(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-02-13
(45)【発行日】2024-02-21
(54)【発明の名称】物品推定装置、物品推定方法、及びプログラム
(51)【国際特許分類】
B65G 1/137 20060101AFI20240214BHJP
【FI】
B65G1/137 C
(21)【出願番号】P 2021503960
(86)(22)【出願日】2020-02-20
(86)【国際出願番号】 JP2020006860
(87)【国際公開番号】W WO2020179480
(87)【国際公開日】2020-09-10
【審査請求日】2023-01-11
(31)【優先権主張番号】P 2019037829
(32)【優先日】2019-03-01
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000004237
【氏名又は名称】日本電気株式会社
(74)【代理人】
【識別番号】100110928
【氏名又は名称】速水 進治
(72)【発明者】
【氏名】仲村 元亨
(72)【発明者】
【氏名】村 尚幸
(72)【発明者】
【氏名】山崎 晋哉
【審査官】小川 悟史
(56)【参考文献】
【文献】特開2018-206372(JP,A)
【文献】特開2014-194732(JP,A)
【文献】特開2018-160107(JP,A)
【文献】米国特許出願公開第2015/0039458(US,A1)
【文献】国際公開第2017/163909(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
B65G 1/137
G06Q 20/00
G06Q 30/00
A47F 5/00
A47F 10/00
(57)【特許請求の範囲】
【請求項1】
複数の物品が載置可能な棚に設けられた重量センサの検出値の変化に基づいたデータである重量変化データと、前記棚の前の空間である棚前空間に位置する人物の手の動きを示す動作データと、を取得する取得手段と、
前記重量変化データ及び前記動作データを用いて、前記手が取り出したと推定される前記物品の物品特定情報を出力する出力手段と、
を備え、
前記取得手段は、前記棚前空間を検出範囲に含む深度センサの検出値を用いて前記動作データを生成し、
前記出力手段は、前記重量センサの検出値の変化があった棚の高さと、前記動作データを取得可能な深度センサ
によって検出された前記手の高さと、の関係が基準を満たした場合に、当該棚に紐付いた前記物品特定情報を出力し、
高さが異なる複数の前記棚があり、
少なくとも一つの前記物品特定情報は、前記複数の棚のそれぞれに紐付いており、
前記重量変化データは、前記複数の棚別の重量の変動を示している、
物品推定装置。
【請求項2】
請求項1に記載の物品推定装置において、
前記出力手段は、前記棚の複数の部分領域における重量の変化が基準を満たした前記部分領域に紐づけられた前記物品特定情報を出力する物品推定装置。
【請求項3】
請求項1または2に記載の物品推定装置において、
前記出力手段が出力した前記物品特定情報を、前記人物を特定する人物特定情報に紐づけて記憶手段に記憶させる記憶処理手段をさらに備える物品推定装置。
【請求項4】
請求項3に記載の物品推定装置において、
前記記憶処理手段は、前記人物の動きを追跡する人物追跡装置から、前記人物特定情報を取得する物品推定装置。
【請求項5】
請求項1~4のいずれか一項に記載の物品推定装置において、
前記取得手段は、前記棚前空間の少なくとも一部を含む画像である第1画像を繰り返し取得し、
前記出力手段は、さらに前記第1画像に含まれる前記物品の画像を用いて、前記手が取り出した前記物品を推定する物品推定装置。
【請求項6】
請求項1~4のいずれか一項に記載の物品推定装置において、
前記取得手段は、前記棚を前方から撮像した画像である第2画像を繰り返し取得し、
前記出力手段は、さらに前記第2画像の変化を用いて、前記手が取り出した前記物品の前記物品特定情報を特定する物品推定装置。
【請求項7】
請求項1~6のいずれか一項に記載の物品推定装置において、
前記棚には、複数の重量センサが互いに離れて設けられており、
前記取得手段は、前記複数の重量センサの検出値を用いて前記重量変化データを生成する物品推定装置。
【請求項8】
請求項1~7のいずれか一項に記載の物品推定装置において、
前記棚は店舗に設置されており、
前記人物は顧客であり、
前記出力手段が出力した前記物品特定情報を用いて精算処理を行う精算処理手段と、
前記精算処理に基づいた電子レシートを出力する電子レシート出力手段と、
を備える物品推定装置。
【請求項9】
コンピュータが、
複数の物品が載置可能な棚に設けられた重量センサの検出値の変化に基づいたデータである重量変化データと、前記棚の前の空間である棚前空間に位置する人物の手の動きを示す動作データと、を取得し、
前記重量変化データ及び前記動作データを用いて、前記手が取り出したと推定される前記物品の物品特定情報を出力する、ことを含み、
前記コンピュータは、
前記棚前空間を検出範囲に含む深度センサの検出値を用いて前記動作データを生成し、
前記重量センサの検出値の変化があった棚の高さと、前記動作データを取得可能な深度センサ
によって検出された前記手の高さと、の関係が基準を満たした場合に、当該棚に紐付いた前記物品特定情報を出力し、
高さが異なる複数の前記棚があり、
少なくとも一つの前記物品特定情報は、前記複数の棚のそれぞれに紐付いており、
前記重量変化データは、前記複数の棚別の重量の変動を示している、
物品推定方法。
【請求項10】
コンピュータに、
複数の物品が載置可能な棚に設けられた重量センサの検出値の変化に基づいたデータである重量変化データと、前記棚の前の空間である棚前空間に位置する人物の手の動きを示すデータであって、前記棚前空間を検出範囲に含む深度センサの検出値を用いて生成される動作データと、を取得する機能と、
前記重量変化データ及び前記動作データを用いて、前記手が取り出したと推定される前記物品の物品特定情報を出力する機能であって、前記重量センサの検出値の変化があった棚の高さと、前記動作データを取得可能な深度センサ
によって検出された前記手の高さと、の関係が基準を満たした場合に、当該棚に紐付いた前記物品特定情報を出力する機能と、
を持たせるプログラムであって、
高さが異なる複数の前記棚があり、
少なくとも一つの前記物品特定情報は、前記複数の棚のそれぞれに紐付いており、
