における1つまたは複数の動的シフトを示す、シフト係数を決定するように構成され得る。ブランド浸透度決定システム102は、決定されたシフト係数があらかじめ決定されたしきい値レベルを超えるとき、フラグ、通知、および/または自動システム調整を生成するように構成され得る。これらのシフト係数および関連する通知が、成功したブランド浸透、またはよりターゲットを絞ったブランド浸透が望まれるエリアの識別を助けるために使用され得る。
【0063】
本開示の別の態様によれば、いくつかの実装形態では、コンピューティングシステム100はまた、地域ブランド浸透度データベース110および電子コンテンツデータベース114に結合された、ターゲット広告システム112を含み得る。ターゲット広告システム112の広告決定システム116は、電子コンテンツデータベース114から電子コンテンツアイテムを決定するように構成され得る。電子コンテンツアイテムは、2つ以上の小地域のうちの所与の小地域のためのブランド浸透指数に少なくとも部分的に基づいて、ブランドに関連付けられ得る。ターゲット広告システム112の広告配信システム118は、所与の小地域に関連付けられた電子デバイス上に表示するための電子コンテンツアイテムを配信するように構成され得る。たとえば、小地域に関連付けられた電子デバイスは、小地域内に位置する実際の住所に関連付けられたIPアドレスまたは他の識別子を用いて動作する電子デバイスに対応し得る。他の例では、小地域に関連付けられた電子デバイスは、小地域に住んでいるユーザによって所有されるか、または(モバイルコンピューティングデバイスなどの場合であり得るように)小地域において現在動作中である、電子デバイスに対応し得る。
【0064】
図3図4は、本開示の例示的な実施形態による、画像コンテンツ解析エンジンによって実施された解析の様々な例示的な態様を示す。より詳細には、図3図4は、例示的な画像(たとえば、図2の画像の集合120内の画像)、および機械学習画像コンテンツ解析モデル122によって生成されたものなど、出力データ124の例示的な部分の、それぞれのグラフィカル表現を提供する。
【0065】
より詳細には、図3を参照すると、画像の集合120内の例示的な画像は、例示的な画像200に対応し得る。画像200は、検出された車両ブランドに関連付けられた出力データを生成するようにトレーニングされている、機械学習コンテンツ解析モデル(たとえば、図2の機械学習画像コンテンツ解析モデル122)への入力として提供され得る。したがって、入力としての画像200の受信に応答して、機械学習画像コンテンツ解析モデル122によって生成された例示的な出力データ124は、車両206の検出に関連付けられた第1のバウンディングボックス202および第2のバウンディングボックス204に対応し得る。第1のバウンディングボックス202および第2のバウンディングボックス204はまた、関連付けられたラベル、および/またはそれらに関連付けられた信頼性スコアを有し得る。たとえば、バウンディングボックス202は、機械学習画像コンテンツ解析モデルが、0.95または95%の信頼性スコアによって表された尤度とともに、セダンを含むと決定した画像200の一部分を表し得る。バウンディングボックス204は、機械学習画像コンテンツ解析モデルが、0.94または94%の信頼性スコアによって表された尤度とともに、トヨタのロゴを含むと決定した画像200の一部分を表し得る。
【0066】
図4をより詳細に参照すると、画像の集合120内の例示的な画像は、例示的な画像220に対応し得る。画像220は、検出された車両ブランドに関連付けられた出力データを生成するようにトレーニングされている、機械学習コンテンツ解析モデル(たとえば、図2の機械学習画像コンテンツ解析モデル122)への入力として提供され得る。したがって、入力としての画像220の受信に応答して、機械学習画像コンテンツ解析モデル122によって生成された例示的な出力データ124は、車両226の検出に関連付けられた第1のバウンディングボックス222および第2のバウンディングボックス224に対応し得る。第1のバウンディングボックス222および第2のバウンディングボックス224はまた、関連付けられたラベル、および/またはそれらに関連付けられた信頼性スコアを有し得る。たとえば、バウンディングボックス222は、機械学習画像コンテンツ解析モデルが、0.97または97%の信頼性スコアによって表された尤度とともに、スポーツユーティリティビークルを含むと決定した画像220の一部分を表し得る。バウンディングボックス224は、機械学習画像コンテンツ解析モデルが、0.97または97%の信頼性スコアによって表された尤度とともに、「レクサス」ブランドに対応するテキスト化を含むと決定した画像220の一部分を表し得る。
