(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-02-13
(45)【発行日】2024-02-21
(54)【発明の名称】無線通信システムにおいて制御情報をマッピングするための方法及び装置
(51)【国際特許分類】
H04W 72/232 20230101AFI20240214BHJP
H04W 72/0453 20230101ALI20240214BHJP
【FI】
H04W72/232
H04W72/0453 110
(21)【出願番号】P 2022110082
(22)【出願日】2022-07-07
(62)【分割の表示】P 2022073411の分割
【原出願日】2012-11-05
【審査請求日】2022-07-08
(32)【優先日】2011-11-09
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2011-11-03
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2012-11-01
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2012-01-24
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】507107291
【氏名又は名称】テキサス インスツルメンツ インコーポレイテッド
(74)【代理人】
【識別番号】230129078
【氏名又は名称】佐藤 仁
(72)【発明者】
【氏名】ランフア チェン
(72)【発明者】
【氏名】アンソニー イー エクペニョン
(72)【発明者】
【氏名】ヴィクラム チャンドラセカール
(72)【発明者】
【氏名】ラルフ エム ベンドリン
【審査官】松野 吉宏
(56)【参考文献】
【文献】特開2011-182348(JP,A)
【文献】ETRI,Discussions on enhanced PDCCH in Rel-11,3GPP TSG-RAN WG1#66b R1-113067,フランス,3GPP,2011年10月04日
【文献】Samsung,Discussion on ePDCCH Design Issues,3GPP TSG-RAN WG1#66 R1-112517,フランス,3GPP,2011年08月16日
【文献】ETRI,Discussions on enhanced PDCCH structure,3GPP TSG-RAN WG1#66 R1-112211,フランス,3GPP,2011年08月16日
【文献】NEC Group,DL control channel enhancements for Rel-11,3GPP TSG-RAN WG1#66 R1-112135,フランス,3GPP,2011年08月16日
【文献】Panasonic,Capturing of agreements on relaying from RAN1 #64,3GPP TSG-RAN WG1#64 R1-111217,フランス,3GPP,2011年03月15日
【文献】LG Electronics,36.216 Draft CR for Clarification on CQI definition,3GPP TSG-RAN WG1#65 R1-111623,フランス,3GPP,2011年05月03日
【文献】LG Electronics,No R-PDCCH in the second slot of a PRB pair assigned to PDSCH,3GPP TSG-RAN WG1#65 R1-111624,フランス,3GPP,2011年05月03日
【文献】ZTE,Clarification on CQI reference resource considering R-PDCCH,3GPP TSG-RAN WG1#65 R1-111786,フランス,3GPP,2011年05月05日
(58)【調査した分野】(Int.Cl.,DB名)
H04B 7/24 - 7/26
H04W 4/00 - 99/00
3GPP TSG RAN WG1-4
SA WG1-4
CT WG1、4
(57)【特許請求の範囲】
【請求項1】
方法であって、
サブフレームに対する1つ又は複数の領域を示す構成をユーザー機器(UE)で受信することと、
前記UEで前記サブフレームの拡張型物理ダウンリンク制御チャネル(EPDCCH)領域におけるUE特定制御情報を監視することであって、前記EPDCCH領域が前記サブフレームの最後の直交周波数分割多重(OFDM)
シンボルまで延び、セル-無線ネットワーク一時識別子(C-RNTI)によってスクランブルされるUE特定ダウンリンクグラントを検出することを含む、前記UE特定制御情報を監視することと、
前記UEで前記サブフレームの物理ダウンリンク制御チャネル(PDCCH)領域
又はEPDCCH領域における共通制御情報を監視することと、
前記C-RNTIによってスクランブルされるUE特定ダウンリンク制御情報(DCI)に対して前記PDCCHを監視することと、
を含
み、
前記共通制御情報が通信モードに基づいて前記サブフレームにマッピングされる、方法。
【請求項2】
請求項1に記載の方法であって、
前記サブフレームが複数の物理リソースブロック(PRB)対を含み、
前記構成を受信することが、前記サブフレームのEPDCCH領域に関連するPRB対を示す情報を受信することを含む、方法。
【請求項3】
ユーザー機器(UE)であって、
コントローラであって、
サブフレームに対する1つ又は複数の領域を示す構成を受信し、
