IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ テレフオンアクチーボラゲット エル エム エリクソン(パブル)の特許一覧

特許7434590エッジコンピューティングのための分散アンカーのアプリケーショントリガセットアップ
<>
  • 特許-エッジコンピューティングのための分散アンカーのアプリケーショントリガセットアップ 図1
  • 特許-エッジコンピューティングのための分散アンカーのアプリケーショントリガセットアップ 図2
  • 特許-エッジコンピューティングのための分散アンカーのアプリケーショントリガセットアップ 図3a
  • 特許-エッジコンピューティングのための分散アンカーのアプリケーショントリガセットアップ 図3b
  • 特許-エッジコンピューティングのための分散アンカーのアプリケーショントリガセットアップ 図3c
  • 特許-エッジコンピューティングのための分散アンカーのアプリケーショントリガセットアップ 図4
  • 特許-エッジコンピューティングのための分散アンカーのアプリケーショントリガセットアップ 図5
  • 特許-エッジコンピューティングのための分散アンカーのアプリケーショントリガセットアップ 図6
  • 特許-エッジコンピューティングのための分散アンカーのアプリケーショントリガセットアップ 図7
  • 特許-エッジコンピューティングのための分散アンカーのアプリケーショントリガセットアップ 図8
  • 特許-エッジコンピューティングのための分散アンカーのアプリケーショントリガセットアップ 図9
  • 特許-エッジコンピューティングのための分散アンカーのアプリケーショントリガセットアップ 図10
  • 特許-エッジコンピューティングのための分散アンカーのアプリケーショントリガセットアップ 図11
  • 特許-エッジコンピューティングのための分散アンカーのアプリケーショントリガセットアップ 図12
  • 特許-エッジコンピューティングのための分散アンカーのアプリケーショントリガセットアップ 図13
  • 特許-エッジコンピューティングのための分散アンカーのアプリケーショントリガセットアップ 図14
  • 特許-エッジコンピューティングのための分散アンカーのアプリケーショントリガセットアップ 図15
  • 特許-エッジコンピューティングのための分散アンカーのアプリケーショントリガセットアップ 図16
  • 特許-エッジコンピューティングのための分散アンカーのアプリケーショントリガセットアップ 図17
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-02-09
(45)【発行日】2024-02-20
(54)【発明の名称】エッジコンピューティングのための分散アンカーのアプリケーショントリガセットアップ
(51)【国際特許分類】
   H04W 76/10 20180101AFI20240213BHJP
   H04W 88/14 20090101ALI20240213BHJP
   H04W 92/24 20090101ALI20240213BHJP
【FI】
H04W76/10
H04W88/14
H04W92/24
【請求項の数】 8
(21)【出願番号】P 2022552361
(86)(22)【出願日】2021-03-05
(65)【公表番号】
(43)【公表日】2023-04-17
(86)【国際出願番号】 IB2021051867
(87)【国際公開番号】W WO2021176415
(87)【国際公開日】2021-09-10
【審査請求日】2022-10-25
(31)【優先権主張番号】62/985,531
(32)【優先日】2020-03-05
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】598036300
【氏名又は名称】テレフオンアクチーボラゲット エルエム エリクソン(パブル)
(74)【代理人】
【識別番号】100109726
【弁理士】
【氏名又は名称】園田 吉隆
(74)【代理人】
【識別番号】100161470
【弁理士】
【氏名又は名称】冨樫 義孝
(74)【代理人】
【識別番号】100194294
【弁理士】
【氏名又は名称】石岡 利康
(74)【代理人】
【識別番号】100194320
【弁理士】
【氏名又は名称】藤井 亮
(74)【代理人】
【識別番号】100150670
【弁理士】
【氏名又は名称】小梶 晴美
(72)【発明者】
【氏名】マス ロシキ, マリア ルイザ
(72)【発明者】
【氏名】ミハーイ, アティッラ
(72)【発明者】
【氏名】ハレンストール, マグヌス
(72)【発明者】
【氏名】オルソン, マグヌス
【審査官】本橋 史帆
(56)【参考文献】
【文献】Motorola Mobility, Lenovo,Solution for Discovery of Edge Application Server[online],3GPP TSG SA WG2 #136AH S2-2000522,https://www.3gpp.org/ftp/tsg_sa/WG2_Arch/TSGS2_136AH_Incheon/Docs/S2-2000522.zip,2020年01月07日
【文献】Nokia, Nokia Shanghai Bell,Ethernet LAN Mobility[online],3GPP TSG SA WG2 #129 S2-1810439,https://www.3gpp.org/ftp/tsg_sa/WG2_Arch/TSGS2_129_Dongguan/Docs/S2-1810439.zip,2018年10月09日
【文献】Huawei, HiSilicon,Discovery of Edge Application Server based on AF Influence in Support of Edge Relocation[online],3GPP TSG SA WG2 #136AH S2-2000653,https://www.3gpp.org/ftp/tsg_sa/WG2_Arch/TSGS2_136AH_Incheon/Docs/S2-2000653.zip,2020年01月07日
【文献】Huawei, HiSilicon, CAICT,Solution for the KI#1: Discovery of EAS based on DNS mechanism[online],3GPP TSG SA WG2 #136AH S2-2001457,https://www.3gpp.org/ftp/tsg_sa/WG2_Arch/TSGS2_136AH_Incheon/Docs/S2-2001457.zip,2020年01月16日
(58)【調査した分野】(Int.Cl.,DB名)
H04B 7/24- 7/26
H04W 4/00-99/00
3GPP TSG RAN WG1-4
SA WG1-4
CT WG1、4
(57)【特許請求の範囲】
【請求項1】
ネットワークにおいて1つまたは複数のネットワーク機能によって実施される方法であって、前記方法は、
第1のユーザプレーン機能(UPF)にアンカリングされた第1のパケットデータユニット(PDU)セッションを介してユーザ機器(UE)におけるアプリケーションに関係するサービスのためのDNSクエリを受信するステップと、
前記DNSクエリに基づいて、UPF再アンカリングが前記アプリケーションのために必要とされると判定するステップと、
UPF再アンカリングが必要とされると判定したことに応答して、前記UEにおける前記アプリケーションとエッジアプリケーションサーバとの間で使用されるべきローカルUPFへの第2のPDUセッションを確立するステップと、
UPF再アンカリングが必要とされないと判定したことに応答して、前記第1のUPFを介してトリガされたものとして、前記アプリケーションのための前記サービスを提供するステップと
再アンカリングが成功したと判定したことに応答して、前記DNSクエリをドロップするステップと
を含む、方法。
【請求項2】
UPF再アンカリングが必要とされると判定するステップは、前記DNSクエリから完全修飾ドメインネーム(FQDN)を抽出することと、前記FQDNに関係するサービスレベル合意SLAおよびポリシのうちの少なくとも1つが、前記アプリケーションのための前記UPF再アンカリングが必要とされることを指し示すことを検証することとをさらに含む、請求項に記載の方法。
【請求項3】
前記DNSクエリが、アプリケーション関係メッセージである、請求項1に記載の方法。
【請求項4】
同じまたは異なるタイプの1つまたは複数のネットワーク機能をホストし、1つまたは複数の処理回路および1つまたは複数のメモリを備えるサーバシステムであって、前記メモリが、前記処理回路によって実行可能な命令を含んでおり、それによって、前記サーバシステムが、請求項1からのいずれか一項を実施するように設定された、サーバシステム。
【請求項5】
請求項1からのいずれか一項を実施するように適応された、サーバシステム。
【請求項6】
前記1つまたは複数のネットワーク機能が、少なくともセッション管理機能およびユーザプレーン機能を備える、請求項に記載のサーバシステム。
【請求項7】
コンピュータプログラムまたは命令を含む非一時的コンピュータ可読媒体であって、前記コンピュータプログラムまたは命令が計算サーバによって実行されたとき、前記計算サーバが請求項1からのいずれか一項に記載の方法を実施することをさせる、非一時的コンピュータ可読媒体。
【請求項8】
サーバシステムの少なくとも1つのプロセッサによって実行されたとき、前記サーバシステムが請求項1からのいずれか一項に記載の方法を行うことをさせる命令を備える、コンピュータプログラム。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願
本出願は、その開示の全体が参照により本明細書に組み込まれる、2020年3月5日に出願された、米国仮特許出願第62/98553号の利益を主張する。
【0002】
本開示は、一般にエッジコンピューティングに関し、より詳細には、エッジコンピューティングアプリケーションをサポートするユーザプレーン機能(UPF)再アンカリングに関する。
【背景技術】
【0003】
エッジコンピューティングは、クラウドコンピューティング能力およびサービス環境が、セルラネットワークのエッジに配置されることを可能にする、ネットワークアーキテクチャ概念である。エッジコンピューティングは、より低いレイテンシ、より高い帯域幅、低減されたバックホールトラフィックおよびいくつかの新しいサービスの見込みなど、いくつかの利益を約束する。
【0004】
ドメインネームシステム(DNS)