前記重量変化データは、前記複数の棚別の重量の変動を示しているプログラム。
【請求項11】
請求項1~8のいずれか一項に記載の物品推定装置において、
前記深度センサは、前記棚前空間の上方および下方の少なくとも一方に配置されている、物品推定装置。
【請求項12】
請求項1~8、11のいずれか一項に記載の物品推定装置において、
前記棚前空間は、前記棚の外部前方の空間である物品推定装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は物品推定装置、物品推定方法、及びプログラムに関する。
【背景技術】
【0002】
近年は店舗や工場などで省力化を行うための技術開発が進められている。例えば特許文献1には、在庫棚から取り出された複数種類の物品を1セットとして箱詰めする作業において、在庫棚に収納されている物品5の総重量を計測し、この計測結果を用いて警告を行うか否かを判定することが記載されている。
【0003】
また特許文献2には、物品の取扱いを管理するために、物品のバーコードやQRコード(登録商標)を撮影した画像を処理した結果を用いて棚卸データを生成することが記載されている。棚卸データは、物品の取扱い状況を示した情報であり、例えば、撮影された物品の識別情報、当該物品の照合が行われた日時、当該物品が設置された場所、及び当該物品を取扱ったユーザの識別情報等を互いに対応付けた情報である。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2017-218289号公報
【文献】特開2017-210310号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
省力化を進めるためには、棚から取り出した物品を自動で判別できるようにすることが好ましい。本発明は、棚から取り出された物品の判別精度を上げることを目的の一つとする。
【課題を解決するための手段】
【0006】
本発明によれば、複数の物品が載置可能な棚に設けられた重量センサの検出値の変化に基づいたデータである重量変化データと、前記棚の前の空間である棚前空間に位置する人物の手の動きを示す動作データと、を取得する取得手段と、
前記重量変化データ及び前記動作データを用いて、前記手が取り出したと推定される前記物品の物品特定情報を出力する出力手段と、
を備え、
前記取得手段は、前記棚前空間を検出範囲に含む深度センサの検出値を用いて前記動作データを生成し、
前記出力手段は、前記重量センサの検出値の変化があった棚の高さと、前記動作データを取得可能な深度センサの検出値と、の関係が基準を満たした場合に、当該棚に紐付いた前記物品特定情報を出力し、
高さが異なる複数の前記棚があり、
少なくとも一つの前記物品特定情報は、前記複数の棚のそれぞれに紐付いており、
前記重量変化データは、前記複数の棚別の重量の変動を示している、
物品推定装置が提供される。
【0007】
本発明によればコンピュータが、
複数の物品が載置可能な棚に設けられた重量センサの検出値の変化に基づいたデータである重量変化データと、前記棚の前の空間である棚前空間に位置する人物の手の動きを示す動作データと、を取得し、
前記重量変化データ及び前記動作データを用いて、前記手が取り出したと推定される前記物品の物品特定情報を出力する、ことを含み、
前記コンピュータは、
前記棚前空間を検出範囲に含む深度センサの検出値を用いて前記動作データを生成し、
前記重量センサの検出値の変化があった棚の高さと、前記動作データを取得可能な深度センサの検出値と、の関係が基準を満たした場合に、当該棚に紐付いた前記物品特定情報を出力し、
高さが異なる複数の前記棚があり、
少なくとも一つの前記物品特定情報は、前記複数の棚のそれぞれに紐付いており、
前記重量変化データは、前記複数の棚別の重量の変動を示している、
物品推定方法が提供される。
【0008】
本発明によれば、コンピュータに、
複数の物品が載置可能な棚に設けられた重量センサの検出値の変化に基づいたデータである重量変化データと、前記棚の前の空間である棚前空間に位置する人物の手の動きを示すデータであって、前記棚前空間を検出範囲に含む深度センサの検出値を用いて生成される動作データと、を取得する機能と、
前記重量変化データ及び前記動作データを用いて、前記手が取り出したと推定される前記物品の物品特定情報を出力する機能であって、前記重量センサの検出値の変化があった棚の高さと、前記動作データを取得可能な深度センサの検出値と、の関係が基準を満たした場合に、当該棚に紐付いた前記物品特定情報を出力する機能と、
を持たせるプログラムであって、
高さが異なる複数の前記棚があり、
少なくとも一つの前記物品特定情報は、前記複数の棚のそれぞれに紐付いており、
前記重量変化データは、前記複数の棚別の重量の変動を示しているプログラムが提供される。
【発明の効果】
【0009】
本発明によれば、棚から取り出された物品の判別精度が上がる。
【図面の簡単な説明】
【0010】
上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
【0011】
【
図1】本実施形態に係る物品情報推定装置の機能構成を、物品情報推定装置の使用環境とともに示す図である。
【
図2】棚割情報記憶部が記憶しているデータの一例を示す図である。
【
図3】
図1に示す物品情報推定装置のハードウエア構成を例示するブロック図である。
【
図4】物品情報推定装置の動作例を説明するためのフローチャートである。
【
図5】ステップS104で行われる処理の詳細を説明するためのフローチャートである。
【
図6】変形例に係る棚及び重量センサのレイアウト例を示す図である。
【
図7】第2実施形態に係る物品情報推定装置の機能構成を、物品情報推定装置の使用環境とともに示す図である。
【
図8】第3実施形態に係る重量センサのレイアウトを説明するための平面図である。
【
図9】第3実施形態における物品の特定処理(
図4のステップS104)の詳細を説明するためのフローチャートである。
【
図10】第4実施形態に係る物品情報推定装置の機能構成を、物品情報推定装置の使用環境とともに示す図である。
【
図11】第4実施形態におけるステップS104の詳細を説明するためのフローチャートである。
【
図12】第5実施形態に係る物品情報推定装置の機能構成を、物品情報推定装置の使用環境とともに示す図である。
【
図13】第5実施形態に係る物品情報推定装置の動作例を説明するためのフローチャートである。