【0067】
図4をより詳細に参照すると、画像の集合120内の例示的な画像は、例示的な画像220に対応し得る。画像220は、オフィスに関連付けられた、検出されたコンピュータブランドまたは他の商品のブランドに関連付けられた出力データを生成するようにトレーニングされている、機械学習コンテンツ解析モデル(たとえば、図2の機械学習画像コンテンツ解析モデル122)への入力として提供され得る。したがって、入力としての画像240の受信に応答して、機械学習画像コンテンツ解析モデル122によって生成された例示的な出力データ124は、車両226の検出に関連付けられた第1のバウンディングボックス222および第2のバウンディングボックス224に対応し得る。第1のバウンディングボックス222および第2のバウンディングボックス224はまた、関連付けられたラベル、および/またはそれらに関連付けられた信頼性スコアを有し得る。たとえば、バウンディングボックス222は、機械学習画像コンテンツ解析モデルが、0.97または97%の信頼性スコアによって表された尤度とともに、スポーツユーティリティビークルを含むと決定した画像220の一部分を表し得る。バウンディングボックス224は、機械学習画像コンテンツ解析モデルが、0.97または97%の信頼性スコアによって表された尤度とともに、「レクサス」ブランドに対応するテキスト化を含むと決定した画像220の一部分を表し得る。
【0068】
図5図6は、本開示の例示的な実施形態による、ブランド浸透指数決定システムによって実施された解析の様々な例示的な態様を示す。より詳細には、図5図6は、図1のブランド浸透度決定システム102によって生成され得るものなど、例示的なブランド浸透指数および関連するデータのそれぞれのグラフィカル表現を提供する。より詳細には、図5図6は、特定の地理的エリアにおける異なる車両ブランドの検出に関連付けられたブランド浸透度データのそれぞれのグラフィカル表現300/350を提供する。たとえば、図5のグラフィカル表現300は、所与の地理的エリア内の第1の車両のブランド(たとえば、トヨタセダン)の検出の正規化マップビューを視覚的に示すが、図6のグラフィカル表現350は、図5と同じ地理的エリアにおける第2の車両のブランド(たとえば、レクサスセダン)の検出の正規化マップビューを視覚的に示す。図5図6に示された検出の正規化マップビューは、たとえば、地理的エリア内のセダンの総検出数を考慮することによって正規化され得る。
【0069】
図7は、本開示の例示的な実施形態による、地理的エリアにわたるブランド浸透度の指標を決定するための例示的な方法のフローチャート図を示す。図7は、例示および説明のために、特定の順序で行われるステップを示すが、本開示の方法は、具体的に示された順序または配置に限定されない。方法400の様々なステップは、本開示の範囲から逸脱することなく、様々な方法で省略、並べ替え、結合、および/または適応され得る。いくつかの実施形態では、方法400の様々なステップは、1つまたは複数のコンピューティングシステム(たとえば、図1のコンピューティングシステム100、図10のクライアントコンピューティングデバイス602、および/または図10のサーバコンピューティングシステム630)によって行われ得る。
【0070】
