(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-02-09
(45)【発行日】2024-02-20
(54)【発明の名称】シリンジ流体充填検証および自動注入器システム機構の画像認識のためのシステムおよび方法
(51)【国際特許分類】
A61M 5/168 20060101AFI20240213BHJP
A61M 5/172 20060101ALI20240213BHJP
【FI】
A61M5/168 514C
A61M5/172
A61M5/168 500
【外国語出願】
(21)【出願番号】P 2022077014
(22)【出願日】2022-05-09
(62)【分割の表示】P 2021033470の分割
【原出願日】2016-08-24
【審査請求日】2022-06-02
(32)【優先日】2015-08-28
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2015-11-25
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】507021757
【氏名又は名称】バイエル・ヘルスケア・エルエルシー
【氏名又は名称原語表記】Bayer HealthCare LLC
(74)【代理人】
【識別番号】100108453
【氏名又は名称】村山 靖彦
(74)【代理人】
【識別番号】100110364
【氏名又は名称】実広 信哉
(74)【代理人】
【識別番号】100133400
【氏名又は名称】阿部 達彦
(72)【発明者】
【氏名】ケヴィン・ピー・コーワン
(72)【発明者】
【氏名】マイケル・エー・スポーン
(72)【発明者】
【氏名】マイケル・マクダーモット
(72)【発明者】
【氏名】ハーバート・エム・グルビック
【審査官】川島 徹
(56)【参考文献】
【文献】国際公開第2014/090252(WO,A1)
【文献】欧州特許出願公開第02213319(EP,A1)
【文献】国際公開第2011/145351(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
A61M 5/168
A61M 5/172
(57)【特許請求の範囲】
【請求項1】
流体注入器と、
前記流体注入器と動作可能に係合し、近位端と、ノズルまで延びる遠位端とを有するバレルを備える、シリンジと、
少なくとも前記シリンジのノズルの画像をキャプチャするように配置された画像キャプチャ装置と、
前記流体注入器および前記画像キャプチャ装置と通信する少なくとも1つのコンピューティング装置と、
を備える、流体注入システムであって、
前記少なくとも1つのコンピューティング装置は、
少なくとも前記シリンジのノズルの画像を取得し、
少なくとも前記シリンジのノズルの画像を、少なくとも1つのアクセサリが接続された前記シリンジのノズルのテンプレートと比較し、
前記比較に基づいて前記少なくとも1つのアクセサリの有無を決定し、
前記少なくとも1つのアクセサリの有無の表示を、少なくとも1つのプロセッサと通信している表示装置に自動的に表示する
ように構成された少なくとも1つのプロセッサを備える、
流体注入システム。
【請求項2】
前記少なくとも1つのアクセサリが、流体経路セットである、請求項1に記載の流体注入システム。
【請求項3】
前記少なくとも1つのプロセッサが、前記比較によって前記流体経路セットが存在しないと判定された場合に、前記流体注入器が注入手順を実行することができなくなるようにさらに構成される、請求項2に記載の流体注入システム。
【請求項4】
前記少なくとも1つのアクセサリが、流体移送装置のスパイクである、請求項1に記載の流体注入システム。
【請求項5】
前記少なくとも1つのプロセッサが、前記比較によって前記スパイクが存在すると判定された場合に、前記流体注入器が注入手順を実行することができなくなるようにさらに構成される、請求項4に記載の流体注入システム。
【請求項6】
流体注入システムに含まれる少なくとも1つのコンピューティング装置により実行される方法であって、前記流体注入システムは、流体注入器と、前記流体注入器と動作可能に係合し、近位端と、ノズルまで延びる遠位端とを有するバレルを備えるシリンジと、少なくとも前記シリンジのノズルの画像をキャプチャするように配置された画像キャプチャ装置とを備え、前記方法が、
少なくとも前記シリンジのノズルの画像を取得するステップと、
少なくとも前記シリンジのノズルの画像を、少なくとも1つのアクセサリが接続された前記シリンジのノズルのテンプレートと比較するステップと、
前記比較に基づいて前記少なくとも1つのアクセサリの有無を決定するステップと、
前記少なくとも1つのアクセサリの有無の表示を、少なくとも1つのプロセッサと通信している表示装置に自動的に表示するステップと
を含む、方法。
【請求項7】
前記少なくとも1つのアクセサリが、流体経路セットである、請求項6に記載の方法。
【請求項8】
前記比較によって前記流体経路セットが存在しないと判定された場合に、前記流体注入器が注入手順を実行することができなくなるようにするステップをさらに含む、請求項7に記載の方法。
【請求項9】
前記少なくとも1つのアクセサリが、流体移送装置のスパイクである、請求項6に記載の方法。
【請求項10】
前記比較によって前記スパイクが存在すると判定された場合に、前記流体注入器が注入手順を実行することができなくなるようにするステップをさらに含む、請求項9に記載の方法。
【請求項11】
流体注入システムに含まれる少なくとも1つのコンピューティング装置に複数の動作を実行させる命令を含むコンピュータプログラムであって、前記流体注入システムは、流体注入器と、前記流体注入器と動作可能に係合し、近位端と、ノズルまで延びる遠位端とを有するバレルを備えるシリンジと、少なくとも前記シリンジのノズルの画像をキャプチャするように配置された画像キャプチャ装置とを備え、
前記複数の動作が、
少なくとも前記シリンジのノズルの画像を取得する動作と、
少なくとも前記シリンジのノズルの画像を、少なくとも1つのアクセサリが接続された前記シリンジのノズルのテンプレートと比較する動作と、
前記比較に基づいて前記少なくとも1つのアクセサリの有無を決定し、
前記少なくとも1つのアクセサリの有無の表示を、少なくとも1つのプロセッサと通信している表示装置に自動的に表示する動作と
を含む、コンピュータプログラム。
【請求項12】
前記少なくとも1つのアクセサリが、流体経路セットである、請求項11に記載のコンピュータプログラム。
【請求項13】
前記複数の動作が、前記比較によって前記流体経路セットが存在しないと判定された場合に、前記流体注入器が注入手順を実行することができなくなるようにする動作をさらに含む、請求項12に記載のコンピュータプログラム。
【請求項14】
前記少なくとも1つのアクセサリが、流体移送装置のスパイクである、請求項11に記載のコンピュータプログラム。
【請求項15】
前記複数の動作が、前記比較によって前記スパイクが存在すると判定された場合に、前記流体注入器が注入手順を実行することができなくなるようにする動作をさらに含む、請求項14に記載のコンピュータプログラム。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願への相互参照
本出願は、2015年8月28日に出願された「System and Method for Syringe Fluid Fill Verification and Image Recognition of Power Injector System Features」と題する米国仮特許出願第62/211,462号、および2015年11月25日に出願された「System and Method for Syringe Fluid Fill Verification and Image Recognition of Power Injector System Features」と題する米国仮特許出願第62/259,824号に対する優先権を主張するものであり、その内容は参照により本明細書に組み込まれる。
【0002】
本開示は、シリンジが流体で満たされていることを検証するためのシステムおよび方法に関し、特に、充填されたシリンジの一部を通して投射された電磁放射線によって生成された照射パターンに基づいてそのような流体の存在を決定するためのシステムおよび方法に関する。他の態様では、本開示は、シリンジ内の様々な機構および流体の特性を識別するためのシステムおよび方法に関する。
【背景技術】
【0003】
多くの医学的、診断的および治療的処置において、内科医のような医師は、患者に医療用流体を注入する。近年では、造影剤(単に「コントラスト(contrast)」と呼ばれることが多い)、薬剤、または生理食塩水のような、流体の加圧注入用の多数の注入器作動シリンジおよび自動注入器が、血管造影法、コンピュータ断層撮影法、超音波検査、および磁気共鳴画像法などの撮像法に使用するために開発されている。一般に、これらの自動注入器は、プリセットされた量の造影剤または他の流体を予め設定された流速で送達するように設計されている。
【0004】
このような自動注入器システムを使用して患者に流体を注入することに関わる問題の1つは、注入前にシリンジまたは流体送達システムに空気が存在する可能性があることである。この問題は、しばしば無色であるかまたは限られた程度しか着色されていない造影剤の注入手順において特に懸念される。さらに、撮像法は、X線、コンピュータ表示画面などの読み取りを容易にするために、比較的低い光レベルで実行されることが多い。したがって、注入手順の前にシリンジ内の空気が識別されないという懸念が増大する。したがって、注入を試みる前に、シリンジが流体で満たされていないか、または流体で部分的にのみ満たされているか(すなわち、シリンジがある量の空気を含む)どうかを容易に検出することが望ましい。
【0005】
以前に提供されているいくつかの解決策では、液体の存在が、参照により本明細書に組み込まれる、例えば、Heilmanの米国特許第4,452,251号明細書およびTrombley,IIIの米国特許第5,254,101号明細書に記載されているように、シリンジのバレル上のインジケータパターンの形状の変化によって示される。しかしながら、シリンジを遠くから見たときに液体の存在を示すことをさらに助け、または充填されたシリンジの検証を一見して可能にするシステムおよび方法が必要である。シリンジが完全に満たされており、空気を含まないことを検証するための自動システムも望ましい。
【0006】
さらに、自動注入器と共に使用されるほとんどの医療用流体は透明であるので、技術者が半透明のシリンジ内に存在する流体と空気とを迅速かつ容易に区別することは非常に困難である。したがって、空気と異なる種類の流体とを区別することができる流体注入装置と共に使用されるシステムが必要性である。さらに、電磁放射線とシリンジの内容物との相互作用の特性および/または変化を分析し、例えば表示画面を介してそれらの特性をユーザに伝えることなどにより、流体の様々な特性を決定することができる自動システムもまた望ましい。
【発明の概要】
【課題を解決するための手段】
【0007】
本明細書で説明するシステムおよび方法は、シリンジを遠くから見たときにシリンジ内の液体の存在を流体注入器のオペレータに表示するか、または充填されたシリンジを一見して検証できるようにする。さらに、シリンジが完全に満たされ、空気を含まないことを検証するための自動システムも提供される。このようなシステムは、流体注入器のシリンジ内に収容されている空気および/または異なる種類の流体の区別を可能にし、空気注入を防止することによって安全性を向上させ、技術者に流体の種類を混同させないようにすることによってワークフローを改善する。さらに、特定の態様では、システムは、シリンジ内の流体の1つまたは複数の特性および/または注入手順を決定することができる。
【0008】
本開示の一態様によれば、近位端および傾斜表面を含む遠位端を含むシリンジバレルと、シリンジバレル内に摺動可能に配置され、バレルを通ってそこから流体を排出するように構成されたプランジャとを含むシリンジが提供される。プランジャは、シリンジが流体で満たされているときに、電磁放射線を透過するように構成された透明または半透明材料を含み、照射された識別パターンがシリンジバレルの遠位端の所定の部分に形成されるようにする。
【0009】
一態様では、シリンジバレルの内部容積が完全にまたは部分的に空気で満たされているとき、照射された識別パターンの少なくとも1つの特性が、シリンジが流体で完全に満たされている場合と比較して異なるように、シリンジバレルを成形することができる。少なくとも1つの特性は、照射された識別パターンの存在、大きさ、形状、および明るさのうちの少なくとも1つを含むことができる。
【0010】
一態様では、照射された識別パターンは、シリンジの遠位端に存在する空気の容量のパーセンテージが、傾斜表面を有するシリンジの遠位端の容量の約15%より大きい場合には視認できないことがある。別の態様では、照射された識別パターンは、シリンジが側面から、真っ直ぐな向きで、または傾斜した前方向きもしくは傾斜した後方向きで見られるとき、観察者またはセンサには視認できることがある。シリンジバレルの遠位端の傾斜表面は、シリンジの長手方向軸に対して約30度~60度の角度を有することができる。
【0011】
一態様では、電磁放射線源は、電球、LED電球、光子放射器、赤外線放射器、レーザ、または周囲光を含んでもよい。別の態様では、少なくとも1つの基準ラインまたはマーキングがシリンジバレルの遠位端に形成され、シリンジバレルの遠位端の周囲に延びてもよい。少なくとも1つの基準ラインまたはマーキングは、印刷、オーバーモールド、およびエッチングのうちの少なくとも1つによってシリンジのバレル上に形成されてもよい。一態様では、第1の流体がシリンジ内に存在する場合、照射された識別パターンの第1の所定の部分と整列するように、少なくとも1つの基準ラインまたはマーキングの第1の基準ラインまたはマーキングが構成され、第2の流体がシリンジ内に存在する場合、照射された識別パターンの第2の所定の部分と整列するように、第2の基準ラインまたはマーキングが構成される。少なくとも1つの基準ラインまたはマーキングは、第1の流体がシリンジ内に存在する場合には照射された識別パターンの所定の部分と整列するように構成されてもよく、第2の流体がシリンジ内に存在する場合には照射された識別パターンから離れて位置するように構成されてもよい。
【0012】
本開示の別の態様によれば、シリンジが患者の体内に流体を注入する際に使用準備ができているかどうかを示すシステムが提供される。このシステムは、傾斜表面を有する遠位端を含み、流体を受け入れるように構成された内部容積を画定するバレルを備えたシリンジと、シリンジの少なくとも一部を通して電磁放射線を放出するように配置された電磁放射線源と、を備える。シリンジが流体で満たされているときに、電磁放射線の少なくとも一部が、流体とシリンジとに関連する少なくとも1つのインタフェースと電磁放射線の相互作用によって影響されて、シリンジの所定の部分にシリンジの内容物を示す照射された識別パターンを形成するように、シリンジが成形される。
【0013】
一態様では、内部容積が完全にまたは部分的に空気で満たされているとき、照射された識別パターンの少なくとも1つの特性が、内部容積が流体で完全に満たされている場合と比較して異なるように、シリンジを成形することができる。少なくとも1つの特性は、照射された識別パターンの存在、大きさ、形状、および明るさのうちの少なくとも1つを含むことができる。照射された識別パターンは、シリンジの遠位端に存在する空気の容量のパーセンテージが、傾斜表面を有するシリンジの遠位端の容量の約15%より大きい場合には視認できないことがある。
【0014】
別の態様では、システムは、存在する場合には照射された識別パターンの少なくとも1つの特性を測定するように構成された少なくとも1つのセンサをさらに含むことができる。少なくとも1つのセンサは、撮像センサ、光学センサ、電磁放射線検出器、またはデジタルカメラのうちの少なくとも1つを含むことができる。別の態様では、システムはまた、シリンジから流体を排出するためにシリンジとインタフェースするように構成された流体注入器を含むことができる。流体注入器は、照射された識別パターンの少なくとも1つの特性の測定が、シリンジが実質的に流体で満たされていることを示すとき、少なくとも1つのセンサから確認信号を受信するように構成されたコントローラを備えてもよく、コントローラは、確認信号が受信されたときに注入器を作動させて注入を実行するように構成される。
【0015】
一態様では、照射された識別パターンは、シリンジが側面から、真っ直ぐな向きで、または傾斜した前方向きもしくは傾斜した後方向きで見られるとき、観察者またはセンサには視認できることがある。別の態様では、照射された識別パターンは、シリンジバレルの遠位端の少なくとも一部の周りに延びる環状形状を含むことができる。さらに別の態様では、バレルの遠位端の傾斜表面は、シリンジの長手方向軸に対して約30度~60度の角度を有してもよい。一態様では、電磁放射線源は、電球、LED電球、光子放射器、赤外線放射器、レーザ、または周囲光を含んでもよい。
【0016】
特定の態様では、シリンジはプランジャをさらに備えてもよく、電磁放射線源は、電磁放射線の少なくとも一部を投射して、プランジャを反射または透過させるように配置される。一例では、プランジャの少なくとも一部は、透明または半透明の材料を含む。別の例では、プランジャの少なくとも一部が着色材料を含む。
【0017】
本開示の別の態様によれば、シリンジ流体充填検証のための方法が提供され、この方法は、シリンジの少なくとも一部を通して電磁放射線を放出するステップと、電磁放射線の少なくとも一部がシリンジの所定の部分に照射された識別パターンを生成するかどうかを識別するステップと、照射された識別パターンの少なくとも1つの特性に基づいてシリンジの内容物を決定するステップとを含む。
【0018】
一態様では、少なくとも1つの特性は、照射された識別パターンの存在、照射された識別パターンの大きさ、照射された識別パターンの形状、および照射された識別パターンの明るさのうちの少なくとも1つであり得る。別の態様では、電磁放射線の少なくとも一部が照射された識別パターンを生成するかどうかを識別するステップは、照射された識別パターンの少なくとも1つの特性をシリンジに関連付けられた少なくとも1つのセンサによって測定するステップと、照射された識別パターンの少なくとも1つの特性の値を示す確認信号を少なくとも1つのセンサから受信するステップとを含む。追加の態様では、シリンジの少なくとも一部を通して電磁放射線を放出するステップは、シリンジプランジャを通して電磁放射線を放出するステップを含み、その少なくとも一部は透明または半透明材料を含む。
【0019】
本開示の別の態様によれば、流体注入器と、流体注入器と動作可能に係合する少なくとも1つのシリンジと、電磁放射線源と、を備える流体注入システムが提供される。少なくとも1つのシリンジは、傾斜表面を有する遠位端を含み、流体を受け入れるように構成された内部容積を画定するバレルを備える。電磁放射線源は、少なくとも1つのシリンジに対して配置され、少なくとも1つのシリンジの少なくとも一部を通して電磁放射線を放出し、シリンジが流体で満たされているとき、電磁放射線の少なくとも一部が、流体とシリンジとに関連する少なくとも1つのインタフェースと電磁放射線との相互作用によって影響されて、少なくとも1つのシリンジの所定の部分に少なくとも1つのシリンジの内容物を示す照射された識別パターンを形成する。流体注入システムはまた、照射された識別パターンの画像をキャプチャするように配置された画像キャプチャ装置と、画像キャプチャ装置および流体注入器と通信する少なくとも1つのコンピューティング装置とを備える。少なくとも1つのコンピューティング装置は、少なくとも1つのプロセッサを備え、このプロセッサは、照射された識別パターンの画像内の照射された識別パターンの底部から頂部までの距離を決定し、照射された識別パターンの底部から頂部までの距離を少なくとも1つの所定の距離と比較し、照射された識別パターンの底部から頂部までの距離と少なくとも1つの所定の距離との比較に基づいて、i)少なくとも1つのプロセッサと通信している表示装置に、少なくとも1つのシリンジの特性の表示を表示する;ii)流体注入器が機能を実行することを可能にする;iii)流体注入器が動作を実行できないようにする、のうちの少なくとも1つを行うように構成される。
【0020】
一態様では、照射された識別パターンの底部から頂部までの距離を決定することは、照射された識別パターンの下端部を決定すること、および照射された識別パターンの上端部を決定することを含むことができる。照射された識別パターンの下端部および上端部は、照射された識別パターンの画像における隣接画素間のコントラストの変化を決定することによって決定されてもよい。
【0021】
別の態様では、少なくとも1つのシリンジの特性は、少なくとも1つのシリンジ内の空気の存在であってもよく、少なくとも1つのプロセッサは、照射された識別パターンの底部から頂部までの距離が少なくとも1つの所定の距離よりも小さい場合には、少なくとも1つのシリンジ内に空気が存在するという表示を提供し、流体注入器が注入手順を実行することができなくなるようにさらに構成されてもよい。さらに、少なくとも1つのプロセッサは、照射された識別パターンの画像と第1の大きさを有するシリンジの既知の照射された識別パターンの第1のテンプレートを一致させることによって、照射された識別パターンの底部から頂部までの距離を決定する前に、少なくとも1つのシリンジの大きさを決定するように構成されてもよい。一態様では、少なくとも1つのプロセッサは、第1のテンプレートが照射された識別パターンの画像と一致する場合、少なくとも1つのシリンジが第1の大きさを有するという表示を提供するようにさらに構成されてもよい。少なくとも1つのプロセッサは、第1のテンプレートが照射された識別パターンの画像と一致しない場合、照射された識別パターンの画像と第2の大きさを有するシリンジの既知の照射された識別パターンの第2のテンプレートを一致させるようにさらに構成されてもよい。少なくとも1つのプロセッサは、第2のテンプレートが照射された識別パターンの画像と一致する場合、少なくとも1つのシリンジが第2の大きさを有するという表示を提供するようにさらにさらに構成されてもよい。
【0022】
別の態様では、少なくとも1つのシリンジの特性は、少なくとも1つのシリンジの内容物であってもよい。少なくとも1つの所定の距離は、少なくとも1つのシリンジ内に収容されている内容物として第1の流体を示す第1の所定の距離と、少なくとも1つのシリンジ内に収容されている内容物として第2の流体を示す第2の所定の距離とを含んでもよい。照射された識別パターンの底部から頂部までの距離が第1の所定の距離に対応する場合には、少なくとも1つのシリンジに第1の流体が収容されているという表示が提供されてもよく、照射された識別パターンの底部から頂部までの距離が第2の所定の距離に対応する場合には、少なくとも1つのシリンジに第2の流体が収容されているという表示が提供されてもよい。少なくとも1つのプロセッサが少なくとも1つのシリンジ内に第1の流体が存在すると判定した場合、照射された識別パターンを形成する電磁放射線の色は第1の色に設定されてもよく、少なくとも1つのプロセッサが少なくとも1つのシリンジ内に第2の流体が存在すると判定した場合、照射された識別パターンを形成する電磁放射線の色は第1の色とは異なる第2の色に設定されてもよい。
【0023】
他の態様では、少なくとも1つのシリンジは、プランジャをさらに備えてもよく、電磁放射線源は、プランジャを通して電磁放射線の少なくとも一部を投射するように配置されてもよい。このような態様では、プランジャは、透明または半透明の材料を含むことができる。さらに他の態様では、電磁放射線源がバレルを通ってプランジャの遠位面から反射するように、電磁放射線源が配置されてもよい。このような態様では、プランジャは、不透明な着色材料を含むことができる。他の態様では、電磁放射線源は、少なくとも1つのシリンジのバレルに隣接して配置されてもよく、電磁放射線は、バレルの遠位端の近くに配置されかつプランジャの遠位面の方に向けられるミラーから反射され、電磁放射線は、バレルを通ってプランジャから反射する。
【0024】
本開示の追加の態様によれば、流体注入システムが提供され、この流体注入システムは、流体注入器と、流体注入器と動作可能に係合する少なくとも1つのシリンジであって、傾斜表面を有する遠位端を含み、流体を受け入れるように構成された内部容積を画定するバレルを備える、シリンジと、少なくとも1つのシリンジに対して配置され、少なくとも1つのシリンジの少なくとも一部を通して電磁放射線を放出し、シリンジが流体で満たされているとき、電磁放射線の少なくとも一部が、流体とシリンジとに関連する少なくとも1つのインタフェースと電磁放射線との相互作用によって影響されて、少なくとも1つのシリンジの所定の部分に少なくとも1つのシリンジの内容物を示す照射された識別パターンを形成する電磁放射線源と、照射された識別パターンの画像をキャプチャするように配置された画像キャプチャ装置と、流体注入器および画像キャプチャ装置と通信する少なくとも1つのコンピューティング装置と、を備える。少なくとも1つのコンピューティング装置は、照射された識別パターンの画像内の照射された識別パターンの底部から頂部までの距離を決定し、照射された識別パターンの底部から頂部までの距離を所定の距離と比較し、照射された識別パターンの底部から頂部までの距離が所定の距離よりも小さい場合には、少なくとも1つのシリンジ内に空気が存在するという表示を提供し、流体注入器が注入手順を実行することができなくなるように構成された少なくとも1つのプロセッサを備える。
