(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-02-13
(45)【発行日】2024-02-21
(54)【発明の名称】光集積回路用のマルチモード導波路システム及びコネクタ
(51)【国際特許分類】
G02B 6/122 20060101AFI20240214BHJP
G02B 6/42 20060101ALI20240214BHJP
G02B 6/34 20060101ALI20240214BHJP
【FI】
G02B6/122 311
G02B6/42
G02B6/34
【外国語出願】
(21)【出願番号】P 2021068825
(22)【出願日】2021-04-15
【審査請求日】2022-10-20
(32)【優先日】2020-04-15
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2020-10-08
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2021-03-29
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】390005049
【氏名又は名称】ヒロセ電機株式会社
(74)【代理人】
【識別番号】100094569
【氏名又は名称】田中 伸一郎
(74)【代理人】
【識別番号】100103610
【氏名又は名称】▲吉▼田 和彦
(74)【代理人】
【識別番号】100109070
【氏名又は名称】須田 洋之
(74)【代理人】
【識別番号】100067013
【氏名又は名称】大塚 文昭
(74)【代理人】
【識別番号】100086771
【氏名又は名称】西島 孝喜
(74)【代理人】
【氏名又は名称】上杉 浩
(74)【代理人】
【識別番号】100120525
【氏名又は名称】近藤 直樹
(74)【代理人】
【識別番号】100139712
【氏名又は名称】那須 威夫
(74)【代理人】
【識別番号】100167911
【氏名又は名称】豊島 匠二
(72)【発明者】
【氏名】キホン キム
(72)【発明者】
【氏名】ジェレミー ブアン
(72)【発明者】
【氏名】大志田 直
(72)【発明者】
【氏名】松尾 勉
(72)【発明者】
【氏名】鈴木 修司
(72)【発明者】
【氏名】玉井 暢洋
(72)【発明者】
【氏名】村岡 央理
【審査官】堀部 修平
(56)【参考文献】
【文献】国際公開第2020/075234(WO,A1)
【文献】特開2008-107781(JP,A)
【文献】米国特許出願公開第2005/0265653(US,A1)
【文献】実開平07-010706(JP,U)
【文献】米国特許出願公開第2015/0050019(US,A1)
【文献】米国特許出願公開第2017/0307834(US,A1)
【文献】特開2010-085476(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G02B 6/12 - 6/14
G02B 6/26 - 6/27
G02B 6/30 - 6/34
G02B 6/42 - 6/43
(57)【特許請求の範囲】
【請求項1】
マルチモード導波路コネクタであって、
プリント光学基板(POB)の組み込み型マルチモード導波路バスに接続されたマルチモード導波路と係合するように構成されたプリズム部分と、
断熱テーパー部分と、
を備え、
前記断熱テーパー部分が、
前記プリズム部分とインターフェイス接続されたベース部分と、
シングルモード導波路とインターフェイス接続された上部分と、
を含み、前記ベース部分が前記上部分よりも幅広である、
マルチモード導波路コネクタ。
【請求項2】
前記断熱テーパー部分の前記ベース部分を前記プリズム部分とインターフェイス接続する本体部分を更に備え、前記本体部分が、マルチモード光信号を前記プリズム部分に又は前記断熱テーパー部分の前記ベース部分に向けるように構成されている、請求項1に記載のマルチモード導波路コネクタ。
【請求項3】
前記本体部分が矩形である、請求項
2に記載のマルチモード導波路コネクタ。
【請求項4】
前記プリズム部分は、断熱テーパー部分に直交して前記マルチモード導波路と係合するように構成される、請求項1乃至
3のいずれかに記載のマルチモード導波路コネクタ。
【請求項5】
前記断熱テーパー部分がピラミッド形状である、請求項1乃至
4のいずれかに記載のマルチモード導波路コネクタ。
【請求項6】
前記断熱テーパー部分の上部分が矩形部分を含む、請求項1乃至
