(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-02-14
(45)【発行日】2024-02-22
(54)【発明の名称】電力変換装置
(51)【国際特許分類】
H02M 7/48 20070101AFI20240215BHJP
H02M 7/12 20060101ALI20240215BHJP
【FI】
H02M7/48 Y
H02M7/12 601A
H02M7/12 A
(21)【出願番号】P 2019179995
(22)【出願日】2019-09-30
【審査請求日】2022-06-21
(73)【特許権者】
【識別番号】000002853
【氏名又は名称】ダイキン工業株式会社
(74)【代理人】
【識別番号】100101454
【氏名又は名称】山田 卓二
(74)【代理人】
【識別番号】100176463
【氏名又は名称】磯江 悦子
(74)【代理人】
【識別番号】100183232
【氏名又は名称】山崎 敏行
(72)【発明者】
【氏名】榊原 憲一
(72)【発明者】
【氏名】谷口 智勇
【審査官】東 昌秋
(56)【参考文献】
【文献】特開2014-82926(JP,A)
【文献】特開2012-157197(JP,A)
【文献】特開2019-13093(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H02M 7/00- 7/98
H02P 21/00-27/18
(57)【特許請求の範囲】
【請求項1】
単相交流電圧Vinを変換して整流電圧を出力する電圧源(|Vin|)と、
上記電圧源(|Vin|)の出力端に一端が接続され、所定の第1デューティdrecで導通する第1スイッチ(Srec)と、
上記第1スイッチ(Srec)の他端に一端が接続され、所定の第2デューティdcで導通する第2スイッチ(Sc)と、
上記第2スイッチ(Sc)の他端に一端が接続され、他端が上記電圧源(|Vin|)の共通端に接続されたコンデンサ(C4)と、
上記第2スイッチ(Sc)と並列接続されたクランプダイオード(D42)と、
上記第1スイッチ(Srec)の他端に第1端が接続され、上記電圧源(|Vin|)の共通端に第2端が接続され、上記第1端または上記第2端のいずれか一方が択一的に第3端と導通し、所定の第3デューティdzで上記第1端と上記第3端とが導通する第3スイッチ(Sz)と、
上記第1スイッチ(Srec)の他端に一端が接続され、他端が上記第3スイッチ
(Sz
)の上記第3端に接続された電流源(Idc)と
を有する等価回路で表される回路を備える電力変換装置であって、
上記第3スイッチ(Sz)と上記電流源(Idc)で3n相電圧形インバータ(nは正の整数)が構成され、
上記電圧源(|Vin|)の瞬時値が直流電圧指令値Vdc*よりも高い第1区間において、上記第2スイッチ(Sc)をオフし、上記電流源(Idc)に入力される直流電圧Vdcが上記直流電圧指令値Vdc*と等しくなるように上記第1デューティdrecと上記第3デューティdzとが選択され、上記電圧源(|Vin|)から上記電流源(Idc)に電力を供給する第1変換動作を行うと共に、上記整流電圧により上記クランプダイオード(D42)を介して上記コンデンサ(C4)に充電する一方、
上記電圧源(|Vin|)の瞬時値が上記直流電圧指令値Vdc*以下の第2区間において、上記第1スイッチ(Srec)をオフし、上記電流源(Idc)に入力される直流電圧Vdcが上記直流電圧指令値Vdc*と等しくなるように上記第2デューティdcと上記第3デューティdzとが選択され、上記コンデンサ(C4)から上記電流源(Idc)に電力を供給する第2変換動作を行うことを特徴とする電力変換装置。
【請求項2】
請求項1に記載の電力変換装置において、
上記電圧源(|Vin|)の出力端に一端が接続されたリアクトル(L4)と、
上記リアクトル(L4)の他端にアノードが接続され、カソードが上記コンデンサ(C4)の上記第2スイッチ(Sc)側に接続されたダイオード(D40)と、
上記ダイオード(D40)のアノードに一端が接続され、他端が上記電圧源(|Vin|)の共通端に接続され、所定の第4デューティdlで導通する第4スイッチ(Sl)と
を備えることを特徴とする電力変換装置。
【請求項3】
請求項1または2に記載の電力変換装置において、
上記第1デューティdrecと、上記第2デューティdcと、上記第3デューティdzは、
drec+dc+dz=1
の条件を満たすと共に、
上記単相交流電圧Vinの最大値をVm、上記単相交流電圧Vinの角速度をωとし、時間をtとするとき、
上記第1変換動作の期間における上記第1デューティdrecと上記第2デューティdcは、
【数1】
で表され、
上記第2変換動作の期間における上記第1デューティdrecと上記第2デューティdcは、
【数2】
で表され、
上記第1区間と上記第2区間との境界位相角φは、
【数3】
で表されることを特徴とする電力変換装置。
【請求項4】
請求項1から3までのいずれか1つに記載の電力変換装置において、
上記第1変換動作と上記第2変換動作を行う第1モードと、上記第1変換動作と上記第2変換動作とを除く他の変換動作を行う第2モードとを備え、
上記3n相電圧形インバータの出力周波数が第1閾値以下である上記第1モードの状態から、上記3n相電圧形インバータの出力周波数が上記第1閾値よりも高くなると、上記第2モードに移行し、