【0025】
一態様では、照射された識別パターンの底部から頂部までの距離を決定することは、照射された識別パターンの下端部を決定すること、および照射された識別パターンの上端部を決定することを含むことができる。照射された識別パターンの下端部および上端部は、照射された識別パターンの画像における隣接画素間のコントラストの変化を決定することによって決定されてもよい。
【0026】
別の態様では、少なくとも1つのプロセッサは、照射された識別パターンの画像と第1の大きさを有するシリンジの既知の照射された識別パターンの第1のテンプレートを一致させることによって、照射された識別パターンの底部から頂部までの距離を決定する前に、少なくとも1つのシリンジの大きさを決定するように構成されてもよい。少なくとも1つのプロセッサは、第1のテンプレートが照射された識別パターンの画像と一致する場合、少なくとも1つのシリンジが第1の大きさを有するという表示を提供するようにさらに構成されてもよい。少なくとも1つのプロセッサは、第1のテンプレートが照射された識別パターンの画像と一致しない場合、照射された識別パターンの画像と第2の大きさを有するシリンジの既知の照射された識別パターンの第2のテンプレートを一致させるようにさらに構成されてもよい。少なくとも1つのプロセッサは、第2のテンプレートが照射された識別パターンの画像と一致する場合、少なくとも1つのシリンジが第2の大きさを有するという表示を提供するようにさらにさらに構成されてもよい。
【0027】
本開示の別の態様によれば、流体注入システムが提供され、この流体注入システムは、流体注入器と、流体注入器と動作可能に係合し、電磁放射線源で照射されて、内部に収容されている流体を照射するように構成された少なくとも1つのシリンジと、照射された流体の画像をキャプチャするように配置されたセンサと、流体注入器およびセンサと通信する少なくとも1つのコンピューティング装置と、を備える。少なくとも1つのコンピューティング装置は少なくとも1つのプロセッサを備え、このプロセッサは、照射された流体の画像をセンサから取得し、照射された流体の画像に基づいて、少なくとも1つのシリンジ内に収容されている流体の種類および空気が少なくとも1つのシリンジ内に収容されているかどうかの少なくとも1つを判定し、少なくとも1つのプロセッサと通信している表示装置上に、少なくとも1つのシリンジ内に収容されている流体の種類の表示、および空気が少なくとも1つのシリンジ内に収容されているという表示のいずれかを自動的に表示するように構成される。
【0028】
特定の態様では、少なくとも1つのプロセッサは、空気が少なくとも1つのシリンジ内に収容されていると判定された場合に、流体注入器が注入手順を実行することができなくなるように構成されてもよい。照射された流体の画像内の関心領域内で行われる輝度測定を利用して、少なくとも1つのシリンジ内に収容されている流体の種類、および空気が少なくとも1つのシリンジ内に収容されているかどうかの少なくとも1つを判定する。
【0029】
本開示の別の態様によれば、流体注入システムが提供され、この流体注入システムは、流体注入器と、流体注入器と動作可能に係合するシリンジと、画像キャプチャ装置と、流体注入器および画像キャプチャ装置と通信する少なくとも1つのコンピューティング装置と、を備える。シリンジは、内部容積を画定するバレルと、シリンジのバレル上に設けられた少なくとも1つの機構とを備える。少なくとも1つの機構は、シリンジ内に収容されている異なる種類の流体を通して見ると、異なる外観を有する。画像キャプチャ装置は、シリンジの内容物を通して少なくとも1つの機構の画像をキャプチャするように配置される。少なくとも1つのコンピューティング装置は、少なくとも1つのプロセッサを備え、このプロセッサは、シリンジ内に収容されている流体を通して少なくとも1つの機構の画像を取得し、少なくとも1つの機構の画像に基づいて、少なくとも1つの機構の外観を決定し、決定された外観を、異なる種類の流体を通して見た場合の少なくとも1つの機構の外観のテンプレートと比較し、その比較に基づいてシリンジの特性の表示を少なくとも1つのプロセッサと通信している表示装置に自動的に表示するように構成される。
【0030】
一態様では、少なくとも1つの機構は、印刷、オーバーモールド、およびエッチングのうちの少なくとも1つによってシリンジのバレル上に形成されてもよい。別の態様では、少なくとも1つの機構は、流体ドット、ライン、一連のライン、またはそれらの任意の組み合わせであってもよい。少なくとも1つの機構の外観は、少なくとも1つの機構の形状および少なくとも1つの機構の向きの少なくとも1つを含んでもよい。
【0031】
一態様では、シリンジの特性は、シリンジ内の空気の存在であってもよく、少なくとも1つのプロセッサは、決定された外観が、空気を通してみたときに少なくとも1つの機構の外観のテンプレートの1つと一致する場合に、少なくとも1つのシリンジ内に空気が存在するという表示を提供し、流体注入器が注入手順を実行することができなくなるようにさらに構成されてもよい。
【0032】
別の態様では、少なくとも1つのシリンジの特性は、少なくとも1つのシリンジの内容物であってもよく、少なくとも1つのプロセッサは、決定された外観が第1の流体を通して見たときの少なくとも1つの機構の外観のテンプレートの1つと一致する場合、第1の流体がシリンジ内に存在するという表示を提供するようにさらに構成されてもよい。一態様では、少なくとも1つのプロセッサは、決定された外観が、第2の流体を通して見たときの少なくとも1つの機構の外観のテンプレートの1つと一致する場合、第2の流体がシリンジ内に存在するという表示を提供するようにさらに構成されてもよい。
【0033】
本開示の別の態様によれば、流体注入システムが提供され、この流体注入システムは、流体注入器と、流体注入器と垂直方向に動作可能に係合されたシリンジであって、シリンジは、流体を受け入れるように構成された内部容積を画定するバレルと、流体の密度とは異なる密度を有する少なくとも1つの物体とを含み、流体がバレル内に存在する場合に、少なくとも1つの物体が浮動するようにする、シリンジと、バレルの画像をキャプチャするように配置された画像キャプチャ装置と、流体注入器および画像キャプチャ装置と通信する少なくとも1つのコンピューティング装置と、を備える。少なくとも1つのコンピューティング装置は、バレルの画像を取得し、バレルの画像に基づいてバレル内の少なくとも1つの物体の位置を決定し、したがって、バレルが(i)流体で完全に満たされているか、(ii)少なくとも一部が空気で満たされているかどうかのいずれかを判定し、その決定に基づいて、少なくとも1つの物体の位置に基づいて空気がシリンジ内に存在するという表示を提供し、流体注入器が注入手順を実行することができなくなるように構成された少なくとも1つのプロセッサを備える。
【0034】
本開示のさらに別の態様によれば、流体注入システムが提供され、この流体注入システムは、流体注入器と、流体注入器と動作可能に係合するシリンジと、シリンジの少なくとも一部の画像をキャプチャするように配置された画像キャプチャ装置と、流体注入器および画像キャプチャ装置と通信する少なくとも1つのコンピューティング装置と、を備える。少なくとも1つのコンピューティング装置は、シリンジの少なくとも一部の画像を取得し、シリンジの少なくとも一部に基づいて、流体注入器によって実行される注入手順の少なくとも1つの特性を決定し、撮像中に実行可能な画像が生成されるように特定の時間に患者の体内の所定の関心領域に流体が送達されることを確実にするように、流体注入器によって実行される注入手順の少なくとも1つの特性を調整するように構成された少なくとも1つのプロセッサを備える。
【0035】
一態様では、注入手順の少なくとも1つの特性は、流速、シリンジ内に残っている流体の容量、およびシリンジのキャパシタンス測定値のうちの少なくとも1つであり得る。
【0036】
本開示のシステムおよび/または装置のこれらのおよび他の機構および特性、ならびに動作方法、構造の関連要素の機能、部品の組み合わせ、および製造の経済性は、本明細書の一部を形成する添付の図面を参照して以下の説明および添付の特許請求の範囲を考慮すれば明らかである。同様の参照符号は様々な図において対応する部分を示している。ただし、図面は、例示および説明の目的のみのためであり、本開示のシステムおよび/または装置の限界の定義を意図したものではないことが明確に理解されるべきである。本明細書および特許請求の範囲で使用される場合、単数形の「a」、「an」、および「the」は、文脈上で特に明示されない限り、複数の対象を含む。
【図面の簡単な説明】
【0037】
【
図1】本開示の態様による、流体注入器および流体検証システムの概略図である。
【
図2】
図1の注入器とともに使用するための本開示の態様によるシリンジの概略図である。
【
図3A】本開示の一態様による、照射された識別パターンの外観に伴う一形状の遠位端を有するシリンジの概略図である。
【
図3B】本開示の一態様による、照射された識別パターンの外観に伴う別の形状の遠位端を有するシリンジの概略図である。
【
図3C】本開示の一態様による、照射された識別パターンの外観に伴うさらに別の形状の遠位端を有するシリンジの概略図である。
【
図3D】本開示の一態様による、照射された識別パターンの外観に伴うさらに別の形状の遠位端を有するシリンジの概略図である。
【
図4A】照射された識別パターンの形状および/または大きさを変更するために、その遠位端に設けられた一機構を有するシリンジの概略図である。
【
図4B】照射された識別パターンの形状および/または大きさを変更するために、その遠位端に設けられた別の機構を有するシリンジの概略図である。
【
図4C】照射された識別パターンの形状および/または大きさを変更するために、その遠位端に設けられたさらに別の機構を有するシリンジの概略図である。
【
図5A】
図2のシリンジに利用できるシリンジプランジャの斜視図である。
【
図5B】
図2のシリンジに利用できるシリンジプランジャの概略図である。
【
図6】本開示の一態様による、バックライトされたプランジャを備えるシリンジおよび流体検証システムの概略図である。
【
図7】
図6の流体検証システムで使用中に空気が完全にまたは部分的に充填されたシリンジの概略図である。
【
図8】
図6の流体検証システムで使用される流体で充填されたシリンジの概略図である。
【
図9】本開示の一態様による、バックライトされたプランジャを備えるシリンジおよび流体検証システムの別の例の概略図である。
【
図10】反射プランジャを備えたシリンジおよび流体検証システムの概略図である。
【
図11】反射プランジャを備えたシリンジおよび流体検証システムの別の実施形態の概略図である。
【
図12】反射プランジャおよび光ファイバの光パイプを有するシリンジおよび流体検証システムの別の実施形態の概略図である。
【
図13】本開示の一態様による流体で充填されたシリンジバレル内で反射し、それを通って透過する光線を示す概略図である。
【
図14A】本開示の一態様による、流体検証システムと共に使用する流体で充填されたシリンジの実施形態の遠位端の部分の概略図である。
【
図14B】本開示の別の態様による、流体検証システムと共に使用する流体で充填されたシリンジの実施形態の遠位端の部分の概略図である。
【
図14C】本開示のさらに別の態様による、流体検証システムと共に使用する流体で充填されたシリンジの実施形態の遠位端の部分の概略図である。
【
図15A】本開示の一態様によるローリングダイヤフラムシリンジの側面図である。
【
図15B】
図15Aに示すローリングダイヤフラムシリンジの線A-Aに沿った断面側面図である。
【
図16A】本開示の別の態様による、ローリングダイヤフラムシリンジおよび圧力ジャケットの斜視図である。
【
図16B】
図16Aに示すローリングダイヤフラムシリンジおよび圧力ジャケットの断面側面図である。
【
図16C】
図16Aに示す圧力ジャケットと共に使用するためのローリングダイヤフラムシリンジおよびキャップの斜視図である。
【
図17A】本開示の一態様による電磁放射線源の第1の構成を示す、ローリングダイヤフラムシリンジおよび係合機構の部分の斜視断面図である。
【
図17B】本開示の一態様による電磁放射線源の第1の構成を示す、ローリングダイヤフラムシリンジおよび係合機構の部分の断面図である。
【
図18A】本開示の一態様による電磁放射線源の第2の構成を示す、ローリングダイヤフラムシリンジおよび係合機構の部分の斜視断面図である。
【
図18B】本開示の一態様による電磁放射線源の第3の構成を示す、ローリングダイヤフラムシリンジおよび係合機構の部分の斜視断面図である。
【
図19A】本開示の一態様による電磁放射線源の第3の構成を示す、ローリングダイヤフラムシリンジおよび係合機構の部分の斜視断面図である。
【
図19B】本開示の一態様による電磁放射線源の第3の構成を示す、ローリングダイヤフラムシリンジおよび係合機構の部分の断面図である。
【
図20】本開示の一態様による、ローリングダイヤフラムシリンジおよび係合機構の部分の、突出要素を示す断面図である。
【
図21】本開示の一態様による、画像処理技術を利用してシリンジ内の空気の存在を判定するための方法のフローチャートである。
【
図22】
図21の方法で使用されるシリンジの遠位端の例示的な画像の図である。
【
図23】
図21の方法で使用されるシリンジの遠位端の別の例示的な画像の図である。
【
図24】
図21の方法で使用されるメニスカスとハローとの間の距離の大きさと空気の存在との間の相関を示すグラフである。
【
図25】
図1の注入器と共に使用するための代替のシリンジの概略図である。
【
図26】本開示の一態様による、画像処理技術および
図25のシリンジを利用してシリンジ内の空気の存在を判定するための代替方法のフローチャートである。
【
図27】
図26の方法で使用される空気を含むシリンジの遠位端の例示的な画像の図である。
【
図28】本開示の態様による、輝度測定を使用して空気がシリンジ内に存在するかどうかを判定するために画像認識システムによって使用される例示的な画像の図である。
【
図29】本開示の一態様による、シリンジ内に収容されている流体の種類を決定するために画像認識システムによって使用される例示的な画像の図である。
【
図30】本開示の一態様による、シリンジ内に収容されている流体の種類を決定するために画像認識システムによって使用される別の例示的な画像の図である。
【
図31】本開示の一態様による、シリンジ内に収容されている流体の種類を決定するために画像認識システムによって使用される代替の例示的な画像の図である。
【
図32】本開示の一態様による、シリンジ内に収容されている流体の種類を決定するために画像認識システムによって使用される別の代替の例示的な画像の図である。
【
図33】本開示の一態様による、シリンジの大きさを決定するために画像認識システムによって使用される例示的な画像の図である。
【
図34】本開示の一態様による、シリンジの大きさを決定するために画像認識システムによって使用される別の例示的な画像の図である。
【
図35】本開示の一態様による、流体経路セットがシリンジに接続されているかどうかを判定するために画像認識システムによって使用される例示的な画像の図である。
【
図36】本開示の一態様による、流体経路セットがシリンジに接続されているかどうかを判定するために画像認識システムによって使用される別の例示的な画像の図である。
【
図37】本開示の態様による、流体を流体容器からシリンジに移送するための流体移送装置を含む流体移送システムの斜視図である。
【
図38】本開示の一態様による、流体移送装置がシリンジに接続されているかどうかを判定するために画像認識システムによって使用される例示的な画像の図である。
【
図39】本開示の一態様による、流体移送装置がシリンジに接続されているかどうかを判定するために画像認識システムによって使用される別の例示的な画像の図である。
【
図40】本開示の一態様による流体移送セットに接続されたパージ容器の斜視図である。
【
図42A】流体が内部に収容されていない
図40のパージ容器の正面図である。
【
図42B】流体が内部に収容されている
図40のパージ容器の正面図である。
【
図43A】流体が内部に収容されていない
図40のパージ容器の代替構成の斜視図である。
【
図44A】流体が内部に収容されていない
図40のパージ容器の別の代替構成の斜視図である。
【
図45】本開示の一態様による流体移送セットに接続されたパージ容器の一例の斜視図である。
【
図46】本開示の一態様による流体移送セットとともに使用されるチューブの端部の正面図である。
【
図47】本開示の一態様による、シリンジが伸張して膨張する様子を示す、注入手順中のシリンジの概略図である。
【
図48】例示的な注入手順中の時間に対する送達される容量を示すグラフである。
【
図49】本開示の一態様による、画像処理技術を利用してシリンジ内に残っている流体の容量を決定するための方法のフローチャートである。
【
図50】
図1のシステムで使用するための代替のシリンジの斜視図である。
【
図52】低圧で流体を送達する
図50のシリンジおよび本開示の一態様による流体検証システムの概略図である。
【
図53】高圧で流体を送達する
図50のシリンジおよび本開示の一態様による流体検証システムの概略図である。
【
図54】本開示の態様による、負圧で流体を吸入する
図50のシリンジの概略図である。
【
図55】本開示の一態様による、関連する圧力表示機構を有する
図15Aのシリンジの概略図である。
【
図56A】低圧で流体を送達するシリンジおよび本開示の別の態様による流体検証システムの概略図である。
【
図56B】高圧で流体を送達する
図56Aのシリンジおよび流体検証システムの概略図である。
【
図57】本開示の一態様による、組み込まれた温度ストリップを有するシリンジの概略図である。
【
図58】本開示の一態様による流体注入システムの正面斜視図である。
【
図59】本開示の一態様による流体注入システムの概略図である。
【
図60】
図59の流体注入システムの流体注入器の一部の概略図である。
【
図62】
図59の流体注入システムの別の構成の概略図である。
【
図63】
図59の流体注入システムのさらに別の構成の概略図である。
【
図64】
図1のシステムと共に使用するための別の代替のシリンジの概略図である。
【
図65】空気で満たされた
図64のシリンジおよび本開示の一態様による流体検証システムの概略図である。
【
図66】生理食塩水で満たされた
図64のシリンジおよび本開示の一態様による流体検証システムの概略図である。
【
図67】造影剤で満たされた
図64のシリンジおよび本開示の一態様による流体検証システムの概略図である。
【発明を実施するための形態】
【0038】
本明細書の説明のために、用語「上」、「下」、「右」、「左」、「垂直」、「水平」、「頂部」、「底部」、「横」、「縦」、およびその派生語は、図面に示されているように本開示に関係するものとする。シリンジに関して使用される場合、「近位」という用語は、シリンジが注入器に接続されているときに、注入器に最も近いシリンジの部分を指す。「遠位」という用語は、注入器から最も離れたシリンジの部分を指す。ただし、本開示は、明示的に反対に指定されている場合を除いて、代替的な変形およびステップシーケンスを想定することができることを理解されたい。添付の図面に示され、以下に記載される特定の装置およびプロセスは、本開示の単なる例示的な実施形態であることも理解されたい。したがって、本明細書に開示された実施形態に関連する特定の寸法および他の物理的特性は、限定的であるとみなされるべきではない。
【0039】
本開示の一態様は、画像処理技術を使用して、注入用流体を含むシリンジが流体で完全に満たされ、シリンジが直立位置に設けられているときに遠位端付近に自由空間(すなわち、空気)を有さず、気泡も含まないことを確認するための流体注入システムおよび流体検証システムに関する。本開示はまた、一般に、画像処理技術を使用して、シリンジ内に存在する流体の種類および特定の特性を検証するための様々な注入パラメータを決定することに関する。
【0040】
本明細書で使用される場合、流体および/または医療用流体とは、限定されないが、造影剤、生理食塩水、および治療液などの液体物質または溶液を指す。特定の態様では、流体検証システムは、可視光または赤外光のような電磁放射線を、シリンジバレルの少なくとも一部を通して放出するように構成される。電磁放射線は、1つまたは複数の電磁波の形で空間を伝播する放射エネルギーを指す。電磁放射線は、視認できる(例えば、約400nm~700nmの波長を有する)こともあるが、例えば、X線、放射線、赤外線、および紫外線の場合のように、人間の目には視認できないこともある。さらに、本明細書で使用される場合、電磁放射線は周囲光であってもよい。シリンジが流体で完全に満たされているとき、電磁放射線は、流体および/またはシリンジバレルによって屈折されて、シリンジの遠位端を照射して、特徴的な識別パターンを提供する。シリンジの遠位端上の識別パターンを画定する照射領域は、本明細書ではハローと呼ばれる。本明細書で使用される「ハロー」という用語は、シリンジの円錐形の遠位端の遠位部分の周囲または円錐形のサブ部分に円形の着色された/照射されたリングを含む照射された識別パターンを含む。このハローを、オペレータが真っ直ぐに、真横から、またはわずかに上昇した位置から見たときに容易に識別することができる。一例では、この真っ直ぐにまたは真横から見た図は、シリンジの中心軸を通って延びる平面に略平行な平面にあり、一般に、シリンジの遠位端を通って延びる平面に沿っていてもよい。また、本明細書に記載された方法でシリンジを照射することによって、シリンジバレルの側壁に沿って存在する気泡を照射することができ、それによってオペレータまたはセンサがそのような気泡の存在をより容易に識別することができる。
【0041】
いくつかの態様では、例えば自動化された画像処理技術によってハローパターンを検出するために、1つまたは複数のセンサをシリンジの遠位端の画像をキャプチャするように構成することができる。シリンジが流体で完全に満たされている場合、例えばシリンジの遠位端の少なくとも一部分上の照らされたバンドの形態の、明確に観察可能なハローが、シリンジが流体で完全に満たされているという識別として照射される。シリンジが完全にまたは部分的に空気で満たされている場合など、シリンジが流体で完全に満たされていない場合、ハローの大きさおよび/または明るさは実質的に減少または消失する。本明細書で使用される場合、流体は、空気または他の気体とは対照的に、生理食塩水または様々な種類および濃度の造影剤のような、患者に送達されるように構成された医療グレードの液体を指す。
【0042】
I.照射された識別パターンの生成
A.例示的な流体注入システム
図1を参照すると、自動流体注入器のような流体注入器10が示されており、この流体注入器10は、造影剤、生理食塩水、または任意の所望の医療用流体などの流体Fで満たすことができる1つまたは複数のシリンジ12とインタフェースして作動するように適合されている。流体注入器10を、血管造影、コンピュータ断層撮影(CT)、磁気共鳴画像法(MRI)、分子イメージング、または造影剤および/もしくは生理食塩水などの一般的な洗浄剤を患者の体内に注入するための他の医療処置中に使用することができる。いくつかの例では、流体注入器10は、少なくともデュアルシリンジ注入器であってもよく、2つの流体送達シリンジ12は、並んでまたは他の空間的関係で向けられ、注入器10に関連するそれぞれのリニアアクチュエータまたはピストン要素によって別々に作動される。
【0043】
注入器10を、プラスチックおよび/または金属などの適切な構造材料から形成されたハウジング14内に封入することができる。ハウジング14を、所望の用途に応じて様々な形状および大きさで形成することができる。例えば、注入器10は、フロア部に配置されるように構成された自立構造であってもよく、または適切なテーブルまたは支持フレーム上に位置するように構成されてもよい。注入器10は、1つまたは複数のシリンジ12の近位端に接続し、プランジャ26をそれぞれのピストン要素に接続するための1つまたは複数のシリンジポート16を含む。シリンジポート16は、例えば