ドメインネームシステム(DNS)は、インターネットまたはプライベートネットワークに接続された、コンピュータ、サービス、または他のリソースのための階層的な分散型ネーミングシステムである。ドメインネームシステムは、参加エンティティの各々に割り振られたドメインネームに様々な情報を関連付ける。最も顕著には、ドメインネームシステムは、記憶されたドメインネームを、下位ネットワークプロトコルを用いてコンピュータサービスおよびデバイスの位置を特定し、識別するために必要とされる数値のIPアドレスに、より容易に変換する。ドメインネームシステムは、IETFによって規定されており、ドメインネームシステムのコアにあるデータベースサービスの技術的機能性を指定する。ドメインネームシステムは、インターネットプロトコルスイートの一部として、DNSプロトコル、DNSにおいて使用されるデータ構造およびデータ通信交換の詳細な仕様を規定する。インターネットは、2つの主要なネーム空間、すなわち、ドメインネーム階層およびインターネットプロトコル(IP)アドレス空間を維持する。ドメインネームシステムは、ドメインネーム階層を維持し、ドメインネーム階層とアドレス空間との間の変換サービスを提供する。インターネットネームサーバおよび通信プロトコルは、ドメインネームシステムを実装する。DNSネームサーバは、ドメインのためのDNS記録を記憶するサーバであり、DNSネームサーバは、DNSネームサーバのデータベースに対するクエリへの答えをもって応答する。
【0005】
今日のDNSは、ユーザの知覚されたトポロジーロケーションに基づいて、異なる応答を返すことができる。これらのサーバは、そのロケーションを識別するために、着信クエリのIPアドレスを使用する。たいていのクエリは、中間再帰的レゾルバから来るので、ソースアドレスは、クエリ発信者のものではなく再帰的レゾルバのものである。従来から、およびおそらくインスタンスの大部分において依然として、再帰的レゾルバは、トポロジー感覚においてクエリ発信者の適度に近くにある。これらのレゾルバについて、レゾルバ自体のIPアドレスを使用することは、クエリアのロケーションに基づいて応答を調整する権威ネームサーバにとって十分である。
【0006】
トポロジー的にクエリ発信者の近くにない再帰的レゾルバの場合に対処するために、IETFは、DNSメッセージに適切であるネットワーク情報を伝達するためのEDNS0(すなわち、RFC6891によるDNSエクステンション)オプションを規定する、RFC7871を規定している。EDNS0オプションは、応答を調整するために、権威ネームサーバのための(クライアントIPサブネットの形態の)発信者に関する十分なネットワーク情報を搬送することができる。EDNS0オプションはまた、調整された答えがそれらに向けられるネットワークアドレスの範囲を指し示すために、権限ネームサーバを提供する。
【0007】
3GPPにおけるエッジコンピューティング
次世代(5G)ネットワークアーキテクチャが、3GPP Rel.16において規定されている。図1(従来技術)は、3GPP TS23.501によって規定されている5G参照アーキテクチャを描く。本出願の範囲では、図1(従来技術)中に図示されている、以下のネットワーク機能の役割をハイライトする価値がある。
●UPFエンティティの選択および制御、関与するPSA UPFのトポロジーを維持すること、ANとUPFとの間で、およびUPFの間でトンネルを確立および解放することを含む、セッション確立、修正および解放を担当する、SMF(セッション管理機能)。SMFは、UPFにおけるトラフィックフォワーディングをも設定する。SMFは、PFCP手順を使用してN4参照ポイントを介してUPFと対話する。
●ユーザデータトラフィックをハンドリングする、UPF(ユーザプレーン機能)。中でも、UPFは、データネットワークへの相互接続の外部PDUセッションポイント(PDUセッションアンカー)を提供し、パケットルーティングおよびフォワーディング(たとえば、データネットワークのインスタンスにトラフィックフローをルーティングするためのアップリンク分類子(UL CL)のサポート、マルチホームPDUセッションをサポートするための分岐点のサポート)を実施する。
【0008】
SMF、UPF、AFなどであり得る、ネットワーク機能(NF)は、専用ハードウェア上のネットワーク・エレメントとして、専用ハードウェア上で走るソフトウェアインスタンスとして、または適当なプラットフォーム上、たとえば、クラウドインフラストラクチャ上でインスタンス化された仮想化された機能としてのいずれかで実装され得る。5Gサービスベースのアーキテクチャの制御プレーン上のNFは、NFサービスコンシューマまたはNFサービスプロデューサーであり得る。
【0009】
図2(従来技術)中に示されている各NFは、独立しており、別個のNFコンシューマに異なるサービスを与える。ネットワーク機能によって与えられるNFサービスの各々は、独立しており(たとえば、クラウドネイティブマイクロサービス)、再利用可能であり、(たとえば、スケーリング、修復などのために)同じネットワーク機能によって与えられる他のNFサービスとは無関係に管理方式を使用する。NFによって提供される各NFサービスは、3GPP TS29.5xxシリーズにおいて3GPPによって指定された標準化されたアプリケーションプロトコルインターフェース(API)によってアクセス可能である。
【0010】
各NFは、1つまたは複数のNFインスタンスとして、または同じサービスおよび同じネットワークスライスをサポートするNFインスタンスセット、換言すれば、同じタイプの交換可能なNFインスタンスのグループとして配置される。同じNFセット中のNFインスタンスは、ステートレスであり、地理的に分散され、数個のロケーションからサービスを、および各ロケーションにおいて数個の実行インスタンスを提供し得る。各NFインスタンスは、同じサービスの複数のインスタンス、NFサービスセット、換言すれば、NFインスタンス内の同じサービスタイプの交換可能なNFサービスインスタンスのグループを有することができる。図3a、図3bおよび図3c(従来技術)を参照されたい。
【0011】
単一のセット内のNF/サービスインスタンスは、共通のセッションコンテキスト/データベースへのアクセスを有する。NFの上記の説明は、5G SBAにおける制御プレーンNFに適用されるように見えるが、5G SBAにおけるユーザプレーンの一部であるUPFは、SBA原理をもサポートするように拡張されることが可能であり得ることに留意されたい。
【0012】
3GPP TS23.501の節5.13において述べられているように、エッジコンピューティングは、オペレータおよびサードパーティサービスが、トランスポートネットワーク上での低減されたエンドツーエンドレイテンシおよび負荷を通して効率的なサービス配信を達成するように、UEのアタッチメントのアクセスポイントの近くにホストされることを可能にする。5Gコアネットワークは、UEの近くのUPFを選択し、外部データネットワークへのN6インターフェースを介してUPFからローカルデータネットワークへのトラフィックステアリングを実行する。
【0013】
以下を含む、エッジコンピューティングを単独でまたは組み合わせてサポートするいくつかのイネーブラが、規定されている(3GPP TS23.501中の節5.13.)。
●ユーザプレーン(再)選択:5Gコアネットワークは、TS23.501の節6.3.3において説明されているように、ユーザトラフィックをローカルデータネットワークにルーティングするためにUPFを(再)選択する、
●ローカルルーティングおよびトラフィックステアリング:5Gコアネットワークは、ローカルデータネットワークにおいてアプリケーションにルーティングされるべきトラフィックを選択し、
○これは、節5.6.4において説明されているように、複数のPDUセッションアンカー(UL CL/IP v6マルチホーミング)をもつ単一のPDUセッションの使用を含む。
【0014】
少なくとも3つのコネクティビティモデルが、エッジコンピューティングのために適切であるとわかった。以下を含む、少なくとも3つのコネクティビティモデルが、図4(従来技術)中に図示されている3GPP技術報告TR23.748の節4.2においてキャプチャされている。
●分散アンカーポイント:PDUセッションアンカー(PSA)は、ローカルサイトに、ネットワークにおいて遠くに移動される。それは、すべてのユーザPDUセッショントラフィックについて同じである。再アンカリング(セッションサービス継続性#1、SSC#2およびSSC#3)が、長い距離を移動するとき、すべてのアプリケーションについてトラフィックルーティングを最適化するために使用される。SSCモード1、2および3の説明は、TS23.501の節5.6.9において見つけられる。
●セッションブレークアウト:PDUセッションは、中央サイトにおけるPDUセッションアンカーおよびローカルサイトにおけるPDUセッションアンカーを有する。それらのうちの1つのみが、IPアンカーポイントを提供する。エッジコンピューティングアプリケーショントラフィックは、UL分類子またはマルチホーミングBPテクノロジーを使用してローカルPDUセッションアンカーに選択的にそらされる。ローカルPDUセッションアンカーの再アンカリングが、ユーザが移動したとき、ローカルにそらされたトラフィックについてトラフィックルーティングを最適化するために使用される。
●複数のPDUセッション:エッジコンピューティングアプリケーションは、ローカルサイトにおけるPDUセッションアンカーを用いる特定のPDUセッションを使用する。アプリケーションの残りは、中央PDUセッションアンカーを用いるPDUセッションを使用する。アプリケーションとPDUセッションとの間のマッピングは、URSPルールによってステアリングされる。再アンカリング(SSC#2およびSSC#3)は、ユーザが移動したとき、エッジコンピューティングアプリケーションについてトラフィックルーティングを最適化するために使用される。
【発明の概要】
【0015】
アプリケーションについてUPF再アンカリングをトリガするためにネットワークにおいて1つまたは複数のネットワーク機能によって実施される方法のための実施形態が、開示される。方法は、第1のユーザプレーン機能(UPF)にアンカリングされた第1のパケットデータユニット(PDU)セッションを介してユーザ機器(UE)におけるアプリケーションに関係するサービスのためのトリガを受信することを含み、ここで、トリガは、DNS要求あるいはアプリケーションレベル要求またはデータであり得る。方法は、受信されたトリガに基づいて、UPF再アンカリングがアプリケーションのために必要とされると判定することをも含む。方法は、UPF再アンカリングが必要とされるかどうかを判定することと、UEにおけるアプリケーションとエッジアプリケーションサーバとの間で使用されるべきローカルUPFへの第2のPDUセッションを確立することと、UPF再アンカリングが必要とされない場合、第1のUPFを介してトリガされたものとして、アプリケーションのためのサービスを提供することとをも含む。
【0016】
一実施形態では、UPF再アンカリングが必要とされると判定することは、DNSクエリから完全修飾ドメインネーム(FQDN)を抽出することと、FQDNに関係する少なくともサービスレベル合意SLAおよび/またはポリシが、アプリケーションのためのUPF再アンカリングが必要とされることを指し示すことを検証することとをさらに含む。