5のいずれかに記載のマルチモード導波路コネクタ。
【請求項7】
システムであって、
プリント光学基板(POB)の組み込み型マルチモード導波路バスに接続された1又は2以上のマルチモード導波路を含む1又は2以上の光集積回路と、
1又は2以上のマルチモード導波路に接続された1又は2以上のマルチモード導波路コネクタと、
を備え、
前記1又は2以上のマルチモード導波路コネクタの各々が、
前記1又は2以上のマルチモード導波路と係合するように構成されたプリズム部分と、
断熱テーパー部分と、
を含み、
前記断熱テーパー部分が、
前記プリズム部分とインターフェイス接続されたベース部分と、
シングルモード導波路とインターフェイス接続された上部分と、
を含み、前記ベース部分が前記上部分よりも幅広である、システム。
【請求項8】
前記1又は2以上のマルチモード導波路は、双方向チャネルを介して、電気信号から光信号への変換及び光信号から電気信号への変換を行うように構成された組み込み型デジタル変換器に接続されている、請求項
7に記載のシステム。
【請求項9】
ハイブリッドモード導波路光集積回路を更に備え、前記ハイブリッドモード導波路光集積回路が、マルチモード導波路光集積回路と、1つのパッケージにおいて光-電気及び電気-光変換を介して共に結合されたシングルモード導波路光集積回路と、を備え、
前記ハイブリッドモード導波路光集積回路が、マルチモード導波路光集積回路から前記プリント光学基板の前記組み込み型マルチモード導波路バスに接続され、更に前記プリント光学基板のシングルモード導波路バス又は前記シングルモード導波路光集積回路からのシングルモードファイバケーブルのうちの1つに接続され、
前記シングルモード導波路光集積回路が、双方向チャネルを介して、電気信号から光信号への変換及び光信号から電気信号への変換を行うように構成された別の組み込み型デジタル変換器に接続されたシングルモード導波路を含む、請求項
8に記載のシステム。
【請求項10】
前記ハイブリッドモード導波路光集積回路が、前記組み込み型マルチモード導波路バスからの集約された光信号を別の組み込み型デジタル変換器を介して電気信号に変換し、前記電気信号を光信号に変換し、前記プリント光学基板のシングルモード導波路バス又は前記シングルモード導波路光集積回路からの前記シングルモードファイバケーブルの1つに出力するように構成される、請求項
9に記載のシステム。
【請求項11】
導波路コネクタであって、
プリント光学基板(POB)の組み込み型導波路バスに接続された第1の導波路と係合するように構成されたプリズム部分と、
前記プリズム部分とインターフェイス接続されたベース部分と、第2の導波路とインターフェイス接続された上部分を含む、断熱テーパー部分と、
を備え、前記ベース部分が前記上部分よりも幅広であり、
前記断熱テーパー部分の前記ベース部分を前記プリズム部分とインターフェイス接続する本体部分を更に備え、前記本体部分が、マルチモード光信号を前記プリズム部分に又は前記断熱テーパー部分の前記ベース部分に向けるように構成され、
前記プリズム部分、前記本体部分及び前記断熱テーパー部分は、接着剤
又はクラッド材料によって基板に配置され、前記基板は、前記プリズム部分、前記本体部分及び前記断熱テーパー部分を支持する、導波路コネクタ。
【請求項12】
前記第1の導波路及び前記第2の導波路がマルチモード導波路である、請求項
11に記載の導波路コネクタ。
【請求項13】
前記第1の導波路はシングルモード導波路であり、前記第2の導波路はマルチモード導波路である、請求項
11に記載の導波路コネクタ。
【請求項14】
前記第1の導波路及び前記第2の導波路がシングルモード導波路である、請求項
11に記載の導波路コネクタ。
【請求項15】
前記第1の導波路はマルチモード導波路であり、前記第2の導波路はシングルモード導波路である、請求項
11に記載の導波路コネクタ。
【発明の詳細な説明】
【技術分野】
【0001】
(関連出願の相互参照)
本特許出願は、4月15日に出願された米国仮特許出願第63/010,394号及び2020年10月8日に出願された米国特許出願第63/089,346号による米国特許法第119(e)条に基づく国内優先権に基づいており、その利益を主張し、その開示内容は、あらゆる目的で引用により全体が本明細書に組み込まれる。
【0002】
本開示は、一般に、光(フォトニック)集積回路(PIC)システム、及びより具体的には、マルチモード導波路及びマルチモード導波路コネクタを備えたPICシステムに関する。
【背景技術】
【0003】