402で、1つまたは複数のコンピューティングデバイス、プロセッサなどを含む、コンピューティングシステムは、地理的エリアを2つ以上の小地域に分割することができる。いくつかの実装形態では、402で地理的エリアを2つ以上の小地域に分割することにおいて、コンピューティングシステムは、あらかじめ決定されたセルサイズ、および/またはあらかじめ決定された地理的区分のうちの1つまたは複数に従って、各小地域の境界を決定することができる。いくつかの実装形態では、402で地理的エリアを2つ以上の小地域に分割することにおいて、コンピューティングシステムは、各小地域内の人口がしきい値を上回ることを保証するように、小地域の数および各小地域の1つまたは複数の境界を決定することができる。いくつかの実装形態では、人口は、地理的エリアに関連付けられた、国勢調査のデータまたは他のあらかじめ定義されたデータベースから決定されたものなど、所与の地理的エリア内の人々の数に対応し得る。他の実装形態では、人口は、所与の地理的エリアにおける人々に関連付けられた商品の決定された数-たとえば、住宅、車両、企業、電子デバイス、またはそのような商品の特定のカテゴリもしくはサブセットの数に対応し得る。他の実装形態では、人口は、特定の地理的エリア内の現場について取得された画像の決定された数、および/またはそのような画像内の商品、エンティティなどの検出数に対応し得る。
【0071】
404で、コンピューティングシステムは、各小地域内の1つまたは複数の現場において取り込まれた画像から、各それぞれの小地域内のブランドの検出数を決定することができる。いくつかの実装形態では、各小地域内の1つまたは複数の現場において取り込まれた画像は、路上で動作するカメラによって取り込まれた画像である。いくつかの実装形態では、404でブランド検出の数を決定することは、画像の部分に対するテキスト化および/またはロゴマッチングのうちの1つまたは複数を含み得る。たとえば、ブランドの検出は、画像内に現れる車両、エンティティの店頭、掲示板、または他の位置から決定され得る。いくつかの実装形態では、404でブランドの検出数を決定することは、別個の地理的位置に関連付けられた複数の検出を重複排除することを含み得る。いくつかの実装形態では、404でブランドの検出数を決定することは、図8に示された例示的な方法450におけるステップに従って、より詳細に決定され得る。
【0072】
406で、コンピューティングシステムは、それぞれの小地域におけるブランドの検出数に基づいて、各小地域のためのブランド浸透指数を生成することができる。いくつかの実装形態では、406で生成されたブランド浸透指数は、1つまたは複数の係数によって重み付けされ得る。たとえば、いくつかの実装形態では、406で生成されたブランド浸透指数は、人口係数、カテゴリ係数、およびソース係数のうちの1つまたは複数によって重み付けされ得る。406でブランド浸透指数を生成することにおいて使用される人口係数は、(たとえば、人々の、画像の、商品の、検出の、などの)各小地域内の人口に基づき得るが、カテゴリ係数は、ブランドに関連付けられた商品のカテゴリに基づき得、ソース係数は、小地域内のブランドのためのソース位置(たとえば、販売代理店、店など)の数に基づき得る。いくつかの実装形態では、406で生成されたブランド浸透指数は、ブランド容量(たとえば、エリアにおいて検出されたすべてのブランドの総数、またはエリア内の人口に基づく可能な検出の総数)、および/またはブランド飽和度(たとえば、エリアにおける同様のブランドの検出の量または指数)に対応し得るか、あるいはそれらを表す他の変数を決定するために使用され得る。いくつかの実装形態では、406で生成されたブランド浸透指数は、特定のカテゴリにおけるブランドの顕著性の表現(たとえば、セダン、高級車、すべての車などのカテゴリにおける、車両メーカ/モデルの検出数)として決定され得る。
【0073】
408で、コンピューティングシステムは、それぞれの小地域のインジケータに関連して、メモリ内に各小地域のためのブランド浸透指数を記憶することができる。いくつかの実装形態では、メモリは、図1に示された地域ブランド浸透度データベース110によって具現化されるものなど、1つまたは複数の有形の非一時的コンピュータ可読媒体を含み得る。経時的なメモリ内に記憶されたブランド浸透指数の変化を追跡することによって、コンピューティングシステムはまた、1つまたは複数の時間期間にわたる各小地域のためのブランド浸透指数における1つまたは複数の動的シフトを示す、シフト係数を決定することもできる。
【0074】
410で、コンピューティングシステムは、ブランドに関連付けられた電子コンテンツアイテムを決定および配信することができる。電子コンテンツアイテムは、たとえば、2つ以上の小地域のうちの所与の小地域のためのブランド浸透指数に少なくとも部分的に基づいて決定され得る。コンピューティングシステムは、所与の小地域に関連付けられた電子デバイスに表示するために構成された電子コンテンツアイテムを配信することができる。