【0017】
一実施形態では、再アンカリングが成功しており、トリガがDNSクエリである場合、DNSクエリは、ドロップされ、さらに続行するべきではない。
【0018】
いくつかの実施形態によれば、アプリケーションのためのUPF再アンカリングをトリガするためにネットワーク機能において実施される方法が、開示される。方法は、第1のユーザプレーン機能(UPF)にアンカリングされた第1のパケットデータユニット(PDU)セッションを介して、ユーザ機器(UE)におけるアプリケーションに関係するDNS要求またはアプリケーションデータ/要求であり得る、サービスのためのトリガを受信することを含む。方法は、アプリケーションのためのUPF再アンカリングを始動するために第2のネットワーク機能にトリガに関係する情報を提供し、トリガをバッファすることをも含む。方法は、アプリケーションのための成功したUPF再アンカリングに応答して、トリガを破棄するようにとの指示を受信することと、アプリケーションのための成功しなかったUPF再アンカリングに応答して、トリガをハンドリングすることとをも含む。
【0019】
一実施形態では、方法は、トリガのバッファリングに関連するタイマーを開始させることをも含み、別の実施形態では、タイマーが、トリガを破棄するようにとの指示を受信する前に満了したとき、サービスのためのトリガをハンドリングすること、換言すれば、アプリケーション要求/データをDNSにフォワーディングするかまたはアプリケーション要求/データをハンドリングすることをも含む。
【0020】
同じまたは異なるタイプの1つまたは複数のネットワーク機能をホストし、1つまたは複数の処理回路および1つまたは複数のメモリを備えるサーバシステムであって、メモリが、処理回路によって実行可能な命令を含んでおり、それによって、サーバシステムが、本明細書で説明される方法の実施形態のいずれかを実施するように設定された、サーバシステムの実施形態が、開示される。いくつかの実施形態では、ネットワーク機能は、セッション管理機能(SMF)およびユーザプレーン機能(UPF)を少なくとも備えるが、他の実施形態では、ネットワーク機能は、本明細書で説明されるDNS AFの機能を実施するネットワーク機能をも含み得る。
【0021】
本明細書で説明される方法の実施形態のいずれかを実施するように適応されたサーバシステムの実施形態が、開示される。
【0022】
ネットワーク機能をホストし、1つまたは複数の処理回路および1つまたは複数のメモリを備えるサーバであって、メモリが、処理回路によって実行可能な命令を含んでおり、それによって、サーバが、本明細書で説明される方法の実施形態のいずれかを実施するように設定された、サーバの実施形態が、開示される。
【0023】
本明細書の一部に組み込まれ、本明細書の一部を形成する添付の図面は、本開示のいくつかの態様を図示し、発明を実施するための形態と共に本開示の原理を解説するのに役立つ。
【図面の簡単な説明】
【0024】
図1】第3世代パートナーシッププロジェクト(3GPP)技術仕様(TS)23.501において説明されている、第5世代(5G)サービスベースのアーキテクチャ(SBA)を示す図である。
図2】5G SBAによる、複数のサービスインスタンスからなるネットワーク機能(NF)の構造の例を示す図である。
図3a】5G SBAにおけるネットワーク機能(NF)配置の3つの例を示す図である。
図3b】5G SBAにおけるネットワーク機能(NF)配置の3つの例を示す図である。
図3c】5G SBAにおけるネットワーク機能(NF)配置の3つの例を示す図である。
図4】エッジコンピューティング(EC)のために適切なコネクティビティモデルを示す図である。
図5】本開示のいくつかの実施形態による、セルラ通信ネットワークの一例を示す図である。
図6】本開示のいくつかの実施形態による、アプリケーションのためのUPF再アンカリングのためのトリガのための例示的方法を示す図である。
図7】本開示のいくつかの他の実施形態による、アプリケーションのためのUPF再アンカリングのためのトリガのための例示的方法を示す図である。
図8】本開示のいくつかの実施形態による、スタンドアロンDNS AFを使用するPSA/UPFリロケーションのための例示的なシーケンス図である。
図9】本開示のいくつかの実施形態による、新しい論理がSMFの一部として配置されたときの、PSA/UPFリロケーションのための例示的なシーケンス図である。
図10】本開示のいくつかの実施形態による、外部AFトリガに基づくPSA/UPF再アンカリングの例を示す図である。
図11】本開示のいくつかの実施形態による、ネットワークノード、特に、無線アクセスノードとして働くネットワークノードの概略ブロック図である。
図12】本開示のいくつかの実施形態による、図11のネットワークノードの仮想化された実施形態を示す概略ブロック図である。
図13】本開示のいくつかの他の実施形態による、図11のネットワークノードの概略ブロック図である。
図14】本開示のいくつかの実施形態による、UEの概略ブロック図である。
図15】本開示のいくつかの実施形態による、図14のUEの概略ブロック図である。
図16図14および図15のUEと共に動作可能で、本開示の機能性をサポートすることが可能な図11図13のネットワークノードを有する、通信ネットワークを含む通信システムを示す図である。
図17図16の通信システムにおいて存在し得るような、UE、基地局、およびホストコンピュータを示す図である。
【発明を実施するための形態】
【0025】
一般に、本明細書で使用されるすべての用語は、異なる意味が、明らかに与えられ、および/または用語が使用されるコンテキストから暗示されない限り、関連のある技術分野における用語の通常の意味に従って解釈されるべきである。1つの(a)/1つの(an)/前記(the)エレメント、装置、構成要素、手段、ステップなどへのすべての参照は、別段に明記されていない限り、エレメント、装置、構成要素、手段、ステップなどのうちの少なくとも1つの事例を指すものとしてオープンに解釈されるべきである。本明細書で開示される任意の方法のステップは、ステップが別のステップに後続または先行すると明示的に説明されない限り、および/またはステップが別のステップに後続または先行しなければならないことが暗黙的である場合、開示される厳密な順序で実施される必要はない。本明細書で開示される実施形態のうちのいずれかの特徴は、適当な場合はいつでも、任意の他の実施形態に適用され得る。同様に、実施形態のうちのいずれかの利点は、任意の他の実施形態に当てはまることがあり、その逆も同様である。同封の実施形態の他の目的、特徴、および利点が、以下の説明から明らかになろう。
【0026】
実施形態は、例として5Gシステムを使用して本明細書で説明されるが、本明細書で説明される実施形態は、アプリケーション関係トリガ機能性に基づいて類似のエッジコンピューティングおよびリロケーションを実施する、ネットワーク機能またはネットワーク機能のシステムに適用され得るが、ネットワークの4Gまたは6Gまたは以降の世代であり得ることが当業者には明らかであろう。
【0027】
以下が、本出願において言及される。
【0028】
スタブレゾルバ:[RFC1034]、セクション5.3.1において説明されているクライアント側の単純なDNSプロトコル実装形態。
【0029】
権威ネームサーバ:1つまたは複数のDNSゾーンに対して権威を有するネームサーバ。これらは、通常、直接的にスタブレゾルバまたはエンドユーザクライアントによってコンタクトされないが、再帰的レゾルバによってコンタクトされる。[RFC1035]、セクション6において説明されている。
【0030】
再帰的レゾルバ:ドメインの委任チェーンを追うことによってクライアントのためのドメインネームをレゾルブすることを担当するネームサーバ。再帰的レゾルバは、迅速にクライアントクエリに応答することが可能であるために、キャッシュを頻繁に使用する。[RFC1035]、セクション7において説明されている。
【0031】
フォワーディングレゾルバ:[RFC2308]、セクション1において「フォワーダ」と呼ばれている、別の再帰的レゾルバにその責任を受け渡すネームサーバ。中間ネームサーバ:再帰的レゾルバまたはフォワーディングレゾルバなど、スタブレゾルバと権威ネームサーバとの間のネームサーバ。DNSは、インターネットにおいてアプリケーションのIPアドレスをディスカバーするために、アプリケーションクライアントのための最も一般的に使用される機構である。DNSは、ユーザが、アプリケーションホストネームをハンドリングし、アプリケーションホストネームをアプリケーションサーバのIPアドレスに変換することを可能にする。
【0032】
無線アクセスノード:本明細書で使用される、「無線アクセスノード」または「無線ネットワークノード」は、信号を無線で送信および/または受信するように動作する、セルラ通信ネットワークの無線アクセスネットワークにおけるノードである。無線アクセスノードのいくつかの例は、限定はしないが、基地局(たとえば、第3世代パートナーシッププロジェクト(3GPP)第5世代(5G)新無線(New Radio:NR)ネットワークにおけるNR基地局(gNB)、あるいは3GPP Long Term Evolution(LTE)ネットワークにおける拡張またはエボルブドノードB(eNB))、高電力またはマクロ基地局、低電力基地局(たとえば、マイクロ基地局、ピコ基地局、ホームeNBなど)、およびリレーノードを含む。
【0033】
コアネットワークノード:本明細書で使用される、「コアネットワークノード」は、コアネットワークにおける任意のタイプのノード、またはコアネットワーク機能を実装するノードである。コアネットワークノードのいくつかの例は、たとえば、モビリティ管理エンティティ(MME)、パケットデータネットワークゲートウェイ(PGW)、サービス能力公開機能(SCEF)、ホーム加入者サーバ(HSS)などを含む。コアネットワークノードのいくつかの他の例は、アクセスおよびモビリティ機能(AMF)、ユーザプレーン機能(UPF)、セッション管理機能(SMF)、認証サーバ機能(AUSF)、ネットワークスライス選択機能(NSSF)、ネットワーク公開機能(NEF)、ネットワーク機能(NF)リポジトリ機能(NRF)、ポリシ制御機能(PCF)、ユニファイドデータ管理(UDM)など、1つまたは複数のネットワーク機能/NFインスタンス/NFセットを実装またはホストするノードまたは計算サーバを含む。
【0034】
無線デバイス:本明細書で使用される、「無線デバイス」は、無線アクセスノードへの信号を無線で送信および/または受信することによってセルラ通信ネットワークへのアクセスを有する(換言すれば、セルラ通信ネットワークによってサーブされる)任意のタイプのデバイスである。無線デバイスのいくつかの例は、限定はしないが、3GPPネットワークにおけるユーザ機器デバイス(UE)、およびマシン型通信(MTC)デバイスを含む。
【0035】
ネットワークノード:本明細書で使用される、「ネットワークノード」は、無線アクセスネットワークの一部またはセルラ通信ネットワーク/システムのコアネットワークのいずれかであるノードである。