【発明を実施するための形態】
【0012】
以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
【0013】
[第1実施形態]
図1は、本実施形態に係る物品情報推定装置10の機能構成を、物品情報推定装置10の使用環境とともに示す図である。実施形態に係る物品情報推定装置10は、人が棚20から取り出した物品200を推定する装置であり、重量センサ30及び深度センサ40とともに使用される。本図において棚20は側面から見た状態で示されている。
【0014】
棚20は、複数の物品200が載置可能である。例えば棚20が店舗又は物流センタに配置されている場合、棚20は商品棚であり、物品200は商品であり、物品200を取り出す人は顧客又は店員(社員)である。また棚20が薬局に配置されている場合、棚20は薬品棚であり、物品200は薬品であり、物品200を取り出す人は薬剤師である。
【0015】
本実施形態において、物品200は、複数段の棚20のそれぞれに配置されている。複数段の棚20には、複数種類の物品200が載置される。そして、物品200毎に、その物品200が載置される棚20が予め定められている。このため、物品200が取り出された棚20が分かると、その物品200の種類を推定することができる。ただし、棚20は一段であってもよい。
【0016】
深度センサ40は、棚20の前の空間(以下、棚前空間と記載)を検出範囲に含んでおり、棚前空間に位置する人物の手の動きを示すデータを生成する。例えば深度センサ40は、棚前空間の上方に配置されているが、棚前空間の側方に配置されていてもよいし、棚前空間の下方に配置されていてもよい。そして、深度センサ40は、手のxy面(すなわち水平面)内における位置、及び手のz方向(すなわち高さ方向)の位置を示すデータを生成し、このデータを物品情報推定装置10に出力する。このため、人が手を棚20に入れた場合、物品情報推定装置10は、深度センサ40が生成したデータを用いることにより、その棚20を特定することができる。深度センサ40は例えばステレオカメラを用いたものであってもよいし、LiDAR(Light Detection and Ranging)を用いたものであってもよい。また、物品情報推定装置10が、深度センサ40からの出力データを処理することにより、手の位置を示すデータを生成してもよい。
【0017】
また、棚20の上に載置されている物品の総重量が基準値以上減ったこと、すなわち棚20の重さが基準値以上減ったことを検知しても、棚20から取り出された物品200を推定することができる。具体的には、重量センサ30は、棚20の総重量を検知している。重量センサ30の検出値は、その重量センサ30に割り振られた重量センサ識別情報とともに、物品情報推定装置10に出力される。そしてこの重量センサ識別情報を用いることにより、物品情報推定装置10は、取り出された物品200の種類を推定できる。
【0018】
<機能構成例>
物品情報推定装置10は、取得部110及び出力部120を有している。
【0019】
取得部110は、重量センサ30の検出値の変化に基づいたデータ(以下、重量変化データと記載)を取得する。例えば取得部110は、重量センサ30から取得したデータを時系列で整理することにより、重量変化データを生成する。ただし、物品情報推定装置10の外部に、重量センサ30が生成したデータを用いて重量変化データを生成するデータ処理装置が設けられていてもよい。この場合、取得部110は、このデータ処理装置から重量変化データを取得する。
【0020】
また、取得部110は、棚前空間に位置する人物の手の動きを示すデータ(以下、動作データと記載)を取得する。取得部110は、例えば、深度センサ40から物品情報推定装置10に出力されるデータを時系列で整理することにより、動作データを生成する。
【0021】
出力部120は、重量変化データ及び動作データを用いて、棚前空間に位置する人の手が取り出したと推定される物品の物品特定情報を出力する。本実施形態において、物品情報推定装置10は棚割情報記憶部130を有している。棚割情報記憶部130は、棚20毎に、その棚20に配置されている物品を特定する物品特定情報を記憶している。出力部120は、例えば、取り出された商品が載置されていた棚20を特定し、特定した棚20に対応する物品特定情報を棚割情報記憶部130から読み出し、読み出した物品特定情報を出力する。物品特定情報は、例えばその物品に割り振られたID(コード情報の場合もある)、又はその物品の品名(例えば商品名)である。
【0022】
図2は、棚割情報記憶部130が記憶しているデータの一例を示す図である。本実施形態において、棚割情報記憶部130は、棚20の位置を示す情報(以下、棚位置情報と記載)別に、その棚20に取り付けられている重量センサ30の重量センサ識別情報、その位置に載置される物品200の物品特定情報、及び閾値情報を記憶している。棚位置情報は、その棚20の高さを特定する情報(例えば床からの高さ、又は下からの段数)を含んでいる。閾値情報は、物品200が一つその棚から取り出されたときの重量センサ30の検出値の減少量として想定される値であり、例えばその物品200の重量の90%以上110%以下の値に設定されている。この閾値情報が示す閾値は、後述するように、出力部120に用いられる。
【0023】
<ハードウエア構成例>
図3は、
図1に示す物品情報推定装置10のハードウエア構成を例示するブロック図である。物品情報推定装置10は、バス1010、プロセッサ1020、メモリ1030、ストレージデバイス1040、入出力インタフェース1050、及びネットワークインタフェース1060を有する。
【0024】
バス1010は、プロセッサ1020、メモリ1030、ストレージデバイス1040、入出力インタフェース1050、及びネットワークインタフェース1060が、相互にデータを送受信するためのデータ伝送路である。ただし、プロセッサ1020などを互いに接続する方法は、バス接続に限定されない。
【0025】
プロセッサ1020は、CPU(Central Processing Unit) やGPU(Graphics Processing Unit)などで実現されるプロセッサである。
【0026】
メモリ1030は、RAM(Random Access Memory)などで実現される主記憶装置である。
【0027】