前記サブフレームの拡張型物理ダウンリンク制御チャネル(EPDCCH)領域であって、前記サブフレームの最後の直交周波数分割多重(OFDM)
シンボルまで延びる前記EPDCCH領域におけるUE特定制御情報を監視し、
前記サブフレームの物理ダウンリンク制御チャネル(PDCCH)領域
又はEPDCCH領域における共用制御情報を監視し、
セル-無線ネットワーク一時識別子(C-RNTI)によってスクランブルされるUE特定ダウンリンク制御情報(DCI)に対して前記PDCCHを監視する、
ように構成される、前記
コントローラを含み、
前記UE特定制御情報を監視することが、前記C-RNTIによってスクランブルされるUE特定ダウンリンクグラントを検出することを含
み、
前記共通制御情報が通信モードに基づいて前記サブフレームにマッピングされる、ユーザー機器。
【請求項4】
請求項3に記載のUEであって、
前記サブフレームが複数の物理リソースブロック(PRB)対を含み、
前記1つ又は複数のプロセッサが、前記サブフレームのEPDCCH領域に関連するPRB対を示す情報を受信するように更に構成される、UE。
【請求項5】
ユーザー機器(UE1)であって、
コントローラであって、
遠隔基地局(eNB)との通信モードを決定し、
前記eNBから1つ又は複数の領域を有するサブフレームの構成を受信し、
前記UE1に特定の制御情報を受信するために、前記サブフレームの最後の直交周波数分割多重(OFDM)
シンボルまで延びる拡張型物理ダウンリンク制御チャネル(EPDCCH)である前記サブフレームの第1の領域をブラインド復号し、
前記UE1と少なくとも別のユーザー機器(UE2)とに共通の制御情報を受信し、セル-無線ネットワーク一時識別子(C-RNTI)によってスクランブルされるUE特定ダウンリンク制御情報(DCI)を受信するために、物理ダウンリンク制御チャネル(PDCCH)である前記サブフレームの第2の領域をブラインド復号する、
ように構成される、前記
コントローラを含み、
前記サブフレームの第1の領域をブラインド復号することが、前記C-RNTIによってスクランブルされるUE特定ダウンリンクグラントを検出することを含
み、
前記制御情報が前記通信モードに基づいて前記サブフレームにマッピングされる、ユーザー機器。
【請求項6】
請求項5に記載のユーザー機器であって、
前記サブフレームが複数の物理リソースブロック(PRB)対を含み、
前記サブフレームの構成を受信することが、ビットマップを受信することを含み、
前記第1の領域の位置と前記第2の領域の位置とが前記ビットマップによって示される、ユーザー機器。
【請求項7】
請求項6に記載のユーザー機器であって、
前記ビットマップが、前記PRB対が前記UE1のためのものであるかを示す、ユーザー機器。
【請求項8】
請求項6に記載のユーザー機器であって、
前記ビットマップが、前記サブフレームが前記UE1のためのものであるかを示す、ユーザー機器。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、無線通信システムにおいて制御情報をマッピングするための方法及び装置に関し、より詳細には、ダウンリンク制御情報(DCI)の拡張物理ダウンリンク制御チャネル(EPDCCH)へのマッピングに関する。
【背景技術】
【0002】
直交周波数分割多重(OFDM)では、複数のシンボルが、直交性が得られるように離間される複数のキャリアで送信される。OFDM変調器が、典型的には、データシンボルを直列-並列コンバータに入れ、直列-並列コンバータの出力は、高速フーリエ変換(FFT)を施された後、周波数ドメインデータシンボルとみなされる。帯域の両端の周波数ドメイントーンは、ゼロに設定され得、ガードトーンと呼ばれる。これらのガードトーンにより、OFDM信号が適切なスペクトルマスク内に収まる。周波数ドメイントーンの中には、レシーバにおいて既知となる値に設定されるものがある。これらには、セル固有参照信号(CRS)及び専用又は復調参照信号(DRS)が含まれる。これらの参照信号は、レシーバでのチャネル推定に有用である。複数の送信/受信アンテナを備えた複数入力複数出力(MIMO)通信システムでは、セル固有参照信号は、事前符号化されず、全システム帯域幅にわたって送信される。これにより、事前符号化されていないチャネルをレシーバが推定し得る。DRSは、データに適用される同じ事前符号器によって事前符号化され、ユーザは、正確な事前符号器の知識なしに事前符号化されたチャネルを推定し得る。DRSは、データ送信がスケジュールされる同じ周波数にのみ存在する。
【0003】
従来のセルラー通信システムは、二地点単一セル送信方式で動作する。この方式では、ユーザ端末又は機器(UE)は、所与の時間に1つのセルラー基地局(eNB又はeNodeB)に一意に接続され、それによりサービスを受ける。このようなシステムの例は、3GPPロングタームエボリューション(LTEリリース8)である。最近のセルラーシステムは、UEに同時にサービスを提供するために複数の基地局が協調してダウンリンク送信を設計し得る多地点通信又は協調多地点通信(CoMP)を採用することによってデータレート及び性能をより改善することを意図している。このようなシステムの例は、3GPP LTEアドバンストシステム(リリース10以降)である。これにより、UEにおける受信信号の強度が、異なる基地局から各UEに同じ信号を送信することによって大きく改善される。これは、近隣の基地局から強い干渉を受けるセルエッジUEに特に有益である。CoMPでは、近傍の基地局からの干渉が有用な信号になり、したがって、受信品質が大きく改善される。したがって、CoMP通信モードにおけるUEは、いくつかの近くのセルが協働する場合、はるかに良好なサービスが受けられる。