上記3n相電圧形インバータの出力周波数が第2閾値よりも高い上記第2モードの状態から、上記3n相電圧形インバータの出力周波数が上記第2閾値以下になると、上記第1モードに移行し、
上記第2閾値は、上記第1閾値と等しいか、または、上記第1閾値よりも所定値低いことを特徴とする電力変換装置。
【請求項5】
請求項1から3までのいずれか1つに記載の電力変換装置において、
上記第1変換動作と上記第2変換動作を行う第1モードと、上記第1変換動作と上記第2変換動作とを除く他の変換動作を行う第2モードとを備え、
上記3n相電圧形インバータの変調率が第1閾値以下である上記第1モードの状態から上記3n相電圧形インバータの変調率が上記第1閾値よりも高くなると、上記第1モードから上記第2モードに移行し、
上記3n相電圧形インバータの変調率が第2閾値よりも高い上記第2モードの状態から上記3n相電圧形インバータの変調率が上記第2閾値以下になると、上記第2モードから上記第1モードに移行し、
上記第2閾値は、上記第1閾値と等しいか、または、上記第1閾値よりも所定値低いことを特徴とする電力変換装置。
【請求項6】
請求項4または5に記載の電力変換装置において、
上記第1モードにおいて、上記3n相電圧形インバータの出力周波数に応じた上記直流電圧指令値Vdc*を設定することを特徴とする電力変換装置。
【請求項7】
請求項4または5に記載の電力変換装置において、
上記第1モードにおいて、上記3n相電圧形インバータの変調率に応じた上記直流電圧指令値Vdc*を設定することを特徴とする電力変換装置。
【請求項8】
請求項1から7までのいずれか1つに記載の電力変換装置において、
上記電圧源(|Vin|)は、スイッチング素子で構成されたブリッジ回路を含み、上記単相交流電圧Vinに同期して上記各スイッチング素子を上記第1変換動作の期間にオンし、上記第2変換動作の期間にオフすることにより上記単相交流電圧Vinを同期整流して上記整流電圧を出力することを特徴とする電力変換装置。
【請求項9】
単相交流電圧Vinを変換して整流電圧を出力するコンバータ部(2)と、
上記コンバータ部(2)の正極出力端に接続された第1電源線(LH)と、
上記コンバータ部(2)の負極出力端に接続された第2電源線(LL)と、
上記コンバータ部(2)の正極出力端が上記第1電源線(LH)を介して正極入力端に接続され、上記コンバータ部(2)の負極出力端が上記第2電源線(LL)を介して負極入力端に接続され、上記整流電圧から変換された交流電圧を出力するPWM制御のインバータ部(5)と、
上記第1電源線(LH)と上記第2電源線(LL)との間に接続されたバッファ回路(4a)と
を備え、
上記単相交流電圧Vinの瞬時値の絶対値が直流電圧指令値Vdc*よりも高い第1区間において、上記バッファ回路(4a)の出力端を上記第1電源線(LH)から遮断し、上記インバータ部(5)の電圧飽和時の出力電圧から換算される直流電圧が上記直流電圧指令値Vdc*と等しくなるように上記インバータ部(5)のPWM制御のスイッチングパターンが選択されて、上記コンバータ部(2)から出力された上記整流電圧により上記インバータ部(5)に電力を供給する第1変換動作を行うと共に、上記整流電圧により上記バッファ回路(4a)に充電する一方、
上記単相交流電圧Vinの瞬時値の絶対値が上記直流電圧指令値Vdc*以下の第2区間において、上記バッファ回路(4a)の出力端を上記第1電源線(LH)に接続し、上記インバータ部(5)の電圧飽和時の出力電圧から換算される直流電圧が上記直流電圧指令値Vdc*と等しくなるように上記インバータ部(5)のPWM制御のスイッチングパターンが選択されて、上記バッファ回路(4a)から上記インバータ部(5)に電力を供給する第2変換動作を行い、
上記バッファ回路(4a)を介さず上記コンバータ部(2)から流れる電流のデューティである第1デューティdrecと、上記バッファ回路(4a)を介して流れる電流のデューティである第2デューティdcと、上記インバータ部(5)において零相電流が流れるデューティである第3デューティdzは、
drec+dc+dz=1
の条件を満たすと共に、
上記単相交流電圧Vinの最大値をVm、上記単相交流電圧Vinの角速度をωとし、時間をtとするとき、
上記第1区間における上記第1デューティdrecと上記第2デューティdcは、
【数4】
で表され、
上記第2区間の期間における上記第1デューティdrecと上記第2デューティdcは
【数5】
で表され、
上記インバータ部(5)は、相電圧指令値Vu*,Vv*,Vw*と上記第1デューティdrecと上記第2デューティdcおよび上記第3デューティdzに基づいてPWM制御されることを特徴とする電力変換装置。
【請求項10】
単相交流電圧Vinを変換して整流電圧を出力するコンバータ部(2)と、
上記コンバータ部(2)の正極出力端に接続された第1電源線(LH)と、
上記コンバータ部(2)の負極出力端に接続された第2電源線(LL)と、
上記コンバータ部(2)の正極出力端が上記第1電源線(LH)を介して正極入力端に接続され、上記コンバータ部(2)の負極出力端が上記第2電源線(LL)を介して負極入力端に接続され、上記整流電圧から変換された交流電圧を出力するPWM制御のインバータ部(5)と、