図1に示すように、ハウジング14の側面に配置されるのが一般的である。ハウジング14は回転可能であり、そこから延びるシリンジポート16およびシリンジ12を垂直方向、水平方向、または下向きに向けることができる。いくつかの例では、シリンジ12は、シリンジの寸法、容量、圧力許容差、および/またはシリンジ12に収容されている流体に関する情報についての情報を含む、ラベルまたはバーコードなどの少なくとも1つの識別タグ34を含むことができる。少なくとも1つの識別タグ34を、ハウジング14の側面に、または注入器10の少なくとも1つのシリンジポート16の内面の少なくとも一部分内に配置されるか凹設されるセンサ36によって読み取ることができる。
【0044】
流体経路セット17は、1つまたは複数の流体をシリンジ12から患者の血管アクセス部位に挿入されたカテーテル(図示せず)に送達するために、シリンジ12とインタフェースすることができる。例えば、第1のシリンジ12からの生理食塩水の流れおよび第2のシリンジ12からの造影剤の流れは、注入器10に関連する流体制御モジュール(図示せず)によって調整され得る。流体制御モジュールは、ユーザ選択の注入パラメータに基づいて、患者への生理食塩水および/または造影剤の送達を調節するために、注入速度、圧力、バルブおよびピストンまたはリニアアクチュエータなどの流れ調節構造を動作可能に制御し、この注入パラメータには、注入流速、持続時間、総注入量、ならびに造影剤および生理食塩水の比などが含まれ、これらは注入器流体制御モジュールにプログラムまたは入力されてもよい。
【0045】
上記のシステムとともに使用するのに適したフロントローディング式の流体注入器は、Reillyらの米国特許第5,383,858号明細書に開示されており、参照によりその全体が本明細書に組み込まれる。他の例示的な多流体送達システムおよび構成要素は、Lazzaroらの米国特許第7,553,294号明細書;Cowanらの米国特許第7,666,169号明細書および米国特許第9,199,033号明細書;Tuckerらの米国特許第8,173,995号明細書;ShearerらのPCT国際出願2012/155035号明細書;Rileyらの米国特許出願公開第2014/0027009号明細書に記載されており、これらはすべて本出願の譲受人に譲渡されており、その開示は参照により本明細書に組み込まれる。
【0046】
B.流体注入装置と共に使用するための例示的なシリンジ
1.シリンジ本体の詳細
流体注入器10の一般的な構造および機能を説明したので、ここでは、注入器10に接続され、流体Fを含むように構成されたシリンジ12について詳細に説明する。
図2を参照すると、シリンジ12は、ガラスまたは適切な医療グレードのプラスチックから形成され、内部容積19を画定する実質的に円筒形のバレル18を備える。例えば、バレル18を、医療グレードのポリエチレンテレフタレート(PET)または他の医療グレードのプラスチック材料から形成することができる。バレル18は、近位端20と、ノズル22まで延びる先細りの円錐形の遠位端24とを有する。バレル18は、ユーザまたはシステムオペレータがその中に収容されている流体Fを観察することができるように、透明または半透明材料から形成されることができ、本明細書で説明するように、流体検証システムとともに使用するとき、バレル18の遠位端24上のハローを識別することができる。他の例では、バレル18の遠位端24のみが透明または半透明であり、バレル18の他の部分は、バレル18を通る光の透過を増加させるための不透明な反射材料から形成される。いくつかの態様では、バレル18の外周にシールド(図示せず)が設けられてもよい。シールドは、バレル18を通る光の透過を増加させるための不透明な反射材料から形成されてもよい。流体Fは、一般に、空気の屈折率よりも大きい屈折率を有し、バレル18の材料とは異なっていてもよく、したがって、シリンジ12のバレル18を通って進む可視光のような電磁放射線の経路を変更する。例えば、空気の屈折率は約1であり、生理食塩水の屈折率は約1.34であり、造影剤の屈折率は約1.46であり、PETの屈折率は約1.57である。理論に縛られる意図はないが、電磁放射線の移動経路は、電磁放射線が進行する媒体の反射および屈折特性によって支配される。
【0047】
照射領域またはハロー120の外観は、
図3A~
図3Dに示すように、バレル18の先細りの遠位端24の角度および/または形状に少なくとも部分的に基づいて決定される。いくつかの態様では、バレル18の先細りの遠位端24は、シリンジ12を通って延びる水平軸線または緯度方向もしくは半径方向軸線に対して30度~60度の範囲の角度で、他の態様では40度~50度の角度で先細りになっていてもよい。一例では、バレル18の先細りの遠位端24の角度は、水平に対して約45度である(
図3A参照)。反射された照射領域またはハローがもはや見えなくなる低閾値の上下の値もある。したがって、バレル18の先細りの遠位端24の角度および/または形状を変更することは、ハロー120の大きさおよび視覚化に影響を及ぼし得る。例えば、バレルの先細りの遠位端24の角度が増加するにつれて、可視化されたハローの大きさが増大する(
図3Cは、水平に対して60度の角度を有する先細りの遠位端24を有するシリンジを示している)。しかしながら、ハローの明るさは、一般に、このような角度の増加と共に低減される。これは、ハローを生成するために使用される供給源からの電磁放射線の強度を増加させることによって補償され得る。別の例では、バレル18の先細りの遠位端24の角度が減少するにつれて、
図3Bに示すようにハロー120の大きさも減少する。最後に、シリンジの遠位端24が、
図3Dに示すドーム形状のシリンジのように傾斜表面を有していない場合、ハロー120は生成されない。ハロー120がシリンジ12の遠位端に生成される方法の具体的な詳細は、ここで提供される。
【0048】
いくつかの例では、シリンジバレル18の遠位端24の少なくとも一部分は、ハロー120の外観を強調するように構成された1つまたは複数の要素を含むことができる。1つまたは複数の要素は、バレル18の遠位端24の外面の周りに円周方向に延びるスカラップまたはリッジ24Aの形態であってもよい。スカラップまたはリッジ24Aは、ハロー120の少なくとも一部を屈折させるように配置され、視野角およびユーザ位置の範囲にわたって視認可能にすることができる。スカラップまたはリッジ24Aを、フレネルレンズのような複数部分からなるレンズを作るために使用することができる。この種類のレンズは、ハロー120が視覚化されるシリンジ12の部分を通過する光が、検出器または見る人に向かうより直接的な経路に向け直されることを可能にする。このようなレンズは、より遠くに光を透過し、より多くの視野角でより明るく見えるように使用されることもできる。さらに、スカラップまたはリッジ24Aは、ハロー120またはシリンジ12内の他の機構の視覚化を向上させることができる。リッジ24Aの幾何学的形状は、光の内部反射と、見る人の目での対応する光線の組み合わせまたは収束によって決定されてもよい。
図4A~
図4Cを参照すると、生成されたハロー120の異なる形状または大きさにつながる遠位端24におけるスカラップまたはリッジ24Aの異なる配置が示されている。
【0049】
図2に戻ると、いくつかの例では、ドリップフランジ28と呼ばれることが多い環状フランジが、シリンジバレル18の近位端20の近くの位置から半径方向外側に延びている。シリンジ12が注入器10(
図1に示す)に挿入されると、ドリップフランジ28は、シリンジ12から排出された過剰な流体がポート16に入るのを防ぐために、シリンジポート16の遠位開口部(
図1に示す)に対して位置決めされる。ドリップフランジ28とバレル18の近位端20との間のシリンジバレル18の部分(本明細書では挿入部30と呼ぶ)は、注入器10のシリンジポート16に挿入されるように寸法決めされ適合される。したがって、いくつかの例では、バレル18の挿入部30は、バレル18から半径方向外向きに延びるロックフランジ32のような1つまたは複数のロック構造を含む。ロックフランジ32を、注入器10が使用されている間にシリンジ12をシリンジポート16内に解放可能に維持するために、シリンジポート16内の対応する突起またはロック構造とロック係合するように適合させることができる。あるいは、挿入部30は、シリンジポート16の対応する部分に接続するための1つまたは複数のラッチ、ロック機構、または半径方向に延びるリブを含むことができる。
【0050】
図1に示す注入器10と共に使用するのに適した例示的なシリンジであって、流体検証システムと共に使用することができるものが、Reillyらの米国特許第5,383,858号明細書;Cowanらの米国特許第7,666,169号明細書および米国特許第9,199,033号明細書;Tuckerらの米国特許第8,173,995号明細書に記載されており、これらはすべて本出願の譲受人に譲渡されており、その開示はその全体が参照により本明細書に組み込まれる。さらなる例示的なシリンジは、Hitchinsらの米国特許第6,322,535号明細書およびTrockiらの米国特許第6,652,489号明細書に記載されており、これらの各々は、本出願の譲受人に譲渡されており、その開示はその全体が参照により本明細書に組み込まれる。
【0051】
2.例示的なシリンジと共に使用するためのプランジャの例
引き続き
図2を参照すると、シリンジバレル18の近位端20は、シリンジバレル18内に摺動可能に配置されたプランジャまたはプランジャカバー26で密閉され得る。プランジャまたはプランジャカバー26は、遠位面26Aを有することができる。プランジャまたはプランジャカバー26は、バレル18がその中を前進または後退する際にバレル18の側壁に対して液密シールを形成する。プランジャまたはプランジャカバー26は、注入器10(
図1に示す)から延びるピストンロッド(図示せず)の遠位端を受け入れ係合するように構成された内部空洞27および近位開口部29を含むことができる。ピストンロッドは、注入器10によってシリンジバレル18を前進または後退し、シリンジバレル18の内部19を通ってプランジャまたはプランジャカバー26を駆動して、そこから流体Fを排出するか、または流体Fをシリンジバレル18に送達する。
【0052】
いくつかの例では、プランジャまたはプランジャカバー26は、実質的に透明または半透明の材料から少なくとも部分的に形成され、可視光、周囲光、赤外線光または紫外線光などの電磁放射線を通過させるか、プランジャまたはプランジャカバー26の一部から放出するように構成される。例えば、プランジャまたはプランジャカバー26は、プランジャカバー26とバレル18の内面との間にシールを提供する環状エラストマリングによって囲まれた透明または半透明の中央部分を含むことができる。放出された電磁放射線は、シリンジバレル18の遠位端24に向かって実質的に軸方向にシリンジバレル18の内部および/またはそれを通って放射し、伝播し、または進み、一方で、他の電磁放射線は非軸方向に放出されるが、電磁放射線の少なくとも一部は、シリンジバレル18の内面から遠位端24に向かって反射される。それはまた、プランジャまたはプランジャカバー26から非軸方向に伝播し、その一部はシリンジバレル18の側壁からシリンジ12の遠位端24に向かって反射する。電磁放射ビームは、プランジャまたはプランジャカバー26の透明または半透明材料を通過するときに散乱されて、ハローの外観に寄与することができる。プランジャまたはプランジャカバー26は透明であるか、または白く着色されているが、特定の用途においては、より顕著な色が有用であり得る。例えば、プランジャ材料を、明るい赤色または明るい緑色のような目立つ色に着色して、ハローに色を付けることができる。ハローに明るく目に見える色を付けることで、ハローが存在する場合、システムオペレータがハローを認識するのを助ける。例えば、プランジャまたはプランジャカバー26は、視認性を高めるために、またシリンジ12が使用可能であることを確認するために、緑色または青色に着色されてもよい(例えば、緑色は、多くの場合、準備ができている状態を示すと理解される)。あるいは、プランジャまたはプランジャカバー26を通過する電磁放射線は、赤、緑、青、または他の色のような光源からの色を有し、着色されたハローを画定することができる。
【0053】
代替として、または透明部分または半透明部分を含むことに加えて、他の態様では、プランジャまたはプランジャカバー26は、電磁放射線が通過することを可能にする1つまたは複数の窓または開口部31を含むことができる。例えば、プランジャまたはプランジャカバー26は、ハローの形成に寄与するカバー26の部分に沿って配置された窓のパターンを含むことができる。窓または開口部31を、プランジャまたはプランジャカバー26が流体密であることを確実にするために、透明または半透明の材料またはフィルムで覆うことができる。プランジャまたはプランジャカバー26の他の部分は、不透明な材料から形成されることができ、前述の例とは異なり、光を通過させることができる必要はない。一例では、これらの窓または開口部31を通る選択的照明を使用して、特定のシステム条件または状態に基づいて、視認できるハロー120のパターンまたはハロー120の色を変化させることができる。例えば、窓または開口部31のうちのいくつかは、そこを通って出現する赤色光を有するように構成されてもよく、他の窓または開口部31は、黄色光をそこから放出するように構成されてもよい。したがって、ハロー120は、赤色光のみがオンの場合には赤色、黄色光のみがオンの場合には黄色、すべての光がオンの場合にはオレンジ色を有してもよい。ハロー120の特定の色は、限定されないが、使用される流体の種類、シリンジの大きさ、シリンジ内の流体の容量、シリンジ内の圧力、シリンジ内の空気の存在などの特定のシステム条件または状態の動作の表示を提供することができる。
【0054】
別の例では、プランジャまたはプランジャカバー26は、半透明または透明の材料ではなく、反射材料または着色材料から形成されてもよく、それらでコーティングされてもよい。反射材料または着色材料または表面は、シリンジバレル18を通って遠位方向にプランジャまたはプランジャカバー26に向けられた光を反射して、ハローを生成する。反射プランジャを含む例示的な流体検証システムが、
図10~
図12に示されており、本明細書で詳細に説明される。
【0055】
さらに別の例では、
図5Aおよび
図5Bに示すように、プランジャまたはプランジャカバー26は、複数の異なる色のストライプ38を有する反射材料から形成されてもよく、それらでコーティングされてもよい。ストライプ38を形成する反射材料は、シリンジバレル18を通って遠位方向にプランジャまたはプランジャカバー26に向けられた光を反射して、ハローを生成する。プランジャまたはプランジャカバー26がバレルを通って移動するとき、光は、シリンジバレル18内のプランジャまたはプランジャカバー26の位置に応じて異なるストライプ38から反射する。プランジャまたはプランジャカバー26の各ストライプ38は色が異なるので、ハローの色および/または外観はストライプ38に応じて変化し、プランジャまたはプランジャカバー26が注入または充填手順中にシリンジバレル18を通って前進または後退するときに、光がストライプ38上で反射される。プランジャまたはプランジャカバー26がシリンジバレル18を通って前進または後退し、ハローの色の変化を検出するとき、画像キャプチャ装置などのセンサを配置してハローの画像をキャプチャすることができる。次いで、センサに動作可能に結合され、適切にプログラムされたプロセッサを使用して、ハローの色/外観に基づいてシリンジ内の残量を決定することができる。
図5Aおよび
図5Bに示す例は8つの異なる色のストライプを示しているが、これは本発明を限定するものと解釈されるべきではなく、任意の適切な数のストライプを利用することができる。あるいは、プランジャまたはプランジャカバー26は、シリンジに残っている流体の量に応じて異なる色のハローを生成するために、シリンジの特定の部分で異なる色の光を放出するように構成されてもよい。さらに、着色ストライプ以外のパターンを用いて、ハロー120で見られるように情報をプランジャに符号化することができる。そのようなパターンの一例がバーコードである。
【0056】
C.例示的なシリンジによる照射された識別パターンの生成
図6を参照して、シリンジ12およびプランジャまたはプランジャカバー26の構造を概括的に様々な態様で説明したので、ここでは、流体検証システム110の一例の構成要素について詳細に説明する。流体検証システム110は、ハロー120を形成する放射ビームを生成するための電磁放射線源112を含む。電磁放射線源112は、電磁放射ビームをシリンジ12の内部19に投射するために提供される電球、LED電球、可視光放射器、赤外線放射器、レーザ、他の電磁放射線源、または周辺光であってもよい。特定の態様では、電磁放射線源112は、シリンジバレル18を通ってシリンジの遠位端に向かって略軸方向に電磁放射線を放出する。
【0057】
1.プランジャの下に配置された電磁放射線源
例えば、
図6に示すように、電磁放射ビームBは、半透明または透明のプランジャまたはプランジャカバー26を通ってバレル18の遠位端24に向かって進む。電磁放射線源112を、特定のセンサまたは電磁放射線検出器のために、ハロー120の顕著性を高めたり、ハロー120を調整したりするように構成することができる。一例では、電磁放射線源112は、特定の波長のレーザ、例えば、一実施形態では約532nmの波長を有するレーザ(例えば、緑色レーザ)を含む。可視領域内の他の波長で電磁放射線を放出するレーザもまた想定される。レーザ電磁放射線源112は、中間色のまたは透明なプランジャと共に使用され、依然として顕著な色のハロー120を生成することができる。他の例では、電磁放射線源112は、システムが放出された波長内の放射線(例えば、ハロー120)を検出することができるセンサまたはカメラを含むという条件で、可視スペクトル外の電磁放射線を放出することができる。さらに他の例では、電磁放射線源112は、周囲光とより容易に区別され得る、偏光または特定の波長のフィルタリングされた光を放出するように構成されてもよい。他の例では、電磁放射線源112は、システムオペレータによって識別され得るか、またはセンサによって自動的に検出され得る、所定の識別可能なシーケンスに従って光のパルスを放出するように構成されてもよい。
【0058】
引き続き
図6を参照すると、電磁放射線源112は、プランジャまたはプランジャカバー26の下側に配置され、プランジャまたはプランジャカバー26をバックライトする。例えば、LED電球または他の電磁放射線放出装置を、シリンジ受容スタンドの基部、ピストン、アクチュエータ、またはシリンジポートに取り付けることができ、このシリンジポートは、シリンジ12を受け入れるように構成され、電磁放射ビームを例えばシリンジバレル18を通って軸方向に放出するように配置される。したがって、いくつかの例では、電磁放射線源112を、注入器10(
図1に示す)と一体化することができる。例えば、電磁放射線源112を、シリンジバレル18のドリップフランジ28に隣接するシリンジポート16(
図1に示す)上に、またはシリンジポートに隣接する注入器の他の便利な場所に配置することができる。
【0059】
他の例では、流体検証システム110は、検査されるシリンジ12を受け入れるためのベースまたはホルダを含むスタンドアロン構造であってもよい。LEDまたは標準的な電球のような電磁放射線源112を、ベースまたはホルダの上に、またはそれに隣接して配置することができる。この場合、シリンジ12は、流体Fで適切に充填されていることを保証するために検証される。検証が完了した後、シリンジ12は、ベースまたはホルダから取り外され、流体注入器10のような注入器に移送され、流体Fを患者に送達する。
【0060】
プランジャまたはプランジャカバー26を通過する電磁放射線は、シリンジバレル18を通って実質的に放射し、シリンジが流体で満たされているときにハロー120を形成する。
図7を特に参照すると、シリンジ12が空気で満たされているかまたは部分的に空気で満たされているとき、電磁放射ビームはシリンジバレル18を通過するが、その遠位端24の近くに特徴的な照射部またはハロー120を形成しない。対照的に、
図8に示すように、シリンジ12が完全に流体Fで満たされているとき、電磁放射ビームは、流体Fおよびシリンジバレル壁によって屈折され、シリンジ12の遠位端24の近くにハロー120を生成する。本明細書におけるシリンジの検証のための方法およびステップに関連してより詳細に説明すると、システムオペレータまたは自動画像読み取り装置または光学装置(例えば、センサ114)は、ハロー120が存在するかどうかを識別し、存在する場合には正しい形状および大きさであるかどうかを識別することができる。ハロー120が小さすぎるか、十分に明るくないか、または全く存在しない場合、これは、シリンジが十分な流体で満たされていないか空気を含んでいることを示す可能性があり、システムオペレータは、追加の流体Fをシリンジ12に加えて、患者への注入前に完全に充填することができる。正しい大きさ、形状、および明るさを有するハロー120が識別された場合、シリンジが流体で満たされていることの検証が完了し、シリンジ12の流体内容物を患者に投与する準備が整う。したがって、流体検証システム110は、シリンジ12が流体で満たされているか、少量の空気さえもシリンジ内部19に存在するかどうかを適切に視覚的に表示する。
【0061】
さらに、
図7および
図8に示すように、ライン40は、シリンジバレル18の遠位端24に形成され、シリンジバレル18の遠位端24の周囲に延びることができる。ライン40は、限定されないが、印刷、オーバーモールド、およびエッチングなどの任意の適切な方法を使用してバレル18上に形成されてもよい。ライン40は、オペレータにシリンジ12内の流体の種類の迅速かつ視覚的な表示を提供するために、ハロー120と連動するように構成される。例えば、ハロー120は、異なる流体の異なる特性のためにシリンジ内に存在する流体の種類に応じて異なる大きさになる。したがって、ライン40はシリンジ12上に形成され、第1の流体がシリンジ12内に存在するときに、
図8に示す下端部のようなハロー120の特定の部分と整列し、第2の流体がシリンジ12内に存在する場合、中央部のようなハロー120の第2の所定部分と整列してもよく、または第2の流体がシリンジ12内に存在する場合、ハロー120から離れて配置されてもよい。このようにして、オペレータは、ハロー120に関連するライン40の位置を迅速かつ容易に視覚的に決定することができ、この情報に基づいて、シリンジ12内に存在する流体の種類を決定する。
【0062】
図9を参照すると、バックライトされた半透明または透明のプランジャまたはプランジャカバー26を含むシリンジ12および流体検証システム110の別の例が示されている。シリンジ12は、注入器10のシリンジポート16に取り付けられている。注入器10のピストンロッド124の遠位端には、LEDなどの1つまたは複数の電磁放射線源112が取り付けられているか、または埋め込まれている。作動されると、ピストンロッド124は、プランジャまたはプランジャカバー26によって画定される空洞27に向かって前進し、空洞27内に受容される。LEDは、プランジャカバー26を通って軸方向に光を放出して、上述したようにシリンジバレル18の遠位端24に隣接するハロー120を生成する。ハロー120を、シリンジバレル18の遠位端24に隣接して配置されたセンサ114によって識別することができる。
【0063】
2.放射線がプランジャの表面から反射するように配置された電磁放射線源
図10を参照すると、放射線源112を、エネルギーまたは電磁放射線がプランジャまたはプランジャカバー26の遠位面26Aからシリンジバレル18を通って軸方向に反射してハロー120を形成するように配置することもできる。例えば、本明細書に記載の電磁放射線源112は、バレル18の遠位端24の近くなど、バレルの外側に配置されて、シリンジバレル18を通るプランジャまたはプランジャカバー26の遠位面26Aに向けて電磁放射線または光ビームBを投射することができる。次いで、電磁放射線または光ビームBは、流体および/またはシリンジ壁材料による付随する屈折/反射と共に、プランジャまたはプランジャカバー26を遠位方向に反射して、シリンジの遠位端に視認できるハローを形成する。
【0064】
3.注入器の表面に隣接して配置された電磁放射線源
別の例では、
図11に示すように、システム110は、注入器10および/またはシリンジポート16(
図1に示す)の表面に隣接して配置された電磁放射線源112を含むことができる。本明細書に記載の電磁放射線源112を、ミラー122またはシリンジバレル18の遠位端24の近くに配置された他の反射素子からの光ビームまたは放射ビームBを集束して反射するように構成することができる。ミラー122は、光または電磁放射ビームをプランジャまたはプランジャカバー26の遠位面26Aに向けるため、シリンジが流体で満たされているとき、放射線または光がプランジャまたはプランジャカバー26から反射してハロー120を形成することができる。ハロー120を、オペレータまたは検出器もしくはセンサ114によって視覚的に識別することができる。
【0065】
4.光ファイバを含む電磁放射線源