【0036】
CPまたはUP機能:規定された機能的挙動および規定されたインターフェースを有する、ネットワークにおける機能。
モバイルネットワークにおけるエッジアプリケーションサーバディスカバリ
【0037】
3GPPモバイル端末は、UEにおけるアプリケーションによって必要とされるDNSクエリを発信する、3GPPモバイル端末の動作可能なシステムにおけるDNSスタブレゾルバを有する。PDUセッション確立において、モバイルネットワークは、PCOにおけるDNSサーバ、典型的にオペレータDNSのアドレスをUEに提供することができる。UE DNSクライアントは、次いで、提供されたDNSサーバにそのPDUセッションを使用してアプリケーションのDNSクエリを送る。エッジコンピューティング(EC)を用いて、アプリケーションサーバは、分散され、セルラネットワークのエッジに配置され得る。このシナリオでは、UEの最も近くにあるエッジアプリケーションサーバを選択することが可能であることが望まれる。問題となるのはトポロジー距離であり、それは、パケットが、あるホストから他のホストに進むために要するホップ数または時間であり、それは、地理距離に必ずしも関係するとは限らないが、トラフィックがUEとアプリケーションサーバとの間でどのようにルーティングされるかに関係する。それゆえ、エッジコンピューティングについて、エッジアプリケーションサーバと、N6インターフェース上で受信されたアプリケーショントラフィックを最良のアクセスにステアリングする好適なローカルUPFの両方が、選択される必要がある。すなわち、以下が必要とされる。
●UEの最も近く(トポロジー距離)にあるエッジアプリケーションサーバを返すDNS。
●以下を提供するローカルUPF。
○そのエッジアプリケーションサーバへの最適なルーティングをもつデータネットワーク(換言すれば、PSA)へのN6インターフェースアクセス、
○ブレークアウトコネクティビティモデルのための、選択されたPSAにこのアプリケーションのULトラフィックを選択的にステアリングすること、およびDLにおいてPDUセッションのトラフィックをアグリゲートすることが可能なULCL
注:これらの2つの役割の各々のための異なるUPFがあり得る。
【0038】
リソースの集中は、総所有コスト観点から分散よりも良好である。たとえば、動的ULCL挿入を可能にするソリューションが選好される。再帰的レゾルバが、中央PDUセッションアンカーの後ろにあり、よってクエリ発信者からトポロジー的に遠いとき。再帰的レゾルバのIPアドレスは、応答を調整し、UEの近くのエッジアプリケーションサーバを提供するために使用され得ない。応答は、原則として、別のアプリケーションサーバがUEのより近くに配置されている場合でも、中央PDUセッションアンカーの近くにあるASのアドレスを含む。3GPP技術報告TR23.748は、Rel-17の5Gコアネットワーク(5GC)においてエッジコンピューティング(EC)をサポートするための潜在的アーキテクチャ拡張を研究し、それの評価を実施する。2つの主要な目的のうちの1つは、エッジコンピューティング環境に配置されたアプリケーションサーバのIPアドレスのディスカバリを含む、拡張エッジコンピューティングサポートのための潜在的システム拡張を研究することである。数個のソリューションが、EASディスカバリのためにTR23.748において提案されている。ソリューションは、エッジコンピューティングのための異なるコネクティビティモデルをターゲットにしている。
【0039】
現在3GPP TR23.748においてEASディスカバリおよび選択のために提案されている異なるソリューションは、以下を仮定する。
●分散アンカーポイントコネクティビティモデルが仮定され、その場合、UE IPアドレスは、EAS選択のためにUE情報において使用され得るか、あるいは
●元のPDUセッションのための中央PSAがあり、その場合、
○(ローカルPSAをもつ)新しいPDUセッションが、(URSPルールに基づいて)ECアプリケーションのためにUEによって確立され、マルチプルPDUコネクティビティモデルを提供するか、または
○UEロケーションに関する追加情報が、ECSエクステンション[2]の形態でエッジアプリケーションDNS権威サーバに提供される(たとえば、TR23.748の節6.3におけるソリューション#3を参照)のいずれか、
のいずれか。
【0040】
しかしながら、扱われていない重要なシナリオがある。モバイルネットワークオペレータ(MNO)配置は、徐々にPSAを分散させると仮定され得、そのようなマイグレーション段階中に、分散PSAは、コスト、スケーラビリティ、インターネットアクセス限界などの理由により、当該のエリア内のUEトラフィックの一部分のみをハンドリングできる可能性がある。それゆえ、オンデマンドで、換言すれば、ECがそれのために適用されるセッションを始動したい特定のUEのために、集中アンカーポイントから分散アンカーポイントコネクティビティモデルへの遷移を提供するソリューションが、必要とされる。
【0041】
本明細書では、様々な実施形態が、この問題に対するソリューションを説明する。いくつかの実施形態は、EC関係セッションを始動するUEのための、分散アンカーポイントコネクティビティモデルへのオンデマンド遷移の機能性を提示する。遷移のためのトリガは、たとえば、ECアプリケーションのためのFQDNレゾリューションを要求するUE DNSクエリである。要求に基づいて、MNO(たとえば、SMF)は、分散アンカーポイントが、UE PDUセッションのために割り振られるべきであるかどうかを決める。分散アンカーポイントが割り振られるべきである場合、MNOは、現在のPSAをリロケートするか、またはローカルPSAを用いてUEのために新しいPDUセッションをセットアップするかのいずれかを行う。元のDNSクエリはドロップされ、UEに、再送信時間ウィンドウ内に元の要求に対する応答を受信することに失敗した後、新しい(ローカル)PSAを通してDNS要求を繰り返えさせる。今度は新しい(ローカル)PSAを通して再送信された要求を受信するDNSは、ユーザロケーションの近くのASにFQDNをレゾルブする。
【0042】
これは、
- アプリケーションが、エッジAS(EAS)ディスカバリのための機構としてDNSを使用することを継続すること、および
- オペレータが、PSAをリロケートする、または選択プロセス中に所与のアプリケーションのための新しいPSAをセットアップすること
を可能にする、モバイルネットワークにおけるエッジコンピューティングのためのアプリケーションサーバディスカバリおよび選択のためのソリューションであり、よって、必要性ごとに分散アンカーを提供し、これは、いくらかのオペレータ配置シナリオにおいてEC関係運営コストを低減する際に著しく寄与することができる。
【0043】
必要とされる機能性は、単独で実装されるか、またはSMFなど、5G SBAの既存のネットワーク機能(NF)に統合され得る。SMFと統合された場合、SMFは、以下の拡張または簡略化、たとえば、
- 再アンカリングを達成するために、既存の3GPP手順に依拠する標準的な手順SMFに対する更新が、必要とされない、
- SMFは、PDUセッション情報へのフルアクセスを有する、
を提供することができる。これは、SMFが再アンカリング決定において追加情報を考慮することを可能にする。たとえば、IPアドレス変更をサポートしないセッションにおけるいくらかの進行中のトラフィックは、再アンカリングのSSCモード#2ではなくSSCモード#3タイプを選定するか、または他のEASディスカバリおよび選択機構、たとえば、動的ULCL挿入を使用する「セッションブレークアウト」コネクティビティモデルを仮定するTR23.748におけるソリューション#3を使用するようにSMFに影響を及ぼすことがある。
【0044】
次に、本明細書で企図される実施形態のうちのいくつかが、添付の図面を参照しながらより十分に説明される。しかしながら、他の実施形態が、本明細書で開示される主題の範囲内に含まれており、開示される主題は、本明細書で記載される実施形態のみに限定されると解釈されるべきではなく、むしろ、これらの実施形態は、当業者に主題の範囲を伝達するために例として提供される。
【0045】
図5は、本開示の実施形態が実装され得るセルラ通信システム200の一例を図示する。本明細書で説明される実施形態では、セルラ通信システム200は、NR無線アクセスネットワーク(RAN)を含む5Gシステム(5GS)、またはLTE RANを含むエボルブドパケットシステム(EPS)である。この例では、RANは、対応する(マクロ)セル204-1および204-2を制御する、LTEではeNBと呼ばれ、5G NRではgNBと呼ばれる、基地局202-1および202-2を含む。基地局202-1および202-2は、一般に、本明細書では、まとめて基地局202、および個々に基地局202と呼ばれる。同じように、(マクロ)セル204-1および204-2は、一般に、本明細書では、まとめて(マクロ)セル204、および個々に(マクロ)セル204と呼ばれる。RANは、対応するスモールセル208-1~208-4を制御するいくつかの低電力ノード206-1~206-4をも含み得る。低電力ノード206-1~206-4は、(ピコまたはフェムト基地局など)スモール基地局、あるいはリモート無線ヘッド(RRH)などであり得る。特に、図示されていないが、スモールセル208-1~208-4のうちの1つまたは複数は、基地局202によって代替的に提供され得る。低電力ノード206-1~206-4は、一般に、本明細書では、まとめて低電力ノード206、および個々に低電力ノード206と呼ばれる。同じように、スモールセル208-1~208-4は、一般に、本明細書では、まとめてスモールセル208、および個々にスモールセル208と呼ばれる。セルラ通信システム200は、5GSでは5Gコア(5GC)と呼ばれる、コアネットワーク210をも含む。基地局202(および随意に、低電力ノード206)は、コアネットワーク210に接続される。
【0046】
基地局202および低電力ノード206は、対応するセル204および208において無線デバイス212-1~212-5にサービスを提供する。無線デバイス212-1~212-5は、一般に、本明細書では、まとめて無線デバイス212、および個々に無線デバイス212と呼ばれる。無線デバイス212は、本明細書ではUEとも呼ばれることもある。
【0047】
エッジコンピューティングのための再アンカリングのための必要とされる機能性
提案される新しい論理のジェネリック機能性のための実施形態が、1つまたは複数の実施形態による方法を図示する図6中に示されている。方法の前提条件は、ユーザ(UE)が、あらかじめ確立されたPDUセッションを有すること、および費用効率のために、PDUセッションが、たとえば、5GコアにおけるSMFによって中央PSAを割り振られていることである。方法は、UE PDUセッション内で開始されるべき特定のアプリケーション(アプリ)に関係するトリガを受信するステップ60で開始する。このトリガのための複数の代替実施形態があり、各々は、少し異なる手順、たとえば、以下を暗示する。