上記第1電源線(LH)と上記第2電源線(LL)との間に接続されたバッファ回路(4a)と
を備え、
上記単相交流電圧Vinの瞬時値の絶対値が直流電圧指令値Vdc*よりも高い第1区間において、上記バッファ回路(4a)の出力端を上記第1電源線(LH)から遮断し、上記インバータ部(5)の電圧飽和時の出力電圧から換算される直流電圧が上記直流電圧指令値Vdc*と等しくなるように上記インバータ部(5)のPWM制御のスイッチングパターンが選択されて、上記コンバータ部(2)から出力された上記整流電圧により上記インバータ部(5)に電力を供給する第1変換動作を行うと共に、上記整流電圧により上記バッファ回路(4a)に充電する一方、
上記単相交流電圧Vinの瞬時値の絶対値が上記直流電圧指令値Vdc*以下の第2区間において、上記バッファ回路(4a)の出力端を上記第1電源線(LH)に接続し、上記インバータ部(5)の電圧飽和時の出力電圧から換算される直流電圧が上記直流電圧指令値Vdc*と等しくなるように上記インバータ部(5)のPWM制御のスイッチングパターンが選択されて、上記バッファ回路(4a)から上記インバータ部(5)に電力を供給する第2変換動作を行い、
上記第1変換動作と上記第2変換動作を行う第1モードと、上記第1変換動作と上記第2変換動作とを除く他の変換動作を行う第2モードとを備え、
上記インバータ部(5)の出力周波数が第1閾値以下である上記第1モードの状態から、上記インバータ部(5)の出力周波数が上記第1閾値よりも高くなると、上記第2モードに移行し、
上記インバータ部(5)の出力周波数が第2閾値よりも高い上記第2モードの状態から、上記インバータ部(5)の出力周波数が上記第2閾値以下になると、上記第1モードに移行し、
上記第2閾値は、上記第1閾値と等しいか、または、上記第1閾値よりも所定値低いことを特徴とする電力変換装置。
【請求項11】
単相交流電圧Vinを変換して整流電圧を出力するコンバータ部(2)と、
上記コンバータ部(2)の正極出力端に接続された第1電源線(LH)と、
上記コンバータ部(2)の負極出力端に接続された第2電源線(LL)と、
上記コンバータ部(2)の正極出力端が上記第1電源線(LH)を介して正極入力端に接続され、上記コンバータ部(2)の負極出力端が上記第2電源線(LL)を介して負極入力端に接続され、上記整流電圧から変換された交流電圧を出力するPWM制御のインバータ部(5)と、
上記第1電源線(LH)と上記第2電源線(LL)との間に接続されたバッファ回路(4a)と
を備え、
上記単相交流電圧Vinの瞬時値の絶対値が直流電圧指令値Vdc*よりも高い第1区間において、上記バッファ回路(4a)の出力端を上記第1電源線(LH)から遮断し、上記インバータ部(5)の電圧飽和時の出力電圧から換算される直流電圧が上記直流電圧指令値Vdc*と等しくなるように上記インバータ部(5)のPWM制御のスイッチングパターンが選択されて、上記コンバータ部(2)から出力された上記整流電圧により上記インバータ部(5)に電力を供給する第1変換動作を行うと共に、上記整流電圧により上記バッファ回路(4a)に充電する一方、
上記単相交流電圧Vinの瞬時値の絶対値が上記直流電圧指令値Vdc*以下の第2区間において、上記バッファ回路(4a)の出力端を上記第1電源線(LH)に接続し、上記インバータ部(5)の電圧飽和時の出力電圧から換算される直流電圧が上記直流電圧指令値Vdc*と等しくなるように上記インバータ部(5)のPWM制御のスイッチングパターンが選択されて、上記バッファ回路(4a)から上記インバータ部(5)に電力を供給する第2変換動作を行い、
上記第1変換動作と上記第2変換動作を行う第1モードと、上記第1変換動作と上記第2変換動作とを除く他の変換動作を行う第2モードとを備え、
上記インバータ部(5)の変調率が第1閾値以下である上記第1モードの状態から、上記インバータ部(5)の変調率が上記第1閾値よりも高くなると、上記第2モードに移行し、
上記インバータ部(5)の変調率が第2閾値よりも高い上記第2モードの状態から、上記インバータ部(5)の変調率が上記第2閾値以下になると、上記第1モードに移行し、
上記第2閾値は、上記第1閾値と等しいか、または、上記第1閾値よりも所定値低いことを特徴とする電力変換装置。
【請求項12】
請求項1
0または1
1に記載の電力変換装置において、
上記第1モードにおいて、上記インバータ部(5)の出力周波数に応じた上記直流電圧指令値Vdc*を設定することを特徴とする電力変換装置。
【請求項13】
請求項1
0または1
1に記載の電力変換装置において、
上記第1モードにおいて、上記インバータ部(5)の変調率に応じた上記直流電圧指令値Vdc*を設定することを特徴とする電力変換装置。
【請求項14】
請求項
9から13までのいずれか1つに記載の電力変換装置において、
上記第1区間において、上記バッファ回路(4a)に上記整流電圧により充電する充電回路(4b)を備えることを特徴とする電力変換装置。
【請求項15】
請求項9から1
4までのいずれか1つに記載の電力変換装置において、
上記コンバータ部(2)は、スイッチング素子で構成されたブリッジ回路を含み、上記単相交流電圧Vinに同期して上記各スイッチング素子を上記第1変換動作の期間にオンし、上記第2変換動作の期間にオフすることにより上記単相交流電圧Vinを同期整流して上記整流電圧を出力することを特徴とする電力変換装置。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、電力変換装置に関する。