図12を参照すると、別の例では、光ファイバの光パイプ126を使用して、電磁放射線源112からバレル18の遠位端24に向かって光または電磁放射線を提供し、例えば、放射線源が注入器本体と関連付けられ、プランジャまたはプランジャカバー26の遠位面26Aの方に光を照らすかまたは光を向ける。一例では、光パイプ126を、シリンジバレル18自体に埋め込むことができる。あるいは、光パイプ126は、シリンジバレル18を取り囲む圧力ジャケットに埋め込まれてもよい。その場合、光を、例えば、注入器10のシリンジポート16に配置された電磁放射線源112から光パイプ126を通ってバレル18の遠位端24に向けることができる。光パイプ126から放出された光は、光ビームBで示されるように、プランジャまたはプランジャカバー26の遠位面26Aに向けられ、シリンジが流体で満たされているときに、シリンジの遠位端にハローを形成するために、
図10および
図11に示された例に関連して説明された方法でそこから反射することができる。
【0066】
5.照射された識別パターンまたはハロー
図13を参照して、電磁放射線が流体Fおよび/またはバレル18の壁の材料によって屈折されて、ハロー120を生成する方法の詳細について、詳細に説明する。
図13に示すように、プランジャまたはプランジャカバー26(
図6および
図9に示す)を通過する際に複数の方向に散乱される光線(一般に130で示される)は、シリンジバレル18の遠位端24に向かって略軸方向Aに進行する。光線130の一部は、シリンジバレル18の透明または半透明の側壁を通ってシリンジバレル18を出て、照射されたプランジャ26が観察者200には視認できることを意味する。一部の光線130は、バレル18の側壁と接触することなく、バレル18の先細りの円錐形の遠位端24に直接到達する。バレル18の遠位端24を直接照らす光線130は、上昇した位置からシリンジ12の頂部を見る観察者200には視認できる。一部の光線130は、シリンジバレル18から参照番号132で示される全部または部分的な内部反射によって、シリンジバレル18の遠位端24に集束される。例えば、シリンジバレル18の先細りの円錐形の遠位端24の一方の側に向けられた光線130は、シリンジが流体で満たされ、流体の屈折率の差異があるときに、先細りの遠位端24の対向側に向かって、番号133で示されるような全内部反射によって反射され、シリンジ壁材料およびシリンジの外側の空気が異なり、内部反射を引き起こす。シリンジバレル18が空気で完全に満たされているか、または流体Fで部分的にのみ満たされている場合、光線130は、十分に内部反射されず、遠位円錐端部に集束されず、空気で充填されたシリンジ12の領域にわたって観察者200には視認できるとしてもわずかしか視認できない。いかなる理論にも制限されることを意図するものではないが、空気を含むシリンジの容量を通って進む光線の大部分は、シリンジバレル壁で内部反射されず、その代わりに側壁を通ってシリンジから出ると考えられる。実質的な内部反射がないので、光線はシリンジの遠位端に集束されず、観察可能なハローを生成する。特に、集束された光線130は、シリンジ内に空気が存在するとき、シリンジバレル18を真っ直ぐな位置または真横から見ると、ハローとして視認できない。したがって、シリンジバレル18が流体で完全に満たされていないとき、ハロー120は存在しないように見える。
【0067】
ただし、
図13に示すように、シリンジ12が流体Fで満たされているとき、バレル18の先細りの遠位端24に向けて反射され、バレル18の先細りの遠位端24に集束される光線130は、外気およびシリンジ壁材料に対する流体の屈折率の差に起因して、ライン131で示されるように屈折される。具体的には、本明細書で説明するように、空気の屈折率は実質的に1である。対照的に、生理食塩水の屈折率は約1.34であり、造影剤の屈折率は約1.46であり、PETの屈折率は約1.57である。シリンジバレル18を出る屈折光ビーム130は、シリンジバレル18が流体Fで部分的にのみ満たされている場合と比較して、より低い角度で観察者200に視認可能である。さらに、屈折のために、光線130は、観察者200によって観察される光ハローの強度を増加させるためにさらに集束されてもよい。したがって、流体が充填されたシリンジ12を真っ直ぐに、真横から、またはわずかに上昇した位置から見たとき、観察者200は、特徴的な外観を有する照射されたハロー120が見える。
【0068】
シリンジ12の構造および幾何学的形状、特に先細りの円錐形の遠位端は、ハロー120がバレル18の所定の部分(すなわち、遠位端24)で特定の設定の位置または向きから容易に視認できるように選択される。例えば、いくつかの実施形態では、注入器10は、傾いた向きで(例えば、注入器の平面に対して約0度から約30度の間で上方または下方に傾斜して)シリンジ12を保持する。シリンジ12の傾斜した向きを考慮するために、バレル18およびバレル18の遠位端24の形状を、傾斜した位置で見たときにハロー120の視認性を高めるように選択することができる。シリンジ12が注入器10によって実質的に真っ直ぐな(例えば傾けられていない)位置に保持されている場合、シリンジ12は、シリンジ12を真っ直ぐにまたは真横から見たときにハロー120が容易に見えるように成形される。
【0069】
より具体的には、
図14Aを参照すると、シリンジ12が真っ直ぐな向きまたは傾いた(例えば、10度~30度の傾斜)向きから一般に見えるように向けられている場合、バレル18の先細りの遠位端24の角度23は、水平に対して約30度~60度であり、特定の実施形態では約45度である。約45度の角度は、真っ直ぐな視野角よりも容易に見えるハロー120を生成する。特に、
図14Aに示すように、観察者200は、ハロー120を形成する光線130をかなり低い向きで見ることができる。
【0070】
対照的に、
図14Bに示すように、より急な角度23を有する遠位端24を有するシリンジ12の場合、ハロー120は、より高い(例えば、下向きに視認できる)向きで観察者200には視認できる。シリンジ12が傾斜した前方位置で見られることが予想される場合、より高い視点が適切であり得る。いくつかの例では、バレル18の遠位端24もドーム形状を有することができる。しかしながら、ほとんどの状況において、ハロー120は、ドーム形状の遠位端24ではなく、先細りの遠位端24を通して見ることがより容易であり得る。
【0071】
別の例では、
図14Cに示すように、シリンジ12の遠位端は、バレル18からノズル22または先端まで延びる湾曲した角度のある部分を含む遠位部分24を含む。このような湾曲した角度のある部分を有する遠位部分24は、より広い範囲の視野角から見ることができるハロー120を生成する。特に、
図14Cに示すように、真っ直ぐな方向またはより下方に向けられた方向のいずれかで、観察者200が光ビーム130を見ることができる。したがって、
図14Cに示されるような遠位部分24を有するシリンジ12では、注入器10がシリンジ12をわずかに傾いた位置または真っ直ぐな位置に保持しているかどうかにかかわらず、ハロー120を視認できる。
【0072】
6.例示的なシリンジによる流体注入システムの作動
再び
図1、
図2、および
図6を参照すると、使用時に、オペレータは、バレル18の近位端20を対応するシリンジポート16に挿入する。オペレータは、シリンジ12のロックフランジ32がシリンジポート16の対応するロック構造(図示せず)と係合して、適切な接続を形成するように、各シリンジ12に対してある程度の力を加える必要があり得る。特定の例では、オペレータは、シリンジバレル18の挿入部30が完全に挿入されるまで、シリンジ12をポート16に押し込み続ける。場合によっては、クリックなどの可聴信号または触覚信号が、シリンジバレルが完全に挿入され、ロックされ、使用準備が整ったことを示す。
【0073】
シリンジ12は、流体Fを予め装填してもよい。あるいは、注入器10は、流体Fを外部流体源からシリンジバレル18内に自動的にまたは手動で引き込むことができる。シリンジ12がポート16に挿入され、流体Fで満たされているとき、電磁放射線源112がオンにされ、光ビームがプランジャまたはプランジャカバー26を通って投射される。あるいは、
図10~
図12に示す例示的なシステムに関連して本明細書で説明するように、電磁放射線または光をプランジャカバー26の遠位面26Aに向けてそこから軸方向に反射させることができる。いくつかの例では、シリンジ12が注入器10に装填されるたびに電磁放射線源112が自動的にオンになるように、シリンジ挿入およびハロー識別を調整することができる。あるいは、システムオペレータは、例えば、ユーザインタフェースを介してコマンドを入力することによって、または起動ボタンを押すことによって、電磁放射線源112を手動でオンにすることができる。電磁放射線源112が起動されると、(
図6および
図9に示す)照射部分またはハロー120の存在または不在は、技術者によってまたはセンサによって自動的に識別および/または検出され得る。具体的には、シリンジ12が流体Fで完全に満たされている場合、ハロー120が現れる。シリンジ12が空気で満たされているか、または流体で部分的にのみ満たされている場合、ハロー120はあまり顕著でないか、全く存在しないかのいずれかである。例えば、空気がシリンジに導入されるとすぐに、ハロー120は、顕著でなくなり始め(すなわち、大きさがより小さくなる、および/または明るくなくなる)、
図2に示すシリンジのようなシリンジがシステム内で利用されるとき、シリンジの遠位端のシリンジ12内に約5mLの空気が存在するときに、完全になくなるまで弱まり続ける。他の例では、シリンジ12の遠位端24に存在する空気の容量のパーセンテージがシリンジ12の円錐形の遠位端24の容量の約15%より大きい場合、ハロー120を視認できない。さらに他の例では、シリンジ12の遠位端24に存在する空気の容量のパーセンテージが、シリンジ12の円錐形の遠位端24の容量の約10%より大きい場合、ハロー120を視認できない。さらに他の例では、シリンジ12の遠位端24に存在する空気の容量のパーセンテージが、シリンジ12の円錐形の遠位端24の容量の約20%より大きい場合、ハロー120を視認できない。いくつかの例では、システムオペレータは、注入器10を作動させる前にハロー120が存在することを視覚的検証などによって手動で確認する。
【0074】
あるいは、本開示の別の態様によれば、照射されたハロー120を、デジタルカメラのような1つまたは複数のセンサ114によって自動的に検出することができる。より具体的には、バレル18の遠位端24の1つまたは複数の画像を、1つまたは複数のセンサ114によって取得することができる。得られた画像を、(本明細書でより詳細に説明するように)画像処理技術を使用するプロセッサによって分析することができる。例えば、本明細書で詳細に説明するように、パターン認識アルゴリズムを使用して、シリンジ12の予想される構造および他の特性、流体充填量、流体特性、ハロー120の形状および/または位置、ならびに他の特性および機構を特定することができる。また、パターン認識を使用して、シリンジ流体容量または特定のシリンジの大きさおよび幾何形状のための好ましい注入パラメータなど、シリンジ12に関する情報を識別することができる。ハロー120の位置および長さを特定するために端部間距離計算アルゴリズムを使用することができる。また、端部間距離計算アルゴリズムを使用して、シリンジ12に収容されている流体Fによって形成されるメニスカスの長さを決定することができる。メニスカスの位置および大きさの認識を使用して、シリンジ12に収容されている流体容量、および存在する場合にはメニスカスとシリンジノズルとの間の自由空間(すなわち、空気容量)を決定することができる。輝度決定アルゴリズムを使用して、ハロー120の強度を決定することができる。前述したように、ハロー120の輝度は、シリンジ12内に存在する空気の量のインジケータとして使用されてもよい。したがって、処理アルゴリズムは、ハローの輝度がシリンジ内の空気の閾値量を超えないことを示す特定の所定の閾値を超えることを保証するように構成され得る。
【0075】
いくつかの例では、注入器10を、ハロー120が識別されているかどうかに基づいて「ロックを解除/ロック」するように構成することができる。例えば、ハロー120が識別されない場合、注入器10は、注入が進行するのを妨げる「ロックされた」状態に入り、および/または試験されたシリンジが新しいシリンジと交換されることを要求することができる。ハロー120が識別された場合、注入器10は、「ロックを解除」し、オペレータが注入器10のユーザインタフェースの他の機能にアクセスして、注入手順を進めることを可能にすることができる。同様に、注入器10を、センサ114がハロー120を識別できなかった場合、またはハロー120が識別されたが十分な輝度でない場合に、予定された注入手順をキャンセルまたは停止するように構成することができる。ハロー120が存在する場合、注入器10を、注入手順を自動的に開始するように構成することができる。注入器10を作動させると、リニアアクチュエータは、ピストンロッド124を遠位方向に前進させて、プランジャまたはプランジャカバー26と接触してこれに係合する。バレル18を通してプランジャまたはプランジャカバー26を遠位方向に前進させることにより、シリンジ12から流体Fが排出され、IVチューブまたは針アクセサリのような任意の既知の注入構造を通して患者に流体Fを注入する。
【0076】
D.流体注入システムに使用するための代替の例示的なシリンジ
1.代替の例示的なシリンジの構造
図15Aおよび
図15Bは、流体注入器10と共に利用され得る代替の例示的なシリンジを示している。より具体的には、これらの図は、本開示の別の態様によるローリングダイヤフラムシリンジ135を示している。ローリングダイヤフラムシリンジの様々な機構は、PCT国際公開第2015/164783号明細書に詳細に記載されており、その開示は参照により組み込まれる。
図15Bは、
図15Aに示すローリングダイヤフラムシリンジ135の線A-Aに沿った断面側面図である。最初に
図15Aを参照すると、ローリングダイヤフラムシリンジ135は、一般に、前方端または遠位端137、後方端または近位端139、およびこれらの間に延びる可撓性の側壁134を含む中空体を含む。ローリングダイヤフラムシリンジ135の側壁134は、流体注入器10のピストン138(
図18Aおよび
図18Bに示す)の作用下で、「ローリングダイヤフラム」としてそれ自身でローリングするように構成された、柔軟で曲げやすい可撓性の自己支持体を画定する。特に、ローリングダイヤフラムシリンジ135の側壁134は、ピストン138が遠位方向に動かされると、その外面が半径方向内向きに折り曲げされ反転されるように回転するように構成され、ピストン138、例えばローリングダイヤフラムシリンジ135の端壁136の近位端に解放可能に取り付けられたピストンが近位方向に引っ込められると、半径方向外向きに反対方向に展開される。
【0077】
ローリングダイヤフラムシリンジ135は、任意の適切な医療グレードのプラスチックまたはポリマー材料で作られてもよい。様々な態様において、透明プラスチック材料は、エチレンオキシドへの曝露または電磁放射線滅菌処置などの滅菌処置に耐えることができる。
【0078】
図15Bおよび引き続き
図15Aを参照すると、ローリングダイヤフラムシリンジ135の遠位端137は、対応する接続部材、例えば本明細書に記載の
図17のキャップに接続するための接続部材140aを有する開放端の排出ネック140を有し、これは流体経路セット(図示せず)に接続されてもよい。排出ネック140は、側壁134の厚さT2よりも大きい第1の側壁厚さT1を有する。厚さT1は、排出ネック140が、例えば注入手順中に、排出ネック140を実質的に変形させることなく、流体経路セット(図示せず)の対応する接続部材に接続することを可能にするのに十分に堅くなり得るように選択される。厚さT2は、ローリングダイヤフラムシリンジ135の側壁134が可撓性を有するように選択され、本明細書に記載の側壁134のロールオーバーおよび展開を可能にする。閉じた端壁136のようなローリングダイヤフラムシリンジ135の近位端139は、側壁134のロールオーバー中、または特定の態様では側壁134の展開中の変形を防止するために補強されてもよい。いくつかの態様では、ローリングダイヤフラムシリンジ135の近位端139は、ピストン138と係合するように構成される。
【0079】
端壁136は、実質的にドーム形状の構造を有する中央部分276と、中央部分276のおおよその中間点のように、中央部分276から近位方向に延びるピストン係合部分244とを有することができる。いくつかの態様では、中央部分276の最も遠位の端部は実質的に平坦であってもよい。ピストン係合部分244は、流体注入器10のピストン138上の係合機構と係合するように構成される。ローリングダイヤフラムシリンジ135の近位端139は、ランプ272の近位面に沿ってピストン係合部分244から半径方向外方に突出する1つまたは複数のリブ278を有することができる。
【0080】
図16Aは、本開示による、ローリングダイヤフラムシリンジ135(
図16Bに示す)および圧力ジャケット210を有するシリンジアセンブリ204の斜視図である。シリンジアセンブリ204は、本明細書で説明するように、注入器10(
図1に示す)と取り外し可能にインタフェースする圧力ジャケット210を含む。圧力ジャケット210は、遠位端216と、近位端218と、圧力ジャケット210の長手方向軸に沿って遠位端216と近位端218との間に延びる側壁219とを有し、内部の貫通ボア221を画定する(
図16Bに示す)。いくつかの態様では、圧力ジャケット210の側壁219は、貫通ボア221内のローリングダイヤフラムシリンジ135(
図16Bに示す)の少なくとも一部を受け入れるように成形されている。圧力ジャケット210の側壁219は、ローリングダイヤフラムシリンジ135の少なくとも一部を受け入れるための第1の遠位部分360aと、注入器10と接触する第2の近位部分360bとを有する。第1の遠位部分360aは、圧力ジャケット210の内部を包囲するキャップ390を解放可能に受け入れるように構成された開放端を有してもよい。第2の近位部分360bは、流体注入器10のピストン138が開放端を通って延び、貫通ボア221内に保持されたローリングダイヤフラムシリンジ135に係合することを可能にする開放端を有してもよい。ローリングダイヤフラムシリンジ135は、第1の遠位部分360aまたは第2の近位部分360bの開放端を通して挿入されてもよい。
【0081】
いくつかの態様では、第2の近位部分360bは、第2の近位部分360bの外面から半径方向外側に突出するロックラグまたはリップ370を有する。ロックラグまたはリップ370は、第2の近位部分360bの外周に連続的または不連続的に延びることができる。ロックラグまたはリップ370は、流体注入器10上の対応する機構と相互作用して、圧力ジャケット210を流体注入器10に解放可能にロックするように構成される。いくつかの態様では、ロックラグまたはリップ370は、圧力ジャケット210を、参照により本明細書に組み込まれる米国特許第5,383,858号明細書、米国特許第5,873,861号明細書、米国特許第6,652,489号明細書、米国特許第9,173,995号明細書、米国特許第9,199,033号明細書に記載された流体注入器10の対応するロック機構に解放可能に固定するための接続部材を有することができる。圧力ジャケット210と流体注入器10との間の他の接続部材は、参照により本明細書に組み込まれる2015年10月28日に出願された国際出願PCT/US2015/057751号明細書、または2015年10月28日に出願された国際出願PCT/US2015/057747号明細書に記載されている。
【0082】
図16Bおよび引き続き
図16Aを参照すると、圧力ジャケット210は、遠位端216に解放可能に固定されたキャップ390を有することができる。いくつかの態様では、キャップ390は、圧力ジャケット210の遠位端216とのねじ係合、バヨネット嵌合、または別の機械的締結構成によって固定されてもよい。例えば、
図16Bおよび
図16Cに示すように、キャップ390は、圧力ジャケット210上の少なくとも1つの溝440の内側に受容される少なくとも1つの突起430を有してもよく、キャップ390は、溝440内に嵌合するように少なくとも1つの突起430を整列させることによって圧力ジャケット210とロックされてもよい。キャップ390は、ノズル410を有する内側要素400を有することができる。ノズル410は、ローリングダイヤフラムシリンジ135の内部容積と流体連通して(または、ローリングダイヤフラムシリンジ135に直接形成され)、ローリングダイヤフラムシリンジ135内に、またはそこから流体を送達することができる。ノズル410は、流体経路セット17(
図1に示す)のコネクタに取り外し可能に接続するための接続部材420を有することができる。
【0083】
環状側壁460は、キャップ390が圧力ジャケット210に接続されているときおよび/または圧力ジャケット210から取り外されているときにキャップ390の把持を容易にする1つまたは複数の把持要素470(
図16Cに示す)を有することができる。キャップ390は、環状側壁460の近位部分から半径方向外側に延びる半径方向フランジ480を有することができる。
【0084】
図16Cを参照すると、ローリングダイヤフラムシリンジ135の少なくとも一部は、キャップ390に取り外し可能に固定されてもよい。いくつかの態様では、キャップ390は、ローリングダイヤフラムシリンジ135の接続部材140a(
図15Aに示す)に対応し、これに接続する接続部材を有することができる。
図16Cにさらに示されるように、ローリングダイヤフラムシリンジ135は、最初は、ローリングダイヤフラムシリンジ135がそれ自身の上にロールオーバーされる圧縮された構成であってもよい。ローリングダイヤフラムシリンジ135を最初に圧縮された構成で設けることにより、シリンジセットアップ当たりのパッケージ材料を少なくし、および/またはより多くのシリンジセットアップをパッケージすることを可能にすることによって、パッケージおよび出荷中に経済的利益を提供し得る。
【0085】
2.代替の例示的なシリンジによる照射された識別パターンの生成
ローリングダイヤフラムシリンジ135の構造を一般的に説明したが、ローリングダイヤフラムシリンジ135の充填状態を決定するために、ローリングダイヤフラムシリンジ135で照射された識別パターンを生成するシステムについて詳細に説明する。一例では、
図17Aおよび
図17Bを参照すると、流体注入器10のピストン138は、その遠位端に取り付けられまたは埋め込まれたLEDなどの1つまたは複数の電磁放射線源212を有することができる。作動されると、ピストン138は、ローリングダイヤフラムシリンジ135のピストン係合部分244に向かって前進して係合する。LEDは、ピストン係合部分244を通って軸方向に光を放出し、ローリングダイヤフラムシリンジ135の遠位端137に照射された識別パターンを生成する。
【0086】
LEDの電磁放射線の波長は、エネルギーの最良の伝達を可能にするために、ローリングダイヤフラムシリンジを形成するために使用される材料と一致するように選択される。例えば、自動車の窓は、運転中に日焼けを防ぐためにUV光が通過しないような材料で作られている。同じ原理が本出願においても当てはまる。LEDの波長は、ピストン係合部分244の材料および/またはシリンジの壁厚を通る最大の透過率を保証するために、シリンジを製造するために使用される材料と一致するように選択され得る。代替的には、材料に一致する波長を選択する代わりに、本明細書に記載のハロー効果と組み合わせた場合に、人間の目にとって最もよく視認できるLEDの波長が選択され得る。例えば、緑色光は可視スペクトル(約532nm)の中間に位置し、そのような波長を有する光を技術者が容易に視認できる。また、シリンジ内に収容されている流体の溶質濃度、存在する化合物、およびそれらの化学的特性に応じて、LEDの波長は、流体によって選択的に吸収もしくは透過されるか、または所望の反射/分散特性を有するように選択され得る。したがって、LEDの波長は、LEDによって生成された光が流体によって分散されてより多くの光を生成するか、または光が、流体によって吸収/透過され、本明細書に記載のハロー120が形成される方法と同様に通過することができるように選択され得る。
【0087】
他の例では、電磁放射線源は、限定されないが、ローリングダイヤフラムシリンジ135のピストン係合部分244、
図10および
図11に示す構成と同様の流体注入器10の外部の圧力ジャケット210、圧力ジャケット210に関連する熱維持装置、または任意の他の適切な位置などの様々な他の位置に配置されてもよい。一例では、
図18Aおよび
図18Bを参照すると、電磁放射線源212は、シリンジ135を流体注入器内に固定するために使用されるシリンジ135の遠位端に配置されたクランプ213などの流体注入器の別の部分内に配置されてもよい。例えば、