PICシステムでは、PICシステムの銅トレースがゼロに向かって崩壊すると、光コネクタは、システムオンチップ(SoC)の直近で混雑状態になる。残念ながら、この混雑したバス環境については、光入力/出力(I/O)規格は存在しない。オフチップ光バスとしても知られるPICの入力及び出力(電気システムのI/Oバッファ及びボンディングパッドに相当)は、候補解、業界のコンセンサス、又は標準的な活動を有していない。このような解決策の欠如は、PIC構成要素に関与するコネクタメーカーが直面している短期的な課題である。
【0004】
回路基板内に組み込み型(embedded)導波路を含むプリント光学基板(POB)の設計において新しい展開があった。
図1は、例示的なPOBシステムを示している。具体的には、
図1は、プリント回路基板(PCB)材料及びプロセスにおいて組み込まれた光導波路コア層を示している。矢印は、光モジュールからSoCへの光路の方向を示している。光学層と電気層が製造時に位置合わせされるので、組立ハウスでは、追加の位置合わせを行う必要がない。しかしながら、材料システムは、新しいラミネーションプロセスを必要とし、これによりコストの増加、及び現場での製品の信頼性が未知になる。
【発明の概要】
【0005】
本明細書に記載の実施構成例は、マルチモード導波路を有し、プリント光学基板に接続された1又は2以上の光集積回路を含むシステムに関する。プリント光学基板は、光集積回路との間で光信号を提供するために、組み込み型マルチモード導波路バスを含むことができる。本システムはまた、光ファイバケーブルに接続するように構成されたシングルモード導波路を備えた光集積回路などのチップレットを含むことができる。
【0006】
本明細書で記載される実施構成例は、マルチモード導波路を有しプリント光学基板に接続された1又は2以上の光集積回路を含むシステムに統合されたマルチモード導波路コネクタに関する。マルチモード導波路コネクタは、シングルモード光信号からマルチモード光信号への遷移を提供する断熱テーパー部分と、マルチモード導波路とインターフェイス接続され、マルチモード光信号を断熱テーパー部分と送受信するように構成されたプリズム部分と、を含むことができる。
【0007】
本開示の態様は、1又は2以上のマルチモード導波路(MMW)光集積回路(PIC)を有するシステムに関し、1又は2以上のMMW PICの各々は、双方向チャネルを介して、電気信号から光信号への変換及び光信号から電気信号への変換を行うように構成された埋め込みデジタル等化器に接続されたMMWと、1又は2以上のMMWPICのMMWに接続された組み込み型MMWバスを含むプリント光学ボード(POB)と、POBのMMWバスに接続されたシングルモード導波路(SMW)PICと、を含み、SMW PICは、双方向チャネルを介して、電気信号から光信号への変換及び光信号から電気信号への変換を行うように構成された別の組み込み型デジタル等化器に接続されたSMWを含む。
【0008】
本開示の態様は更に、マルチモード導波路と係合するように構成されたプリズム部分と、プリズム部分とインターフェイス接続されたベース部分及びシングルモード導波路とインターフェイス接続された上部分を有する断熱テーパー部分と、を含むことができ、ベース部分が上部分よりも幅広である、マルチモード導波路コネクタに関することができる。
【0009】
本開示の態様は更に、第1の導波路と係合するように構成されたプリズム部分と、プリズム部分とインターフェイス接続されたベース部分及び第2の導波路とインターフェイス接続された上部分を有する断熱テーパー部分と、を含むことができ、ベース部分が上部分よりも幅広である、導波路コネクタに関することができる。
【0010】
本開示の態様は更に、1又は2以上のマルチモード導波路を含む1又は2以上の光集積回路と、1又は2以上のマルチモード導波路に接続された1又は2以上のマルチモード導波路コネクタと、を備えるシステムであって、1又は2以上のマルチモード導波路コネクタの各々が、1又は2以上のマルチモード導波路と係合するように構成されたプリズム部分と、プリズム部分とインターフェイス接続されたベース部分及びシングルモード導波路とインターフェイス接続された上部分を有する断熱テーパー部分と、を含み、ベース部分が上部分よりも幅広である、システムに関することができる。
【図面の簡単な説明】
【0011】
【
図1】例示的なプリント光学基板(POB)システムを示す図である。
【
図2】例示的な実施構成による、PIC用のマルチモード導波路を含む例示的なシステムを示す図である。
【