ストレージデバイス1040は、HDD(Hard Disk Drive)、SSD(Solid State Drive)、メモリカード、又はROM(Read Only Memory)などで実現される補助記憶装置である。ストレージデバイス1040は物品情報推定装置10の各機能(例えば取得部110及び出力部120)を実現するプログラムモジュールを記憶している。プロセッサ1020がこれら各プログラムモジュールをメモリ1030上に読み込んで実行することで、そのプログラムモジュールに対応する各機能が実現される。
【0028】
入出力インタフェース1050は、物品情報推定装置10と各種入出力機器とを接続するためのインタフェースである。
【0029】
ネットワークインタフェース1060は、物品情報推定装置10をネットワークに接続するためのインタフェースである。このネットワークは、例えばLAN(Local Area Network)やWAN(Wide Area Network)である。ネットワークインタフェース1060がネットワークに接続する方法は、無線接続であってもよいし、有線接続であってもよい。
【0030】
そして、物品情報推定装置10は、入出力インタフェース1050又はネットワークインタフェース1060を介して、必要な機器(例えば重量センサ30及び深度センサ40などのセンサ群)に接続する。
【0031】
<動作例>
図4は、物品情報推定装置10の動作例を説明するためのフローチャートである。本図に示す例において、重量センサ30は、常にデータ及び重量センサ識別情報を物品情報推定装置10に送信し続けている。また深度センサ40も常にデータを物品情報推定装置10に送信し続けている。取得部110は、これらのデータ、すなわち重量変化データ及び動作データを取得し続ける。また取得部110は、取得したデータを必要に応じてストレージに記憶させ続ける。
【0032】
出力部120は、取得部110が取得した重量センサ30の検出値を分析し、検出値(すなわち重量)が基準値以上減少した重量センサ30の重量センサ識別情報を特定する(ステップS102)。この基準値は、例えば
図2に示したように棚割情報記憶部130に記憶されている。そして出力部120は、ステップS102で特定された重量センサ識別情報、及び深度センサ40の検出値を用いて、物品の特定処理を行う(ステップS104)。
【0033】
図5は、ステップS104で行われる処理の詳細を説明するためのフローチャートである。まず出力部120は、棚割情報記憶部130から、ステップS102で特定した重量センサ識別情報に対応する棚位置情報を読み出す(ステップS202)。次いで出力部120は、深度センサ40が出力してきたデータを分析し、棚20に差し込まれた手の高さを検出する(ステップS204)。
【0034】
次いで出力部120は、ステップS204で検出された手の高さと、ステップS202で読み出された棚位置情報の関係が基準を満たすか否かを判断する(ステップS206)。例えば出力部120は、ステップS204で検出された手の高さが、棚位置情報が示す高さとその上の棚20の高さの間にある場合に、基準を満たすと判断する。なお、この基準は棚20別に棚割情報記憶部130に記憶されていてもよい。この場合、出力部120は、ステップS102で特定された棚位置情報に紐付いた基準を読み出して用いる。また棚割情報記憶部130は、棚位置情報の代わりに、その棚20に差し込まれた手の高さが取り得る範囲を記憶していてもよい。この場合、出力部120は、深度センサ40が取得したての高さが、この範囲内にあるかどうかを判断する。
【0035】
手の高さと棚位置情報の関係が基準を満たしていた場合(ステップS206:Yes)、出力部120は、ステップS102で特定した重量センサ識別情報に対応する物品特定情報を棚割情報記憶部130から読み出すことによって、人物によって取り出された物品200を推定する(ステップS208)。そして出力部120は、読み出した物品特定情報を出力する。
【0036】
一方、手の高さと棚位置情報の関係が基準を満たしてなかった場合(ステップS206:No)、出力部120は、アラート処理を行う。このアラート処理は、例えば物品200の管理者(例えば棚20が店舗であった場合には店員)の端末に所定の画面を標示させることなどである(ステップS210)。なお、このアラート処理とともに、又はアラート処理の代わりに、深度センサ40が生成したデータや、後述する実施形態に記載の第1撮像部70による画像や第2撮像部80による画像を管理者の端末に送信してもよい。この場合、管理者が、画像等を確認することで取り出された物品200を推定し、その結果を端末を介して出力部120に送信してもよい。
【0037】
なお、本実施形態において、出力部120は、まず、手の位置がいずれかの棚20に対応する高さになったことを検出し、その後、その棚20の重量変化が基準を満たしたときに、その棚20に対応する物品特定情報を読み出してもよい。
【0038】
<変形例1>
図6は、変形例に係る棚20及び重量センサ30のレイアウト例を示す図である。本図において棚20は正面から見た状態で示されている。本図に示す例において、少なくとも一つの段において、棚20は複数の部分領域22を有している。複数の部分領域22の少なくとも一つには、他の部分領域22とは異なる物品200が載置されている。重量センサ30は、部分領域22別に設けられている。そして棚割情報記憶部130は、複数の部分領域22別に、
図2に示した情報、すなわち棚位置情報、重量センサ識別情報、物品特定情報、及び閾値情報を記憶している。
【0039】
また、棚前空間は部分領域22別に設定されており、深度センサ40も部分領域22別に設けられている。複数の深度センサ40のそれぞれは、当該深度センサ40を他の深度センサ40から識別する深度センサ識別情報を記憶している。そして深度センサ40は、この深度センサ識別情報を、データとともに物品情報推定装置10に送信する。棚割情報記憶部130には、棚位置情報毎に、その棚位置に対応する深度センサ40の深度センサ識別情報が記憶されている。物品情報推定装置10は、棚割情報記憶部130に記憶されている重量センサ識別情報と深度センサ識別情報の組み合わせを用いることにより、深度センサ40から送信されたデータと、重量センサ30から送信されたデータの組み合わせを特定する。
【0040】
そして物品情報推定装置10は、このデータの組み合わせ毎、すなわち部分領域22単位で
図4及び
図5に示した処理を行う。本変形例によれば、同じ高さの棚20に複数種類の物品200が配置されていた場合でも、人物が取り出した物品200を推定することができる。