図18Aを参照すると、電磁放射線源212は、圧力ジャケット210の側面を通ってシリンジ135に光を向けるために、クランプ213の側面の周囲に配置されてもよい。あるいは、
図18Bを参照すると、電磁放射線源212は、シリンジ135を通して光を下方に向けるために、クランプ213の上面に配置されてもよい。
【0088】
一例では、ピストン係合部分244の端部は、ピストン138がピストン係合部分244に係合したときに、ピストン138のLEDを露出させるように構成されてもよい。より詳細には、ピストン係合部分244は、ピストン138がピストン係合部分244に係合したときに、カバー(図示せず)を解放してLEDを露出させるように構成されてもよい。
【0089】
ローリングダイヤフラムシリンジ135のピストン係合部分244は、LEDからの光を集めて、ローリングダイヤフラムシリンジ135の内部容積214を通してその遠位端に光を向けるような形状にされてもよい。例えば、ピストン係合部分244は、電磁放射線源212によって生成された光を集束させ、ピストン係合部分244の上に光を向けるように凸レンズ形状の部分を有することができる。さらに、電磁放射線源の光源がコリメートされている場合、ピストン係合部分244の特定の部分の形状は、平坦または任意の他の適切な幾何学的形状であってもよい。
【0090】
ピストン係合部分244はまた、その集光能力および伝達能力を高めるためにテクスチャ加工された表面を有してもよい。さらに、端壁136の中央部分276はまた、ローリングダイヤフラムシリンジ135が流体で満たされているときには、ローリングダイヤフラムシリンジ135の遠位端137への光の伝達を向上させるためのテクスチャ加工された表面を含むことができ、ローリングダイヤフラムシリンジ135が空気で満たされているとき、または空気で部分的に満たされているときには光を拡散させることができる。代替的に、端壁136の中央部分276は、ローリングダイヤフラムシリンジ135の遠位端137への光の伝達を高めるためのレンズとして構成されてもよい。
【0091】
別の例では、
図19Aおよび
図19Bに示すように、圧力ジャケット210は、その近位端218に配置された本明細書に記載の電磁放射線源212を含むことができる。そのような場合、電磁放射線源212によって生成された光は、圧力ジャケット210を通って上向きにされ、シリンジは流体で満たされているとき、圧力ジャケット210内の内部反射は、ローリングダイヤフラムシリンジ135の円錐形の遠位端137に照射された識別パターンを生成する。別の態様では、圧力ジャケット210は、技術者による観察を可能にしながら電磁放射線の内部反射を適切に分布させる「一方向ミラー」を生成する物質でコーティングされてもよい。これに加えて、または代えて、電磁放射線源および圧力ジャケット210は、電磁放射線が圧力ジャケット210から出ないように偏向されてもよい。
【0092】
電磁放射線は、収集され、ローリングダイヤフラムシリンジ135の遠位端137に向けられ、流体で満たされているときに照射された識別パターンを生成する。ローリングダイヤフラムシリンジ135の遠位端137の内側は、同様の方法でハロー120を生成するために、本明細書で説明したシリンジ12の遠位端24と同様に傾斜していてもよい。これに代えて、または加えて、
図20に示すように、突出部品224をローリングダイヤフラムシリンジ135の遠位端137に組み込むか、または配置して、光を分配してハロー120を生成することができる。突出部品224は、様々な目的のために様々な構成を有することができる。例えば、突出部品224は、ハロー120の視覚化を向上させるために、または流体が存在するという別の表示を示すために、光を様々な方向に反射する反射面であってもよい。突出部品224は、流体の存在、流体の種類、またはシリンジ135の他の特性の表示を可能にするような方法で光を分散/吸収するためのプリズム、ミラー、テクスチャ加工された表面、またはその他の形状/材料の代替品であってもよい。
【0093】
キャップ390は、本明細書に記載のローリングダイヤフラムシリンジ135とともに使用され得るので、キャップ材料を通してハローが観察され得るように、キャップ390は半透明または透明の材料から製造され得る。電磁放射線は、ローリングダイヤフラムシリンジ135の遠位端137に伝達されると、そのような透明または半透明のキャップ390を照射する。キャップ390の照射の強度は、本明細書に記載のシリンジ内に収容されている流体に依存して変化する。例えば、流体がシリンジ内に提供されている場合、キャップ390は、空気がシリンジ内に存在する場合よりもはるかに明るく照射される。
【0094】
II.照射された識別パターンの画像認識と流体注入システムの様々な他の態様
放射線源、シリンジ、電磁放射線または光ビームがシリンジを通って照射された識別パターンを形成する様子の様々な例を説明したので、ここでは、照射された識別パターンを識別し、照射された識別パターンの識別に基づいて注入器10(
図1に示す)の動作を監視または制御するためのセンサ114、および流体注入器10の様々な他の態様を詳細に説明する。本明細書で説明するシステムおよび方法は、シリンジ12を含む流体注入器10を参照して説明されるが、本明細書で説明するすべての概念をローリングダイヤフラムシリンジ135とともに利用することもできる。
【0095】
図1、
図6、および
図9~
図12を参照すると、流体検証システム110は、画像認識システムとして構成され、この画像認識システムは、シリンジ12の少なくとも遠位端24に向けられた視界を有するように配置された画像キャプチャ装置などの少なくとも1つのセンサ114と、センサ114に動作可能に接続され、適切な画像処理ソフトウェアを使用してセンサ114から得られた画像を処理するように構成されたコントローラを含む中央処理ユニット116と、中央処理ユニット116に動作可能に接続され、中央処理ユニットによって実行される画像処理の結果を表示するディスプレイ118と、を含む。一例では、画像処理ソフトウェアは、マサチューセッツ州NatickのCognex CorporationのInsight Explorerソフトウェアであってもよく、センサ114は、Cognex CorporationのDataMan 100カメラであってもよい。さらに、少なくとも1つのセンサ114および中央処理ユニット116は、単一の構成要素に統合されてもよく、または個別の構成要素として提供されてもよい。さらに、少なくとも1つのセンサ114、流体注入器10、ディスプレイ118、および/または中央処理ユニット116は、有線通信であってもよく、または、例えばBluetooth(登録商標)、WiFi、または他の従来の無線通信技術を介した無線通信であってもよい。
【0096】
別の例では、センサ114は、当技術分野で知られている電磁放射線検出器または他の適切なセンサのような代替種類の光学センサであってもよい。いくつかの例では、少なくとも1つのセンサ114は、電磁放射線源112がオンにされたときにバレル18の少なくとも遠位端24のデジタル画像を取得するように構成され得るデジタルカメラである。他の例では、少なくとも1つのセンサ114は、赤外線検出器、紫外線検出器、超音波撮像装置、または電磁放射線源112から放出される電磁放射線を識別するための他の適切なセンサであってもよい。
【0097】
当業者には理解されるように、少なくとも1つのセンサ114または検出器を、特に、電磁放射線または電磁放射線源112に関連する光の波長、およびそれと共に生成された照射された識別パターンを識別するために適合させることができる。例えば、少なくとも1つのセンサ114は、予想される波長(例えば、電磁放射線源112によって放出される波長内の電磁放射線)内の放射線のみを識別するための様々なフィルタまたは同調もしくは減衰された光学素子を含むことができる。さらに、材料特性(例えば、色、分子配列、色素添加剤、偏光面)を変更して、所与の波長の光をフィルタリングして、ユーザによる最適化された視覚化を達成することによって、シリンジ12自体をフィルタとして使用することができる。あるいは、当技術分野で知られている画像処理技術を使用して、予想される波長外で得られた画像の部分を除去し、照射された識別パターンに対する環境光の影響を低減し、感度を高めることができる。
【0098】
本明細書に記載の流体検証システム110の機構を使用して、流体注入手順の様々な態様を流体の送達前および送達中に監視して、容易に明らかな方法で注入手順の詳細情報を技術者に迅速に提供することができる。これらの注入の詳細については、本明細書で説明する。
【0099】
A.空気検出
1.照射された識別パターンの画像の使用
すべての現行の注入器システムは、注入手順の開始前に空気がシリンジ内に存在するかどうかを判定する技術者の個人検査に依拠している。流体検証システム110は、中央処理ユニット116によって実行される少なくとも1つのセンサ114および画像認識ソフトウェアを使用して空気の検出を提供するように構成され、技術者がシリンジの状態に関する結論をさらに裏付けることを可能にする。さらに、技術者は、照射された識別パターンが存在するかどうかを判定するためにシリンジを見ることによって空気が存在するかどうかを手作業で判定し、空気検出に対する代替のまたは2方向からのアプローチを提供することができる。
【0100】
一例では、流体検証システム110は、シリンジ12の遠位端の画像を撮像することによって空気が存在するかどうかを判定し、センサ114を有する電磁放射線源212によって、中央処理ユニット116の画像認識ソフトウェアを使用して、ハロー120がシリンジ12内に生成されたかどうかを判定し、ハロー120または照射された識別パターンの1つまたは複数の特性を測定するために画像を再検討および分析して、注入前にシリンジが適切に流体で満たされているかどうかを判定する。より具体的には、一態様によれば、
図21を参照すると、ステップ300において、少なくとも1つのセンサ114が、ハロー120または他の照射された識別パターンを含むシリンジ12の少なくとも一部の画像をキャプチャするように配置される。その後、
図22および
図23を参照すると、ステップ302において、シリンジ12に収容されている流体のメニスカスの下端部301および/またはハロー120の下端部303が、システム110によって測定または決定される。これらの端部301,303は、中央処理ユニット116上に設けられたソフトウェアによって画像内で識別される。より具体的には、中央処理ユニット116によって実行される画像処理ソフトウェアは、様々な異なる方法によって端部を検出することができる。1つの方法は、端部の画像における隣接画素間のコントラストの変化を決定することである。あるいは、いくつかの隣接する画素にわたるコントラストの変化が、端部の存在を示すかもしれない。この変化は、コントラストの変化が閾値に達する領域を見つけるために、サーチウインドウ内の各画素にわたって索引付けされる。例えば、画像認識ソフトウェアが、明るい色の画素が暗い画素に隣接するスポットを見つけた場合には、この変化はフラグ付けされる。この閾値が、所定の方向に特に向けられた行のいくつかの画素と交差することが分かった場合、画像処理ソフトウェアは、これが「端部」であると判定する。この特定の用途では、メニスカスのレンズ効果によって引き起こされる光の分散は、メニスカス位置で流体の暗い領域を引き起こす。具体的には、
図23に最も明瞭に示されているように、メニスカスの上部および下部に見られる端部が存在する。
【0101】
図22は、空気が存在しないシリンジ12の画像であり、
図23は、空気がシリンジ12内に存在する場合にセンサ114によって得られた画像である。これらの画像から分かるように、
図22に示すように、空気が存在しない場合、ハロー120はより大きい。これにより、本明細書でより詳細に説明する画像処理技術を用いて空気を判定することが可能になる。
【0102】
ステップ304では、メニスカスの下端部301からハロー120の下端部303までの距離305が、中央処理ユニット116上に設けられた画像処理ソフトウェアを使用して決定される。メニスカスの下端部301が決定されると、空間におけるこの端部の位置を見つけることができる。具体的には、ハロー120の下端部303を決定することができ、ハロー120のこの下端部303は、シリンジ12およびセンサ114が動かない限り、常に固定されたままである。したがって、画像処理ソフトウェアは、メニスカスの下端部301からハロー120の下端部303までの距離を決定することができる。
【0103】
ステップ306では、ステップ304で決定された距離305が所定の距離と比較される。所定の距離は、
図24に示す曲線のような曲線を作成することによって分かった。この曲線は、満たされたシリンジ12を採用し、流体の既知の増分を等量の空気で置き換えることによって作成された。次いで、流体の各増分が置き換えられた後に画像が撮像され、メニスカスの下端部からハロー120の下端部までの距離が、中央処理ユニット116上の画像認識ソフトウェアを使用して測定された。曲線がプロットされ、方程式が適合される。この方程式は、
図24の曲線のデータが2つの端部間の距離に基づいて存在する空気の容量を計算するように実現される論理アルゴリズムに提供される。
【0104】
測定された距離305が所定の距離よりも大きい場合には、空気が実質的に存在しないと判定することができ、ステップ308において、注入器を作動させて注入を進めることができる。一方、測定された距離305が所定の距離よりも小さい場合には、ステップ310において空気がシリンジ12内に存在するという表示が提供され、ステップ312において流体注入器10が注入手順を実行することができなくなる。あるいは、空気が存在する場合、流体注入器10は、パージプロセスを実行して、シリンジから空気をパージし、次に
図21の測定手順を繰り返すことができる。このパージプロセスは、測定プロセスがシリンジ内に空気が実質的に存在しないことを示すまで繰り返され、注入手順を進めることができる。
【0105】
2.シリンジのバレルに設けられた詳細の使用
画像処理技術を使用してシリンジ内の空気を検出する別の手法は、シリンジのバレルに設けられた特定の機構の画像を得ることである。具体的には、
図25および
図26を参照すると、シリンジ12は、シリンジ12の表面に少なくとも1つの流体ドット339を含むことができ、これは、シリンジ12内に収容されている流体を介してセンサによって視認可能である。流体ドットの使用は、Trombley,IIIの米国特許第5,254,101号明細書に記載されており、その開示は、その全体が参照により本明細書に組み込まれる。異なる流体の異なる特性により、このドット339は、シリンジ内に収容されている流体に基づいて異なる外観を有する。したがって、空気がシリンジ12内に収容されている場合、流体ドット339は、画像で見ると、楕円形のような特定の構成を有し、これを次のように検出することができる。まず、ステップ340において、少なくとも1つのセンサ114は、シリンジ12内に収容されている流体を通して流体ドット339を含むシリンジ12の少なくとも一部の画像をキャプチャするように配置される。その後、
図27を参照すると、ステップ342において、流体ドット339は、画素コントラスト閾値を使用して画像内で識別される。具体的には、流体ドット339は、本明細書に記載されるようにメニスカスの下端部が決定される方法と同様の方法でその端部を検出することによって識別される。
【0106】
次に、ステップ344において、シリンジ内に様々な流体が供給されているときの流体ドット339の形状が既知であるので、空気または流体がシリンジ12内に存在するかどうかを判定するためにパターンマッチング技術を利用することができる。したがって、流体がシリンジ内に存在するときの流体ドット339のテンプレートを、ステップ340で得られた画像と一致させることができる。ステップ346において、テンプレートがステップ340で得られた画像と一致する場合、空気が存在しないと判定することができ、ステップ348で、注入器を作動させて注入を進めることができる。一方、テンプレートが一致しない場合、ステップ350で空気がシリンジ12内に存在する可能性があるとの表示が提供され、繰り返される分析ステップが、例えばパージングによって空気が除去されたことを示すまで、流体注入器10はステップ352で注入手順を実行することができなくなる。
【0107】
流体ドット339が利用されていると本明細書に記載されているが、シリンジ内に空気が存在するかどうかを判定するために様々な他の形状を利用し撮像することができる。これは、円筒形のシリンジバレルが事実上レンズそのものであるという事実による。バレル壁の湾曲を利用して、シリンジ12内に空気または流体がある場合、少なくとも1つのセンサ114とは異なるように見える画像をキャプチャすることができる。この現象を、シリンジの内部の総空気の存在を検出するために利用することができる。さらに、画像の相対的な大きさは、シリンジ内の流体の種類の決定を可能にすることができる(例えば、流体間の屈折率の差に起因して、大きな画像は造影剤を通して見られるが、小さな画像は生理食塩水を通して見られる)。より具体的には、シリンジバレル18は、流体で満たされているとき円筒形レンズとして機能するので、流体ドット339は水平軸上に広がる。したがって、楕円形の流体ドット339は、垂直方向の高さに影響を与えることなく、水平に広がる。これは、空のシリンジ上の楕円形の流体ドット339が、充填されたシリンジ上でセンサ114に対して円形またはより円形になる方法である。センサは、流体ドット339の水平幅の変化を測定して、シリンジ内に収容されている流体の様々な機構を決定することができる。この原理のために、例えば流体ドット339の非垂直方向の機構の違いを測定することによって、流体ドット339の上述の効果を達成するために様々な異なる形状を使用することができる。
【0108】
3.輝度測定の使用
他の態様によれば、空気の検出は、それを通過する放射線源からの電磁放射線を有するシリンジの一部を撮像して、シリンジの遠位端24の一部などの関心領域、例えば本明細書に記載のハロー領域の平均画素輝度値を決定することによっても可能である。このような構成は
図28に示されており、例えば、特定の波長を有する、通過するレーザ光ビーム354の形態の電磁放射線を有する造影剤で充填されたシリンジ12を示している。
図28に見られるように、シリンジが造影剤で満たされているとき、造影剤を通過する際に明瞭なレーザビーム354の経路を見ることができる。いずれの理論にも限定されないが、溶液中に溶解した造影剤は、レーザビーム354中の電磁放射線を散乱させ、観察可能なレーザビーム経路を提供すると考えられる。シリンジ12が空気で満たされている場合、そのようなレーザビームは存在しない(
図27参照)。したがって、
図28に示すように、流体で満たされているときに、シリンジ12の遠位端24の部分の画像における平均画素輝度(例えば、0~255の強度単位)は、シリンジが空気で充填されるときよりもはるかに高く、これは、散乱されたレーザ光によるレーザビーム354の存在によって証明される。したがって、レーザ電磁放射線をシリンジバレルの一部を通して照らし、電磁放射線が通過するシリンジの画像を取得すること;シリンジの遠位端24付近のような関心領域を決定すること;関心領域内の各8ビット画素を0~255の強度単位の輝度値に割り当て、次にこれらの輝度値を平均化することによって、関心領域の平均画素輝度値を決定すること;および、平均輝度値を既知の輝度値と比較して流体または空気がシリンジ12内に存在するかどうかを判定すること、によって輝度を使用して空気または造影剤の存在を決定することができる。空気の非散乱と比較して、造影剤によるレーザ光の散乱は、レーザ光をシリンジバレル内の流体の任意の部分を通して照らすことによって観察することができる。本明細書に記載の態様では、レーザ光は、シリンジバレルに対する少なくとも1つのセンサの特定の位置のために、シリンジの遠位端を通して示されてもよい。当業者であれば、少なくとも1つのセンサの他の位置を使用して、レーザ光の経路の位置に依存してレーザ光の強度を決定することができることを理解されよう。
【0109】
B.流体の区別
シリンジ内の流体から空気を区別するための上述した画像処理技術のすべてを、シリンジ内に収容されている流体の種類を識別するために利用することもできる。例えば、異なる流体が光と相互作用する方法による上述の画像処理技術を使用して、造影剤を生理食塩水から正確に区別することができ、異なる種類の造影剤を互いに正確に区別することができる。特に、
図29および
図30を参照すると、レーザ光の散乱は、シリンジ内の流体によって異なる場合がある。例えば、レーザビーム経路354は、シリンジ内の造影剤を通過するレーザビーム経路354の強度と比較して、生理食塩水を通過する強度が弱いことを表示する。
【0110】
1.照射された識別パターンの利用
さらに
図29および
図30を参照すると、本明細書の様々な態様による流体検証システム110は、電磁放射線源112によってシリンジ12内に生成されたハロー120の画像をセンサ114で撮像して、中央処理ユニット116の画像認識ソフトウェアを使用することによって、シリンジが生理食塩水または造影剤を含むかどうかを判定することができる。生理食塩水と造影剤の区別のための他の方法については本明細書で詳細に説明するが、同じ技術を用いて異なる種類または濃度の造影剤を区別することもできる。まず、少なくとも1つのセンサ114は、ハロー120を含むシリンジ12の少なくとも一部の画像をキャプチャするように配置される。その後、シリンジ12内の空気/流体インタフェースにおけるメニスカスの下端部301とハロー120の下端部303との間の距離が、システム110によって測定される。これらの端部301,303は、本明細書で説明するように、画素コントラスト閾値から中央処理ユニット116上に設けられたソフトウェアによって画像内で識別される。
図29は、生理食塩水を収容するシリンジ12のセンサ114によって得られた画像であり、
図30は、造影剤がシリンジ12内に存在する場合にセンサ114によって得られた画像である。これらの画像から分かるように、造影剤がシリンジ内に存在する場合(
図30)の端部301と端部303との間の距離と比較して、生理食塩水がシリンジ内に存在する場合(
図29)の端部301と端部303の間の距離はより大きい。造影剤の区別に関して、ハロー120はまた、シリンジ内に存在する造影剤の種類に依存して異なる大きさになる。これにより、本明細書でより詳細に説明する画像処理技術を使用してシリンジ内に収容されている流体の種類、すなわち生理食塩水や様々な造影剤の区別を可能にする。
【0111】
空気/流体インタフェースとハロー120の下端部303との間のメニスカスの下端部301からの距離は、本明細書で説明するように中央処理ユニット116に設けられた画像処理ソフトウェアを使用して決定される。次に、この距離を、中央処理ユニット116のメモリ内に含まれる様々な流体に対応する様々な所定の距離と比較することができる。距離が生理食塩水についての第1の所定の距離に対応する場合、シリンジ12に生理食塩水が収容されていることを示す表示356がディスプレイ118に自動的に表示され、距離が特定の造影剤についての第2の所定の距離に対応する場合、シリンジ12に特定の造影剤が収容されていることを示す表示358がディスプレイ118に自動的に表示される。
【0112】
あるいは、ハロー120の大きさに基づくパターンマッチング技術を利用して、シリンジが空気、生理食塩水、または様々な造影剤を含むかどうかを判定することができる。例えば、本明細書で詳細に説明するように、中央処理ユニット116に設けられた画像処理ソフトウェアは、ノズル22のスレッドの底部からハロー120の下端部までのハロー120の高さを決定し、高さに基づいて存在および流体の種類を決定することができる。さらに、画像処理ソフトウェアは、そこに含まれる特定の造影剤を有することが知られているシリンジのトレーニング画像を撮像することによるパターン認識を利用して、特定の造影剤または他の流体に対してプログラムされることもできる。このトレーニング画像は、高さを含むハロー120のすべての寸法を記録する。次に、画像処理ソフトウェアは、キャプチャした後の画像のすべての機構を比較用のトレーニング画像と比較する。画像が類似性の閾値を超える場合、システムは、シリンジ12がトレーニングされた造影剤以外の造影剤または生理食塩水を収容していることを示す表示を提供する。
【0113】
2.シリンジのバレルに設けられた詳細の使用
画像処理技術を使用してシリンジ内に収容されている流体の種類を決定する別の手法は、シリンジに設けられた特定の機構の画像を得ることである。具体的には、
図27、
図31、および
図32を参照すると、シリンジ12は、本明細書に記載のシリンジ内に収容されている空気または流体を通してセンサによって視認される少なくとも1つの流体ドット339を含むことができる。空気および異なる流体の異なる特性のために、このドット339は、空気を含むシリンジ12を通して見られる
図27の流体ドット339と、生理食塩水を含むシリンジ12を通して見られる