【0004】
図1は、無線遠隔通信ネットワーク100の例を示す。図に示す遠隔通信ネットワークは基地局101、102、及び103を含むが、動作においては、遠隔通信ネットワークはより多くの基地局を含む必要がある。基地局101、102、及び103(eNB)はそれぞれ、対応するカバレッジエリア104、105、及び106にわたって動作可能である。各基地局のカバレッジエリアはさらにセルに分割される。図に示すネットワークでは、各基地局のカバレッジエリアは3つのセルに分割される。セルA108には、ハンドセット又は他のユーザ機器(UE)109が示されている。セルA108は、基地局101のカバレッジエリア104内にある。基地局101は、UE109に送信を行い、UE109からの送信を受信する。UE109が移動しセルA108から出てセルB107に入ると、UE109は基地局102にハンドオーバされ得る。UE109は基地局101と同期しているので、UE109は、基地局102へのハンドオーバを開始するため非同期ランダムアクセスを用い得る。UE109は、アップリンク111の時間又は周波数或いは符号リソースの割当てを要求するためにも非同期ランダムアクセスを用いる。UE109が、例えば、トラフィックデータ、測定リポート、又はトラッキングエリア更新情報であり得る、送信準備ができたデータを有する場合、UE109は、アップリンク111にランダムアクセス信号を送信し得る。このランダムアクセス信号は、UE109がUEのデータを送信することをアップリンクリソースに要求していることを基地局101に通知する。基地局101は、UE109アップリンク送信に割り当てられるリソースのパラメータを含むメッセージを、生じ得るタイミング誤り訂正とともに、ダウンリンク110を介してUE109に送信することによって応答する。基地局101によってダウンリンク110で送信されるリソース割当て及び生じ得るタイミング予告メッセージを受け取った後、UE109は、任意選択で、その送信タイミングを調整し、所定の時間間隔の間この割り当てられたリソースを用いるアップリンク111でデータを送信する。基地局101は、周期的アップリンクサウンディング参照信号(SRS)送信のため、UE109を構築する。基地局101は、SRS送信からアップリンクチャネル品質情報(CQI)を推定する。
【0005】
ロングタームエボリューション(LTE)におけるダウンリンク送信は、複数のサブフレームで構成される。ここで
図2を参照すると、LTEにおけるダウンリンクサブフレームの図が示されている。各サブフレーム201は、1ミリ秒の継続時間を有する。各サブフレームは、拡張サイクリックプレフィックス(CP)を有する12個のOFDMシンボル、又は通常サイクリックプレフィックス(CP)を有する14個のOFDMシンボルを含む。各OFDMシンボルは、複数のL物理リソースブロック(PRB)からなる。ここで、各PRBは12個のOFDMトーンで構成される。PRBは、LTEにおける最小の周波数ドメインリソース割当て単位であり、1つ又は複数のPRBでユーザへのデータ送信がスケジュールされる。1つのサブフレーム201内の異なるPRBが、異なるユーザへのデータ送信に割り当てられる。また、ユーザがダウンリンクデータ送信を受け取るために用いられるPRBの集合は、サブフレーム毎に変わり得る。
【0006】
ダウンリンクデータに加えて、基地局は、携帯機器ユーザに制御情報を送信する必要もある。この制御情報には、共通の制御情報及びユーザ固有制御情報が含まれる。共通の制御情報は、セル内のあらゆるユーザに送信され、ユーザとネットワークの接続を維持し、呼が入ってくるとアイドルモードのユーザをページングし、ランダムアクセス応答をスケジュールし、セル内の重要なシステム情報の変化を示す。また、ユーザ固有制御情報は、スケジュールされた各ユーザに送信され、例えば、UEの予期されるダウンリンクデータの受信又はアップリンクデータの送信に用いられる周波数リソースを示す。LTEでは、各サブフレームは、ダウンリンク制御情報送信用のレガシー制御領域206と、ダウンリンクデータ送信用のデータ領域207とに分割される。レガシー制御領域206は、システム帯域幅が10PRBより大きい場合OFDMシンボル1~3を含み、その他の場合はOFDMシンボル2~4を含む。レガシー制御領域の厳密なサイズは、物理ダウンリンク制御フォーマットインジケータチャネル(PCFICH)に通知される。データチャネル領域207は、レガシー制御チャネル領域206の後に位置し、各物理リソースブロック(PRB)に割り当てられる。レガシー制御チャネル領域206は、物理ダウンリンク制御チャネル(PDCCH)がマッピングされる領域である。データチャネル領域207は、物理ダウンリンク共有チャネル(PDSCH)がマッピングされる領域であり、携帯機器ユーザへのダウンリンクデータ送信を担持する。さらに、拡張物理ダウンリンク制御チャネル(EPDCCH)209が、送信されるデータチャネル(PDSCH)211と周波数多重される。すなわち、EPDCCH209は、直交周波数ドメイン多重を用いてPDSCH211とともにデータチャネル領域207にマッピングされる。レガシー制御チャネル領域をサブフレームの先頭に配置する理由は、UEがレガシー制御チャネル領域206に割り当てられたPDCCHを最初に受け取ってPDSCHの送信の存在を認識するからである。PDSCHの送信の存在が認識されると、UEはPDSCHの受信操作を実施すべきかどうかを判定し得る。PDCCHがUEに送信されない場合、データチャネル領域207にマッピングされたPDSCHを受信する必要はない。したがって、UEは、PDSCHの受信操作で消費される電力を節約し得る。一方で、UEは、制御チャネル領域に置かれたPDCCHを、PDSCH211よりも早く受信し得、それによってスケジューリングの遅延が小さくなる。しかし、PDCCHは全システム帯域幅にわたって送信されるので、干渉制御は不可能である。