図3】PICのためのマルチモード導波路実施構成からの例示的な障害を示す図である。
【
図4】例示的な実施構成による、システムにおけるPICの実施例を示す図である。
【
図5】例示的な実施構成による、断熱テーパー部分を備えた導波路コネクタの例示的な断面を示す図である。
【
図6】例示的な実施構成による、導波路コネクタの構成例を示す図である。
【
図7】例示的な実施構成による、導波路コネクタの別の例示的な構成を示す図である。
【発明を実施するための形態】
【0012】
以下の詳細な説明は、本出願の図及び例示的な実施構成の更なる詳細を提供する。図間の冗長要素の参照番号及び説明は、明確にするために省略されている。本明細書全体で使用される用語は、実施例として提供されており、限定することを意図したものではない。本明細書に記載の例示的な実施構成は、単独で、又は本明細書に記載される他の例示的な実施構成と組み合わせて、或いは他の何れかの所望の実施構成と組み合わせて使用することができる。
【0013】
組み込み型導波路を有するPOBを含むPICシステムでは、ボードから光モジュール、及びボードからチップ間のインターフェイスを提供するために、光コネクタが必要とされる。銅のトレース長は最終的にはゼロになるので、光から電気へのシステム及びインターフェイスは、チップレットが最終的にパッケージ上に配置されるようになる。
【0014】
従って、本明細書で記載される例示的な実施構成は、POBと統合されたマルチモード導波路を含むシステムに関する。
【0015】
図2は、例示的な実施構成による例示的なシステムを示している。
図2に示される例示的な実施構成では、POB210に接続されて、導波路からファイバケーブルコネクタ202を介して超光ファイバケーブル203に接続されたチップレット208とインターフェイス接続する1又は2以上のマルチモード導波路(MMW)PIC206が存在する。1又は2以上のMMW PIC206の各々は、MMW PICからPOBへの光信号を提供するように構成されたMMW205を含み、双方向チャネルを介して、電気信号/光信号変換を行うように構成された組み込み型デジタル等化器
(変換器)201に接続される。本明細書に記載のシステムでは、MMW PIC206及びPIC208は、所望の実施構成に応じて、集約、光スイッチング(例えば、スイッチング機能)及び電気的機能を実行するように構成することができる。このような実施構成は、関連技術のシングルモード手法を回避することができる。
【0016】
組み込み型デジタル等化器201は、MMW205を介してMMW PIC206からの出力信号について電気信号から光信号への変換を行い、又はMMW205からMMWPIC206への入力信号について光信号から電気信号への変換を行うように構成される。実施構成において、組み込み型デジタル等化器201は、MMW205が生成する障害を補償するために、シリアライザー/デシリアライザー(SERDES)線形又は非線形等化器スキームを含むことができる。(マルチモード導波路又はファイバの何れかから)MMW205によって誘起される障害は、
図3に示されるように、モード分散の形態である。これは、反射及び挿入のような決定論的ノイズであり、線形等化器又は非線形等化器に関わらず、組み込み型デジタル等化器201によって補償することができる。組み込み型デジタル等化器201は、チップから導波路コネクタ211を介してMMWPIC206とMMW205との間をインターフェイス接続する。本明細書に記載されるように、組み込み型デジタル等化器201は、光路上のチャネル信号障害に利用される。
【0017】
MMWバス204は、POB210を通過する光信号を集約するために、導波路-導波路コネクタ207を介してPIC206に接続されるPOB210に組み込まれた導波路を含む。導波路-導波路コネクタ207は、出口信号に対して信号流れ方向200に沿ってMMWバス204を通る光信号、又は入力信号に対してはMMWバス204からMMW PIC206を通る光信号を配向する光信号-光信号インターフェイスである。
【0018】
PIC208は、MMW PICとシングルモード導波路(SMW)PICの両方を含むことができ、導波路からファイバケーブルコネクタ202を介して超光ファイバケーブル203に接続するように構成される。PIC208はまた、チップ-導波路コネクタ211を用いてPOB210に接続し、PIC208をMMWバス204とインターフェイス接続する。同様に、PIC208はまた、MMW PIC206からPIC208への出力信号200に対して光信号から電気信号へ、又は入力信号に対してMMWバス204への電気信号から光信号を提供する等化器を含むことができる。PIC208は、MMWバス204からチップを通って導波路コネクタ211に受信した光信号を電気信号に変換するように構成され、次いで、電気信号は、シングルモードファイバ(SMF)ケーブルなどの超光学ファイバケーブルへの出力に対して光信号に変換することができる。