図31の流体ドット339と、造影剤を含むシリンジ12を通して見られる
図32の流体ドット339とを比較することによって分かるように、シリンジ内に収容されている空気または流体に基づいて、特に水平軸に沿って異なる外観を有する。したがって、空気がシリンジ12内に収容されている場合、流体ドット339は、センサで見ると水平方向の距離がより短くなり、生理食塩水がシリンジ12内に収容されている場合、流体ドット339は、画像で見ると特定の構成を有し、造影剤がシリンジ12内に収容されている場合、流体ドット339は、画像で見ると、特定の構成を有する(すなわち、水平方向の距離がより長い)。したがって、シリンジ内に収容されている流体の種類を、次のように検出することができる。
【0114】
まず、センサ114は、シリンジ12内に収容されている流体を通したシリンジバレル上の流体ドット339または他のインジケータ機構を含むシリンジ12の少なくとも一部の画像をキャプチャするように配置される。その後、流体ドット339は、本明細書に記載された画素コントラスト閾値を使用して画像内で識別される。次に、ステップ344において、シリンジ内に様々な流体が供給されているときの流体ドット339の形状が既知であるので、空気、生理食塩水、または造影剤がシリンジ12内に存在するかどうかを判定するためにパターンマッチング技術を利用することができる。例えば、生理食塩水がシリンジ内に存在するときの流体ドット339のテンプレートを、画像に一致させることができる。テンプレートが画像と一致する場合、生理食塩水が存在すると判定することができ、シリンジ12内に生理食塩水が存在することを示す表示356がディスプレイ118に提供される。一方、テンプレートが一致しない場合、造影剤がシリンジ内に存在するときの流体ドット339のテンプレートを画像に一致させることができる。テンプレートが画像と一致する場合には、造影剤が存在すると判定することができ、造影剤がシリンジ12内に存在することを示す表示358がディスプレイ118に提供される。さらに、生理食塩水または様々な造影剤のテンプレートが一致しない場合、シリンジ内に空気が存在するときの流体ドット339のテンプレートを画像に一致させることができる。空気がシリンジ内にあると判定された場合、注入手順は自動的に停止され得る。
【0115】
楕円形の流体ドット339以外の様々な他の形状を利用して撮像して、本明細書でより詳細に説明するようにシリンジ内に収容されている流体の種類を決定することができる。
【0116】
3.輝度測定の使用
特定の態様によれば、流体の区別は、それを通過する放射線源からの電磁放射線を有するシリンジの一部を撮像して、シリンジの遠位端24の一部など、関心領域の平均画素輝度値を決定することによっても可能であり得る。
図27、
図29、および
図30に戻ると、シリンジが造影剤で満たされているとき(
図30参照)、別個のレーザビーム経路354が見える。シリンジ12が生理食塩水を含む場合(
図29参照)、レーザビーム経路354ははるかに明確ではなく、空気で満たされたシリンジを通過するときには、本質的に識別できない。特定の実施形態によれば、可視光スペクトルの緑色領域内に波長を有する光を放出するレーザを使用することができる。したがって、造影剤で満たされているときのシリンジ12の遠位端24の部分の画像における平均画素輝度(例えば、0~255の強度単位)は、シリンジが生理食塩水または空気で満たされているときよりもはるかに高い。したがって、電磁放射線が通過するシリンジの画像を取得すること;シリンジの遠位端24付近のような関心領域(ただし、シリンジの他の領域を使用してもよい)を決定すること;関心領域内の各8ビット画素を0~255の強度単位の輝度値に割り当て、次にこれらの輝度値を平均化することによって、関心領域の平均画素輝度値を決定すること;および、平均輝度値を既知の輝度値と比較して造影剤、生理食塩水、または空気がシリンジ12内に存在するかどうかを判定すること、によってシリンジ内に収容されている流体の種類を決定することができる。この方法論はまた、異なる種類の(例えば、ブランドまたは溶質濃度が異なる)造影剤を区別するために使用されてもよい。
【0117】
C.流体源の状態
他の態様によれば、流体注入器10の様々な部分の画像を得るために少なくとも1つのセンサ114を使用することによって、流体源の状態に関する様々な情報を得ることができる。例えば、生理食塩水バッグまたは造影剤ボトルなどの流体容器の画像およびその内容物を得ることができ、画像処理技術を使用してボトル内の流体の量を決定することができる。この情報を中央処理ユニットに提供することができ、ボトルは、ボトル内に存在するかまたはボトル内に残っている流体の量を示すディスプレイ118に表示されてもよい。さらに、光学的文字認識を用いてボトル内に収容されている流体の種類を決定し、この情報をディスプレイ118に表示することもできる。さらに、特定の態様では、ボトル内に残っている流体は、注入手順の前、途中、および後に常に監視されてもよく、更新された残量がディスプレイ118上にリアルタイムで表示されてもよい。さらに他の態様では、中央処理ユニット116は、残量を監視し、1つまたは複数の造影剤または生理食塩水の容量が注入手順を完了するのに十分でない場合に警告を提供することができる。この機構は、一連の患者のための患者スケジュールと組み合わされて、必要な量の造影剤および/または生理食塩水のリアルタイムフィードバックを提供することができるので、技術者は、スケジュールされたすべての注入手順を完了するのに十分な供給を手元で確実にすることができ、例えば、造影剤加温器が使用される場合、現在使用されているボトルの内容物がほとんど使い果たされたときに、その後の1つまたは複数の造影剤容器が所望の注入温度にあることを保証することができる。
【0118】
より具体的には、本明細書に記載のパターン認識技術を用いてハロー120の大きさを認識するために利用されるのと同じ方法論を、流体源の状態を決定するために利用することができる。例えば、画像処理ソフトウェアは、画像内の幾何学的構成要素を探して、既知のオブジェクトを有するトレーニング画像と比較する。一例では、画像処理ソフトウェアが、アルファベットの文字がどのように見えるかを知るようにトレーニングされ、認識のための大きさおよび角度閾値が低減される場合、画像処理ソフトウェアは効果的に、ボトルのラベルを読み取り、製造業者、造影剤の種類、有効期限などを決定することができる。さらに、ボトル内の流体レベルを、本明細書に記載の端部検出技術を使用して識別することができ、画像処理ソフトウェアを、ユーザによって交換される必要があるまでボトル内の残量を計算するようにプログラムすることができる。この態様は、本明細書に記載のシリンジ内に存在する空気の容量と同様の計算を利用する。具体的には、曲線を生成し、ボトルの大きさおよび形状のそれぞれに適合する方程式、またはアルゴリズムを開発して残量を決定することができる。
【0119】
D.シリンジの種類(大きさ/存在)の決定
特定の態様では、流体検証システム110を利用して、注入器に挿入されるシリンジ12の様々な特性またはパラメータ、例えばシリンジの種類、大きさ、製造業者、製造日またはロット番号、特定の注入手順の適合性、事前使用、残存使用寿命、最大圧力などを、流体注入手順前に決定することができる。この情報を使用して、シリンジおよび製造業者を識別し、シリンジが以前に使用されたかどうかを判定し、所望の流速、圧力、量などを決定することができる。一例では、
図33および
図34を参照すると、シリンジの大きさは次のように決定されてもよい。まず、少なくとも1つのセンサ114は、シリンジ12の遠位端24のようなシリンジ12の少なくとも一部の画像をキャプチャするように配置される。少なくとも1つのセンサ114の位置が分かっているので、シリンジの遠位端24の画像における、ノズル22またはハロー120などの第1の大きさのシリンジ12の特定の機構の位置、およびノズル22またはハロー120などの第2の大きさのシリンジ12の特定の機構の位置も分かっている。この事実を利用して、パターンマッチング技術を利用して、流体注入器10と共に使用されるシリンジ12の大きさを決定することができる。例えば、第1の大きさ(例えば、150mL)のシリンジのテンプレート365を画像に適用することができる。テンプレートが画像と一致する場合、中央処理ユニット116は、シリンジが150mLシリンジであると判定し、シリンジ12の大きさの表示367がディスプレイ118に提供される。一方、テンプレート365が一致しない場合、第2の大きさ(例えば、200mL)のシリンジのテンプレート369を画像に適用することができる。テンプレートが画像と一致する場合、中央処理ユニット116は、シリンジが200mLシリンジであると判定し、シリンジ12の大きさの表示367がディスプレイ118に提供される。格納されたテンプレートのいずれも一致しない場合、ディスプレイ118上に、シリンジが存在しない、または、シリンジの識別を判定できないことを示す表示を提供することができる。別の態様では、少なくとも1つのセンサ114は、例えば、製造業者、製造日またはロット、1つまたは複数のシリンジパラメータ、シリンジが本物であるか、または潜在的に再使用されているかどうかを決定するために中央処理ユニットによって確認することができる特定の識別/セキュリティコードなどのシリンジに関する情報を含むバーコードのような、シリンジ12上の少なくとも1つの識別マーキングを撮像する位置に配置して、デコンボリューションのために識別マーキングの画像を中央処理ユニット116に送信することができる。
【0120】
E.チューブの存在のインジケータ
シリンジ種類の決定と同様に、他の態様では、シリンジ12に接続された流体経路セット17の有無が、画像処理技術を用いて決定されてもよい。中央処理ユニット116によってこの情報を利用することができ、流体経路セット17がシリンジのノズル22に接続されていない状態でオペレータが不注意に注入手順を開始しようとする場合、または流体経路セットがプライミングされていない場合に、注入器が作動しないようにする。一例では、
図35および
図36を参照すると、センサ114は、シリンジ12のノズル22の画像をキャプチャするように配置される。センサ114の位置が分かっているので、ノズル22に接続されている場合に、ノズル22および流体経路セット17などのシリンジ12の特定の機構の、シリンジ12の画像における位置も分かっている。この事実を利用して、パターンマッチング技術を利用して流体経路セット17がシリンジ12に接続されているかどうかを判定することができる。例えば、流体経路セット17が接続されたシリンジ12のテンプレート373を画像に適用することができる。テンプレートが画像と一致する場合、中央処理ユニット116は、流体経路セット17がシリンジ12に接続されていると判定することができ、流体経路セット17が存在することを示す表示375がディスプレイ118に提供される(
図31参照)。一方、テンプレート373が一致しない場合、中央処理ユニット116は、流体経路セット17が存在しないと判定することができ、流体経路セット17が存在しないことを示す表示377がディスプレイ118に提供される。
【0121】
F.スパイクまたは移送セットの存在のインジケータ
図37を参照すると、特定の態様によれば、流体移送装置46が、多くの場合、流体容器44からシリンジ12を充填するために使用される。移送装置46は、典型的には、少なくとも1つの流体経路、および特定の態様では流体容器44のシールを穿孔するため通気道を有するスパイク48と、流体容器44をスパイク48に保持するためのカップ50と、流体がシリンジ12に入ることを可能にする逆止バルブのようなバルブ(図示せず)と、シリンジ12を移送装置46に対して保持するためのシリンジ支持部材またはスリーブ54とを含む。
【0122】
充填手順の間、シリンジ12が流体注入器10に取り付けられた後、プランジャ26を前進させて、シリンジ12から空気を排出する。次いで、シリンジ12は流体で満たされる準備が整う。次いで、移送装置46は、スパイク48が流体容器44のシールを穿孔するように、流体容器44上に挿入されてもよい。次いで、移送装置46のシリンジ支持部材54をシリンジ12のノズル22の上に配置することができる。支持部材54内では、シリンジ12のルアー先端部がバルブに係合してバルブを作動し、流体が容器44からシリンジ12に流れるための通路を開く。流体容器44の内容物をシリンジ12に吸引するために、注入器ピストン(図示せず)がシリンジ12のプランジャ26を後退させる。シリンジ12を充填した後、流体容器44を移送装置46から取り外す。流体によるシリンジの充填を、シリンジの正確な充填を確実にするために、少なくとも1つのセンサ114によって、例えばリアルタイムで監視することができる。
【0123】
充填が完了すると、流体移送装置46が取り外されたかどうかの表示をオペレータに提供することが望ましい場合がある。これを、本明細書に記載の流体検証システム110を使用して自動的に行うことができる。具体的には、
図38および
図39を参照すると、少なくとも1つのセンサ114は、シリンジ12のノズル22の画像をキャプチャするように配置されている。少なくとも1つのセンサ114の位置が分かっているので、ノズル22に接続されている場合に、ノズル22および流体移送装置46などのシリンジ12の特定の機構の、シリンジ12の画像における位置も分かっている。この事実を利用して、パターンマッチング技術を利用して流体移送装置46がシリンジ12に接続されているかどうかを判定することができる。例えば、流体移送装置46が接続されたシリンジ12のテンプレート383を画像に適用することができる。テンプレートが画像と一致する場合、中央処理ユニット116は、流体移送装置46がシリンジ12に接続されていると判定することができ、流体移送装置46が存在することを示す表示385がディスプレイ118に提供される(
図38参照)。この情報を、
図58に示すように、流体注入システム600のタッチスクリーンコントローラ82に表示することもできる。一方、テンプレート383が一致しない場合、中央処理ユニット116は、流体移送装置46が存在しないと判定することができ、流体移送装置46が存在しないことを示す表示387がディスプレイ118に提供される(
図39参照)。
【0124】
G.パージされるチューブのインジケータ
図40を参照すると、本明細書に記載の流体注入器10の特定の態様では、パージ容器550は、注入前のパージ手順中に、造影剤または他の流体を患者に送達する流体経路セット17のコネクタ552の端部に接続されるように構成され得る。注入手順の前に流体経路セット17が空気でプライミングされるかまたはパージされると、パージ容器550は、流体経路セット17の端部から排出された造影剤を収集し、シリンジ12および流体経路セット17がパージされプライミングされるときに患者にその造影剤を送達し、その中に含まれる造影剤の量に基づいてパージが許容可能であるという表示を提供する。特定の態様では、オペレータは、パージ容器550を視覚的に検査して、そこに容認できる量の造影剤が含まれていること、およびパージが容認可能であり、シリンジおよび流体経路が流体でプライミングされていることを判定することができる。ただし、特定の態様では、少なくとも1つのセンサ114でパージ容器550の画像をキャプチャして、本明細書で説明する画像処理技術を使用して画像を処理することによって、このプロセスを自動化することができる。
【0125】
例えば、
図41、
図42A、および
図42Bを参照すると、本明細書で説明した流体ドット339と同様の流体ドット554または他のインジケータマーキングを、パージ容器550の表面上に形成または提供することができる。少なくとも1つのセンサ114は、パージ容器550内に収容されている任意の流体を通して流体ドット554を撮像するように配置される。異なる流体の屈折率のような異なる特性および/またはパージ容器550の選択された湾曲に起因して、このドット554は、シリンジおよびパージ容器550内に収容されている流体に基づいて異なる外観を有する。したがって、パージ容器550内に空気が収容されている場合、流体ドット554は、例えば
図42Aに示すような一態様に従って、画像で見ると第1の構成を有し、造影剤または生理食塩水などの流体が、パージ容器550内に収容されている場合、流体ドット554は、例えば
図42Bに示すような第2の構成を有する。流体ドット554の構成を、次のように検出することができる。まず、少なくとも1つのセンサ114は、シリンジおよびチューブセット17が空気をプライミングおよびパージした後に、パージ容器550内に収容されている流体を通して流体ドット554を含むパージ容器550の少なくとも一部の画像をキャプチャするように配置される。その後、パージ容器550内に様々な流体が供給されているときの流体ドット554の形状が既知であるので、空気または流体がパージ容器550内に存在するかどうかを判定するためにパターンマッチング技術を利用することができる。したがって、造影剤または生理食塩水などの特定の流体がパージ容器550内に存在するときの流体ドット554のテンプレートを、センサ114によって得られた流体ドット554の画像に一致させることができる。テンプレートが画像と一致する場合には、シリンジおよびチューブセット17内に空気が存在せず、パージ容器550は十分な流体を含むと判定することができ、これは、システムがプライミングされており、信号を流体注入器10に送ることができ、流体経路セット17が適切にパージされプライミングされていることを示す。ディスプレイ118には、流体経路セット17が適切にパージされプライミングされており、注入器は注入手順の準備が整っているという表示が提供されてもよい。特定の態様によれば、シリンジおよび流体経路セットのプライミングおよびパージは、リアルタイムで監視されてもよい。この態様では、少なくとも1つのセンサ114は、プライミング手順中に流体ドット554の構成が変化すると、パージ容器550上の流体ドット554を監視し、したがって、パージ容器550の容量の変化を監視し、十分な流体がシステムにプライミングされたとき、およびシステムに追加の空気が残っていないことを示す。一態様によれば、プライミング動作の完了を確認するために、チューブセット17を通る流体流をパージ容器550内の容量変化と相関させるアルゴリズムを利用することができる。
【0126】
あるいは、別の態様によれば、
図43Aおよび
図43Bを参照すると、流体ドット554を使用する代わりに、1つまたは複数の基準ライン556をパージ容器550の表面に形成または提供することができる。基準ライン556は、パージ容器550の表面に印刷されてもよく、パージ容器550の表面上にモールド成形されてもよく、他の適切な方法でパージ容器550の表面に形成または提供されてもよい。少なくとも1つのセンサ114は、パージ容器550内に収容されている任意の流体を通して基準ライン556を撮像するように配置される。パージ容器550の画像が得られると、中央処理ユニット116に設けられた画像処理ソフトウェアは、本明細書に記載の画素コントラスト閾値を使用して、基準ライン556とともにパージ容器550内に収容されている流体Fの上端部558を識別する。パージ容器550内に収容されている流体Fの上端部558から基準ライン556までの距離560は、中央処理ユニット116上に設けられた画像処理ソフトウェアを使用して決定される。中央処理ユニット116は、この距離560を、許容可能なおよび許容できないパージプロセスに対応する様々な所定の距離と比較して、パージが許容可能であり、システムがプライミングされているかどうかを判定する。この場合も、システムの正確なプライミングを確実にするために、シリンジおよび流体経路セット17がプライミングされているので、パージ/プライミング動作およびパージ容器550内の容量の変化をリアルタイムで監視することができる。
【0127】
さらに別の代替案では、
図44Aおよび
図44Bを参照すると、示された形状を有するインジケータライン562が、パージ容器550の表面に形成または提供されてもよい。インジケータライン562は、パージ容器550の表面に印刷されてもよく、パージ容器550の表面上にモールド成形されてもよく、他の適切な方法でパージ容器550の表面に形成または提供されてもよい。センサ114は、パージ容器550内に収容されている任意の流体を通してインジケータライン562を撮像するように配置される。異なる流体の特性および/またはパージ容器550の選択された湾曲に起因して、空気が存在する場合と比較して、流体が存在する場合のインジケータライン562は画像内で異なる長さに見える。さらに、インジケータライン562は、流体中で見たときよりも空気中で見たときにより明るい外観を有することができる。したがって、インジケータライン562のパターンマッチング技術および/または輝度レベル測定を、中央処理ユニット116上の画像処理ソフトウェアによってインジケータライン562の画像上で実行して、流体または空気がパージ容器550内に存在するかどうかを判定することができる。この決定に基づいて、中央処理ユニット116は、パージの許容性を判定し、ディスプレイ118を介してオペレータに表示を提供することができる。この場合も、システムの正確なプライミングを確実にするために、シリンジおよび流体経路セット17がプライミングされているので、インジケータライン562の変化に基づいて、パージ/プライミング動作およびパージ容器550の容量の変化をリアルタイムで監視することができる。当業者であれば、インジケータライン562の他の構成が可能であること、本明細書で説明する画像認識ソフトウェアおよびアルゴリズムが、パージ/プライミング動作中にインジケータライン562の構成の変化を監視し、システムが正しく準備され、注入手順で使用できる状態になっていることを技術者に示すことを理解されよう。このような他の構成も本開示の範囲内である。
【0128】
図45を参照すると、パージ容器550の別の構成が示されている。このパージ容器550はまた、パージ手順中に、流体経路セット17のコネクタ552の端部に接続されるように構成され、この流体経路セット17は、後に続く診断注入手順中に患者に造影剤または他の流体を送達するように設計されている。パージ容器550は、近位端564と、本明細書に記載のシリンジ12の先細りの遠位端24と同様の先細りの遠位端565とを有する円筒形本体563を含む。円筒形本体563の近位端564の下には、LEDのような電磁放射線源566が配置されている。したがって、パージ容器550が適切な量の流体で満たされているとき、本明細書に記載のシリンジ12内にハロー120が形成されるのと同様にハロー567が生成される。これにより、オペレータは、受容可能な量の造影剤がそこに含まれているかどうか、ハロー567が存在する場合にパージが許容可能であったこと、およびシリンジおよび流体経路セット17が適切にプライミングされていることを迅速かつ容易に決定することができる。さらに、このプロセスは、少なくとも1つのセンサ114でパージ容器550内に生成されたハロー567の1つまたは複数の画像をキャプチャし、本明細書で説明した画像処理技術を用いて画像を処理することによって、自動化されてもよく、特定の態様ではリアルタイムで監視されてもよい。
【0129】
図46を参照すると、一態様によれば、流体経路セット17は、流体経路セット17が十分にパージされたかどうかを判定するために少なくとも1つのセンサ114によって得られたチューブの画像の画像認識を可能にするように変更されてもよい。例えば、
図46に示すように、流体経路セット17のチューブは、それに隣接して配置された光ファイバケーブル610を含むことができる。光ファイバケーブル610は、光ファイバケーブル610がチューブ内に埋め込まれるように、または流体経路セット17のチューブ内に配置されるように、流体経路セット17のチューブと同時に押し出されてもよい。別の例では、流体経路セット17のチューブの内側または外側に反射面を設けて、チューブの長さ全体にわたって内部反射によって光を透過させてもよく、あるいは流体経路材料が、本明細書に記載の内部反射に適した屈折率を有するように選択されてもよい。これにより、流体が存在するとき、流体経路セット17のチューブの長さ全体にわたって光が反射され(光パイプの動作と同様に)、流体経路セット17のチューブがパージされて流体で満たされるという視認できるインジケータが得られる。この視覚インジケータは、センサ114によって、または単にオペレータによって認識されることができるチューブセットの端部の照射された構成要素であり得る。例えばチューブが完全にプライミングされていないときなど、空気が流体経路セット17内に存在する場合、光の内部反射は起こらず、「光パイプ」効果は観察されない。
【0130】
さらに、流体経路セット17のチューブは、注入器10に取り付けられた、または電磁放射線源がコネクタのセクションを通って放出する位置に配置された、その端部にコネクタ(図示せず)を有するように構成され得る。この実施形態によれば、流体で満たされている場合には、コネクタ全体が点灯するだけであり、これは、流体経路セット17のチューブが完全に空気をパージしてプライミングし、使用の準備ができていることを示す。電磁放射線源は、無線であってもよく、バッテリ駆動であってもよく、注入器上の電源に接続されてもよい。つまり、流体経路セット17のチューブと直接的または間接的に接触することができ、特定の態様に従って使い捨てであっても再使用可能であってもよい。