【0041】
以上、本実施形態によれば、重量変化が検出された棚20の位置と、深度センサ40によって特定された手の高さが基準を満たしていたときに、その棚20の物品200がその手によって取り出されたと判断する。従って、棚20から取り出された物品200の判別精度は向上する。
【0042】
[第2実施形態]
<機能構成例>
図7は、本実施形態に係る物品情報推定装置10の機能構成を、物品情報推定装置10の使用環境とともに示す図であり、第1実施形態の
図1に対応している。本実施形態に係る物品情報推定装置10は、以下の点を除いて第1実施形態に係る物品情報推定装置10と同様の構成である。
【0043】
まず、物品情報推定装置10は人物追跡装置50から、棚20の前の棚前空間に存在する人の人物識別情報を取得する。
【0044】
人物追跡装置50は、例えば、互いに異なる場所を撮像範囲とする複数の撮像部から送られてきた画像を解析することにより、人物ごとに、その人物の動線を示す動線情報を生成する。そして人物追跡装置50は、動線情報を、人物識別情報に紐づけて記憶している。人物識別情報は、例えば人物の画像から得られる特徴量である。また、棚20が店舗に設置されている場合、人物識別情報は会員番号などの顧客IDであってもよい。そして人物追跡装置50は、ある人物が棚20の前の棚前空間に一定時間滞在すると、その人物の人物識別情報を物品情報推定装置10に出力する。
【0045】
そして物品情報推定装置10は、記憶処理部140を有している。記憶処理部140は、出力部120が
図5のステップS208で取得した物品特定情報を、人物追跡装置50から取得した人物識別情報に紐づけて登録物品記憶部60に記憶させる。
【0046】
例えば棚20が店舗に設置されている場合、物品情報推定装置10及び登録物品記憶部60は、POS(Point of sale system)の商品登録装置や店舗サーバとして用いることができる。そしてPOSの精算装置は、登録物品記憶部60が記憶している情報を用いて決済処理を行う。
【0047】
例えば人物追跡装置50は、店舗に入った顧客の顔の特徴量を記憶している。この場合、人物追跡装置50は、例えば店舗の入口を撮像範囲に含む撮像装置から画像を取得し、この画像を処理することにより、顧客の顔の特徴量を取得して記憶する。
【0048】
そして上記したように、人物追跡装置50は、この特徴量を用いて顧客の動線情報を生成する。動線情報は、特徴量又はこの特徴量に紐付いた顧客IDに紐づけられる。また、物品情報推定装置10の記憶処理部140は、顧客の特徴量(又はこの特徴量に紐付いた顧客ID)に紐づけて、その顧客が取り出した商品の物品特定情報を登録物品記憶部60に記憶させる。この処理は、顧客が決済処理を行うまで繰り返されるため、顧客が複数の商品を取り出した場合、登録物品記憶部60は、これら複数の商品の物品特定情報を、その顧客の特徴量(又はこの特徴量に紐付いた顧客ID)に紐づけて記憶する。
【0049】
また、顧客は、顧客の端末を用いて登録物品記憶部60が記憶している情報を読み出すことができる。例えば顧客の端末は、その顧客の特徴量(又は顧客ID)を記憶処理部140に送信する。記憶処理部140は、登録物品記憶部60から、送信されてきた特徴量(又は顧客ID)に紐付いた物品特定情報を読み出し、この物品特定情報を商品のリストとして顧客の端末に送信する。この際、物品特定情報はデータベースを用いて商品名に変換されてもよい。また物品特定情報(又は商品名)とともに、その商品の価格が送られてもよい。後者の場合、顧客の端末には、登録されている商品の合計金額がさらに送信されてもよい。
【0050】
そして顧客の端末は、送信されてきた商品のリストを表示する。この画面には、例えば決済を行わせるための入力ボタンが含まれる。
【0051】
そして、顧客は、例えば顧客の端末を操作することにより、商品の決済を行う旨の情報を、その顧客の特徴量(又は顧客ID)とともに精算装置に送信する。精算装置は、受信した特徴量(又は顧客ID)に対応している物品特定情報を登録物品記憶部60から読み出し、読み出した情報を用いて決済処理を行う。その後、精算装置は電子レシートを生成して顧客の端末に送信する。なお、この精算装置は物品情報推定装置10に組み込まれていてもよい。
【0052】
なお、商品の決済を行う旨の情報は、店舗に設置された端末から入力されてもよい。この場合、この端末は、顧客の顔を撮像して特徴量を生成し、この特徴量を精算装置に送信してもよい。
【0053】
また棚20が物流センタや薬局に設置されている場合、登録物品記憶部60が記憶している情報を用いることにより、物品200を取り出した人物を確認できる。
【0054】
なお、
図7に示す例において登録物品記憶部60は物品情報推定装置10の外にあるが、登録物品記憶部60は物品情報推定装置10の一部であってもよい。また、人物特定情報は、例えば棚20に取り付けられた入力装置(例えばカードリーダ)を用いて人が入力してもよい。
【0055】
本実施形態によっても、第1実施形態と同様に、棚20から取り出された物品200の判別精度は向上する。また、登録物品記憶部60は、ある人が取り出した物品200の物品特定情報を、その人の人物識別情報に紐づけて記憶している。従って、誰がどの物品200を取り出したかを確認できる。
【0056】
[第3実施形態]
<機能構成例>
図8は、本実施形態に係る重量センサ30のレイアウトを説明するための平面図である。本実施形態において、一つの棚20又は部分領域22(以下、棚20と記載)には複数の重量センサ30が互いに離れて設けられている。本図に示す例において、棚20は矩形であり、重量センサ30は棚20の4つの角のそれぞれに設けられている。
【0057】
そして出力部120が用いる重量変化データは、これら複数の重量センサ30の検出値の変化に基づいている。一例として、重量変化データは、複数の重量センサ30の検出値の時間推移を示している。そして物品情報推定装置10の出力部120は、複数の重量センサ30の検出値の変化が基準を満たしたときに、その棚20の上の物品200が取り出されたと判断する。例えば出力部120は、複数の重量センサ30の検出値の減少量の合計値が基準を満たしたときに、物品200が取り出されたと判断する。この際、出力部120は、複数の重量センサ30の検出値の減少量を用いて、棚20のどの位置の物品200が取り出されたかを判断する。
【0058】