【0019】
図2の実施例では、PIC206は、トランスポートPIC(tPIC)の形態とすることができ、PIC208は、スイッチPIC(swPIC)の形態とすることができる。本明細書に記載される例示的な実施構成では、tPICは、導波路コネクタ211によって提供されるマルチモード導波路インターフェイスを有するように構成されるが、スイッチPICは、ケーブル203用のマルチモード導波路インターフェイス並びにSMFインターフェイスの両方を有する。
【0020】
図4は、例示的な実施構成による、PIC208の例示的な図を示している。PIC208は、MMW PIC401及びSMWPIC402の2つの部分を有するハイブリッドモード導波路(HMW)PICである。MMW PIC401及びSMWPIC402は、1つのパッケージにおいて光学-電気及び電気-光学変換で結合され、MMW PIC401のポート側でPOB210のMMWバス204に接続され、また、SMW PIC402のポート側でPOB210又はSMF203の何れかのSMWバス(例えば、POB平面からの直接フライオーバーによる)に接続される。所望の実施構成に応じて、MMW PIC401はまた、自己パッケージ部分(例えば、HMW PICの外部)として分離することができ、或いは、サブモジュール又はパッケージングとしてHMW PICに統合することができる。これらの部分の各々は、各物理媒体に対する独自のタイプの組み込み型デジタル等化器を備えている。MMW PIC401に組み込まれた組み込み型デジタル等化器404は、MMWチャネル補正を目的とし、POBにおいてMMWを補正するが、SMW PIC402に組み込まれた組み込み型デジタル等化器403は、SMFチャネル補正を目的とし、SMF203及びマルチプレクサ/デマルチプレクサ406に接続されたSMWを補正する。
【0021】
MMW PIC401は、HMW PICとPOB210内のMMWバス204との間の接続を提供するように構成される。同様に、SMW PIC402は、HMW PICとSMF203との間の面外接続を提供するように構成されている。所望の実施構成に応じて、SMW PIC402はまた、POB210におけるSMWバスに接続することもできる。SMW PIC402はまた、双方向チャネルを介して、電気信号から光信号への変換及び光信号から電気信号への変換を行うように構成された組み込み型デジタル等化器に接続されるSMWを含むことができる。
【0022】
HMW PICは、組み込み型MMWバス204からの集約された光信号を別の組み込み型デジタル等化器を介して電気信号に変換し、この電気信号を光信号に変換してSMWファイバケーブル203に出力するように構成される。このような変換は、所望の実施構成に応じて、電気処理段階の途中でのスイッチング及び/又は多重化及び逆多重化のためのトラフィックグルーミングなどの統合機能を介して実装することができる。
【0023】
所望の物理的レイアウトに応じて、MMW PIC部分401は、この部分の内部にMMWを有することができ、又は有さない場合もあり、SMW PIC部分402は、それ自体の内部にSMWを有することができ、又は有さない場合がある。各等化器は、所望の実施構成に応じて、外部MMW/SMF又は内部MMW/SMWを補正する。SMFは、これらの例示的な実施構成におけるSMWのサブセットである。
【0024】
MMW PIC部分401は、MMドメインにおいて構成されたOSW(光スイッチ)405などの光ドメインにおいて更なる機能を有することができる。同様に、SMW PIC部分402は、SMドメインのOSW(光スイッチ)などの光ドメインにおいて更なる機能を有することができる。
【0025】
OSW機能は、マルチラムダキャリア、周波数サブキャリア、時分割多元接続、周波数分割多元接続など何れかの直交物理媒体において定義することができる。
【0026】
本明細書で記載されるのは、PICをMMWバスとインターフェイス接続するために利用することができる導波路コネクタ211の例示的な実施構成である。
【0027】