【0075】
図8は、本開示の例示的な実施形態による、地理的地域内のブランドの検出数を決定するための例示的な方法のフローチャート図を示す。図8は、例示および説明のために、特定の順序で行われるステップを示すが、本開示の方法は、具体的に示された順序または配置に限定されない。方法450の様々なステップは、本開示の範囲から逸脱することなく、様々な方法で省略、並べ替え、結合、および/または適応され得る。いくつかの実施形態では、方法450の様々なステップは、1つまたは複数のコンピューティングシステム(たとえば、図1のコンピューティングシステム100、図10のクライアントコンピューティングデバイス602、および/または図10のサーバコンピューティングシステム630)によって行われ得る。
【0076】
452で、1つまたは複数のコンピューティングデバイス、プロセッサなどを含む、コンピューティングシステムは、それぞれの小地域に関連付けられた画像の集合を取得することができる。454で、コンピューティングシステムは、画像の集合のうちの各画像内のブランドに関連付けられたテキストおよびロゴのうちの1つまたは複数を検出するようにトレーニングされている機械学習画像コンテンツ解析モデルにアクセスすることができる。456で、コンピューティングシステムは、機械学習画像コンテンツ解析モデルへの入力として、画像の集合を提供することができる。458で、コンピューティングシステムは、機械学習画像コンテンツ解析モデルへの入力としての画像の集合の受信に応答した機械学習画像コンテンツ解析モデルの出力として、それぞれの小地域内のブランドの検出数を表すカウントを受信することができる。
【0077】
図9は、本開示の例示的な実施形態による、画像コンテンツ解析モデルをトレーニングするための例示的な方法のフローチャート図を示す。図9は、例示および説明のために、特定の順序で行われるステップを示すが、本開示の方法は、具体的に示された順序または配置に限定されない。方法500の様々なステップは、本開示の範囲から逸脱することなく、様々な方法で省略、並べ替え、結合、および/または適応され得る。
【0078】
502で、コンピューティングシステム(たとえば、図10のトレーニングコンピューティングシステム650、またはコンピューティングシステム600の他の部分)は、グランドトゥルースデータのいくつかのセットを含む、画像コンテンツトレーニングデータセットを取得することができる。504で、コンピューティングシステムは、機械学習画像コンテンツ解析モデルへの入力として、502で取得されたグランドトゥルースデータの画像コンテンツトレーニングデータセットの第1の部分を提供することができる。506で、コンピューティングシステムは、グランドトゥルースデータの第1の部分の受信に応答する、画像コンテンツ解析モデルの出力として、グランドトゥルースデータの画像コンテンツトレーニングデータセットの残りを予測する、1つまたは複数の予測を受信することができる。508で、コンピューティングシステムは、506で画像コンテンツ解析モデルによって生成された予測を、画像コンテンツ解析モデルが予測しようと試みたグランドトゥルースデータの第2の部分(たとえば、残り)と比較する、損失関数を決定することができる。510で、コンピューティングシステムは、(たとえば、画像コンテンツ解析モデルに関連付けられた1つまたは複数の重みを変更することによって)画像コンテンツ解析モデルをトレーニングするために、画像コンテンツ解析モデルを通して損失関数を逆伝播させることができる。504~510にそれぞれ示されたステップは、方法500における画像コンテンツ解析モデルのトレーニングの一部として、何度も繰り返され得る。
【0079】
図10は、本開示の例示的な実施形態による、ブランド浸透度決定を行う例示的なコンピューティングシステム600のブロック図を示す。具体的には、コンピューティングシステム600は、その異なる特定の構成要素を含むブランド浸透度決定、および/またはそのようなブランド浸透度決定に基づく、対応するターゲット広告を実施することができる。コンピューティングシステム600は、ネットワーク680を介して通信可能に結合される、クライアントコンピューティングデバイス602と、サーバコンピューティングシステム630と、トレーニングコンピューティングシステム650とを含み得る。