なお、同一の棚20に設けられた複数の重量センサ30の重量センサ識別情報は、棚割情報記憶部130において互いに紐づけられて、一組の重量センサ30として管理されている。例えば同一の棚20に設けられた複数の重量センサ30の重量センサ識別情報は、その棚20を他の棚20から識別する情報、例えば棚位置情報に紐づけられている。このため、出力部120は、棚割情報記憶部130が記憶している情報を用いることにより、上記した処理を行える。
【0059】
<動作例>
物品情報推定装置10は、まず、検出値の変化が基準を満たした重量センサ30の組を特定する(
図4のステップS102)。次いで、特定した重量センサ30の組の検出結果を用いて、物品の特定処理を実行する(
図4のステップS104)。
【0060】
図9は、本実施形態における物品の特定処理(
図4のステップS104)の詳細を説明するためのフローチャートである。まず出力部120は、ステップS102で特定した重量センサ30の重量センサ識別情報に対応する棚位置情報を読み出す(ステップS222)。
【0061】
次いで、出力部120は、複数の重量センサ30の検出値の変化を用いて、棚20のうち重量の変化が生じた位置、すなわち取り出された物品200が配置されていた位置を推定する。例えば出力部120は、各重量センサ30の変化量を重さとみなし、これらの重さの重心となる位置を、上記した位置と推定する(ステップS224)。
【0062】
また出力部120は、深度センサ40から送信されてきたデータを用いて、手の高さを特定するとともに、手が伸びている方向を特定する。例えば深度センサ40が、高さ情報を2次元で示した深度マップを出力する場合、出力部120は、この深度マップを用いることにより、手の高さ及び方向を特定する(ステップS226)。
【0063】
そして出力部120は、手の高さと棚位置情報の関係が基準を満たしており、かつ手の方向とステップS224で特定した物品200位置との関係が基準を満たすかどうかを判断する。手の高さと棚位置情報の関係が基準を満たしているか否かの判断は、
図5のステップS206で説明した判断と同様である。手の方向と物品200の位置との関係については、例えば手の方向が物品200の位置と重なった場合又はその最短距離が基準値以下の場合、基準を満たすと判断する(ステップS228)。
【0064】
そしてステップS228においてYesの場合、出力部120は、人物によって取り出された物品200を推定する(ステップS230)。ステップS230で行われる処理は、
図5のステップS208で行われる処理と同様である。一方、ステップS224においてNoの場合、出力部120は、アラート処理を行う(ステップS232)。ステップS232で行われる処理は、
図5のステップS210で行われる処理と同様である。
【0065】
本実施形態によっても、第1実施形態と同様に、棚20から取り出された物品200の判別精度は向上する。また、物品情報推定装置10は、手の高さと棚位置情報の関係(すなわち高さ方向の関係)のみではなく、手の方向と物品200の位置との関係(すなわち水平面内の関係)も、物品200を推定する際に用いている。このため、棚20から取り出された物品200の判別精度は、さらに向上する。
【0066】
[第4実施形態]
<機能構成例>
図10は、本実施形態に係る物品情報推定装置10の機能構成を、物品情報推定装置10の使用環境とともに示す図である。本実施形態に係る物品情報推定装置10は、第1撮像部70からの画像(以下、第1画像と記載)を繰り返し取得し、これらの第1画像を用いて物品200を特定する点を除いて、第1~第3実施形態のいずれかに係る物品情報推定装置10と同様の構成である。
図10は、第1実施形態と同様の場合を示している。
【0067】
第1撮像部70は、棚20の前の空間である棚前空間の少なくとも一部を撮像領域に含んでいる。このため、第1撮像部70が生成する第1画像は、棚前空間の少なくとも一部を含んでおり、かつ、棚20から取り出された物品200を含んでいる。
【0068】
そして出力部120は、第1画像に含まれる物品200の画像を用いて、人が棚20から取り出した物品200を推定する。具体的には、棚割情報記憶部130は、物品特定情報とともに、その物品200の画像上の特徴量を記憶している。そして出力部120は、この特徴量を第1画像に照合した結果を用いて、物品200を推定する。
【0069】
<動作例>
図10に示した物品情報推定装置10が行う処理は、第1実施形態において
図4を用いて説明した通りである。ただし、ステップS104に示した処理の詳細は、第1実施形態と異なる。
【0070】
図11は、本実施形態におけるステップS104の詳細を説明するためのフローチャートである。ステップS202,S204,S206,S208,S210で行われる処理は、
図5を用いて説明した通りである。ただし出力部120は、ステップS208において、物品特定情報とともに、その物品200の特徴量も読み出す。
【0071】
そして、出力部120は、重量センサ30の検出値が変化してから基準時間以内(たとえば10秒以内)の第1画像を処理し、第1画像に含まれる物品200の特徴量を抽出する。そして抽出した特徴量と、ステップS208において読み出した特徴量が一致していた場合、例えばスコアが基準値以上であった場合(ステップS209:Yes)、ステップS208で読み出された物品特定情報をそのまま出力する。一方、これらの特徴量が互いに一致しなかった場合(ステップS209:No)、アラート処理を行う(ステップS210)。
【0072】
なお、第3実施形態に示した物品情報推定装置10に対して上記した処理を適用した場合、ステップS209に示した処理は、
図9のステップS230の後に行われる。
【0073】
本実施形態によれば、第1実施形態と同様に、人が棚20から取り出した物品200の推定精度は向上する。また、第1画像には、人が取り出した物品200が含まれている。そして物品情報推定装置10の出力部120は、深度センサ40及び重量センサ30の検出値で推定された物品200を、さらに第1画像を用いて検証する。従って、さらに物品200の推定精度は向上する。
【0074】
[第5実施形態]
<機能構成例>
図12は、本実施形態に係る物品情報推定装置10の機能構成を、物品情報推定装置10の使用環境とともに示す図である。本実施形態に係る物品情報推定装置10は、第2撮像部80からの画像(以下第2画像と記載)を繰り返し取得し、これら複数の第2画像を用いて物品200を特定する点を除いて、第1~第4実施形態のいずれかに係る物品情報推定装置10と同様の構成である。