- UEからのDNSクエリ:UEにおけるアプリは、再アンカリングがそれのために必要とされるサービスを表すFQDNのためにDNSクエリを始動する。このオプションのための対応する実施形態は、以下のセクションI、II、IIIにおいてさらに詳述される。
- 外部AFからのトリガ:アプリケーションAFは、PCFを、PDUセッションのためのルーティング要求を始動するようにトリガする、Npcf_PolicyAuthorization_Create要求を(NEFを通して)PCFに送る。方法のためのこの代替実施形態は、以下のセクションIVにおいてさらに説明される。
- MNOは、特定のアプリケーション(アプリ)からのトラフィックまたは特定のアプリケーション(アプリ)のトラフィックを弁別するために、(たとえば、UPFにおける)ディープパケット検査(DPI)エンジンを使用する。所与のUE(ユーザ)のためのいくつかのアプリケーションのディスカバリが、次いで、手順をトリガする。トラフィック弁別は、たとえばTLSクライアントハローサーバネーム指示(SNI)を使用するDPIに基づき得るか、またはトラフィック弁別は、アプリケーションプロバイダなどによって発行または提供された宛先IP範囲に基づき得る。
トリガが受信されると、新しい論理は、ステップ61において、アプリを識別し、関連のあるSLA設定をチェックし、また、所与のアプリおよびユーザ(PDU)セッションに関係するポリシについてチェックまたは要求し得る。ステップ62において、UPF再アンカリングがアプリのために必要とされる場合、ステップ63において、それは、対応するPDUセッションのUPF再アンカリング手順を始動またはそれの始動をトリガし、他の場合は、再アンカリングは行われない(ステップ64)。ステップ65において、UPF再アンカリングが成功した場合、方法は、新しいアンカーを通したアプリセットアップをステップ66において可能にすることによって、たとえば、UEに、新しいPDUセッションを介して別のDNS要求を送ることを強制するために、UPF再アンカリングにおけるPDUセッション再確立手順においてDNSレゾルバアドレスを提供することによって続行する。さもなければ、アプリケーションは、前のUPFを介して継続する(ステップ67)。
【0048】
I.DNS要求トリガがUEから受信された場合の必要とされる機能性
新しい論理によって実施される方法の実施形態が、図7中に図示されている。新しい論理は、(SMFまたはUPFなど)5Gコアの既存のNF内にコロケートされ得るか、または5GコアにおけるNFは、本明細書における実施形態をサポートするために追加の論理を用いて拡張される。他の好適なNFが、追加の論理をホストするために使用され得る。新しい論理は、スタンドアロンネットワーク機能NFであってもよい。この実施形態では、オーグメンテッドNFまたはスタンドアロンNFは、PDUセッションを介してUEから(要求とも呼ばれる)DNSクエリをステップ70において受信する。オーグメンテッドNFがSMFである場合、UPFは、最初に、N3参照ポイントを介してDNSクエリを受信し、DNSクエリをフィルタ除去し、N4参照ポイントを介してSMFにDNSクエリを送る。UEにおけるクライアントからのDNSクエリは、ネットワークにおけるオーグメンテッドNFまたはスタンドアロンNFによるUPF再アンカリングの始動をトリガする。ステップ71において、TLSを介したDNSまたはHTTPを介したDNSが、DNSクエリと共に使用される場合、ネットワークは、DNSクエリを受信するNF(新しい論理をホストするスタンドアロンNFまたはNF、あるいはPDUセッションまたはN3参照ポイントを終端するUPF)が、セキュア接続を終端するように設定される。SMFが、追加の論理を用いて拡張された場合、UPFはまた、N3インターフェースを介して受信されたDNS要求のためのセキュア接続を終端し、新しい論理をホストするSMFにDNSクエリをフォワーディングすることができる。オーグメンテッドNFまたはスタンドアロンNFは、DNSクエリをバッファし、FQDNを抽出し、関連のあるSLA設定をチェックする。オーグメンテッドNFまたはスタンドアロンNFは、さらに、所与のサービス(FQDN)およびユーザ(PDU)セッションに関係するポリシについてチェックまたは要求し得る。ステップ72において、再アンカリングが、サービス(換言すれば、アプリ)のために必要とされるかまたはサービス(換言すれば、アプリ)のために適用されるべきであると判定された場合、それは、所与のセッションのために再アンカリング手順をステップ73において始動する。さもなければ、DNS要求(クエリ)は、DNSシステム/サーバに向かってフォワーディングされる(ステップ74)。ステップ75において、再アンカリングが、成功したかまたは確認応答された場合、NFは、ステップ76において最初のDNSクエリ(要求)をドロップする、換言すれば、DNSシステム/サーバに最初のDNSクエリ(要求)をフォワーディングしない。DNS要求(クエリ)をドロップしたとき、UEは、その後、DNS要求(クエリ)のための内部再送信時間の満了の後、別の要求を再送信する。再アンカリングがステップ77sにおいて成功しなかったか、またはトリガのバッファリングに関連するタイマーが、成功した再アンカリングの指示を得る前に満了した場合、DNSにフォワーディングすることによって、またはトリガがアプリケーション要求またはデータである場合はトリガをハンドリングすることによって、DNS要求をハンドリングする。
【0049】
II.スタンドアロンDNS AF機能性
図8は、DNSアプリケーション機能(AF)と称される別個のNFにおいて実装されるDNS要求に基づいてUPF再アンカリングをトリガする機能性を図示する、実施形態のための例示的なシーケンス図を図示する。本明細書で説明されるDNS AFは、完全なDNSサーバではない。UEが、エッジコンピューティング(EC)がそれのために適用されるべきであるPDUセッションを確立するとき、5Gコアネットワークの既存の機構が、UEがDNS AFにDNSクエリを送ることを可能にするために使用され得る。そのような機構の例は、DNSサーバとして使用されるべきDNS AFアドレスを備えるPCO情報エレメントを、PDUセッション確立受付メッセージにおいてUEにSMFによって送ることを含む。確立されたPDUセッションは、アプリケーショントラフィックの通信のために使用される。詳細なステップが、以下で説明される。
ステップ8-1.ECサービスが、FQDN(AS-FQDN)よって識別される。UEにおけるアプリケーションは、エッジアプリケーションサーバ(EAS)をディスカバーするようにとのDNSディスカバリ要求を送信する。
ステップ8-2.DNS AFが、DNS要求を受信し、PDUセッションUPF再アンカリングがアプリケーションのために必要とされるかどうかを判定する。UPF再アンカリングが必要とされるかどうかを判定するために、DNS AFは、DNS要求からFQDNを抽出し、FQDNが、エッジブレークアウトのためのSLA合意下にあるかどうかをチェックする。UPF再アンカリングが必要とされる場合、DNS AFは、UE IPアドレスを抽出し、DNS AFにDNS要求をバッファし、トリガのバッファリングを監視するためのタイマーとしても使用される、それが始動した再アンカリング手順のためのタイマーを開始させる。
ステップ8-3a~8-3b.再アンカリング手順が、PDUセッションに伴うPCFへのトラフィック情報を更新することによって始動される。2つ以上のPCFがある場合、DNS AFは、最初にPDUセッションのためのPCFを見つけるために、アプリケーション機能要求を特定のPCFインスタンスにバインドするために使用される、バインディングサポート機能(BSF)にコンタクトする。BSF(およびステップ8-4におけるPCF)と通信することが可能であるために、DNS AFは、ステップ8-2において抽出されたNATおよびIPアドレスが、BSFを照会するとき、重複するUE IPシナリオにおけるドメイン識別子を用いて補完される前に配置される必要がある。DNS-AFは、UP PDUセッションのためのPCFを受信する。
ステップ8-4a~8-4b.DNS AFは、Npcf_PolicyAuthorization_Create要求をPCFに送り、それによって、DNS AFは、再アンカリング/再ルーティングされるべき(UE IPアドレス/ドメインIDによって識別された)PDUセッションのための要求を始動する。Npcf_PolicyAuthorization_Create要求は、以下の情報、すなわち、
- 更新トラフィックルーティング情報、
- afAppId、および
- ターゲットDNAIを含むUPFの再アンカリングを要求するためのafRouteReq
を備える。afAppIdは、たとえば、FQDNに対応するAppIdを施されることによって、DNS AFだけではなくアプリケーションをも識別する。PCFは、受信された情報に基づいて要求を認可する。情報のうちの1つまたは複数は、PCFが、特定のPDUセッションについて、および特定のアプリケーションについて、DNS AFからの受信された要求を認可することを可能にする。提供されるターゲットDNAIは、特定のDNアクセスロケーションを必ずしも識別するとは限らず、UEの最も近くのPSAを表す。PCFが要求を認可した場合、PCFは、アプリセッションを作成し、要求が認可されたという確認応答として、201createdメッセージを用いて応答する。
ステップ8-5.PCFは、ポリシを決定し、特定のDNアクセスロケーションを識別しないが、代わりにUEアプリケーションについて最も近くのPSAを識別する提供されたDNAIに、アプリケーションのためのすべてのユーザトラフィックをステアリングするようにSMFに命令する、対応するPCCルールをSMFにプロビジョニングする。
ステップ8-6.SMFは、UEについて最も近くのPSAであるようにローカルUPFを選択するために続行する。SMFは、UEのより最近のロケーションを必要とし得る。より最近のUEロケーションがSMFにおいて利用可能ではない場合、SMFは、3GPP TS29.518、チャプター5.3.1において説明されているように、ワンタイム報告タイプを用いてNamf_EventExposureサービスを呼び出すことによって、AMFからUEロケーションを取得する。SMFは、PCFによって取得された情報およびより最近のロケーション情報を使用して、選択されたローカルPSA(UPF2)へのアプリケーションのための再アンカリングを始動する。3GPP TS23.501およびTS23.502において説明されているSSCモード2手順およびSSCモード3手順の両方が、適用され得る。
ステップ8-7.SSCモード2手順およびSSCモード3手順の一部として、SMFは、UEに、PDUセッションを再確立することを要求する。UEによるPDUセッション再確立中に、SMFは、今回、DNS AFではなく、新しいセッションのためのDNSレゾリューションのためのMNO DNSアドレスを備えるPCOを提供する。UEは、PDUセッションを再確立し、今回、PDUセッションは、ローカルPSA(UPF2)にアンカリングされる。ローカルPSA/UPF2におけるトラフィックの監視が、UEトラフィックアクティビティを追跡するために、SMFによってアクティベートされる。