【0080】
クライアントコンピューティングデバイス602は、たとえば、パーソナルコンピューティングデバイス(たとえば、ラップトップまたはデスクトップ)、モバイルコンピューティングデバイス(たとえば、スマートフォンまたはタブレット)、ゲームコンソールもしくはコントローラ、ウェアラブルコンピューティングデバイス、組込みコンピューティングデバイス、または任意の他のタイプのコンピューティングデバイスなど、任意のタイプのコンピューティングデバイスであり得る。
【0081】
クライアントコンピューティングデバイス602は、1つまたは複数のプロセッサ612と、メモリ614とを含む。1つまたは複数のプロセッサ612は、任意の好適な処理デバイス(たとえば、プロセッサコア、マイクロプロセッサ、ASIC、FPGA、コントローラ、マイクロコントローラなど)であり得、1つのプロセッサ、または動作可能に接続される複数のプロセッサであり得る。メモリ614は、RAM、ROM、EEPROM、EPROM、フラッシュメモリデバイス、磁気ディスクなど、1つまたは複数の非一時的コンピュータ可読記憶媒体、およびそれらの組合せを含み得る。メモリ614は、データ616と、クライアントコンピューティングデバイス602に動作を行わせるために、プロセッサ612によって実行される命令618とを記憶することができる。いくつかの実装形態では、メモリ614は、図1の地域ブランド浸透度データベース110の1つまたは複数の部分を含み得る。
【0082】
いくつかの実装形態では、クライアントコンピューティングデバイス602は、ブランド浸透度決定システム620および/またはターゲット広告システム622のうちの1つまたは複数を記憶するか、または含み得る。図10のブランド浸透度決定システム620は、たとえば、図1のブランド浸透度決定システム102に対応し得るが、図10のターゲット広告システム622は、たとえば、図1のターゲット広告システム112に対応し得る。いくつかの実装形態では、ブランド浸透度決定システム620は、本明細書で説明するような、1つまたは複数の機械学習コンテンツ解析モデルを含み得る。
【0083】
いくつかの実装形態では、ブランド浸透度決定システム620および/またはターゲット広告システム622の1つまたは複数の部分は、ネットワーク680を介してサーバコンピューティングシステム630から受信され、クライアントコンピューティングデバイスメモリ614内に記憶され、次いで、1つまたは複数のプロセッサ612によって使用またはさもなければ実装され得る。
【0084】
追加または代替として、ブランド浸透度決定システム620および/またはターゲット広告システム622の1つまたは複数の部分は、クライアントサーバ関係に従って、クライアントコンピューティングデバイス602と通信する、サーバコンピューティングシステム630内に含まれるか、またはさもなければサーバコンピューティングシステム630によって記憶および実装され得る。たとえば、ブランド浸透度決定システム620および/またはターゲット広告システム622は、ウェブサービス(たとえば、ブランド浸透度決定サービス)の一部分として、サーバコンピューティングシステム630によって実装され得る。したがって、1つまたは複数のシステム620/622が、クライアントコンピューティングデバイス602において記憶および実装され得、かつ/あるいは、1つまたは複数のシステム644/646が、サーバコンピューティングシステム630において記憶および実装され得る。
【0085】
サーバコンピューティングシステム630は、1つまたは複数のプロセッサ632と、メモリ634とを含む。1つまたは複数のプロセッサ632は、任意の好適な処理デバイス(たとえば、プロセッサコア、マイクロプロセッサ、ASIC、FPGA、コントローラ、マイクロコントローラなど)であり得、1つのプロセッサ、または動作可能に接続される複数のプロセッサであり得る。メモリ634は、RAM、ROM、EEPROM、EPROM、フラッシュメモリデバイス、磁気ディスクなど、1つまたは複数の非一時的コンピュータ可読記憶媒体、およびそれらの組合せを含み得る。メモリ634は、データ636と、サーバコンピューティングシステム630に動作を行わせるために、プロセッサ632によって実行される命令638とを記憶することができる。いくつかの実装形態では、メモリ634は、図1の地域ブランド浸透度データベース110の1つまたは複数の部分を含み得る。