【0131】
さらに別の例では、中央処理ユニット116上に設けられた画像処理ソフトウェアを使用して、流体経路セット17をパージするのに必要な流体の量を決定することができる。より具体的には、本システムは、本明細書に記載の方法のいずれかを使用して、シリンジ12内にどれだけの空気が存在するかを決定することができる。その後、中央処理ユニット116上の画像処理ソフトウェアは、本明細書に記載のパターンマッチング技術を使用してシリンジに接続された流体経路セット17の種類を決定することができる。この情報を使用して、中央処理ユニット116は、流体経路セット17をパージ/プライミングするために必要な流体の量を計算することができる。この情報を使用して、中央処理ユニット116は、注入器10に指示して、シリンジを作動させて、シリンジおよび流体経路セット17内にあると計算された空気の量に対応する十分な距離だけプランジャを移動させることができる。システムの完全なプライミングを確実にするために、プランジャをさらに移動させて、さらなる容量を排出することができる。
【0132】
パージ容器550の別の構成では、1つまたは複数のセンサをそれに関連付けることができる。より具体的には、流体が入るときに移動する(チューブがパージされていることを意味する)構成要素(図示せず)をパージ容器550内に設けることができる。移動する構成要素は、センサ114によって検出されてもよいし、オペレータの視覚インジケータであってもよいし、パージ容器550に流入する流体の量は、シリンジおよび流体経路セット17のプライミングが完了したときに決定されてもよい。
【0133】
例えば、一態様では、構成要素は、プライミングが行われるときに空気を通過させることができる空気フィルタ(例えば、Porexブランドフィルタ)であってもよく、空気は、その後、流体と接触し、圧力を増大させ、表面との摩擦を低減し、センサ114またはオペレータによって検出可能な位置に前方に駆動される。構成要素はまた、流体の存在および存在する流体の密度に対して上昇および下降するフロートボールであってもよく、このようなボールをシリンジ内に配置することに関して本明細書でより詳細に説明する。
【0134】
H.シリンジの少なくとも一部の膨張および伸張に基づくキャパシタンス測定
キャパシタンスは、例えばシステムの内圧がプランジャの動作によって増加され、注入プロセス中のシステムを加圧する場合に、システム上の圧力の変化の結果として、流体経路要素、要素、またはシステム全体の容量の変化として定義される。全システム拡張容量、容量、またはキャパシタンス容量は、圧力が加えられたために注入器システム構成要素の膨張時にキャプチャされる抑制された流体の総量または容量(すなわち、逆流量)を表す。全システムキャパシタンスおよびキャパシタンス容量は、各流体注入システムに固有であり、複数の要因に依存し、要因としては、注入器構造、シリンジ、ピストン、シリンジを取り囲む圧力ジャケットを構築するために使用される材料の機械的特性、拘束運動または屈曲、流体密度、圧縮率、および/または粘度、一定圧力下での流量の変化、造影剤および生理食塩水を流れ混合装置に送達する流体ライン、開始圧力、終了圧力などが挙げられる。例えば、デュアルシリンジ注入器では、注入システムの2つのピストンの間の相対速度差が大きく、必要な圧力が高い場合、逆流の量が増加し、これは、同時の流体の流れがわずかな制限を通っており、全流体注入の速度が速く、かつ/または流体の粘度が高い場合に起こり得る。逆流は、特定の注入において同時に注入された流体に異なる比率が生じるのを防止することができ、異なる比率が生じることは、流体注入器10のような2つのシリンジを有する注入器システムのすべてにとっての損失となり得る。
【0135】
キャパシタンス測定を使用して、変化した流速および動的に送達される流量を補正して、画像診断を向上させることができる。より具体的には、造影剤強調されたX線撮影用の造影剤の静脈内注入などの医療処置では、多くの場合、体内の特定の位置への迅速な送達のために、薬剤および/または診断用流体が高められた圧力で導入される流体の「急なボーラス投与(sharp bolus)」を導入することが望ましい。造影剤強調されたX線撮影の場合、処置中に撮像されるべき診断品質画像のために、所定の時間に体内の特定の位置または関心領域に十分な造影剤が存在しなければならない。したがって、患者に送達される造影剤の量または容量および造影剤のこの容量が患者の体内の特定の点に到達する時間の正確さが重要である。造影剤の「急なボーラス投与」を、実際には、明確な対向端または境界を有する明らかなまたは画定された液体のカラムとして定義することができる。したがって、患者の静脈内に送達される流体の量の正確さは、多くの場合、医学的治療および診断手順において重要であり、そのような精度は、流体送達システムが圧力を受けているときの流体送達経路構成要素のキャパシタンス容量の拡張によって低下され得る。キャパシタンス測定およびキャパシタンス補正のさらなる詳細は、Spohnらの米国特許第8,403,909号明細書に記載されており、その全体が参照により本明細書に組み込まれる。
【0136】
図47を参照すると、流体が送達されるにつれて、注入手順中の内圧の上昇によりシリンジ12の部分が膨張し伸張する。本開示の態様によれば、キャパシタンス容量を、次のように決定することができる。この膨張および伸張を、少なくとも1つのセンサ114によってリアルタイムで検出することができ、その程度を、中央処理ユニット116上に設けられた画像処理ソフトウェアを使用して測定することができる。例えば、シリンジ12のバレル18の長さに沿ったシリンジ12の外径を、
図47に示すように決定することができる。次いで、中央処理ユニット116は、シリンジ12内の正確な容量を動的に決定するために、バレル18の長さに沿ってプランジャ26の底部シールの上の異なる外径測定値にわたって積分することができる。その後、シリンジ12がキャパシタンスを有していない場合の予想容量が、動的に決定された容量から減算され、その結果、キャパシタンス容量に対応する残量が生じる。キャパシタンス容量が分かれば、流体注入器10を制御してピストン124を制御して、圧力下のバレル18の拡張を補償し、急なボーラス投与の送達を保証することができる。
【0137】
図48を参照すると、流体注入器10によって実行される注入手順中の時間に対する容量のグラフが示されており、ここで、ライン501は、流体注入器10がキャパシタンスの補正なしに送達されたと考えられてプログラムされた流体の容量を表し、ライン503は、患者に実際に送達された流体の容量を表し、ライン505は、送達されたと考えられるものと実際に送達されたものとの間のシステムキャパシタンスによる差を表す。診断目的のために画像をキャプチャするために使用されるスキャナ(図示せず)は、撮像が望まれる身体の特定の部分を薬剤が通過すると予想される正確な時間間隔で画像のキャプチャを開始するように起動され、指示される。その時間は、流体注入器10が特定の期間にわたって導入されていると考えられる流体の量(すなわち、
図48のライン501)に基づく。実際の流体量は予想より遅く送達されるので、流体(すなわち、造影剤)が撮像される体の部分に完全に導入されない場合に、スキャナは、場合によっては画像をキャプチャすることがある。これは、本明細書に記載の圧力を有するシリンジおよびチューブのキャパシタンスまたは膨張によるものである。これを補正するために、ほとんどのオペレータは、キャパシタンスを補償しようとするための推定遅延を導入する。しかしながら、本明細書で説明するように、膨張および伸張セクションに基づいて流速およびキャパシタンスを決定することによって、流体注入器10のコントローラは、オペレータのためにこの遅延を自動化し、診断目的のために最高品質の画像をキャプチャすることができる。
【0138】
I.残量の決定
一例では、少なくとも1つのセンサ114がシリンジバレル18およびプランジャ26を含むシリンジ12の画像をキャプチャして、各画像におけるプランジャ26の位置を決定することができるように、流体検証システム110が配置されてもよい。これらの画像に基づいて、シリンジ12内に残っている造影剤または生理食塩水の量を決定することができる。具体的には、
図49を参照すると、ステップ570において、センサ114によってシリンジ12の画像が取得される。次に、ステップ572で、画像処理ソフトウェアは、本明細書で説明するようにトレーニング画像に基づくパターン認識を使用することによって、画像内のプランジャ26を識別する。次に、ステップ574において、画像処理ソフトウェアは、基準点に対するプランジャ26の位置の変化を決定することによって、シリンジ12のバレル18内のプランジャ26の位置を決定する。シリンジ12のバレル18内のプランジャ26の位置が決定されると、この位置を、ステップ576でシリンジ12内に残っている流体の容量に対応する既知の位置と比較することができる。次に、中央処理ユニット116は、ステップ578において、残量をディスプレイ118に表示するための信号を送る。残量は、数値として表示されてもよく、またはシリンジ内のリアルタイムの残量を示すシリンジ12のグラフ表示が表示されてもよい。画像は連続的に撮像され、残量の表示は、ステップ580で決定されるように注入手順が完了するまで連続的に更新される。キャパシタンスに起因する注入中のシリンジ拡張の測定によるシリンジ残量の補正もプロトコルに組み込むことができる。したがって、少なくとも1つのセンサは、例えば画像を基準テンプレートと比較することによってシリンジの外径の変化を測定し、キャパシタンスに起因する容量を計算することができる。このキャパシタンス容量はリアルタイムで監視され、中央処理ユニットに送信されてもよく、アルゴリズム解析によりキャパシタンスの補償が可能となり、流体送達を調整し、急なボーラス投与の送達を提供することができる。
【0139】
別の例では、
図5Aおよび
図5Bのプランジャ26が利用される場合、ハロー120の画像のみを使用してシリンジ12内の残量を決定することができる。より具体的には、プランジャ26は、複数の異なる色のストライプ38を有する反射材料から形成されるか、または反射材料でコーティングされ得る。ストライプ38を形成する反射材料は、シリンジバレル18を通って遠位方向にプランジャ26に向けられた光を反射して、ハローを生成する。プランジャまたはプランジャカバー26がバレルを通って移動するとき、光は、シリンジバレル18内のプランジャ26の位置に応じて異なるストライプ38から反射する。プランジャ26の各ストライプ38は色が異なるので、ハローの色および/または外観は、プランジャ26が注入または充填手順中にシリンジバレル18を通って前進または後退するときに光が反射されるストライプ38に応じて変化する。少なくとも1つのセンサ114は、プランジャがシリンジバレル18を通って前進または後退するときにハローの画像をキャプチャするように配置されてもよい。中央処理ユニット116上に設けられた画像処理ソフトウェアは、ハローの色の変化を検出する。中央処理ユニットは、次いで、ハローの色に基づいてシリンジバレル18内のプランジャ26の位置を決定するように構成される。中央処理ユニット116がプランジャ26の位置を決定すると、シリンジ内に残っている流体の量が決定される。次いで、中央処理ユニット116は、ディスプレイ118上に流体の残量を表示するための信号を送る。流体の残量は数値として表示されてもよいし、シリンジ内の残量を示すシリンジ12のグラフ表示が表示されてもよい。代替の実施形態では、プランジャ上の同様の同心円内の半透明または透明のプランジャ材料を通して光を透過させるために、異なる色のLEDライトがピストン内に配置されてもよい。
【0140】
J.シリンジの膨張および伸張に基づく圧力フィードバック
別の例では、遠位端24の一部のようなシリンジ12の部分が注入手順中に膨張し伸張するという事実により、画像処理技術を利用して、流体注入手順中にシリンジ12内の流体が患者に送達される圧力を決定することができる。この膨張および伸張の程度は、任意の所与の時間に流体がシリンジ内に及ぼす圧力に対応することが知られている。
【0141】
図50および
図51を参照すると、一実施形態によれば、この膨張および伸張を促進するために、その遠位端24に配置された可撓性セクション590を有するシリンジ12の代替例を利用することができる。
図50および
図51に示すシリンジ12の多くの構成要素は、
図2を参照して本明細書で説明したシリンジ12の構成要素と実質的に同様である。
図50および
図51の参照番号は、
図2の対応する参照番号と同一の構成要素を示すために使用される。
図2に一般的に示されているシリンジ12に関する前述の説明は、
図50および
図51に示される態様に適用可能であるので、これらのシステム間の関連する相違点のみを本明細書で説明する。
【0142】
一態様では、可撓性セクション590は、注入手順中にシリンジ12の内圧が増加するときに拡張するように構成されてもよい。可撓性セクション590は、シリンジバレル18よりも高い可撓性の材料からインサートモールド成形されてもよい。可撓性セクション590を形成する材料は、限定されないが、TPU、TPE、ポリプロピレン、ポリエチレン、および熱可塑性エラストマーなどの任意の適切な可撓性材料であってもよい。さらに、可撓性材料590は、電磁放射線源112で照射され、本明細書に記載のハロー機構を示すことができるように、透明または半透明材料であってもよい。
【0143】
可撓性セクション590は、
図50および
図51に、シリンジ12の遠位端24に配置されているように示されているが、可撓性セクション590をシリンジ12の多くの領域に適用することができるので、本開示を限定するものとして解釈されるべきではない。考慮すべき要因には、流体キャパシタンスを最小にする一方で、より良い圧力分解能のために膨張を最大にすることが含まれる。
【0144】
図52および
図53ならびに引き続き
図50および
図51を参照すると、この態様による少なくとも1つのセンサ114、中央処理ユニット116、およびディスプレイ118を備えた流体検証システム110は、センサ114が注入手順中に可撓性セクション590の画像をキャプチャすることができるように配置されてもよい。可撓性セクション590の画像が得られると、中央処理ユニット116の画像処理ソフトウェアは、可撓性セクション590の増加した直径を測定し、増加した直径をシリンジ内圧と相関させる。例えば、
図52は、小さなシリンジ内圧に対応して直径が小さく増加した可撓性セクション590を示し、
図53は、大きなシリンジ内圧に対応して直径が大きく増加した可撓性セクション590を示している。中央処理ユニット116は、このシリンジ内圧をディスプレイ118上に表示し、流体注入器10を制御して、注入手順中にシリンジ内の能動的な圧力制御を可能にするように構成されてもよい。
【0145】
したがって、可撓性セクション590は、注入手順中にシリンジ12のバレル18内の圧力に対して「ライブ(live)」すなわちリアルタイムの読み出しを提供する。
図54を参照すると、充填手順中に生成された負圧は、可撓性セクション590を内側に移動させる。可撓性セクション590の寸法変化を、中央処理ユニット116上に設けられたセンサ114および画像処理ソフトウェアを使用して測定することができ、その後の真空レベルをその後で決定することができる。
【0146】
このような負圧は、このようなシリンジ135の充填中に高真空レベルを有することにより、シリンジ135の壁を破砕したり変形させたりする可能性があるため、本明細書に記載のローリングダイヤフラムシリンジ135にとって重要であり得る。したがって、
図55を参照すると、ローリングダイヤフラムシリンジ135の一実施形態は、ローリングダイヤフラムシリンジ135の遠位端137に取り付けられた、またはキャップ390(図示せず)に設けられたコネクタ592上の可撓性セクションまたはダイヤフラム591を含むように適合され得る。可撓性セクション591の外径を、可撓性セクション590の直径の測定に関して本明細書で説明するように、中央処理ユニット116上に設けられた少なくとも1つのセンサ114および画像処理ソフトウェアを使用して、リアルタイムで動的に測定することができる。可撓性セクション591の外径は、充填手順中にローリングダイヤフラムシリンジ内の真空度が増加するにつれて減少する。したがって、可撓性セクション591の外径の大きさを使用して、ローリングダイヤフラムシリンジ135内の真空レベルを決定することができる。その後、ローリングダイヤフラムシリンジ135の破砕を防止するためにピストン138が引き抜かれる速度を調整することにより、真空レベルを特定の閾値のもとに維持することができる。
【0147】
図56Aおよび
図56Bを参照すると、一態様によれば、シリンジ12内の圧力の決定は、電磁放射線源212がシリンジバレル18の側壁の少なくとも一部を介して反射するように電磁放射線源212を位置決めすることによっても得られる。シリンジバレル18の側壁を通して照らす光は、ライン121aおよび121bで示されるようにハロー120の底部で視覚化される。例えば、シリンジバレル18の側壁を照らす光がない場合、この領域は黒ライン(121b)として現れる。シリンジバレル18の側壁に向かって上を向くようにシリンジ12の下に電磁放射線源212を配置すると、光がシリンジバレル18の側壁の内部を進んでハロー120に描かれているので、ハロー120の底部のラインが点灯するように見える(
図56Aの要素121a参照)。
【0148】
シリンジ12が例えば注入手順中に圧力を受けると、シリンジ12は膨張し、
図56Bに示すようにシリンジ12の壁を外側に押す。これにより、電磁放射線源212からハロー120の底部への光の直線経路が除去される。このラインは、シリンジ12が膨張する(すなわち、圧力が増加する)と明るさが暗く弱まっていく(
図56Bの要素121b参照)。電磁放射線源212はまた、シリンジの圧力限界に達したとき(すなわち、シリンジが光を遮断するのに十分に膨張したとき)に光が完全に消滅するように配置されてもよい。あるいは、輝度は、圧力(すなわち、膨張)の関数として決定され、圧力を決定するために使用され得る。例えば、画像認識ソフトウェアを使用して、ラインの強度の変化を監視して、シリンジキャパシタンスに関するリアルタイムのフィードバックを提供することができる。
【0149】
K.流速フィードバック
流体注入器によって送達される流体の流速に関するフィードバックは、本明細書で説明される多くの概念を使用してオペレータに提供され得る。より具体的には、シリンジバレル18内の軸方向のプランジャ26の位置を、注入手順中に、センサ114および画像処理ソフトウェアによって監視することができる。その後、注入手順中の時間に対するプランジャの位置を示す曲線を作成することができる。次に、曲線に適合する方程式を導出することができる。この方程式は、曲線からのデータが注入器によって送達される流体の流速を計算するように実施される論理アルゴリズムに提供される。この流速を、ディスプレイ118上でオペレータに表示することができる。
【0150】
L.シリンジ充填フィードバック
造影剤または生理食塩水をシリンジ12に充填するとき、本明細書で詳細に説明したハローまたは照射された識別パターン120は、シリンジが適切な速度で充填されている場合にのみ存在することが観察された。例えば、シリンジ12などのシリンジを使用する場合、適切な充填速度は約4mL/秒であり、なぜなら、これは、真空ヘッドがシリンジに引き込まれる前に達成可能な最も厚い流体による最も速い充填速度であるからである。ただし、最も速い特定の充填速度は、問題の流体注入システムの特定の制限に依存する。ピストンは、利用されている流体注入システムに応じて、シリンジが可能な限り迅速に充填されるように引き戻されるべきである。これは、本明細書で説明する概念を使用して、充填手順中に中央処理ユニット116上に設けられたセンサ114および画像処理ソフトウェアを用いてハロー120を動的に検査することによって達成される。ハロー120が完全に存在すると判定される限り、真空度は、シリンジ内に真空ヘッド(すなわち、空気)が生成される閾値に達していない。ハロー120は、本明細書に記載の中央処理ユニット116上に設けられたセンサ114および画像処理ソフトウェアを使用して認識され、ハロー120の下端部に対するハロー120の上端部の位置が検出される。ハロー120の上端部が下方に移動し始めると、空気がシリンジ12に引き込まれているという表示をオペレータに提供することができる。さらに、流体注入器10は、ピストン124がプランジャ26を引き戻している速度を調整して、ハロー120の適切な大きさを再設定することができる。これにより、流体注入器10は、シリンジの大きさ、流体の種類、または充填速度とは無関係に、可能な限り最速の充填速度を達成することが可能になる。
【0151】
言い換えれば、シリンジがあまりにも速く充填されている場合、空気がシリンジに導入されるため、ハロー120は存在しない。したがって、センサ114を、充填手順中にハロー120の画像をキャプチャするように配置することができる。中央処理ユニット116の画像処理ソフトウェアは、画像を処理してハロー120の存在を判定する。ハロー120が存在しない場合には、流体注入器10に信号が送られて充填プロセスが停止され、ピストンロッド124がプランジャ26を後退させる速度を調整し、ハロー120が充填プロセス全体を通して存在するようにする。
【0152】
M.画像処理によって識別され得るシリンジのその他の機構
シリンジ12のいくつかの他の機構を、流体検証システム110を使用して撮像することができ、それによって得られた情報を流体注入器10に提供することができる。例えば、注入を行う前に、多くの場合、オペレータまたは技術者がシリンジを検証する必要がある。検証には、シリンジが注入器に受容可能であることを確認すること、ならびにシリンジおよびシリンジ内に収容されている流体の様々な特性を決定することが含まれてもよい。例えば、オペレータは、シリンジの寸法(例えば、直径、長さ、および流体量)、および流体の内容物などの識別情報が実行される手順に対して正しいことを検証しなければならない。さらに、オペレータは、製造日、供給源、プランジャとシリンジバレルとの間の摩擦特性、流体粘度などのシリンジについての特定の情報(本明細書では一般に「シリンジ注入パラメータ」と呼ぶ)を、流体注入器または注入器作動システムに提供して、ピストン力および加速度を制御して流体を所望の流速で送達することを要求されてもよい。識別情報は、バーコードなどの機械可読識別タグに含まれるか、または関連付けられてもよい。したがって、このようなバーコードの画像を、センサ114によって取得することができる。中央処理ユニット116上に設けられた画像処理ソフトウェアは、次に、バーコードから識別情報を読み取り、この情報を流体注入器10に提供するように構成されてもよい。特定の例では、バーコードは、電磁放射線源112によってバックライトされ、それによって、センサ114がバーコードをより明瞭に視認できるようにすることができる。
【0153】
さらに、円筒形のシリンジバレル18は、事実上、レンズそのものである。バレル壁の湾曲を利用して、キャプチャされ認識される画像は、シリンジ12内に空気が存在する場合、またはシリンジ12内に流体が存在する場合、中央処理ユニット116上に設けられた画像処理ソフトウェアとは異なるように見える。シリンジ12内に空気が存在する場合、センサ114が受信したバーコードの画像は、第1の大きさおよび/または向きで現れる。シリンジ112内に流体が存在する場合、バーコードの画像は第2の大きさで現れ、反転される。したがって、一例では、バーコードは、シリンジ12内に空気が存在するときにセンサ114によって読み取られるように情報で符号化されてもよく、そのコードはシリンジ12が存在すること、シリンジ12の大きさ、およびシリンジ12内に空気が存在することをシステムに通知する。流体がシリンジ12内に存在するとき、バーコード画像は反転し、中央処理ユニット116に設けられた画像処理ソフトウェアは、流体がシリンジ12内に存在することを示す信号をシステムに提供する新しいコードを認識する。さらに、バーコードの相対的な大きさは、シリンジ12内の流体の種類(すなわち、生理食塩水、造影剤、または造影剤の種類)の表示を提供する。
【0154】
別の例では、
図57を参照すると、シリンジ12の内容物の温度の表示をオペレータに提供するために、温度ストリップ58をシリンジ12に追加することができる。この温度ストリップ58は、センサ114によって撮像され、画像処理ソフトウェアによって自動的に読み取られる。具体的には、センサ114は、シリンジバレル18上の温度ストリップ58の画像をキャプチャするように配置される。温度ストリップ58は、温度によって色を変えるように、または温度を示す他の方法を有するように構成される。画像処理ソフトウェアは、この色の変化を検出し、色の変化に基づいて温度を決定するように構成される。その後、温度情報を流体注入器に提供することができる。特定の例では、温度ストリップおよびバーコードは両方ともシリンジ12に貼付されたラベル上に提供されてもよい。