図5は、例示的な実施構成による、断熱テーパー部分を備えた導波路コネクタの例示的な断面を示している。本明細書に記載された導波路コネクタ211の実施例では、マルチモード光信号伝送を処理するように構成されたプリズム部分500と、ベース部分(大面積)から上部分(小面積)まで断熱テーパー部分(光モード遷移のための小面積から大面積)を有し、シングルモード光信号伝送を提供する別の部分501とが存在する。プリズム部分は、プリズム機能を提供するために1又は2以上のミラー502を取り入れることができる。断熱テーパー部分501は、マルチモード光信号をシングルモード光信号に、又はその逆に変換するためのインターフェイスとして提供することができる。本明細書で記載されるように、導波路コネクタはまた、所望の実施構成に応じて10から100cmの長さで調整することができる本体部分を含むことができる。
【0028】
断熱テーパー部分501は、シングルモード導波路からプリズム部分まで幅狭から幅広へと進み、シングルモードからマルチモードへの移行を提供する。例示的な実施構成では、断熱テーパー部分の上部は、シングルモード導波路とインターフェイス接続する方形部分を含むことができ、一般に面積が小さく(例えば、9μm×9μm)、モードソース503への導波路コネクタのインターフェイスの幅の寸法に一致することもできる。プリズム部分500は、POB210のMMWバス204のMMW205などのモードソース503とインターフェイス接続するように構成されている。
【0029】
図6は、例示的な実施構成による、導波路コネクタの例示的な構成を示している。具体的には、
図6は、MMW205とインターフェイス接続するプリズムセクション600、断熱テーパー部分とプリズムセクションとの間で光信号を運ぶ本体セクション601、及びマルチモード光信号をシングルモードに、又はその逆に変換するように構成された断熱テーパー部分602を有する導波路コネクタインターフェイスを示す。
【0030】
プリズム部分600は、断熱テーパー部分602及び本体部分601から直交方向でMMW205とインターフェイス接続するように構成される。MMW205とインターフェイス接続するために、プリズム部分600のインターフェイスの寸法は、50um×50umの正方形の形状、又は所望の実施構成に応じた他の形状の形態とすることができる。プリズム部分は、10mmから500mmの間の長さを有し、MMW205からのマルチモード光信号を、本体部分601を介して断熱テーパー部分602の幅広部分に向け、また、マルチモード光信号を、断熱テーパー部分602の幅広部分から、本体部分601を介してMMW205を通り、プリズム部分600を介してマルチモード光信号の直交方向転換により配向するように構成することができる。
【0031】
図6の実施例の本体部分601は、プリズム部分600と断熱テーパー部分601との間のマルチモード光信号の伝送を提供するように構成される。
図6に示されるように、本体部分601は、断熱テーパー部分602のベース部分をプリズム部分601とインターフェイス接続し、マルチモード光信号をプリズム部分600又は断熱テーパー部分602のベース部分に向けるように構成される。所望の実施構成に応じて、本体部分も省略することができるので、マルチモード光信号は、プリズム部分600と断熱テーパー部分602との間で直接伝達される。このような構成では、断熱テーパー部分602のベース部分は、本体部分601を介してプリズム部分600とインターフェイス接続するのとは対照的に、プリズム部分600に直接インターフェイス接続する。
【0032】
図6に示されるように、本体部分601は、矩形形状(例えば、矩形の平行六面体の形態)にされ、矩形の長さに沿ってプリズム部分から断熱テーパー部分へのマルチモード光信号の伝達を提供する。
【0033】
断熱テーパー部分602は、幅広部分が基部に向かって、幅狭部分が基部よりも狭くなるように上部に向かっている、ピラミッドの形態で構成されている。しかしながら、断熱テーパーを有する他の形状も利用することができ、本開示はこれに限定されない。この実施例では、断熱テーパー部分602の上部は、シングルモード光信号を受信し、シングルモード導波路、SMW PIC、又はシングルモード光ケーブルと係合するように構成された方形(例えば、9μm×9μm)の形態であり、断熱テーパー部分602は、ピラミッドの狭構造から幅広構造を介して、シングルモード光信号をマルチモード光信号に遷移させる。更に、マルチモード光信号はまた、ピラミッドの幅広部分から幅狭部分構造を介してシングルモード光信号に遷移することができる。
【0034】
図7は、例示的な実施構成による、導波路コネクタ211の別の例示的な構成を示している。