注:ローカルPSA/UPF2からの非アクティビティ報告が、後で、中央PSAへの別の再アンカリングをトリガし得る。
ステップ8-8.SMFは、DNS AFにPSAの変更(DNAI変更)について通知する。通知が、ステップ8-2において開始されたタイマーが満了する前にDNS AFにおいて受信されなかった場合、タイマーの満了時に、再アンカリングは成功しなかったと見なされ、元のDNS要求が、レゾリューションのためにDNSサーバにフォワーディングされる。
ステップ8-9.再アンカリングが成功したことを指し示す、SMFからの通知に基づいて、DNS AFは、DNS AFがステップ8-2においてバッファしたDNS要求をドロップする。
ステップ8-10.ステップ8-4において作成されたアプリケーションセッションコンテキストは、新しいPDUセッションが、ローカルPSA/UPF2を用いて確立されたとき、DNS AFによって削除される。代替的に、PCFは、PCFが、ローカルPSA/UPF2へのPDUセッションが成功裡に確立されたという確認をSMFから取得した後、コンテキストを取り除き得る。
ステップ8-11a~8-11b.ステップ8-7においてPDUセッションを確立した後、UEは、今回、PCOにおいて提供されたMNO DNSを使用してDNS要求を再送信する。DNS要求は、DNSレゾルバ(MNO DNS)にフォワーディングされるローカルPSA/UPF2に、確立されたPDUセッションを介して送信される。DNS要求は、エッジアプリケーションサーバにレゾルブされる。アプリケーショントラフィックの送信は、ローカルPSA/UPF2を介してUEと選択されたエッジASとの間で開始する。
【0050】
III.SMFの一部としてのDNS構成要素
DNSクエリトリガのための提案される機能性が、SMFにおいて配置される場合は、図9中に描かれているように、簡略化の可能性を与える。ステップ9-0aおよび9-0bにおいて示されている前提条件は、以下からなる。
a.静的ポリシが、DNS AFを備える、換言すれば、DNS構成要素をホストするSMFにおいて事前設定される場合、静的ポリシは、エッジブレークアウトのためのSLA合意でさらに事前設定される。この実施形態では、SMFは、ローカルアクセスを必要とするFQDNの情報を有し、UEロケーションの最も近くにあるPSAが選好されると仮定される。
注:SMFは、以下の変形態b.とは異なり、どのUE PDUセッションがどのサービス(FQDN)のために再アンカリングされることを可能にされるかの情報を有しない。
b.またはポリシが、(中央PSA UPF1に対する)PDUセッション確立の一部としてSMFにPCFによって動的に提供され、ポリシに対する変更が識別されたときに動的に提供される場合、PCFは、ECのために可能にされたFQDNと、確立されたPDUセッションのための対応するDNAIとを含む対応するPCCルールをSMFに提供する。提供されるDNAIは、特定のロケーションをポイントしないが、UEの最も近くにあるPSAを指す。PCFは、DNS要求に固有のポリシに基づいてPCCルールを決定し得る。
【0051】
PDUセッション確立の一部として、SMFは、DNS要求を送るために使用するためのDNSアドレスを指し示すPCO情報エレメントをUEに提供する。SMFはまた、SMFにいくらかのDNS要求をフォワーディングするようにUPFを設定する。以下は、前提条件ステップ9-0aおよび9-0bに続く、図9のシーケンス図中に図示されているステップを説明する。
ステップ9-1.PDUセッションが、すでに確立されている。ECサービスが、FQDN、すなわち、AS-FQDNよって識別される。UEにおけるアプリケーション(アプリ)が、エッジアプリケーションサーバ(EAS)をディスカバーするようにとのDNSディスカバリ要求を送る。DNSディスカバリ要求は、SMFに中央PSA(UPF1)によってフォワーディングされる。
ステップ9-2.SMFが、FQDNを抽出し、(FQDNをもつ)アプリが、エッジブレークアウトのためにUPF再アンカリングをトリガするかどうかを判定する。はいの場合、SMFは、DNS要求をバッファする。アプリケーションのためのUPF再アンカリングの決定は、SMFにおいてローカルに設定されたSLA情報に基づくか、またはPDUセッションのためにPCFによってプロビジョニングされたPCCルールに基づくかのいずれかであり得る。
ステップ9-3.提供されるDNAIは、特定のUEロケーションをポイントせず、UEの最も近くのPSAを表す。SMFは、アプリケーションについてUEの最も近くにある可能性があるローカルPSA(UPF2)を選択する。最新の(またはより最近の、または現在の)UEロケーションが利用可能ではない場合、SMFは、(3GPP TS29.518、節5.3.1において説明されているように)ワンタイム報告タイプを用いてNamf_EventExposureサービスを呼び出すことによって、AMFからUEロケーションを検索する。ロケーションは、次いで、ローカルPSA(UPF2)を選択する際に使用される。
ステップ9-4.SMFは、選択されたローカルPSA(UPF2)への再アンカリングを始動する。既存のSSCモード2手順およびSSCモード3手順のいずれも適用され得、ここで、SMFは、UEに(たとえば、PDUセッションを再確立するようにとの指示を用いたPDUセッション確立/修正/解放を介して)PDUセッションを再確立することを要求し、ローカルPSA(UPF2)は、PDUセッションのためのローカルアンカーとして割り振られる。SMFは、UEとの新しいPDUセッション確立手順の一部として、UEにPCO IEにおいてDNSレゾルバアドレスを提供する。関連のあるECフローについての使用報告が、アクティビティを追跡するために、ローカルPSA(UPF2)においてアクティベートされる。
注:UPF2からの非アクティビティ報告が、後で、中央PSAへの別の再アンカリングをトリガし得る。
ステップ9-5.SMFは、ステップ9-1においてバッファされたDNS要求をドロップする。
ステップ9-6a、9-6b.UEは、(たとえば、UEにおける満了タイマーの後)その同じFQDNのためにDNS要求を再び送る。DNS要求は、新しいセッションのセッション確立において提供されたDNSレゾルバまでローカルPSA(UPF2)を通り、DNS要求は、TR23.748のソリューション6.Xにおいて説明されているように、エッジASにレゾルブされる。アプリケーショントラフィックは、次いで、選択されたエッジASに向かって開始する。
【0052】
IV.外部AFからのトリガ
UPF再アンカリングのためのトリガが、外部AFからコアネットワークにおいていつ受信されるかを説明する実施形態が、本明細書で説明され、図10中に図示されている。
ステップ10-1.外部AFは、コアネットワークにおいて、確立されたPDUセッションを介してアプリセットアップメッセージ要求のためのトリガを受信し、ここで、PDUセッションは、中央PSA/UPF1にアンカリングされる。アプリセットアップ要求は、たとえば、TCP SynまたはHTTP要求、あるいは他のアプリケーション好適プロトコルであり得る。
ステップ10-2.AFは、アプリがローカルPSA(UPF2)へのUE再アンカリングから恩恵を受けることができるかどうかを判定する。例として、現在のUE IPアドレスならびにASサーバ分散に基づいて。
ステップ10-3~ステップ10-8.図8中のステップ8-3~8-8におけるのと同様である。(DNAIの使用は、参照されたステップにおいて説明されているようなこの目的のためであることに留意されたい。)
ステップ10-9.外部AFは、ステップ10-1におけるセットアップメッセージに応答して、UEにアプリセットアップ応答を送信する。アプリセットアップ応答は、たとえば、新しいアンカーのより近くにあるEASにレゾルブする、リダイレクトであり得る。
ステップ10-10.図8中のステップ8-10と同じである。
【0053】
図11は、本開示のいくつかの実施形態による、ネットワークノード700の概略ブロック図である。ネットワークノード700は、たとえば、基地局202または206など、無線アクセスノード、あるいはコアネットワークノードであり得る。図示されているように、ネットワークノード700は、1つまたは複数のプロセッサ704(たとえば、中央処理ユニット(CPU)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)など)、メモリ706、およびネットワークインターフェース708を含む制御システム702を含む。1つまたは複数のプロセッサ704は、本明細書では処理回路とも呼ばれる。コアネットワークネットワーク機能ソフトウェアをホストするネットワークノードは、データ・センタに配置され得るサーバとしてでもある。
【0054】
加えて、たとえば、ネットワークノード700が無線アクセスノードである場合、ネットワークノード700は、各々が、1つまたは複数のアンテナ716に結合された、1つまたは複数の送信機712と1つまたは複数の受信機714とを含む、1つまたは複数の無線ユニット710を含み得る。無線ユニット710は、無線インターフェース回路と呼ばれるか、または無線インターフェース回路の一部であり得る。いくつかの実施形態では、無線ユニット710は、制御システム702の外部にあり、たとえば、有線接続(たとえば、光ケーブル)を介して制御システム702に接続される。しかしながら、いくつかの他の実施形態では、無線ユニット710および潜在的にアンテナ716は、制御システム702と共に統合される。1つまたは複数のプロセッサ704は、本明細書で説明される、ネットワークノード700の1つまたは複数の機能を提供するように動作する。いくつかの実施形態では、機能は、たとえばメモリ706に記憶され、1つまたは複数のプロセッサ704によって実行される、ソフトウェアで実装される。
【0055】
図12は、本開示のいくつかの実施形態による、ネットワークノード700の仮想化された実施形態を図示する概略ブロック図である。この考察は、他のタイプのネットワークノードに等しく適用可能である。さらに、他のタイプのネットワークノードは、類似の仮想化されたアーキテクチャを有し得る。
【0056】
複数のNFが、本明細書で説明される実施形態を実施するために使用される。複数のNFは、サーバのシステムまたは単一のサーバに配置され得る。
【0057】