【背景技術】
【0002】
従来、電力変換装置としては、第1電源線と、第1電源線よりも低い電位が印加される第2電源線と、ダイオード整流器と、第1電源線と第2電源線との間に設けられた充放電回路と、第1電源線と第2電源線との間の整流電圧が入力され、電圧ベクトルに基づいて動作するインバータとを備えたものがある(特許第5629885号(特許文献1)参照)。
【0003】
上記電力変換装置では、充放電回路が第1電源線と第2電源線との間で電力を授受することにより、電力脈動を軽減すると共に、電圧利用率を改善している。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、上記電力変換装置では、低負荷時において、充放電回路への充電電流のピーク電流が大きく、さらに充放電回路からの放電における電圧降下により、部分負荷効率の改善が十分でないという課題があった。
【0006】
本開示では、部分負荷効率を向上できる電力変換装置を提案する。
【課題を解決するための手段】
【0007】
本開示の電力変換装置は、
単相交流電圧を変換して整流電圧を出力する電圧源と、
上記電圧源の出力端に一端が接続され、所定の第1デューティdrecで導通する第1スイッチと、
上記第1スイッチの他端に一端が接続され、所定の第2デューティdcで導通する第2スイッチと、
上記第2スイッチの他端に一端が接続され、他端が上記電圧源の共通端に接続されたコンデンサと、
上記第2スイッチと並列接続されたクランプダイオードと、
上記第1スイッチの他端に第1端が接続され、上記電圧源の共通端に第2端が接続され、上記第1端または上記第2端のいずれか一方が択一的に第3端と導通し、所定の第3デューティdzで上記第1端と上記第3端とが導通する第3スイッチと、
上記第1スイッチの他端に一端が接続され、他端が上記第3スイッチSzの上記第3端に接続された電流源と
を有する等価回路で表される回路を備える電力変換装置であって、
上記第3スイッチSzと上記電流源Idcで3n相電圧形インバータ(nは正の整数)が構成され、
上記電圧源の瞬時値が直流電圧指令値Vdc*よりも高い第1区間において、上記第2スイッチをオフし、上記電流源に入力される直流電圧Vdcが上記直流電圧指令値Vdc*と等しくなるように上記第1デューティdrecと上記第3デューティdzとが選択され、上記電圧源から上記電流源に電力を供給する第1変換動作を行うと共に、上記整流電圧により上記クランプダイオードを介して上記コンデンサに充電する一方、
上記電圧源の瞬時値が上記直流電圧指令値Vdc*以下の第2区間において、上記第1スイッチをオフし、上記電流源に入力される直流電圧Vdcが上記直流電圧指令値Vdc*と等しくなるように上記第2デューティdcと上記第3デューティdzとが選択され、上記コンデンサから上記電流源に電力を供給する第2変換動作を行うことを特徴とする。
【0008】
本開示によれば、電圧源の瞬時値が直流電圧指令値Vdc*よりも高い第1区間において、第2スイッチをオフし、電流源に入力される直流電圧Vdcが直流電圧指令値Vdc*と等しくなるように第1デューティdrecと第3デューティdzとが選択され、電圧源から電流源に電力を供給する第1変換動作を行うと共に、整流電圧によりクランプダイオードを介してコンデンサに充電する。一方、電圧源の瞬時値が直流電圧指令値Vdc*以下の第2区間において、第1スイッチをオフし、電流源に入力される直流電圧Vdcが直流電圧指令値Vdc*と等しくなるように第2デューティdcと第3デューティdzとが選択され、コンデンサから電流源に電力を供給する第2変換動作を行う。
【0009】
このようにして、電源周期に合わせて第1変換動作と第2変換動作を交互に行って降圧動作することで、部分負荷において例えば電源周期を第1区間と第2区間で2分している場合、コンデンサからの放電電荷が半減し、第1区間でのコンデンサへの充電電流のピーク電流が低減されて、入力力率が改善されると共に、コンデンサからの放電による電圧降下の期間が半減する。これにより、部分負荷効率を向上できる。
【0010】
また、本開示の1つの態様に係る電力変換装置では、
上記電圧源の出力端に一端が接続されたリアクトルと、
上記リアクトルの他端にアノードが接続され、カソードが上記コンデンサの上記第2スイッチ側に接続されたダイオードと、
上記ダイオードのアノードに一端が接続され、他端が上記電圧源の共通端に接続され、所定の第4デューティdlで導通する第4スイッチと
を備える。
【0011】
本開示によれば、部分負荷より大きな負荷において、所定の第4デューティdlで導通する第4スイッチによって、リアクトルとダイオードを介して充電されるコンデンサへの充電電圧を昇圧して、昇圧動作により電圧利用効率を高める変換動作が可能になる。
【0012】
また、本開示の1つの態様に係る電力変換装置では、
上記第1デューティdrecと、上記第2デューティdcと、上記第3デューティdzは、
drec+dc+dz=1
の条件を満たすと共に、
上記単相交流電圧の最大値をVm、上記単相交流電圧の角速度をωとし、時間をtとするとき、
上記第1変換動作の期間における上記第1デューティdrecと上記第2デューティdcは、