図7の例示的な構成では、コネクタは、
図6と同じ構造を保持し、同じ機能を提供するために、プリズム部分700、本体部分701、及び断熱テーパー部分702を含む。この例示的な構成では、コネクタは、接着剤及びクラッド材料704を備えて基板703上に配置され、断熱テーパー部分702は、上部として狭い矩形部分を有する三角形の形態である。基板703は、導波路コネクタ211を支持するために使用され、所望の実施構成に従ってあらゆる材料で作ることができる。
図7の例示的な実施構成を通して、導波路の位置は、より容易に調整され、基板703への取り付けを介して周辺部品に取り付けることができる。
【0035】
一例では、導波路コネクタ211は、チップレット208とインターフェイス接続するためにビアを通して挿入される。チップレット208は、電気信号を単一モード光信号に変換し、単一モード光信号を断熱テーパー部分の上部に向ける(例えば、
図7の実施例の矩形の狭い上部を通して)。
【0036】
一例では、導波路コネクタ211は、ポリマーで作られ、シングルモード導波路又はマルチモード導波路よりも低い反射率を有するコーティングでクラッドコーティングされている。このような実施例では、プリズム部分のインターフェイス部分及び断熱テーパー部分の上部分はコーティングされていないが、対応するインターフェイス導波路の反射率と同様の反射率を有する。
【0037】
更に、マルチモード光信号の直交方向転換を提供するために、プリズム構造の一端に金属コーティングを追加することができる。金属コーティングは、プリズム部分の角度付きの(例えば、45度)表面に取り入れられている。金属コーティングは、プリズム部分に必要な反射を促進し且つコストを抑えるために、厚さが約1マイクロメートル以下である。金属コーティングの実施例は金とすることができるが、他のコーティングは、所望の実施構成に従って使用することができる。
【0038】
本明細書に記載の例示的な実施構成を通じて、線形減衰を有する線形フィルタを備えたMMW導波路(電気/光学)で利用される組み込み型デジタル等化器は、これによって100ギガビット以上の出力を提供することができる。このような例示的な実施構成は、シングルモードファイバケーブルを介して信号を送信するデータセンターに好適とすることができる。
【0039】
このシステムは、PICのシングルモードインターフェイスとMMW導波路との間をインターフェイス接続する導波路コネクタに関して記載されているが、本明細書で記載される例示的な実施構成は、これに限定されず、所望の実施構成に従って変更することができる。例えば、送信PIC又は受信PICの何れかは、シングルモードインターフェイスの代わりにMMW導波路用のマルチモード光インターフェイスを有することができ、その結果、PICのマルチモード光インターフェイスは、コネクタと相互作用するように構成することができる。更に、所望の実施構成に応じて、MMWバス204は、代わりにシングルモード導波路バスに置き換えることができ、その結果、コネクタは、PICのシングルモードインターフェイス又はPICのマルチモードインターフェイスとの間の光信号をシングルモード導波路バスのモード導波路に提供する。従って、本明細書に記載の例示的な実施構成は、導波路コネクタの他の導波路の組み合わせに拡張することができ、本開示はこれに限定されない。例えば、プリズム部分601は、シングルモード導波路とインターフェイス接続されるように構成することができ、この場合には、シングルモード導波路の光信号は、断熱テーパー部分602に向かって直交して単純に再ルーティングされる。同様に、断熱テーパー部分602は、マルチモード導波路と係合するように構成され、ここからマルチモード導波路の光信号は、等化器を介してシングルモード信号に変換され、次に断熱テーパー部分602を介してマルチモード信号に再変換される。
【0040】
更に、本出願の他の実施構成は、本明細書並びに本出願の実施を考慮すると当業者には明らかであろう。記載された例示的な実施構成の様々な態様及び/又は構成要素は、単独で又は任意の組み合わせで使用することができる。本出願の真の範囲及び精神は以下の特許請求の範囲によって示され、本明細書及び例示的な実施構成は単なる例証として見なされることが意図される。
【符号の説明】
【0041】
201 組み込み型デジタル等化器
203 ケーブル
204 マルチモード導波路(MMW)バス
205 マルチモード導波路
206 マルチモード導波路光集積回路(MMW PIC)
208 光集積回路(PIC)
210 プリント光学ボード(POB)
211 導波路コネクタ