【0155】
N.画像認識技術を利用した例示的な流体注入システム
図58~
図60を参照すると、例示的な流体注入システム600は、プラスチック、複合材料、および/または金属のような適切な構造材料から形成されたハウジング14を有することができる流体注入器10を備える。ハウジング14は、所望の用途に応じて様々な形状および大きさであってよい。例えば、流体注入システム600は、流体注入器10がフロア部上を移動可能であるように、1つまたは複数のローラまたはホイールを有するベース72に接続された支持部70を有する自立構造であってもよい。流体注入器10は、少なくとも1つのシリンジ12をそれぞれのピストンロッド124に解放可能に接続するための少なくとも1つのシリンジポート16を含むことができる。様々な例において、少なくとも1つのシリンジは、流体注入器10のシリンジポート16内にシリンジを保持するように構成された少なくとも1つのシリンジ保持部材を含む。非限定的な例では、少なくとも1つのシリンジ保持部材は、流体注入器10のシリンジポート16上または内部に設けられたロック機構と動作可能に係合するように構成され、自己指向型の流体注入器10へのシリンジの装填および/または流体注入器10からのシリンジの取り外しを容易にする。シリンジ保持部材およびロック機構は、シリンジを流体注入器10に接続するための接続インタフェースを共に画定する。様々な接続インタフェースの例が、米国特許第9,173,995号明細書に記載されており、その開示は、その全体が参照により本明細書に組み込まれる。
【0156】
特定の非限定的な例では、例えばシリンジポートへのシリンジの装填またはシリンジへの医療用流体の充填を容易にすることができる実質的に垂直な位置(すなわち、1つまたは複数のシリンジポートを上向きにして)と、例えばシリンジ内に収容されている医療用流体中の気泡の除去または注入手順の実行を容易にすることができる反転位置と間で、シリンジポートを含む注入器ハウジング14を一時的に回転および/または反転させることが望ましい。したがって、本開示の非限定的な例において、ハウジング14は、ハウジング14が支持部70および格納式ポール74に対して回転可能であるように、回転可能な様式で支持部70に接続されてもよい。
【0157】
流体注入システム600は、流体注入器10の高さを調節するために垂直方向に伸長または格納され得る下側支持部材76をさらに含むことができる。オペレータは、下側支持部材76と下側支持部材76に設けられた流体加温器80との間のロック接続を解除するためにハンドル78を押し下げることができる。ハンドル78が押し下げられると、オペレータは流体加温器80を持ち上げたり下げたりして流体注入器10の高さを調整することができる。
【0158】
非限定的な例において、少なくとも1つの流体経路セット17は、医療用流体を少なくとも1つのシリンジから、血管アクセス部位の患者に挿入されているカテーテル、針、または他の流体送達接続(図示せず)に送達するために、少なくとも1つのシリンジの遠位端に流体接続されてもよい。少なくとも1つのシリンジからの流体の流れは、取り外し可能なタッチスクリーンコントローラ82または任意の適切な装置などのコントローラによって操作される流体制御モジュールによって調整されてもよい。流体制御モジュールは、1つまたは複数のユーザ選択の注入パラメータに基づいて、患者への生理食塩水および造影剤などの医療用流体の送達を調節するために、様々なピストン、バルブ、および/または流速調節装置を動作させることができ、このパラメータは、例えば、注入流速、持続時間、総注入量、および/または造影剤と生理食塩水との比である。
【0159】
コントローラ82は、1つまたは複数のプロセッサ、メモリ、ネットワークインタフェースなどを含むことができ、グラフィカルユーザインタフェース(GUI)を含むディスプレイを制御するように構成されてもよく、これにより、ユーザは、ディスプレイ上に生成されたグラフィカルアイコンおよび視覚インジケータを介して、様々な注入パラメータを閲覧および/または様々な注入パラメータと対話することができる。コントローラ82は、画像処理ソフトウェアが設けられた中央処理ユニット116を含んでいてもよいし、別のユニットに設けられていてもよい。非限定的な例では、コントローラ82は、取り外し可能なタッチスクリーンコントローラとして形成されてもよい。コントローラ82はまた、流体注入器10に取り外し不可能に取り付けられてもよい。コントローラ82は、例えば、患者固有の情報(年齢、体重、性別、撮像される器官、造影剤の投与量など)を含む1つまたは複数の注入パラメータを監視するために使用されてもよく、この患者固有の情報は、ユーザによって入力されてもよく、データベース、ネットワーク、メモリ、または有線もしくは無線の通信プロセスによってシステムと通信する別のコントローラから呼び出され/ダウンロードされてもよい。コントローラ82は、様々な注入パラメータを制御するようにさらに構成されてもよく、このパラメータは、ユーザによって入力されてもよく、および/またはコントローラ82、流体制御装置、および/または、データベースからダウンロードされたデータおよび/またはユーザによって入力されたデータに基づいて流体制御装置および/またはコントローラ82と通信する別のコントローラもしくはプロセッサによって実行される1つまたは複数のアルゴリズム計算によって計算されてもよい。
【0160】
図59および
図60を特に参照すると、例示的な流体注入システム600は、本明細書で説明する照射された識別パターンおよび画像処理技術を利用する。上述したように、システム600は、
図1を参照して説明した流体注入器と同様の流体注入器10を含む。流体注入器10は、一対のシリンジ12に係合するように構成される。シリンジ12は、流体注入器10のシリンジポート16に取り付けられている。注入器10のピストンロッド124の遠位端には、LEDなどの複数の電磁放射線源112が取り付けられているか、または埋め込まれている。LEDは、第1の流体がシリンジ12内で検出されると第1の色で、第2の流体がシリンジ12内で検出されるとき第2の色で照射するように構成される。作動されると、ピストンロッド124は、プランジャ26によって画定された空洞(図示せず)に向かって前進し、空洞(図示せず)内に受け入れられる。LEDは、プランジャカバー26を通って軸方向に光を放出して、上述したようにシリンジバレル18の遠位端24に隣接するハロー120を生成する。シリンジ12がマルチドーズ型の流体ボトルまたはバッグからの流体で満たされているときに、センサ114がシリンジ12の背後に配置されるように、センサ114を流体注入システム600の支持部602に取り外し可能に設けることができる。本明細書で説明するように、流体注入システム600は、画像処理技術を使用して、シリンジ12に向けられる流体の種類または各シリンジ12内の流体レベルを識別するように構成され得る。画像処理技術によって識別された情報に基づいて、注入器10は、所望の充填および注入パラメータを達成するためにその動作パラメータを調整することができる。
【0161】
本明細書で説明するように、電磁放射線源112は、電磁放射ビームをシリンジ12の内部を通して投射するように配置された電球、LED電球、可視光放射器、赤外線放射器、またはレーザであってもよい。電磁放射線源は、シリンジ12を通って一般に軸方向に電磁放射線を放出する。例えば、電磁放射ビームは、半透明または透明のプランジャまたはプランジャカバー26を通過して、シリンジ12の遠位端24に向かうことができる。
【0162】
本明細書でより詳細に説明するように、電磁放射線源112を、特定のセンサまたは電磁放射線検出器に対して、ハロー120の顕著性を高めたり、ハロー120を調整したりするように構成することができる。一例では、電磁放射線源112は、約532nmの波長を有するレーザ(例えば、緑色レーザ)を含む。緑色レーザ電磁放射線源は、中間色のまたは透明なプランジャと共に使用されることができ、依然として顕著な色のハローを生成することができる。他の例では、電磁放射線源112は、システムが放射波長内の放射線(例えば、ハロー)を検出することができるセンサまたはカメラを含むという条件で、可視スペクトル外の電磁放射線を放出することができる。このような一態様では、赤外線センサを設けて、シリンジ12上の放射線を検出することができる。さらに他の例では、電磁放射線源を、周囲光とより容易に区別され得る、偏光またはフィルタリングされた光の特定の波長を放出するように構成することができる。他の例では、電磁放射線源を、システムオペレータによって識別され得るか、またはセンサによって自動的に検出され得る、所定の識別可能なシーケンスに従って光のパルスを放出するように構成することができる。
【0163】
プランジャまたはプランジャカバー26を通過する光または電磁放射線は、シリンジ12を通して実質的に放射してハロー120を形成する。シリンジ12が空であるかまたは部分的にしか充填されていない場合、電磁放射ビームはシリンジ12を通過するが、
図8に示されるように、その遠位端近くに特徴的な照射部またはハローを形成しない。対照的に、シリンジ12が完全に流体で満たされているとき、電磁放射ビームは流体によって屈折され、シリンジ12の遠位端24の近くにハロー120を生成する。システムオペレータ、またはセンサ114のような自動画像読み取り装置もしくは光学装置は、ハローが、存在する場合、正しい形状および大きさであるかどうかを識別することができる。ハローが小さすぎるか、十分に明るくないか、または全く存在しない場合、システムオペレータは、完全な充填のためにシリンジ12に流体を追加することができる。正しい大きさ、形状、および明るさを有するハローが識別されれば、検証が完了し、シリンジ12の流体内容物は患者に投与する準備が整う。
【0164】
特定の例では、システム600は、画像認識を使用して、2つのシリンジ12が流体注入器10上に同時に存在するかどうかを判定することもできる。さらに、システム600は、シリンジ12が流体または空気で満たされているかどうかを検出する。システム600はまた、本明細書でより詳細に説明するように、センサ114から得られた画像を使用して、シリンジバレル18上の機構を視覚化し、ハロー120の高さの違いを視覚化し、または流体を通過するレーザ光を視覚化して、2つのシリンジ12のどちらが造影剤を有し、どちらが生理食塩水を有するかを検出する。これが判定されると、システム600は、注入器ヘッド上の半透明プランジャの下のピストンロッド124上に配置された電磁放射線源112に信号を送ることができる。この信号は、造影剤を有すると判定されたシリンジ12の下の緑色のような第1の色のLEDを点灯させ、生理食塩水を有すると判定されたシリンジ12の下の青色などの第2の色のLEDを点灯させるように電磁放射線源に警告することができる。この光はハロー120を照射し、ハロー120はまた、オペレータによる視覚化のために、LEDの色に対応する色を有する。
【0165】
システムは、視覚的、聴覚的、または感覚的な合図の他の方法により流体の種類をオペレータに警告するための信号を送ることもできる。例えば、画像認識技術によって、シリンジ12が造影剤を含むと判定されると、視覚的合図(LED、レーザ光、グラフィックス、テキスト)および/または聴覚的合図(アラーム、ベル、ホイッスル、他の音)が、特定のシリンジ12が造影剤を含むという事実をオペレータに警告する。例えば、造影剤のために指定された注入器10の側に、緑色のオーバーレイ機構を使用することができる。緑色LEDを使用して、シリンジ12のどちらの側にあるかにかかわらず、造影剤を有すると判定された、シリンジ12上のハロー120を照射することができる。これは、両方のLED色(緑色と青色)の回路を有することにより実現され、造影剤が存在すると判定された場合には緑色が点灯し、生理食塩水が存在すると判定された場合には青色が点灯する。制御室のオペレータに、シリンジがどちら側にあるか、およびそれが主治医によって規定されたプロトコルと矛盾するかどうかを警告するメッセージを送ることも可能である。
【0166】
図59を特に参照すると、図示のように、システム600は、造影剤シリンジ12aが右側に設置され、生理食塩水シリンジ12bが左側に設置されていると判定した。ディスプレイ118には、右に「C」、左に「S」が表示されており、中央処理ユニット116の画像処理ソフトウェアが、左側のシリンジの内容物を生理食塩水、右側のシリンジの内容物を造影剤として識別したことを示している。
図61を参照すると、図示のように、造影剤シリンジ12aは左側の位置に移動し、生理食塩水シリンジ12bは右側の位置に移動されている。ディスプレイ118には、ここでは左に「C」が表示され、右に「S」が表示され、中央処理ユニット116の画像処理ソフトウェアが、左側のシリンジの内容物を造影剤、右側のシリンジの内容物を生理食塩水として識別したことを示している。
図62を参照すると、シリンジ12a、12bが存在しない流体注入器10が示されている。ディスプレイ118には、中央処理ユニット116の画像処理ソフトウェアが両方の位置に存在する空気を識別したことを示すために、左右に「A」が表示されている。
図63を参照すると、図示のように、空のシリンジ12が左側の位置に設置され、もう一方の空のシリンジ12が右側の位置に設置されている。ディスプレイ118には、中央処理ユニット116の画像処理ソフトウェアが両方のシリンジ内に存在する空気を識別したことを示すために、左右に「A」が表示されている。
【0167】
O.フロート要素を有するシリンジの利用
図64を参照すると、シリンジ12内の流体の種類を決定するために、流体注入器10および流体検証システム110とともに使用され得るシリンジ12の別の代替例が示されている。このシリンジ12は、シリンジ12の遠位端24とプランジャとの間に配置されたフロートボール650a、650b、650cのような複数の物体を含む点を除いて、
図2のシリンジ12と同様である。ボール650a、650b、650cの密度が異なるため、ボール650bは生理食塩水(1.0g/ml以下の密度)中を浮動し、ボール650cは生理食塩水中に沈むが、造影剤(1.1g/mlより大きいが、造影剤の最低濃度よりも小さい密度)中を浮動する。
【0168】
造影剤および生理食塩水を区別するためのフロートボール650a、650bおよび650cは、浮力の原理に基づいて動作する。これは、重量が下向きにかかる流体中の物体に対向する上向きの力である。この現象の駆動変数は密度であり、具体的には流体および流体に浸された重量の密度である。ボール650a、650b、650cの密度が流体の密度より十分に高い場合、重量は浮力に勝ち、ボール650a、650b、650cは底に沈む。ボール650a、650b、650cの密度が十分に低い場合、ボール650a、650b、650cは浮動する。
【0169】
生理食塩水および造影剤は異なる密度を有する。例えば、生理食塩水は約1g/mLの密度を有し得、一方、より濃い造影剤は約17g/mLの密度を有する。一例では、ボール650bは0.5g/mLの密度を有し、ボール650cは5g/mLの密度を有する。
図65を参照すると、シリンジ12が空気で満たされ、直立しているとき、すべてのフロートボール650a、650b、650cは、重力のためにシリンジ12の底部に留まる。したがって、空気で満たされたシリンジ12は、その遠位端24の近くに浮動するボールを有さない。
図66を参照して、上記の原理に基づいてシリンジ12を生理食塩水で満たしたときには、密度0.5g/mLのボール(すなわち、ボール650b)がシリンジ12の遠位端24に浮動する一方、密度5g/mLのボール(ボール650c)は、浮力がその重量に勝てないので、底部に留まる。基準ボール650aは、0.5g/mL未満の密度を有するシリンジ12内に配置されてもよい。このボール650aはまた、生理食塩水がシリンジ12内に存在するとき、シリンジ12の遠位端24に浮動する。したがって、生理食塩水で満たされたシリンジ12は、その遠位端24の近くに浮動する2つのボールを有する。
図67を参照すると、シリンジ12が密度17g/mLの造影剤で満たされていると、浸された各ボールがそれらの流体の密度よりも小さい密度を有するので、3つのボール650a、650b、650cのすべてが頂部に浮かぶ。
【0170】
引き続き
図65~
図67を参照すると、センサ114は、シリンジ12の遠位端24の画像をキャプチャするように配置されてもよい。その後、中央処理ユニット116上の画像処理ソフトウェアは、画像内のボール650a、650b、650cの有無を検出することができる。ボールが存在しないと中央処理ユニット116上の画像処理ソフトウェアが判定した場合、ディスプレイ118に信号を送り、空気がシリンジ12内に存在すると表示することができる。ボール650aおよび650bが存在すると中央処理ユニット116上の画像処理ソフトウェアが判定した場合、ディスプレイ118に信号を送り、生理食塩水がシリンジ12内に存在すると表示することができる。最後に、中央処理ユニット116上の画像処理ソフトウェアが3つすべてのボールが存在すると判定した場合、ディスプレイ118に信号を送り、造影剤がシリンジ内に存在すると表示することができる。この原理は、適切な対応する密度を有する限り、シリンジ内の任意の数のボールに対して当てはまる。より掘り下げた適用では、異なるブランドの密度の違いや造影剤の濃度の違いに対応して、多様な濃度の異なるボールがいくつかある。この原理を、フロートボールの画像認識を用いて存在する異なる種類の造影剤を決定するために使用することができる。さらに、ボール650a、650b、650cは、画像処理ソフトウェアが造影剤と生理食塩水とを区別することを可能にする別の特性を提供するために、異なる大きさを有してもよい。
【0171】
図64のシリンジ12はまた、シリンジ12内に収容されている流体の温度を決定するために利用されてもよい。温度測定用のフロートボール650a、650b、650cは、浮力の原理に基づいて再び動作する。これは、重量が下向きにかかる流体中の物体に対向する上向きの力である。この現象の駆動変数は密度であり、具体的には流体および流体に浸された重量の密度である。ボール650a、650b、650cの密度が流体の密度より十分に高い場合、重量は浮力に勝ち、ボール650a、650b、650cは底に沈む。ボール650a、650b、650cの密度が十分に低い場合、ボールは浮動する。この用途では、密度は温度と共に変化する。シリンジ12内に収容されている流体が加熱されると、その容量が増加して密度が低下する傾向がある。したがって、フロートボール650a、650b、650cは、増分密度(例えば、生理食塩水については0.5g/mL、0.6g/mL、0.7g/mL、造影剤については15g/mL、15.5g/mL、16g/mL)有することができるため、流体の温度が上昇するにつれて、対応する密度の減少は、特定のボール650a、650b、650cを浮動させるか沈降させる。シリンジ12の遠位端24を、センサ114を使用して撮像することができ、中央処理ユニット116上の画像処理ソフトウェアは、画像内に存在するボールの数を決定することができる。ボールの数が決定されると、中央処理ユニット116は、ボールの数を流体の温度に相関させることができる。ボール650a、650b、650cの直径は、それらの密度/温度関係に対応するように変化してもよく、中央処理ユニット116上の画像処理ソフトウェアが直径を測定し、それを密度に、および密度から流体の温度に相関させることができる。
【0172】
図64のシリンジ12は、圧力制限ツールとして利用されてもよい。より具体的には、ボール650a、650b、650cのうちの1つは、流体中に沈められたときにゼロ圧力でわずかに正の浮力を有するように構成されてもよい。したがって、このようなボールは、シリンジが流体を注入しておらず、流体で満たされているときに浮動する。注入が始まると、シリンジ内の圧力が上昇する。フロートボール内の空気は、シリンジ内に収容されている流体よりも圧縮できるので、ボールの容量が減少し、それによって密度が増加する。したがって、フロートボールを、シリンジ内の特定の内圧で沈降するように設計することができる。例えば、ボールを、325psiを超える圧力でシリンジの底に落ちるように設計することができる。落下するボールは、次いで、センサ114によって撮像された画像にキャプチャされ、画像処理ソフトウェアによって検出される。次いで、注入の圧力を制限するために、信号が流体注入器に送られる。
【0173】
III.その他の概念
別の例では、供給源112は、所与の波長の光を放出することができ、光がシリンジを通過する速度は、検出器およびプロセッサによって測定され、シリンジ12内に収容されている流体の種類を示すことができる。
【0174】
本明細書に記載された概念のすべては、シリンジおよび流体注入器を参照して記載されているが、これらの概念は任意の流体容器で利用できるので、本発明を限定するものではないことに留意されたい。例えば、これらの概念は、製造される各ボトルが正しい量の液体および正しい液体を含むことを確実にするために、飲料ボトルセットで利用されてもよい。ボトルには、着色された半透明または透明の底部および傾斜したネック部が設けられてもよい。ボトルが充填された後、電磁放射線源がボトルの下に配置され、ボトルを通して光を提供し、ボトルのネック部の近くにハローを生成する。このハローを、本明細書に記載のセンサおよび画像処理ソフトウェアを使用して識別することができる。ハローが存在しないか、大きさが不適切な場合、ボトルが正しく充填されていないという信号を生成する可能性がある。
【0175】
本開示は、現在最も実用的で好ましい実施形態であると考えられているものに基づいて説明を目的として詳細に記載されているが、そのような詳細はその目的のためのみであり、本開示は、開示された実施形態に限定されず、反対に、修正および同等の構成を網羅することが意図されていることを理解されたい。例えば、本開示は、可能な限り、任意の実施形態の1つまたは複数の機構を任意の他の実施形態の1つまたは複数の機構と組み合わせることができることを意図することを理解されたい。
【符号の説明】
【0176】
10 流体注入器
12 シリンジ
12a 造影剤シリンジ
12b 生理食塩水シリンジ
14 ハウジング
16 シリンジポート
17 流体経路セット、チューブセット
18 シリンジバレル
19 内部容積,内部
20 近位端
22 ノズル
23 角度
24 遠位端
24A スカラップまたはリッジ
26 プランジャ、プランジャカバー
26A 遠位面
27 空洞
28 ドリップフランジ
29 近位開口部
30 挿入部
31 開口部
32 ロックフランジ
34 識別タグ
36 センサ
40 ライン
44 流体容器
46 移送装置
48 スパイク
50 カップ
54 シリンジ支持部材、スリーブ
58 温度ストリップ
70 支持部
72 ベース
74 格納式ポール
76 下側支持部材
78 ハンドル
80 流体加温器
82 タッチスクリーンコントローラ
110 流体検証システム
112 電磁放射線源
114 センサ
116 中央処理ユニット
118 ディスプレイ
120 ハローまたは照射された識別パターン
122 ミラー
124 ピストンロッド、ピストン
126 光パイプ
130 光線、光ビーム
132 内部反射
134 側壁
135 ローリングダイヤフラムシリンジ
136 端壁
137 遠位端
138 ピストン
139 近位端
140 排出ネック
140a 接続部材
200 観察者
204 シリンジアセンブリ
210 圧力ジャケット
212 電磁放射線源
213 クランプ
214 内部容積
216 遠位端
218 近位端
219 側壁
221 貫通ボア
224 突出部品
244 ピストン係合部分
272 ランプ
276 中央部分
278 リブ
301 下端部
303 下端部
305 距離
339 流体ドット
354 レーザビーム、レーザ光ビーム、レーザビーム経路
356 表示
358 表示
360a 遠位部分
360b 近位部分
365 テンプレート
367 表示
369 テンプレート
370 ロックラグまたはリップ
373 テンプレート
375 表示
377 表示
383 テンプレート
385 表示
387 表示
390 キャップ
400 内側要素
410 ノズル
420 接続部材
430 突起
440 溝
460 環状側壁
470 把持要素
480 半径方向フランジ
550 パージ容器
552 コネクタ
554 流体ドット
556 基準ライン
558 上端部
560 距離
562 インジケータライン
563 円筒形本体
564 近位端
565 先細りの遠位端
566 電磁放射線源
567 ハロー
590 可撓性セクション、可撓性材料
591 可撓性セクション、ダイヤフラム
592 コネクタ
600 流体注入システム
602 支持部
610 光ファイバケーブル
650a フロートボール
650b フロートボール
650c フロートボール