図12は、第4実施形態と同様の場合を示している。
【0075】
第2撮像部80は、棚20を前方(例えば斜め上の前方)から撮像する。このため、第2画像は、棚20に載置されている物品200を含んでいる。また第2撮像部80が棚20の斜め上の前方から撮像する場合、棚20の奥に位置する物品200も撮像できる。そして物品情報推定装置10の出力部120は、第2画像の変化をさらに用いて人が棚20から取り出した物品200を推定する。具体的には、出力部120は、深度センサ40が人の手を検出する前(すなわち棚前空間に人が来る前)の第2画像と、深度センサ40が人の手を検出しなくなってから(すなわち棚前空間から人が去った後)の第2画像の差分を用いて物品200を推定する。
【0076】
<動作例>
図12に示した物品情報推定装置10が行う処理は、第1実施形態において
図4を用いて説明した通りである。ただし、ステップS104に示した処理の詳細は、第1実施形態と異なる。
【0077】
図13は、本実施形態に係る物品情報推定装置10の動作例を説明するためのフローチャートである。ステップS202,S204,S206,S208,S209,S210で行われる処理は、
図11を用いて説明した通りである。
【0078】
そして物品情報推定装置10の出力部120は、第1画像に含まれる物品200の特徴量と棚割情報記憶部130から読み出された物品の特徴量が一致した場合(ステップS209:Yes)、第2画像を処理し、ステップS208で読み出した物品特定情報に対し、第2画像に基づいた補正が必要かどうかを判断する(ステップS212)。補正が必要な場合(ステップS212:Yes)、出力部120は補正を実行する(ステップS214)。
【0079】
例えば出力部120は、深度センサ40が人の手を検出する前(すなわち棚前空間に人が来る前)の第2画像と、深度センサ40が人の手を検出しなくなってから(すなわち棚前空間から人が去った後)の第2画像の差分を抽出し、この差分に対してマッチング処理を行うことにより、ステップS208で読み出された物品特定情報に対応する物品200が、本来あるべき棚20とは異なる棚20に移動しているか否かを判断する。この処理において、移動後の物品200の位置が、例えば物品200の特徴量を用いたマッチング処理により特定される。そしてこの移動が検知された場合(ステップS212:Yes)、出力部120は、物品特定情報を出力しない。例えば第2実施形態にこの機能を追加した場合、登録物品記憶部60にはこの物品200の物品特定情報は記憶されない(ステップS214)。
【0080】
その他、出力部120には、人による物品200の移動パターン毎に、重量センサ30の検出結果、深度センサ40の検出結果、及び第2画像の処理結果の組み合わせが予め記憶されている。そして出力部120は、この組み合わせに該当する結果が検出された場合、その組み合わせに相当する移動パターンが生じたと推定する。
【0081】
一方、補正が不要な場合(ステップS212:No)、出力部120は、ステップS208で読み出した物品特定情報を出力する。
【0082】
そして、この物品特定情報は、例えば第2実施形態で記載したように、店舗における商品の決済処理に用いられる。
【0083】
本実施形態によれば、第1実施形態と同様に、人が棚20から取り出した物品200の推定精度は向上する。また、物品情報推定装置10の出力部120は、棚20の中で移動された物品200を特定する。このため、人が棚20の中で移動させた物品200があった場合に、その人がその物品200を取り出したと誤認識することを抑制できる。
【0084】
以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
【0085】
また、上述の説明で用いた複数のフローチャートでは、複数の工程(処理)が順番に記載されているが、各実施形態で実行される工程の実行順序は、その記載の順番に制限されない。各実施形態では、図示される工程の順番を内容的に支障のない範囲で変更することができる。また、上述の各実施形態は、内容が相反しない範囲で組み合わせることができる。
【0086】
上記の実施形態の一部または全部は、以下の付記のようにも記載されうるが、以下に限られない。
1.複数の物品が載置可能な棚に設けられた重量センサの検出値の変化に基づいたデータである重量変化データと、前記棚の前の空間である棚前空間に位置する人物の手の動きを示す動作データと、を取得する取得手段と、
前記重量変化データ及び前記動作データを用いて、前記手が取り出したと推定される前記物品の物品特定情報を出力する出力手段と、
を備える物品推定装置。
2.上記1に記載の物品推定装置において、
前記取得手段は、前記棚前空間を検出範囲に含む深度センサの検出値を用いて前記動作データを生成し、
前記出力手段は、前記重量センサの検出値の変化があった棚の高さと、前記動作データを取得可能な深度センサの検出値と、の関係が基準を満たした場合に、当該棚に紐付いた前記物品特定情報を出力する物品推定装置。
3.上記2に記載の物品推定装置において、
高さが異なる複数の前記棚があり、
少なくとも一つの前記物品特定情報は、前記複数の棚のそれぞれに紐付いており、
前記重量変化データは、前記複数の棚別の重量の変動を示している物品推定装置。
4.上記1~3のいずれか一つに記載の物品推定装置において、
前記出力手段は、前記棚の複数の部分領域における重量の変化が基準を満たした前記部分領域に紐づけられた前記物品特定情報を出力する物品推定装置。
5.上記1~4のいずれか一つに記載の物品推定装置において、
前記出力手段が出力した前記物品特定情報を、前記人物を特定する人物特定情報に紐づけて記憶手段に記憶させる記憶処理手段をさらに備える物品推定装置。
6.上記5に記載の物品推定装置において、
前記記憶処理手段は、前記人物の動きを追跡する人物追跡装置から、前記人物特定情報を取得する物品推定装置。
7.上記1~6のいずれか一つに記載の物品推定装置において、
前記取得手段は、前記棚前空間の少なくとも一部を含む画像である第1画像を繰り返し取得し、
前記出力手段は、さらに前記第1画像に含まれる前記物品の画像を用いて、前記手が取り出した前記物品を推定する物品推定装置。
8.上記2~6のいずれか一つに記載の物品推定装置において、
前記取得手段は、前記棚を前方から撮像した画像である第2画像を繰り返し取得し、
前記出力手段は、さらに前記第2画像の変化を用いて、前記手が取り出した前記物品の前記物品特定情報を特定する物品推定装置。