本明細書で使用される、「仮想化された」ノードは、ネットワークノード700の機能性の少なくとも一部分が、(たとえば、ネットワークにおいて物理的処理ノード上で実行する仮想マシンを介して)仮想構成要素として実装された、ネットワークノード700の実装形態である。図示されているように、この例では、ネットワークノード700は、1つまたは複数のプロセッサ704(たとえば、CPU、ASIC、FPGAなど)と、メモリ706と、ネットワークインターフェース708とを含む制御システム702を含み、随意に、上記で説明されたように、各々が、1つまたは複数のアンテナ716に結合された、1つまたは複数の送信機712と1つまたは複数の受信機714とを含む、1つまたは複数の無線ユニット710を含む。制御システム702は、たとえば、光ケーブルなどを介して無線ユニット710に接続され得る。制御システム702は、ネットワークインターフェース708を介して、ネットワーク802に結合されるかまたはネットワーク802の一部として含まれる、1つまたは複数の処理ノード800に接続される。各処理ノード800は、1つまたは複数のプロセッサ804(たとえば、CPU、ASIC、FPGAなど)、メモリ806、およびネットワークインターフェース808を含む。
【0058】
この例では、本明細書で説明されるネットワークノード700の機能810は、1つまたは複数の処理ノード800において実装されるか、または任意の所望の様式で制御システム702および1つまたは複数の処理ノード800にわたって分散される。いくつかの特定の実施形態では、本明細書で説明されるネットワークノード700の、1つまたは複数のNFインスタンスからなる、機能810の一部または全部は、処理ノード800によってホストされた仮想環境において実装された1つまたは複数の仮想マシンまたはコンテナによって実行された仮想構成要素として実装される。当業者によって諒解されるように、処理ノード800と制御システム702との間の追加のシグナリングまたは通信が、所望の機能810のうちの少なくともいくつかを行うために使用される。特に、いくつかの実施形態では、制御システム702は含まれないことがあり、その場合、無線ユニット710は、適当なネットワークインターフェースを介して処理ノード800と直接的に通信する。
【0059】
いくつかの実施形態では、少なくとも1つのプロセッサによって実行されたとき、少なくとも1つのプロセッサが、本明細書で説明される実施形態のうちのいずれかに従って仮想環境において機能810(5GコアのNFまたはNFインスタンス)のうちの1つまたは複数を実装するコンピュータサーバまたはコンピュータサーバのシステムであり得る、ネットワークノード700またはノード(たとえば、処理ノード800)の機能性を行うことをさせる命令を含むコンピュータプログラムが提供される。いくつかの実施形態では、上述のコンピュータプログラム製品を備えるキャリアが提供される。キャリアは、電子信号、光信号、無線信号、あるいはコンピュータ可読記憶媒体(たとえば、メモリなど、コンピュータ可読媒体または非一時的コンピュータ可読媒体)のうちの1つである。ターゲットノード上にコンピュータプログラムを記憶および/またはダウンロードするとき、計算サーバまたは計算サーバシステムは、1つまたは複数のNF、NFインスタンス、NFセットを開始すること、インスタンス化すること、または設定することを可能にする。
【0060】
図13は、本開示のいくつかの他の実施形態による、ネットワークノード/サーバ700の概略ブロック図である。ネットワークノード/サーバ700は、それらの各々がソフトウェアで実装される、1つまたは複数のモジュール900を含む。モジュール900は、本明細書で説明されるネットワークノード700の機能性、たとえば、SMFを提供する。モジュールは、NFによって提供されるマイクロサービスまたはサービスからなり得、ここで、各サービスは、各サービスのAPIによって説明される。
【0061】
図14は、本開示のいくつかの実施形態による、UE1000の概略ブロック図である。図示されているように、UE1000は、1つまたは複数のプロセッサ1002(たとえば、CPU、ASIC、FPGAなど)と、メモリ1004と、各々が、1つまたは複数のアンテナ1012に結合された、1つまたは複数の送信機1008および1つまたは複数の受信機1010を含む1つまたは複数のトランシーバ1006とを含む。トランシーバ1006は、当業者によって諒解されるように、アンテナ1012とプロセッサ1002との間で通信される信号を調節するように設定された、アンテナ1012に接続された無線フロントエンド回路を含む。プロセッサ1002は、本明細書では処理回路とも呼ばれる。トランシーバ1006は、本明細書では無線回路とも呼ばれる。いくつかの実施形態では、上記で説明されたUE1000の機能性は、たとえば、メモリ1004に記憶され、プロセッサ1002によって実行されるソフトウェアに完全にまたは部分的に実装され得る。UE1000は、たとえば、1つまたは複数のユーザインターフェース構成要素(たとえば、ディスプレイ、ボタン、タッチスクリーン、マイクロフォン、スピーカーなどを含む入出力インターフェース、ならびに/あるいはUE1000への情報の入力を可能にし、および/またはUE1000からの情報の出力を可能にするための任意の他の構成要素)、電力供給源(たとえば、バッテリーおよび関連する電力回路)など、追加の構成要素を含み得ることに留意されたい。
【0062】
いくつかの実施形態では、少なくとも1つのプロセッサによって実行されたとき、少なくとも1つのプロセッサが、本明細書で説明される実施形態のうちのいずれかによるUE1000の機能性を行うことをさせる命令を含むコンピュータプログラムが提供される。いくつかの実施形態では、上述のコンピュータプログラム製品を備えるキャリアが提供される。キャリアは、電子信号、光信号、無線信号、あるいはコンピュータ可読記憶媒体(たとえば、メモリなど、非一時的コンピュータ可読媒体)のうちの1つである。
【0063】
図15は、本開示のいくつかの他の実施形態による、UE1000の概略ブロック図である。UE1000は、それらの各々がソフトウェアに実装された、1つまたは複数のモジュール1100を含む。モジュール1100は、本明細書で説明されるUE1000の機能性を提供する。
【0064】
図16は、本開示のいくつかの実施形態による、通信ネットワークを図示する。図16を参照すると、実施形態によれば、通信システムは、RANなどのアクセスネットワーク1202とコアネットワーク1204とを備える、3GPPタイプセルラネットワークなど、通信ネットワーク1200を含む。アクセスネットワーク1202は、各々が、対応するカバレッジ・エリア1208A、1208B、1208Cを規定する、ノードB、eNB、gNB、または他のタイプの無線アクセスポイント(AP)など、複数の基地局1206A、1206B、1206Cを備える。各基地局1206A、1206B、1206Cは、有線または無線接続1210を介してコアネットワーク1204に接続可能である。カバレッジ・エリア1208C中に位置する第1のUE1212は、対応する基地局1206Cに無線で接続する、または対応する基地局1206Cによってページングされるように設定される。カバレッジ・エリア1208A中の第2のUE1214は、対応する基地局1206Aに無線で接続可能である。複数のUE1212、1214がこの例では図示されているが、開示される実施形態は、唯一のUEがカバレッジ・エリア中にある、または唯一のUEが、対応する基地局1206に接続している状況に等しく適用可能である。
【0065】
通信ネットワーク1200は、それ自体が、スタンドアロンサーバ、クラウド実装サーバ、分散サーバのハードウェアおよび/またはソフトウェアに、あるいはサーバファームにおける処理リソースとして具体化され得る、ホストコンピュータ1216に接続される。ホストコンピュータ1216は、サービスプロバイダの所有または制御下にあり得るか、あるいはサービスプロバイダによって、またはサービスプロバイダに代わって運営され得る。通信ネットワーク1200とホストコンピュータ1216との間の接続1218および1220は、コアネットワーク1204からホストコンピュータ1216に直接的に延び得るか、または随意の中間ネットワーク1222を経由し得る。中間ネットワーク1222は、パブリック、プライベート、またはホステッドネットワークのうちの1つ、あるいはパブリック、プライベート、またはホステッドネットワークのうちの2つ以上の組合せであり得、中間ネットワーク1222は、もしあれば、バックボーンネットワークまたはインターネットであり得、特に、中間ネットワーク1222は、2つまたはそれ以上のサブネットワーク(図示せず)を備え得る。
【0066】
図16の通信システムは、全体として、接続されたUE1212、1214とホストコンピュータ1216との間のコネクティビティを可能にする。コネクティビティは、オーバーザトップ(OTT)接続1224として説明され得る。ホストコンピュータ1216および接続されたUE1212、1214は、媒介として、アクセスネットワーク1202、コアネットワーク1204、任意の中間ネットワーク1222、および可能なさらなるインフラストラクチャ(図示せず)を使用して、OTT接続1224を介してデータおよび/またはシグナリングを通信するように設定される。OTT接続1224は、OTT接続1224が通過する参加通信デバイスが、アップリンク通信およびダウンリンク通信のルーティングに気づかないという意味において透明であり得る。たとえば、基地局1206は、接続されたUE1212にフォワーディングされる(たとえば、ハンドオーバされる)べきホストコンピュータ1216から発信したデータをもつ着信ダウンリンク通信の過去のルーティングを知らされ得ないかまたは知らされる必要がない。類似的に、基地局1206は、ホストコンピュータ1216に向かってUE1212から発信した発信アップリンク通信の将来のルーティングに気づく必要がない。
【0067】
図17は、本開示のいくつかの実施形態による、通信システムを図示する。次に、前のパラグラフにおい考察されたUE、基地局、およびホストコンピュータの、実施形態による、例示的な実装形態が、図17を参照しながら説明される。通信システム1300において、ホストコンピュータ1302は、通信システム1300の異なる通信デバイスのインターフェースとの有線または無線接続をセットアップおよび維持するように設定された通信インターフェース1306を含むハードウェア1304を備える。ホストコンピュータ1302は、ストレージおよび/または処理能力を有し得る、処理回路1308をさらに備える。特に、処理回路1308は、1つまたは複数のプログラマブルプロセッサ、ASIC、FPGA、または命令を実行するように適応されたこれらの組合せ(図示せず)を備え得る。ホストコンピュータ1302は、ホストコンピュータ1302に記憶されるかまたはホストコンピュータ1302によってアクセス可能であり、処理回路1308によって実行可能である、ソフトウェア1310をさらに備える。ソフトウェア1310は、ホストアプリケーション1312を含む。ホストアプリケーション1312は、UE1314およびホストコンピュータ1302において終端するOTT接続1316を介して接続するUE1314など、リモートユーザにサービスを提供するように動作可能であり得る。リモートユーザにサービスを提供する際に、ホストアプリケーション1312は、OTT接続1316を使用して送信されるユーザデータを提供し得る。
【0068】