【0007】
レガシー制御チャネル領域206は、既存のUE又はレガシーUEとの互換性を維持するために周波数多重構造に変更できないことがある。しかし、eNodeBがデータチャネル領域207の対応する領域を以前のLTEバージョンのUEに割り当てない場合、以前のLTEバージョンのUEは、対応するデータチャネル領域207にマッピングされたリソースを受信しない。したがって、eNodeBは、新規のLTEバージョンのUE用のEPDCCH209を、このUEに割り当てられないデータチャネル領域207に送信し得る。言い換えれば、新規のLTEバージョンのUE用の制御チャネルであるEPDCCHが、PDSCHと多重される構造を有する。
【発明の概要】
【0008】
無線通信システムにおいて制御情報をマッピングする方法の例示実装形態が開示される。この方法は、或る帯域幅を有し、且つ、複数の領域を有するサブフレームを形成することを含む。この方法はさらに、遠隔ユーザ機器との通信モードを決定することを含む。ユーザ機器に固有制御情報が、サブフレームの第1の領域にマッピングされる。複数のユーザ機器に共通の制御情報が、サブフレームの第2の領域にマッピングされる。このサブフレームはユーザ機器に送信される。
【図面の簡単な説明】
【0009】
【0010】
【
図2】従来技術のLTEダウンリンクサブフレームの図である。
【0011】
【
図3】単一ユーザ機器(UE)用の複数の領域を示すダウンリンクサブフレームの図である。
【0012】
【
図4】基地局(eNB)の簡略化されたブロック図である。
【0013】
【
図5】
図3のサブフレームのPDCCH領域0及びEPDCCH領域1の構築を示すフローチャートである。
【0014】
【
図6】
図3のサブフレームの共通制御EPDCCH領域1及びUE固有制御EPDCCH領域1の構築を示すフローチャートである。
【0015】
【
図7】
図3のサブフレームの共通制御PDCCH領域0又はEPDCCH領域1及びUE固有制御EPDCCH領域1の構築を示すフローチャートである。
【0016】
【
図8】
図3のサブフレームの共通制御EPDCCH領域2及びUE固有制御EPDCCH領域1の構築を示すフローチャートである。
【0017】
【
図9】
図3のサブフレームの共通制御PDCCH領域0又はEPDCCH領域2及びUE固有制御EPDCCH領域1の構築を示すフローチャートである。
【0018】
【
図10】ユーザ機器(UE)の簡略化されたブロック図である。
【0019】
【
図11】
図3のサブフレームの共通制御PDCCH領域0及びUE固有制御EPDCCH領域1の復号を示すフローチャートである。
【0020】
【
図12】
図3のサブフレームの共通制御EPDCCH領域1及びUE固有制御EPDCCH領域1の復号を示すフローチャートである。
【0021】
【
図13】
図3のサブフレームの共通制御PDCCH領域0又はEPDCCH領域1及びUE固有制御EPDCCH領域1の復号を示すフローチャートである。
【0022】
【
図14】
図3のサブフレームの共通制御EPDCCH領域2及びUE固有制御EPDCCH領域1の復号を示すフローチャートである。
【0023】
【
図15】
図3のサブフレームの共通制御PDCCH領域0又はEPDCCH領域2及びUE固有制御EPDCCH領域1の復号を示すフローチャートである。
【発明を実施するための形態】
【0024】
LTE無線通信システムの制御チャネルにおいて、チャネル間干渉は大きな問題である。また、PDCCHにおいてレガシー制御情報送信用の周波数ドメインセル間干渉除去(ICIC)を採用することは不可能である。これは、PDCCHが全システム帯域幅にわたって分布しているからである。したがって、ここで説明する手法は、以下で詳細に説明するように、レガシー通信システムとの上位互換性を維持し、ICICを促進するために、新規のサブフレーム構造において共通制御情報及びUE固有制御情報を用いる。
【0025】
本明細書では下記の略語を用いる。eNBはE-UTRANノードB又は基地局、UEはユーザ機器、RNTIは無線ネットワーク一時識別子、DCIはダウンリンク制御インジケータ、PDCCHは物理ダウンリンク制御チャネル、EPDCCHは拡張物理ダウンリンク制御チャネル、PCFICHは物理制御フォーマットインジケータチャネル、DMRSは復調参照シンボル又はUE固有参照シンボル、CRSはセル固有参照シンボル、LTEはロングタームエボリューション、DLはダウンリンク、ULはアップリンク、RRCは無線リソース制御、PRBは物理リソースブロック、TPCは送信電力制御である。
【0026】
無線ネットワークにおけるスケジューリングは、携帯端末(LTEにおけるUE)にダウンリンク制御情報を送信する基地局(LTEにおけるeNB)によって実現される。セルラー無線ネットワークでは、基地局は、複数の携帯機器ユーザへの送信を同時にスケジュールする必要があり得る。その結果、基地局は、異なるユーザにダウンリンク制御情報を同時に送信する必要がある。基地局がUEに異なる種類の制御情報、例えば共通制御情報及びUE固有制御情報など、を同時に送信し得ることも可能である。
【0027】