【0086】
上記で説明したように、サーバコンピューティングシステム630は、ブランド浸透度決定システム644および/またはターゲット広告システム646の1つまたは複数の部分を記憶するか、またはさもなければ含み得る。いくつかの実装形態では、サーバコンピューティングシステム630は、1つまたは複数のサーバコンピューティングデバイスを含むか、またはさもなければそれによって実装される。サーバコンピューティングシステム630が複数のサーバコンピューティングデバイスを含む事例では、そのようなサーバコンピューティングデバイスは、逐次計算アーキテクチャ、並列計算アーキテクチャ、またはそれらの何らかの組合せに従って動作することができる。
【0087】
いくつかの実装形態では、クライアントコンピューティングデバイス602および/またはサーバコンピューティングシステム630は、ネットワーク680を介して通信可能に結合されるトレーニングコンピューティングシステム650との対話を介して、ブランド浸透度決定システム620/644および/またはターゲット広告システム622/646内で提供されたモデル(たとえば、画像コンテンツ解析モデル)をトレーニングすることができる。トレーニングコンピューティングシステム650は、サーバコンピューティングシステム630とは別個であり得るか、またはサーバコンピューティングシステム630の一部分であり得る。
【0088】
トレーニングコンピューティングシステム650は、1つまたは複数のプロセッサ652と、メモリ654とを含む。1つまたは複数のプロセッサ652は、任意の好適な処理デバイス(たとえば、プロセッサコア、マイクロプロセッサ、ASIC、FPGA、コントローラ、マイクロコントローラなど)であり得、1つのプロセッサ、または動作可能に接続される複数のプロセッサであり得る。メモリ654は、RAM、ROM、EEPROM、EPROM、フラッシュメモリデバイス、磁気ディスクなど、1つまたは複数の非一時的コンピュータ可読記憶媒体、およびそれらの組合せを含み得る。メモリ654は、データ656と、トレーニングコンピューティングシステム650に動作を行わせるために、プロセッサ652によって実行される命令658とを記憶することができる。いくつかの実装形態では、トレーニングコンピューティングシステム650は、1つまたは複数のサーバコンピューティングデバイスを含むか、またはさもなければそれによって実装される。
【0089】
トレーニングコンピューティングシステム650は、たとえば、誤差逆伝播法など、様々なトレーニング技法または学習技法を使用して、クライアントコンピューティングデバイス602および/またはサーバコンピューティングシステム630において記憶された機械学習モデル(たとえば、画像コンテンツ解析モデル)をトレーニングする、モデルトレーナー660を含み得る。いくつかの実装形態では、誤差逆伝播法を行うことは、打ち切り型通時的逆伝播(truncated backpropagation through time)を行うことを含み得る。モデルトレーナー660は、トレーニングされているモデルの汎化能力を改善するために、いくつかの汎化技法(たとえば、重み減衰、ドロップアウトなど)を行うことができる。
【0090】
具体的には、モデルトレーナー660は、トレーニングデータ662のセットに基づいて、画像コンテンツ解析モデルまたは他のモデルをトレーニングすることができる。トレーニングデータ662は、たとえば、画像コンテンツ解析モデルへの入力として提供されたデータと、入力データに応答して、画像コンテンツ解析モデルの出力として提供されたデータとを含み得る。モデルトレーナー660は、トレーニングデータ662の入力データおよび出力データを使用することによって、教師なしの方法で、モデルをトレーニングすることができる。