【数1】
で表され、
上記第2変換動作の期間における上記第1デューティdrecと上記第2デューティdcは、
【数2】
で表され、
上記第1区間と上記第2区間との境界位相角φは、
【数3】
で表される。
【0013】
本開示によれば、第1変換動作の期間と第2変換動作の期間における第1デューティdrecと第2デューティdcと第3デューティdzの上記条件を満たすように、電源周期に合わせて第1変換動作と第2変換動作を交互に行うことによって、部分負荷効率を向上できる。
【0014】
また、本開示の1つの態様に係る電力変換装置では、
上記第1変換動作と上記第2変換動作を行う第1モードと、上記第1変換動作と上記第2変換動作とを除く他の変換動作を行う第2モードとを備え、
上記3n相電圧形インバータの出力周波数が第1閾値以下である上記第1モードの状態から、上記3n相電圧形インバータの出力周波数が上記第1閾値よりも高くなると、上記第2モードに移行し、
上記3n相電圧形インバータの出力周波数が第2閾値よりも高い上記第2モードの状態から、上記3n相電圧形インバータの出力周波数が上記第2閾値以下になると、上記第1モードに移行し、
上記第2閾値は、上記第1閾値と等しいか、または、上記第1閾値よりも所定値低い。
【0015】
本開示によれば、第1変換動作と第2変換動作を行う第1モードと、他の変換動作を行う第2モードとを、負荷の増減に対して相間関係を有する電流源の電流周波数に応じて切り換えることにより、負荷に応じて効率のよい変換動作を行うことが可能になる。また、第1閾値よりも第2閾値を所定値低くして、第1モードと第2モードとの切り換えにヒステリシスを設けることによって、安定した切り換え動作ができる。
【0016】
また、本開示の1つの態様に係る電力変換装置では、
上記第1変換動作と上記第2変換動作を行う第1モードと、上記第1変換動作と上記第2変換動作とを除く他の変換動作を行う第2モードとを備え、
上記3n相電圧形インバータの変調率が第1閾値以下である上記第1モードの状態から上記3n相電圧形インバータの変調率が上記第1閾値よりも高くなると、上記第1モードから上記第2モードに移行し、
上記3n相電圧形インバータの変調率が第2閾値よりも高い上記第2モードの状態から上記3n相電圧形インバータの変調率が上記第2閾値以下になると、上記第2モードから上記第1モードに移行し、
上記第2閾値は、上記第1閾値と等しいか、または、上記第1閾値よりも所定値低い。
【0017】
本開示によれば、第1変換動作と第2変換動作を行う第1モードと、他の変換動作を行う第2モードとを、負荷の増減に対して相間関係を有する電流源の変調率に応じて切り換えることにより、負荷に応じて効率のよい変換動作を行うことが可能になる。また、第1モードと第2モードとの切り換えにヒステリシスを設けることによって、安定した切り換え動作ができる。
【0018】
また、本開示の1つの態様に係る電力変換装置では、
上記第1モードにおいて、上記3n相電圧形インバータの出力周波数に応じた上記直流電圧指令値Vdc*を設定する。
【0019】
本開示によれば、3n相電圧形インバータの出力周波数に応じた直流電圧指令値Vdc*を設定して、第1区間に対する第2区間の割合を減らすことで、第1区間でのコンデンサへの充電電流のピーク電流がさらに低減されて、入力力率がより改善され、コンデンサからの放電による電圧降下の期間がさらに短くなり、部分負荷効率をさらに向上できる。
【0020】
また、本開示の1つの態様に係る電力変換装置では、
上記第1モードにおいて、上記3n相電圧形インバータの変調率に応じた上記直流電圧指令値Vdc*を設定する。
【0021】
本開示によれば、3n相電圧形インバータの変調率に応じた直流電圧指令値Vdc*を設定して、第1区間に対する第2区間の割合を減らすことで、第1区間でのコンデンサへの充電電流のピーク電流がさらに低減されて、入力力率がより改善され、コンデンサからの放電による電圧降下の期間がさらに短くなり、部分負荷効率をさらに向上できる。
【0022】
また、本開示の1つの態様に係る電力変換装置では、
上記電圧源は、スイッチング素子で構成されたブリッジ回路を含み、上記単相交流電圧に同期して上記各スイッチング素子を上記第1変換動作の期間にオンし、上記第2変換動作の期間にオフすることにより上記単相交流電圧を同期整流して上記整流電圧を出力する。
【0023】
本開示によれば、単相交流電圧に同期してブリッジ回路の各スイッチング素子を第1変換動作の期間にオンし、第2変換動作の期間にオフすることにより、単相交流電圧を同期整流して整流電圧を電圧源から出力するので、力率改善や高調波抑制などのためのリアクトルにインダクタンスの小さいものを用いても、部分負荷効率を向上しつつ定格負荷時の効率低下を抑えることができる。
【0024】
また、本開示の電力変換装置では、
単相交流電圧を変換して整流電圧を出力するコンバータ部と、
上記コンバータ部の正極出力端に接続された第1電源線と、
上記コンバータ部の負極出力端に接続された第2電源線と、
上記コンバータ部の正極出力端が上記第1電源線を介して正極入力端に接続され、上記コンバータ部の負極出力端が上記第2電源線を介して負極入力端に接続され、上記整流電圧から変換された交流電圧を出力するPWM制御のインバータ部と、
上記第1電源線と上記第2電源線との間に接続されたバッファ回路と