LTEでは、ダウンリンク制御情報ビットはダウンリンク制御情報(DCI)フォーマットで担持される。DCIは、チャネル符号化され、変調され、インターフェースを介して特定の物理送信チャネルで送信される。レガシーシステムでは、DCIフォーマットは、物理ダウンリンク制御チャネル(PDCCH)によって送信される。PDCCHは、各サブフレームのレガシーPDCCH領域において送信される。異なるスケジューリングには異なるDCIフォーマットが用いられる。DCIを用いて、セル内の全ユーザへの共通制御情報の送信、UEへのPDSCHデータ送信をスケジュールするためのUE固有ダウンリンク制御情報の送信、又は、UEからeNBへのアップリンクデータ送信をスケジュールするためのUE固有ダウンリンク制御情報の送信を行い得る。
【0028】
下記の表1は、DCIフォーマットと、対応するダウンリンク送信モードとの関係である。DCIフォーマットは、UE固有ものであり、UEによってモニタリングされ、C-RNTIによってスクランブルがかけられる。
【表1】
【0029】
下記の表2は、DCIフォーマットと、対応するアップリンク送信モードとの関係である。DCIフォーマットは、UE固有であり、UEによってモニタリングされ、C-RNTIによってスクランブルがかけられる。
【表2】
【0030】
図3は、単一ユーザ機器(UE)に対しeNBによって指定され得る複数の領域を示すサブフレーム300の図である。このサブフレームは、PDCCH領域0(302)と、EPDCCH領域1(304)及びEPDCCH領域2(306)内の物理リソースブロック(PRB)とを含む。ここで説明する例は、EPDCCHに関する制御情報を受信し得るUEへのアップリンク及びダウンリンクスケジューリングのためのサブフレームの様々な領域に共通及びUE固有ダウンリンク制御インジケータ(DCI)を指定するための方法を対象とする。
【0031】
eNBは、ダウンリンクにおける1つ又は2つのEPDCCH領域を構成し得る。各EPDCCH領域は、無線リソース制御(RRC)上位層信号によって準静的に構成されるPRBのサブセットを含む。各UEに対し、このように構成されたEPDCCH領域1及びEPDCCH領域2は、直交し得るか、又は部分的に重なり得る。EPDCCH領域1及び2は、UE固有方法で構成され、異なるユーザで同じになることもあり、異なることもある。
【0032】
各サブフレームにおいて、UEは、共通制御情報に対応するDCIフォーマット、並びにUE固有ダウンリンク及びアップリンクスケジューリング情報に対応するDCIフォーマットをモニタリングする必要がある。
【0033】
UE固有ダウンリンクスケジューリング情報をモニタリングするために、DCIフォーマットはいくつかのグループに分割され得る。専用のDCIフォーマット1/1A/1B/1D/2/2A/2B/2C/2Dが、UE固有ダウンリンクスケジューリング指定を担持する。UEは、構成された送信モードに応じて、DCIフォーマット1/1A/1B/1D/2/2A/2B/2C/2Dの集合の1つについてモニタリングする。この集合は、MIMO送信に対しさらなる拡張のために規定され得る任意の新たなDCIフォーマットも含む。UEは常に、空間送信ダイバーシティを用いるUEフォールバック通信をスケジュールするために用いられるDCIフォーマット1Aについてモニタリングする。DCIフォーマット1Aは、アップリンクグラントを担持するDCIフォーマット0と同じサイズを有する。ダウンリンクスケジューリング用のDCIはDLグラントと呼ばれる。ダウンリンクグラントは、特定のUE識別Cell-RNTI(C-RNTI)によってスクランブルがかけられる。そのため、正しいC-RNTIを有するUEのみがダウンリンクグラントを復号し得る。また、UEがモニタリングするDCIフォーマットは、無線リソース制御(RRC)シグナリングによって準静的に構築されるダウンリンク送信モード(表1)によって一義的に決定される。
【0034】
UE固有アップリンクスケジューリング情報のモニタリングに際して、アップリンクスケジューリング用のDCIはULグラントと呼ばれる。アップリンクグラントも、特定のUE識別(C-RNTI)によってスクランブルがかけられる。そのため、正しいC-RNTIを有するUEのみがアップリンクグラントを復号し得る。また、UEがモニタリングするDCIフォーマットは、無線リソース制御(RRC)シグナリングによって準静的に構築されるアップリンク送信モード(表2)によって一義的に決定される。UEがアップリンクにおいて単一アンテナ送信モードで構築される場合、UEは、ULグラントを担持するDCIフォーマット0についてモニタリングする。UEがアップリンクにおいてマルチアンテナ送信モードで構築される場合、UEは、ULグラントを担持するDCIフォーマット0及びDCIフォーマット4の両方についてモニタリングする。これらからわかるように、UEは常にULグラントについてDCI0をモニタリングする必要がある。
【0035】
セル内のすべてのUEに送信される共通DCIフォーマットもある。例えば、グループ1のDCIフォーマット3/3Aは、DCIフォーマット0/1Aと同じサイズだが、グループ電力制御用である。グループ2のDCIフォーマット1A/1Cは、ページング、ランダムアクセス応答、又はシステム情報用である。DCIフォーマット1A/1Cは、P-RNTIによってスクランブルがかけられると、UEがページングを受け取るために用いられる。DCIフォーマット1A/1Cは、RA-RNTIによってスクランブルがかけられると、UEがランダムアクセス応答を受け取るために用いられる。DCIフォーマット1A/1Cは、SI-RNTIによってスクランブルがかけられると、UEがシステム情報を受け取るために用いられる。DCIフォーマット3/3Aは、TPC-RNTIによってスクランブルがかけられると、UEが送信電力制御(TPC)情報を受け取るために用いられる。