通信システム1300は、通信システムにおいて提供された基地局1318をさらに含み、基地局1318は、基地局1318がホストコンピュータ1302と、およびUE1314と通信することを可能にするハードウェア1320を備える。ハードウェア1320は、通信システム1300の異なる通信デバイスのインターフェースとの有線または無線接続をセットアップおよび維持するための通信インターフェース1322、ならびに少なくとも、基地局1318によってサーブされるカバレッジ・エリア中に位置するUE1314との無線接続1326をセットアップおよび維持するための無線インターフェース1324を含み得る。通信インターフェース1322は、ホストコンピュータ1302への接続1328を容易にするように設定され得る。接続1328は直接的であり得るか、または接続1328は、通信システムのコアネットワークを、および/または通信システムの外側の1つまたは複数の中間ネットワークを通過し得る。示されている実施形態では、基地局1318のハードウェア1320は、1つまたは複数のプログラマブルプロセッサ、ASIC、FPGA、または命令を実行するように適応されたこれらの組合せ(図示せず)を備え得る、処理回路1330をさらに含む。基地局1318は、内部的に記憶されるかまたは外部接続を介してアクセス可能なソフトウェア1332をさらに有する。
【0069】
通信システム1300は、すでに言及されたUE1314をさらに含む。UE1314のハードウェア1334は、UE1314が現在位置するカバレッジ・エリアをサーブする基地局との無線接続1326をセットアップおよび維持するように設定された無線インターフェース1336を含み得る。UE1314のハードウェア1334は、1つまたは複数のプログラマブルプロセッサ、ASIC、FPGA、または命令を実行するように適応されたこれらの組合せ(図示せず)を備え得る、処理回路1338をさらに含む。UE1314は、UE1314に記憶されるかまたはUE1314によってアクセス可能であり、処理回路1338によって実行可能である、ソフトウェア1340をさらに備える。ソフトウェア1340は、クライアントアプリケーション1342を含む。クライアントアプリケーション1342は、ホストコンピュータ1302のサポートを伴って、UE1314を介して人間または非人間ユーザにサービスを提供するように動作可能であり得る。ホストコンピュータ1302において、実行ホストアプリケーション1312は、UE1314およびホストコンピュータ1302において終端するOTT接続1316を介して実行クライアントアプリケーション1342と通信し得る。ユーザにサービスを提供する際に、クライアントアプリケーション1342は、ホストアプリケーション1312から要求データを受信し、要求データに応答してユーザデータを提供し得る。OTT接続1316は、要求データおよびユーザデータの両方を転送し得る。クライアントアプリケーション1342は、クライアントアプリケーション1342が提供するユーザデータを生成するために、ユーザと対話し得る。
【0070】
ホストコンピュータ1302、基地局1318、およびUE1314は、それぞれ、図16の、ホストコンピュータ1216、基地局1206A、1206B、1206Cのうちの1つ、およびUE1212、1214のうちの1つに類似するかまたはそれと同一であり得ることに留意されたい。即ち、これらのエンティティの内部の働きは、図17中に示されているようなものであり、独立していることがあり、周囲ネットワークトポロジーは、図16のものであり得る。
【0071】
図16中で、OTT接続1316は、媒介デバイスおよびこれらのデバイスを介したメッセージの正確なルーティングへの明示的な参照なしに、基地局1318を介したホストコンピュータ1302とUE1314との間の通信を図示するために抽象的に描画されている。ネットワークインフラストラクチャは、UE1314から、またはホストコンピュータ1302を運営するサービスプロバイダから、またはその両方から隠れるように設定され得る、ルーティングを決定し得る。OTT接続1316がアクティブである間、ネットワークインフラストラクチャは、さらに、ネットワークインフラストラクチャが(たとえば、ネットワークの負荷分散考慮または再設定に基づいて)ルーティングを動的にそれによって変更する、決定を行い得る。
【0072】
UE1314と基地局1318との間の無線接続1326は、本開示全体にわたって説明される実施形態の教示によるものである。様々な実施形態のうちの1つまたは複数は、無線接続1326が最後のセグメントを形成するOTT接続1316を使用してUE1314に提供されるOTTサービスのパフォーマンスを改善する。より正確には、これらの実施形態の教示は、パケットに関するデータ使用率を測定する能力を提供し、それにより、利益を提供し、たとえば、寸法決定および配置のために極めて重要である、モバイルネットワークにおける適正なトラフィックモデルを導出するシステムの能力を拡張し得る。
【0073】
1つまたは複数の実施形態が改善する、データレート、レイテンシ、および他の要因を監視する目的で、測定手順が提供され得る。測定結果の変動に応答して、ホストコンピュータ1302とUE1314との間のOTT接続1316を再設定するための随意のネットワーク機能が、さらにあり得る。測定手順、および/またはOTT接続1316を再設定するためのネットワーク機能は、ホストコンピュータ1302のソフトウェア1310およびハードウェア1304に、またはUE1314のソフトウェア1340およびハードウェア1334に、またはその両方に実装され得る。いくつかの実施形態では、センサー(図示せず)が、OTT接続1316が通過する通信デバイスにおいて配置されるかまたはそれらと関連し得、センサーは、上記で例示されたモニタ量の値を供給すること、またはソフトウェア1310、1340がモニタ量をそれらから計算または推定し得る他の物理量の値を供給することによって、測定手順に参加し得る。OTT接続1316の再設定は、メッセージフォーマット、再送信設定、好ましいルーティングなどを含み得、再設定は、基地局1318に影響を及ぼす必要がなく、再設定は、基地局1318にとって未知または知覚不可能であり得る。そのような手順および機能性は、当技術分野において知られており、実践され得る。いくつかの実施形態では、測定は、スループット、伝搬時間、レイテンシなどのホストコンピュータ1302の測定を容易にする、プロプライエタリUEシグナリングを伴い得る。測定は、ソフトウェア1310および1340が、それが伝搬時間、エラーなどを監視する間、OTT接続1316を使用してメッセージ、特に、空または「ダミー」のメッセージが送信されることを引き起こすという点で、実装され得る。
【0074】
図中のプロセスは、本開示のいくらかの実施形態によって実施される動作の特定の順序を示し得るが、そのような順序は例示的である(たとえば、代替実施形態が、異なる順序で動作を実施する、いくらかの動作を組み合わせる、いくらかの動作を重ね合わせる、などし得る)ことを理解されたい。
【0075】
例示的な実施形態
それらに限定されないが、本開示の例示的な実施形態が、以下で提供される。これらは、例にすぎず、最終的な特許請求の範囲であることも、必ずしも最終的な特許請求の範囲とは限らないこともあることに留意されたい。
【0076】
1. UPFにアンカリングされたPDUセッションに関連するアプリケーションに関係するトリガを受信することと、
再アンカリングが、アプリケーションを使用するユーザデバイスのために必要とされるかどうかを判定することと、
再アンカリングが必要とされると判定したことに応答して、ローカルUPFへの再アンカリングを始動し、再アンカリングが成功したと判定すると、ローカルUPFを通したアプリケーションセットアップを容易にすることと、
再アンカリングが必要とされないと判定したことに応答して、UPFを介してトリガされたものとして、サービスを提供することと
を含む方法。
【0077】
2. トリガが、UEから受信されたDNSクエリである、実施形態1に記載の方法。
【0078】
3. 再アンカリングが必要とされるかどうかを判定することが、DNSクエリからFQDNを抽出することと、FQDNに関係するSLAおよび/またはポリシを検証することとを含む、実施形態1および2に記載の方法。
【0079】
4. 再アンカリングが成功したと判定したことに応答して、DNSクエリをドロップする(換言すれば、応答しない)、実施形態1から3のいずれか1つに記載の方法。
【0080】
5. 同じまたは異なるタイプの1つまたは複数のNFインスタンスをホストし、1つまたは複数の処理回路および1つまたは複数のメモリを備える計算サーバまたは計算サーバシステムであって、メモリが、処理回路によって実行可能な命令を含んでおり、それによって、計算サーバまたは計算サーバシステムが、実施形態1から4のいずれか1つを実施するように設定された、計算サーバまたは計算サーバシステム。
【0081】
6. 実施形態1から4のいずれか1つを実施するように適応された、計算サーバまたは計算サーバシステム。
【0082】
7. コンピュータプログラムまたは命令を含む非一時的コンピュータ可読媒体であって、ここにおいて、コンピュータプログラムまたは命令がコンピュータ/計算サーバによって実行されたとき、コンピュータ/計算サーバが実施形態1から4のいずれか1つを実施することをさせる、非一時的コンピュータ可読媒体。
【0083】
8. 計算サーバの少なくとも1つのプロセッサによって実行されたとき、計算サーバが方法の実施形態のいずれか1つに記載のステップを行うことをさせる命令を備える、コンピュータプログラム。
【0084】
9. 実施形態8に記載のコンピュータプログラムを含むキャリアであって、ここにおいて、キャリアが、電子信号、光信号、無線信号、またはコンピュータ可読記憶媒体のうちの1つである、キャリア。
【0085】
略語
以下の略語のうちの少なくともいくつかが、本開示において使用され得る。略語の間で不整合がある場合、略語が上記でどのように使用されたかが優先される。以下で複数回リストされた場合、最初のリスティングが、以降のリスティングよりも選好されるべきである。
5GC 第5世代コアネットワーク
AF アプリケーション機能
AMF アクセスおよびモビリティ管理機能
AS アプリケーションサーバ
DC データ・センタ
DL ダウンリンク
DN データネットワーク
DNN データネットワークネーム
DNAI DNアクセス識別子
DNS ドメインネームシステム
DPI ディープパケット検査
EAS エッジアプリケーションサーバ
EC エッジコンピューティング
ECS EDNSクライアントサブネット
MNO モバイルネットワークオペレータ
NF ネットワーク機能
SMF セッション管理機能
SSC サービスおよびセッション継続性
PCF ポリシ制御機能
PCO プロトコル設定オプション
PSA PDUセッションアンカー
UPF ユーザプレーン機能
UE ユーザ機器
図1
図2
図3a
図3b
図3c
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17