を備え、
上記単相交流電圧の瞬時値の絶対値が直流電圧指令値Vdc*よりも高い第1区間において、上記バッファ回路の出力端を上記第1電源線から遮断し、上記インバータ部の電圧飽和時の出力電圧から換算される直流電圧が上記直流電圧指令値Vdc*と等しくなるように上記インバータ部のPWM制御のスイッチングパターンが選択されて、上記コンバータ部から出力された上記整流電圧により上記インバータ部に電力を供給する第1変換動作を行うと共に、上記整流電圧により上記バッファ回路に充電する一方、
上記単相交流電圧の瞬時値の絶対値が上記直流電圧指令値Vdc*以下の第2区間において、上記バッファ回路の出力端を上記第1電源線に接続し、上記インバータ部の電圧飽和時の出力電圧から換算される直流電圧が上記直流電圧指令値Vdc*と等しくなるように上記インバータ部のPWM制御のスイッチングパターンが選択されて、上記バッファ回路から上記インバータ部に電力を供給する第2変換動作を行うことを特徴とする。
【0025】
本開示によれば、単相交流電圧の瞬時値の絶対値が直流電圧指令値Vdc*よりも高い第1区間において、バッファ回路の出力端を第1電源線から遮断し、インバータ部の電圧飽和時の出力電圧から換算される直流電圧が直流電圧指令値Vdc*と等しくなるようにインバータ部のPWM制御のスイッチングパターンが選択されて、コンバータ部から出力された整流電圧によりインバータ部に電力を供給する第1変換動作を行うと共に、整流電圧によりバッファ回路に充電する。一方、単相交流電圧の瞬時値の絶対値が直流電圧指令値Vdc*以下の第2区間において、バッファ回路の出力端を第1電源線に接続し、インバータ部の電圧飽和時の出力電圧から換算される直流電圧が直流電圧指令値Vdc*と等しくなるようにインバータ部のPWM制御のスイッチングパターンが選択されて、バッファ回路からインバータ部に電力を供給する第2変換動作を行う。
【0026】
このようにして、電源周期に合わせて第1変換動作と第2変換動作を交互に行って降圧動作することで、部分負荷において例えば電源周期を第1区間と第2区間で2分している場合、バッファ回路からの放電電荷が半減し、第1区間でのバッファ回路への充電電流のピーク電流が低減されて、入力力率が改善されると共に、バッファ回路からの放電による電圧降下の期間が半減する。これにより、部分負荷効率を向上できる。
【0027】
また、本開示の1つの態様に係る電力変換装置では、
上記バッファ回路を介さず上記コンバータ部から流れる電流のデューティである第1デューティdrecと、上記バッファ回路を介して流れる電流のデューティである第2デューティdcと、上記インバータ部において零相電流が流れるデューティである第3デューティdzは、
drec+dc+dz=1
の条件を満たすと共に、
上記単相交流電圧の最大値をVm、上記単相交流電圧の角速度をωとし、時間をtとするとき、
上記第1区間における上記第1デューティdrecと上記第2デューティdcは、
【数4】
で表され、
上記第2区間の期間における上記第1デューティdrecと上記第2デューティdcは
【数5】
で表され、
上記インバータ部は、相電圧指令値Vu*,Vv*,Vw*と上記第1デューティdrecと上記第2デューティdcおよび上記第3デューティdzに基づいてPWM制御されることを特徴とする。
【0028】
本開示によれば、相電圧指令値Vu*,Vv*,Vw*と第1デューティdrecと第2デューティdcおよび第3デューティdzに基づいてインバータ部をPWM制御して、第1変換動作の期間と第2変換動作の期間における1デューティdrecと第2デューティdcと第3デューティdzの上記条件を満たすように、電源周期に合わせて第1変換動作と第2変換動作を交互に行うことによって、部分負荷効率を向上できる。
【0029】
また、本開示の1つの態様に係る電力変換装置では、
上記第1区間において、上記バッファ回路に上記整流電圧により充電する充電回路を備える。
【0030】
本開示によれば、充電回路によって、第1区間においてバッファ回路に整流電圧により充電することによって、充電回路以外の充電経路への充電電流の分流を抑制することができ、充電損失を低減することができる。
【0031】
また、本開示の1つの態様に係る電力変換装置では、
上記第1変換動作と上記第2変換動作を行う第1モードと、上記第1変換動作と上記第2変換動作とを除く他の変換動作を行う第2モードとを備え、
上記インバータ部の出力周波数が第1閾値以下である上記第1モードの状態から、上記インバータ部の出力周波数が上記第1閾値よりも高くなると、上記第2モードに移行し、
上記インバータ部の出力周波数が第2閾値よりも高い上記第2モードの状態から、上記インバータ部の出力周波数が上記第2閾値以下になると、上記第1モードに移行し、
上記第2閾値は、上記第1閾値と等しいか、または、上記第1閾値よりも所定値低い。
【0032】
本開示によれば、第1変換動作と第2変換動作を行う第1モードと、他の変換動作を行う第2モードとを、負荷の増減に対して相間関係を有するインバータ部の出力周波数に応じて切り換えることにより、負荷に応じて効率のよい変換動作を行うことが可能になる。また、第1閾値よりも第2閾値を所定値低くして、第1モードと第2モードとの切り換えにヒステリシスを設けることによって、安定した切り換え動作ができる。