【0036】
1つのUEは、1つのサブフレーム内の複数のDCIをモニタリングする必要があり得る。このUEは、共通制御情報用のDCIフォーマット、ダウンリンクスケジューリング用のDCI、及びアップリンクスケジューリング用のDCIフォーマットを含む、複数のDCIフォーマットをブラインド復号する必要がある。eNBは、異なるPDCCHが担持する異なるDCIを1つのサブフレーム内の異なるUEに送信し得る。レガシーLTEシステムでは、DCIは、PDCCH領域内でPDCCHによって変調され送信される。
【0037】
LTEリリース11では、セル内でダウンリンク制御情報を送信するため、拡張物理ダウンリンク制御チャネル(EPDCCH)と呼ばれる新たな物理チャネルが定義される。EPDCCHは、制御情報用の付加的な物理リソースとして、データ領域1(304)に含まれ、レガシーPDCCH制御領域0(302)には含まれない物理リソースブロック(PRB)のサブセットで送信される。EPDCCHの目的は、無線ネットワークにおける携帯機器ユーザの急増に対応して、制御チャネル容量を増やすことである。第2に、EPDCCHは、復調参照シンボル(DMRS)ベースのビームフォーミングによって送信され、大規模MIMOアレイによって可能になる一層柔軟なビームフォーミング利得が実現される。第3に、EPDCCHはシステム帯域幅内の数PRBで送信されるので、周波数ドメインセル間干渉協調(ICIC)が実現される。強いセル間干渉を引き起こす近隣のセルは、制御チャネルでの干渉を回避するように、それらのEPDCCHを直交PRBで送信し得る。
【0038】
図3を参照すると、レガシーLTEシステムにおいて、ダウンリンク制御インジケータ(DCI)はPDCCH領域0(302)で送信される。PDCCH領域302は、システム帯域幅が1.4MHzよりも高い場合、各サブフレームに全システム帯域幅のOFDMシンボル1~3を含む。その他の場合、すなわち、システム帯域幅が1.4MHz以下の場合、PDCCH領域302は、各サブフレームに全システム帯域幅のOFDMシンボル2~4を含む。LTEリリース8~10のレガシーPDCCHは、CRSベースの送信により設計される。DCIは、チャネル符号化され、4-QAM変調で変調され、1つのPDCCHで送信される。PDCCHは、1/2/4-Tx送信ダイバーシティで事前符号化され、他のPDCCHでクロスインターリーブされ、次いで、サブフレームのレガシー制御領域を介して全システム帯域幅で送信される。CRSベースの送信ダイバーシティ及びクロスインターリーブを介して、レガシーPDCCHは、制御チャネルの堅固さを最大にするため空間及び周波数ダイバーシティを利用し、セル内での確実な受信及びカバレッジを保証する。PDCCHの欠点は、それがサブフレームの全システム帯域幅にわたって分布し、周波数ドメインICICが活かされないことである。これまでに述べたように、UEが近隣ノードから強いセル間干渉を受けると、PDCCHがシステム帯域幅にわたって分布しているので、周波数ドメインICICを実施し得ない。
【0039】
図4は、例示の実装形態に従った基地局(eNB)の簡略化されたブロック図である。基地局は、ダウンリンク及びアップリンク両方の動作について基地局の動作を指示するeNBコントローラ400を含む。特に、eNBコントローラ400は、ステップ402で、特定の送信モード(表1及び2)に従ったUE固有制御情報及び/又は共通制御情報を担持するUE固有DCIフォーマットを生成する。各DCIは、ステップ406で、チャネル符号化され、変調され、EPDCCHにマッピングされる。各EPDCCHは、特定のEPDCCH領域でマッピングされ、ステップ412で送信される。eNBコントローラ400による異なるEPDCCH領域でのEPDCCHのマッピングを、
図5~
図9のフローチャートを参照して詳細に説明する。
【0040】
図5は、
図3のサブフレームのPDCCH領域0及びEPDCCH領域1の構成を示すフローチャートである。ここでは、且つ、下記の説明では、同じ識別番号を用いて類似の特徴を示す。eNBは、ステップ500で初期化され、ステップ502でPDCCH領域0及びEPDCCH領域1を構築するように指令する。EPDCCH領域1はPRBのセットを含み、PRBのセットは、ビットマップ又は他の類似のシグナリング方法でUEに通知され得る。これらのPRBは対で配置され、各対はサブフレームの第1及び第2の時間スロットを占める。ビットマップは、好ましくは、どのPRB対がどのUEについてのものなのかを定義する。ビットマップは、フレームのどのサブフレームがどのUEについてのものなのかも定義する。eNBは、好ましくは、必要なとき上位レベル無線リソース制御(RRC)によって各UEにビットマップを送信する。このビットマップは、UEに電力を節約させ、関連するPRB及びサブフレームだけを復号させるのに、極めて有利である。ステップ504において、コントローラは、共通制御情報及び/又はUE固有制御情報用のDCIを生成する。ステップ506において、コントローラは、UE固有制御情報が存在するかどうかを判定する。存在する場合、UE固有制御情報はステップ508においてEPDCCH領域1内のEPDCCHによって送信される。ステップ510において、コントローラは、共通制御情報が存在するかどうかを判定する。存在する場合、共通制御情報はステップ512においてPDCCH領域0内のPDCCHによって送信される。
【0041】
図6は、