9.上記1~8のいずれか一つに記載の物品推定装置において、
前記棚には、複数の重量センサが互いに離れて設けられており、
前記取得手段は、前記複数の重量センサの検出値を用いて前記重量変化データを生成する物品推定装置。
10.上記1~9のいずれか一つに記載の物品推定装置において、
前記棚は店舗に設置されており、
前記人物は顧客であり、
前記出力手段が出力した前記物品特定情報を用いて精算処理を行う精算処理手段と、
前記精算処理に基づいた電子レシートを出力する電子レシート出力手段と、
を備える物品推定装置。
11.コンピュータが、
複数の物品が載置可能な棚に設けられた重量センサの検出値の変化に基づいたデータである重量変化データと、前記棚の前の空間である棚前空間に位置する人物の手の動きを示す動作データと、を取得し、
前記重量変化データ及び前記動作データを用いて、前記手が取り出したと推定される前記物品の物品特定情報を出力する、物品推定方法。
12.上記11に記載の物品推定方法において、
前記コンピュータは、
前記棚前空間を検出範囲に含む深度センサの検出値を用いて前記動作データを生成し、
前記重量センサの検出値の変化があった棚の高さと、前記動作データを取得可能な深度センサの検出値と、の関係が基準を満たした場合に、当該棚に紐付いた前記物品特定情報を出力する物品推定方法。
13.上記12に記載の物品推定方法において、
高さが異なる複数の前記棚があり、
少なくとも一つの前記物品特定情報は、前記複数の棚のそれぞれに紐付いており、
前記重量変化データは、前記複数の棚別の重量の変動を示している物品推定方法。
14.上記11~13のいずれか一つに記載の物品推定方法において、
前記コンピュータは、前記棚の複数の部分領域における重量の変化が基準を満たした前記部分領域に紐づけられた前記物品特定情報を出力する物品推定方法。
15.上記11~14のいずれか一つに記載の物品推定方法において、
前記コンピュータは、出力した前記物品特定情報を、前記人物を特定する人物特定情報に紐づけて記憶手段に記憶させる物品推定方法。
16.上記15に記載の物品推定方法において、
前記コンピュータは、前記人物の動きを追跡する人物追跡装置から、前記人物特定情報を取得する物品推定方法。
17.上記11~16のいずれか一つに記載の物品推定方法において、
前記コンピュータは、
前記棚前空間の少なくとも一部を含む画像である第1画像を繰り返し取得し、
さらに前記第1画像に含まれる前記物品の画像を用いて、前記手が取り出した前記物品を推定する物品推定方法。
18.上記12~16のいずれか一つに記載の物品推定方法において、
前記コンピュータは、前記棚を前方から撮像した画像である第2画像を繰り返し取得し、さらに前記第2画像の変化を用いて、前記手が取り出した前記物品の前記物品特定情報を特定する物品推定方法。
19.上記11~18のいずれか一つに記載の物品推定方法において、
前記棚には、複数の重量センサが互いに離れて設けられており、
前記コンピュータは、前記複数の重量センサの検出値を用いて前記重量変化データを生成する物品推定方法。
20.上記11~19のいずれか一つに記載の物品推定方法において、
前記棚は店舗に設置されており、
前記人物は顧客であり、
前記コンピュータは、出力した前記物品特定情報を用いて精算処理を行い、前記精算処理に基づいた電子レシートを出力する物品推定方法。
21.コンピュータに、
複数の物品が載置可能な棚に設けられた重量センサの検出値の変化に基づいたデータである重量変化データと、前記棚の前の空間である棚前空間に位置する人物の手の動きを示す動作データと、を取得する機能と、
前記重量変化データ及び前記動作データを用いて、前記手が取り出したと推定される前記物品の物品特定情報を出力する機能と、
を持たせるプログラム。
22.上記21に記載のプログラムにおいて、
前記コンピュータに、
前記棚前空間を検出範囲に含む深度センサの検出値を用いて前記動作データを生成する機能と、
前記重量センサの検出値の変化があった棚の高さと、前記動作データを取得可能な深度センサの検出値と、の関係が基準を満たした場合に、当該棚に紐付いた前記物品特定情報を出力する機能と、
を持たせるプログラム。
23.上記22に記載のプログラムにおいて、
高さが異なる複数の前記棚があり、
少なくとも一つの前記物品特定情報は、前記複数の棚のそれぞれに紐付いており、
前記重量変化データは、前記複数の棚別の重量の変動を示しているプログラム。
24.上記21~23のいずれか一つに記載のプログラムにおいて、
前記コンピュータに、前記棚の複数の部分領域における重量の変化が基準を満たした前記部分領域に紐づけられた前記物品特定情報を出力する機能を持たせるプログラム。
25.上記21~24のいずれか一つに記載のプログラムにおいて、
前記コンピュータに、出力した前記物品特定情報を、前記人物を特定する人物特定情報に紐づけて記憶手段に記憶させる機能を持たせるプログラム。
26.上記25に記載のプログラムにおいて、
前記コンピュータに、前記人物の動きを追跡する人物追跡装置から、前記人物特定情報を取得する機能を持たせるプログラム。
27.上記21~26のいずれか一つに記載のプログラムにおいて、
前記コンピュータに、
前記棚前空間の少なくとも一部を含む画像である第1画像を繰り返し取得する機能と、
さらに前記第1画像に含まれる前記物品の画像を用いて、前記手が取り出した前記物品を推定する機能と、
を持たせるプログラム。
28.上記22~26のいずれか一つに記載のプログラムにおいて、
前記コンピュータに、前記棚を前方から撮像した画像である第2画像を繰り返し取得し、さらに前記第2画像の変化を用いて、前記手が取り出した前記物品の前記物品特定情報を特定する機能を持たせるプログラム。
29.上記21~28のいずれか一つに記載のプログラムにおいて、
前記棚には、複数の重量センサが互いに離れて設けられており、
前記コンピュータに、前記複数の重量センサの検出値を用いて前記重量変化データを生成する機能を持たせるプログラム。
30.上記21~29のいずれか一つに記載のプログラムにおいて、
前記棚は店舗に設置されており、
前記人物は顧客であり、
前記コンピュータに、出力した前記物品特定情報を用いて精算処理を行い、前記精算処理に基づいた電子レシートを出力する機能を持たせるプログラム。
【0087】
この出願は、2019年3月1日に出願された日本出願特願2019-037829号を基礎とする優先権を主張し、その開示の全てをここに取り込む。