【0033】
また、本開示の1つの態様に係る電力変換装置では、
上記第1変換動作と上記第2変換動作を行う第1モードと、上記第1変換動作と上記第2変換動作とを除く他の変換動作を行う第2モードとを備え、
上記インバータ部の変調率が第1閾値以下である上記第1モードの状態から、上記インバータ部の変調率が上記第1閾値よりも高くなると、上記第2モードに移行し、
上記インバータ部の変調率が第2閾値よりも高い上記第2モードの状態から、上記インバータ部の変調率が上記第2閾値以下になると、上記第1モードに移行し、
上記第2閾値は、上記第1閾値と等しいか、または、上記第1閾値よりも所定値低い。
【0034】
本開示によれば、第1変換動作と第2変換動作を行う第1モードと、他の変換動作を行う第2モードとを、負荷の増減に対して相間関係を有するインバータ部の変調率に応じて切り換えることにより、負荷に応じて効率のよい変換動作を行うことが可能になる。また、第1モードと第2モードとの切り換えにヒステリシスを設けることによって、安定した切り換え動作ができる。
【0035】
また、本開示の1つの態様に係る電力変換装置では、
上記第1モードにおいて、上記インバータ部の出力周波数に応じた上記直流電圧指令値Vdc*を設定する。
【0036】
本開示によれば、インバータ部の出力周波数に応じた直流電圧指令値Vdc*を設定して、第1区間に対する第2区間の割合を減らすことで、第1区間でのバッファ回路への充電電流のピーク電流がさらに低減されて、入力力率がより改善され、バッファ回路からの放電による電圧降下の期間がさらに短くなり、部分負荷効率をさらに向上できる。
【0037】
また、本開示の1つの態様に係る電力変換装置では、
上記第1モードにおいて、上記インバータ部の変調率に応じた上記直流電圧指令値Vdc*を設定する。
【0038】
本開示によれば、インバータ部の変調率に応じた直流電圧指令値Vdc*を設定して、第1区間に対する第2区間の割合を減らすことで、第1区間でのバッファ回路への充電電流のピーク電流がさらに低減されて、入力力率がより改善され、バッファ回路からの放電による電圧降下の期間がさらに短くなり、部分負荷効率をさらに向上できる。
【0039】
また、本開示の1つの態様に係る電力変換装置では、
上記コンバータ部は、スイッチング素子で構成されたブリッジ回路を含み、上記単相交流電圧に同期して上記各スイッチング素子を上記第1変換動作の期間にオンし、上記第2変換動作の期間にオフすることにより上記単相交流電圧を同期整流して上記整流電圧を出力する。
【0040】
本開示によれば、単相交流電圧に同期してブリッジ回路の各スイッチング素子を第1変換動作の期間にオンし、第2変換動作の期間にオフすることにより、単相交流電圧を同期整流して整流電圧をコンバータ部から出力するので、力率改善や高調波抑制などのためのリアクトルにインダクタンスの小さいものを用いても、部分負荷効率を向上しつつ定格負荷時の効率低下を抑えることができる。
【図面の簡単な説明】
【0041】
【
図1】本開示の第1実施形態の電力変換装置の回路図である。
【
図2】第1実施形態の電力変換装置の等価回路を示す図である。
【
図3A】第1実施形態の電力変換装置の等価回路の通流比の波形を示す図である。
【
図3B】第1実施形態の電力変換装置の等価回路の各部の平均電圧波形および平均電流波形を示す図である。
【
図3C】第1実施形態の電力変換装置の等価回路の各部の電流波形を示す図である。
【
図3D】第1実施形態の電力変換装置の等価回路の各部の瞬時電力波形を示す図である。
【
図4】第1実施形態の電力変換装置の各部の電圧,電流のシミュレーション波形を示す図である。
【
図5】第1実施形態の変形例の電力変換装置の各部の電圧,電流のシミュレーション波形を示す図である。
【
図6】第1実施形態の電力変換装置の制御装置のブロック図である。
【
図7】第1実施形態の電力変換装置の動作を示す図である。
【
図8】第1実施形態の電力変換装置を誘導性負荷であるモータの駆動に用いた場合の回転数と変換効率の関係を示す図である。
【
図9】第1実施形態の電力変換装置を誘導性負荷であるモータの駆動に用いた場合の回転数と入力力率の関係を示す図である。
【
図10】第1実施形態の電力変換装置を誘導性負荷であるモータの駆動に用いた場合の回転数とモータ入力電圧の関係を示す図である。
【
図11】本開示の第2実施形態の電力変換装置の回路図である。
【
図12】第2実施形態の電力変換装置の各部の電圧,電流のシミュレーション波形を示す図である。
【
図13】本開示の第3実施形態の電力変換装置の回路図である。
【
図14】本開示の第4実施形態の電力変換装置の回路図である。
【
図15】本開示の第5実施形態の電力変換装置の回路図である。
【
図16】第5実施形態の電力変換装置の各部の電圧,電流のシミュレーション波形を示す図である。
【
図17】電力変換装置におけるインダクタンスと損失の関係を示す図である。
【
図18】電力変換装置におけるインダクタンスとピーク電流の関係を示す図である。
【発明を実施するための形態】
【0042】
以下、実施形態を説明する。なお、図面において、同一の参照番号は、同一部分または相当部分を表わすものである。
【0043】
〔第1実施形態〕
図1は本開示の第1実施形態の電力変換装置の回路図である。
【0044】