図3のサブフレームの共通制御EPDCCH領域1及びUE固有制御EPDCCH領域1の構成を示すフローチャートである。この実施形態では、レガシーPDCCH制御領域がない場合を説明する。この場合の例は、将来のLTEバージョンに対して定義され得るニューキャリアタイプである。そのため、共通制御情報及びUE固有制御情報はいずれもEPDCCH領域1で送信されるものとする。eNBは、ステップ500で初期化され、ステップ514でEPDCCH領域1を構成するように指令する。ステップ504で、コントローラは、共通制御情報及び/又はUE固有制御情報用のDCIを生成する。ステップ506で、コントローラは、UE固有制御情報が存在するかどうかを判定する。存在する場合、UE固有制御情報はステップ508においてEPDCCH領域1内のEPDCCHによって送信される。ステップ510で、コントローラは、共通制御情報が存在するかどうかを判定する。存在する場合、共通制御情報はステップ516においてEPDCCH領域1で送信される。
【0042】
図7は、
図3のサブフレームの共通制御領域0及び1並びにUE固有制御EPDCCH領域1の構成を示すフローチャートである。eNBは、ステップ500で初期化され、ステップ502でPDCCH領域0及びEPDCCH領域1を構築するように指令する。ステップ504で、コントローラは、共通制御情報及び/又はUE固有制御情報用のDCIを生成する。ステップ506で、コントローラは、UE固有制御情報が存在するかどうかを判定する。存在する場合、UE固有制御情報はステップ508においてEPDCCH領域1内のEPDCCHによって送信される。ステップ510で、コントローラは、共通制御情報が存在するかどうかを判定する。存在する場合、ステップ518で、コントローラは、共通制御情報の種類に基づいて共通制御情報がPDCCH領域0又はEPDCCH領域1に挿入されるべきかを判定する。一実施形態では、DCIフォーマット3/3AによってスケジュールされるTPC情報を共通制御情報が担持する場合、共通制御情報はステップ522においてEPDCCH領域1内のEPDCCHによって送信される。そうでない場合、共通制御情報はステップ520においてPDCCH領域0内のPDCCHによって送信される。DCIフォーマット3/3AはUEが常にモニタリングするDCIフォーマット0/1Aと同じサイズなので、ブラインド復号は増えない。別の実施形態において、DCIフォーマット3/3AによってスケジュールされるTPC情報或いはDCIフォーマット1Cによってスケジュールされるページング又はシステム情報及び/又はランダムアクセス応答を共通制御情報が担持する場合、共通制御情報はステップ522においてEPDCCH領域1内のEPDCCHによって送信される。そうでない場合、共通制御情報はステップ520においてPDCCH領域0内のPDCCHによって送信される。これにより、ブラインド復号操作の数が増加する。これは、DCIフォーマット1CがDCIフォーマット0/1Aと異なるサイズを有するからである。
【0043】
図8は、
図3のサブフレームのEPDCCH領域1及びEPDCCH領域2の構成を示すフローチャートである。eNBは、ステップ500で初期化され、ステップ524でEPDCCH領域1及びEPDCCH領域2を構築するように指令する。各EPDCCH領域(1及び2)は、例えば先に説明したようなビットマップ又はそれに匹敵するシグナリング方法によってUEに通知され得るPRBのセットを含む。ステップ504で、コントローラは、共通制御情報及び/又はUE固有制御情報用のDCIを生成する。ステップ506で、コントローラは、UE固有制御情報が存在するかどうかを判定する。存在する場合、UE固有制御情報はステップ508においてEPDCCH領域1内のEPDCCHによって送信される。ステップ510で、コントローラは、共通制御情報が存在するかどうかを判定する。存在する場合、共通制御情報はステップ526においてEPDCCH領域2内のEPDCCHによって送信される。
【0044】
図9は、
図3のサブフレームの共通制御領域0及び2並びにUE固有制御EPDCCH領域1の構成を示すフローチャートである。eNBは、ステップ500で初期化され、ステップ528でPDCCH領域0並びにEPDCCH領域1及び2を構築するように指令する。ステップ504で、コントローラは、共通制御情報及び/又はUE固有制御情報用のDCIを生成する。ステップ506で、コントローラは、UE固有制御情報が存在するかどうかを判定する。存在する場合、UE固有制御情報はステップ508においてEPDCCH領域1内のEPDCCHによって送信される。ステップ510で、コントローラは、共通制御情報が存在するかどうかを判定する。存在する場合、コントローラは、ステップ518で、制御情報の種類に基づいて、PDCCH領域0内のPDCCHによって又はEPDCCH領域2内のEPDCCHによって共通制御情報が送信されるべきかを判定する。一実施形態では、DCIフォーマット3/3AによってスケジュールされるTPC情報を制御情報が担持する場合、ステップ522において、EPDCCH領域1内のEPDCCHによって制御情報が送信される。そうでない場合、制御情報はステップ520においてPDCCH領域0内のPDCCHによって送信される。DCIフォーマット3/3AはUEが常にモニタリングするDCIフォーマット0/1Aと同じサイズなので、ブラインド復号は増えない。別の実施形態において、DCIフォーマット3/3AによってスケジュールされるTPC情報或いはDCIフォーマット1Cによってスケジュールされるページング又はシステム情報及びランダムアクセス応答を共通制御情報が担持する場合、共通制御情報はステップ520においてPDCCH領域0内のPDCCHによって送信される。しかし、これにより、ブラインド復号操作数が増加する。これは、DCIフォーマット1CがDCIフォーマット0/1Aと異なるサイズを有するからである。