【0091】
モデルトレーナー660は、所望の機能を提供するために利用されるコンピュータ論理を含む。モデルトレーナー660は、ハードウェア、ファームウェア、および/または汎用プロセッサを制御するソフトウェアにおいて実装され得る。たとえば、いくつかの実装形態では、モデルトレーナー660は、記憶デバイス上に記憶され、メモリ内にロードされ、1つまたは複数のプロセッサによって実行される、プログラムファイルを含む。他の実装形態では、モデルトレーナー660は、RAMハードディスク、または光もしくは磁気媒体など、有形のコンピュータ可読記憶媒体内に記憶される、コンピュータ実行可能命令の1つまたは複数のセットを含む。
【0092】
ネットワーク680は、ローカルエリアネットワーク(たとえば、イントラネット)、ワイドエリアネットワーク(たとえば、インターネット)、またはそれらの何らかの組合せなど、任意のタイプの通信ネットワークであり得、任意の数のワイヤードまたはワイヤレスリンクを含み得る。一般に、ネットワーク680を介した通信は、幅広い種類の通信プロトコル(たとえば、TCP/IP、HTTP、SMTP、FTP)、符号化もしくはフォーマット(たとえば、HTML、XML)、および/または保護方式(たとえば、VPN、セキュアHTTP、SSL)を使用して、任意のタイプのワイヤードおよび/またはワイヤレス接続を介して搬送され得る。
【0093】
本明細書で説明する技術は、サーバ、データベース、ソフトウェアアプリケーション、および他のコンピュータベースのシステム、ならびに取られるアクション、およびそのようなシステムとの間で送られる情報に言及する。コンピュータベースのシステムの固有の柔軟性によって、構成要素間のタスクおよび機能の多種多様な可能な構成、組合せ、および分割が可能になる。たとえば、本明細書で説明するプロセスは、単一のデバイスもしくは構成要素、または組み合わせて働く複数のデバイスもしくは構成要素を使用して実装され得る。データベースおよびアプリケーションは、単一のシステム上に実装されるか、または複数のシステムにわたって分散され得る。分散構成要素は、順次または並行して動作することができる。
【0094】
本主題について、その様々な特定の例示的な実施形態に関して詳細に説明したが、各例は、本開示の限定ではなく、説明として提供される。当業者は、上記の理解に達すると、そのような実施形態の改変、変形形態、および均等物を容易に作り出すことができる。したがって、本開示は、当業者に容易に明らかになるような、本主題のそのような変更形態、変形形態および/または追加の包含を排除しない。たとえば、ある実施形態の一部として図示または説明した特徴は、またさらなる実施形態を生じるために、別の実施形態とともに使用され得る。したがって、本開示は、そのような改変、変形形態、および均等物を包含するものである。
【符号の説明】
【0095】
100、600 コンピューティングシステム
102 ブランド浸透度決定システム
104 地理的小地域決定システム
106 画像コンテンツ解析エンジン
108 ブランド浸透指数生成システム
110 地域ブランド浸透度データベース
112 ターゲット広告システム
114 電子コンテンツデータベース
116 広告決定システム
118 広告配信システム
120 画像の集合
122 機械学習画像コンテンツ解析モデル、画像コンテンツ解析モデル
124 出力データ
200、220 画像
202、222 第1のバウンディングボックス
204、224 第2のバウンディングボックス
206、226 車両
300、350 グラフィカル表現
602 クライアントコンピューティングデバイス
612、632、652 プロセッサ
614 メモリ、クライアントコンピューティングデバイスメモリ
616、636、656 データ
618、638、658 命令
620、644 ブランド浸透度決定システム、システム
622、646 ターゲット広告システム、システム
630 サーバコンピューティングシステム
634、654 メモリ
650 トレーニングコンピューティングシステム
660 モデルトレーナー
662 トレーニングデータ
680 ネットワーク
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10