【0045】
図10は、例示の実装形態に従ったユーザ機器(UE)の簡略化されたブロック図である。UEは、ダウンリンク及びアップリンクの両方の動作についてUEの動作を指示するUEコントローラ600を含む。特に、UEコントローラ600は、特定の送信モード(表1及び2)に従ってDCIフォーマットを受信するようにEPDCCHレシーバ602に指示する。次いで、EPDCCHのPRBが、サイクリックシフタ606によってサイクリックシフトされ、デインターリーバ608によってデインターリーブされ、デスクランブラ610によってデスクランブルされる。ステップ612で、UEコントローラ600は、EPDCCHにおいて、得られたDCIフォーマットのブラインド復号612を指示する。UEコントローラ600によって指示されるUEフォーマットの操作を
図11~
図15のフローチャートを参照して詳細に説明する。
【0046】
図11は、
図3のサブフレームの共通制御PDCCH領域0及びUE固有制御EPDCCH領域1の復号を示すフローチャートである。UEは、ステップ700で初期化され、ステップ702でPDCCH領域0及びEPDCCH領域1の構築を受け取る。ステップ704で、コントローラは、共通制御情報及び/又はUE固有制御情報のブラインド復号を指示する。ステップ706で、コントローラは、復号すべきUE固有制御情報があるかどうかを判定する。ある場合、EPDCCH領域1のUE固有制御情報はステップ708でブラインド復号される。ステップ710で、コントローラは、共通制御情報が存在するかどうかを判定する。存在する場合、PDCCH領域0の共通制御情報はステップ712でブラインド復号される。
【0047】
図12は、
図3のサブフレームの共通制御EPDCCH領域1及びUE固有制御EPDCCH領域1の復号を示すフローチャートである。UEは、ステップ700で初期化され、ステップ714でEPDCCH領域1の構築を受け取る。ステップ704で、コントローラは、共通制御情報及び/又はUE固有制御情報のブラインド復号を指示する。ステップ706で、コントローラは、復号すべきUE固有制御情報があるかどうかを判定する。ある場合、EPDCCH領域1のUE固有制御情報はステップ708でブラインド復号される。ステップ710で、コントローラは、共通制御情報が存在するかどうかを判定する。存在する場合、EPDCCH領域1の共通制御情報はステップ716でブラインド復号される。
【0048】
図13は、
図3のサブフレームの共通制御PDCCH領域0又はEPDCCH領域1及びUE固有制御EPDCCH領域1の復号を示すフローチャートである。UEは、ステップ700で初期化され、ステップ702でPDCCH領域0及びEPDCCH領域1の構築を受け取る。ステップ704で、コントローラは、共通制御情報及び/又はUE固有制御情報のブラインド復号を指示する。ステップ706で、コントローラは、復号すべきUE固有制御情報があるかどうかを判定する。ある場合、EPDCCH領域1のUE固有制御情報はステップ708でブラインド復号される。ステップ712で、コントローラは、共通制御情報が存在するかどうかを判定する。存在する場合、コントローラは、ステップ718で共通制御情報がPDCCH領域0又はEPDCCH領域1にあるかを通信モード(表2)に基づいて判定する。ステップ720で、コントローラは、PDCCH領域0の共通制御情報のブラインド復号を指示する。ステップ722で、コントローラは、EPDCCH領域1の共通制御情報のブラインド復号を指示する。
【0049】
図14は、
図3のサブフレームの共通制御EPDCCH領域2及びUE固有制御EPDCCH領域1の復号を示すフローチャートである。UEは、ステップ700で初期化され、ステップ702でEPDCCH領域2及びEPDCCH領域1の構築を受け取る。ステップ704で、コントローラは、共通制御情報及び/又はUE固有制御情報のブラインド復号を指示する。ステップ706で、コントローラは、復号すべきUE固有制御情報があるかどうかを判定する。ある場合、EPDCCH領域1のUE固有制御情報はステップ708でブラインド復号される。ステップ712で、コントローラは、共通制御情報が存在するかどうかを判定する。存在する場合、EPDCCH領域2の共通制御情報はステップ726でブラインド復号される。
【0050】
図15は、
図3のサブフレームの共通制御PDCCH領域0又はEPDCCH領域2及びUE固有制御EPDCCH領域1の復号を示すフローチャートである。UEは、ステップ700で初期化され、ステップ702でPDCCH領域0、EPDCCH領域1、及びEPDCCH領域2の構築を受け取る。ステップ704で、コントローラは、共通制御情報及び/又はUE固有制御情報のブラインド復号を指示する。ステップ706で、コントローラは、復号すべきUE固有制御情報があるかどうかを判定する。ある場合、EPDCCH領域1のUE固有制御情報はステップ708でブラインド復号される。ステップ712で、コントローラは、共通制御情報が存在するかどうかを判定する。存在する場合、コントローラは、ステップ718で、共通制御情報がPDCCH領域0又はEPDCCH領域2にあるかを通信モード(表2)に基づいて判定する。ステップ720で、コントローラは、PDCCH領域0の共通制御情報のブラインド復号を指示する。ステップ730で、コントローラは、EPDCCH領域2の共通制御情報のブラインド復号を指示する。
【0051】
本発明の特許請求の範囲内で、説明した例示実装形態に改変をなし得ること、及び多くの他の実装形態が可能であることが、本発明に関係する当業者には理解されよう。