この第1実施形態の電力変換装置は、
図1に示すように、コンバータ部2と、フィルタ部3と、バッファ回路4aと、充電回路4bと、電流阻止部4cと、インバータ部5と、制御装置10(
図6に示す)とを備えている。また、電力変換装置は、コンバータ部2の正極出力端が第1電源線LHに接続され、コンバータ部2の負極出力端が第2電源線LLに接続されている。第1電源線LHは、コンバータ部2の正極出力端に一端が接続された電源線部LH1と、電源線部LH1の他端にリアクトルL3を介して一端が接続された電源線部LH2と、電源線部LH2の他端にダイオードD43を介して一端が接続された電源線部LH3とで構成されている。
【0045】
コンバータ部2は、単相交流電源1と接続されたダイオードD21~D24で構成されたブリッジ回路を備えている。ダイオードD21~D24は、単相交流電源1から入力される単相交流電圧Vinを単相全波整流して整流電圧に変換して、第1電源線LHの電源線部LH1と第2電源線LLとの間に整流電圧を出力する。第1電源線LHの電源線部LH1には、第2電源線LLよりも高い電位が印加される。コンバータ部2には、単相交流電源1から入力電流Iinが流れ込む。
【0046】
フィルタ部3は、リアクトルL3とコンデンサC3とを備えている。コンデンサC3は、第1電源線LHの電源線部LH2と第2電源線LLとの間に設けられている。リアクトルL3は、第1電源線LHの電源線部LH1と電源線部LH2との間に接続され、コンデンサC3よりもコンバータ部2側に設けられている。リアクトルL3とコンデンサC3とで、いわゆるLCフィルタを構成している。
【0047】
ここで、コンデンサC3は、例えばフィルムコンデンサであって、電解コンデンサの静電容量に比べて小さい静電容量を有する。このようなコンデンサC3は、コンバータ部2が出力する整流電圧をほとんど平滑しない。よってコンデンサC3の両端電圧v3は、整流電圧の脈動の周期と同じ周期で脈動する。
【0048】
<バッファ回路の構成>
バッファ回路4aは、第1電源線LHの電源線部LH3と第2電源線LLとの間に接続され、クランプダイオードD42と、クランプダイオードD42に逆並列接続されたトランジスタScとを含んでいる。ここで、トランジスタScは、例えばIGBT(絶縁ゲート型バイポーラトランジスタ)である。トランジスタScは、第1電源線LHの電源線部LH3と第2電源線LLとの間において、コンデンサC4に対して電源線部LH3側で直列に接続されている。ここで、逆並列接続とは、順方向が相互に逆となるような並列接続である。具体的には、トランジスタScの順方向は、第2電源線LLから電源線部LH3へと向かう方向であり、クランプダイオードD42の順方向は、電源線部LH3から第2電源線LLへと向かう方向である。
【0049】
バッファ回路4aは、トランジスタScが導通するときにコンデンサC4の両端電圧v4とほぼ同じ電圧を出力する。また、トランジスタScが非導通のとき、直流リンク電圧VdclinkはコンデンサC3の両端電圧v3とほぼ同じ電圧となる。
【0050】
<充電回路の構成>
充電回路4bは、ダイオードD40と、リアクトルL4と、トランジスタSlとを含んでいる。ダイオードD40のカソードは、トランジスタScとコンデンサC4との間に接続されている。リアクトルL4は、第1電源線LHの電源線部LH2とダイオードD40のアノードとの間に接続されている。トランジスタSlは、第2電源線LLとダイオードD40のアノードとの間に接続されている。トランジスタSlには、ダイオードD41が逆並列接続されている。第1電源線LHの電源線部LH2の方が第2電源線LLよりも電位が高いので、基本的にはダイオードD41には電流が流れない。
【0051】
充電回路4bは、部分負荷の場合、トランジスタSlをオフとし、リアクトルL4とダイオードD40を介してコンデンサC4を充電する。
【0052】
なお、充電回路4bは、部分負荷より大きい負荷の場合、トランジスタSlを所定の第4デューティdlで導通することにより、コンバータ部2からの整流電圧(より詳細にはコンデンサC3の両端電圧v3)を昇圧してコンデンサC4を充電する。このとき、コンデンサC4には、両端電圧v3よりも高い両端電圧v4が発生する。具体的には、第1電源線LHの電源線部LH2からトランジスタSlを経由して第2電源線LLへと電流を流すことによってリアクトルL4にエネルギーを蓄積し、その後にトランジスタSlをオフすることによって当該エネルギーがダイオードD40を経由してコンデンサC4に蓄積される。コンデンサC4の両端電圧v4は、両端電圧v3より高いので、基本的にはクランプダイオードD42には電流が流れない。
【0053】
<電流阻止部の構成>
電流阻止部4cは、第1電源線LHの電源線部LH2,LH3間かつバッファ回路4aとフィルタ部3との間に設けられ、バッファ回路4aのコンデンサC4からコンデンサC3へと流れる電流を阻止する。この実施形態では、電流阻止部4cをダイオードD43で実現することによりフィルタ部3を直流リンク側に設けることができる。以降の実施形態では、コンバータ部2がその機能を兼ね備えている。
図1では、ダイオードD43は、その順方向はコンバータ部2からインバータ部5へと向かう方向である。なお、電流阻止部4cは、第2電源線LLのバッファ回路4aと充電回路4bとの間に設けてもよい。
【0054】
<インバータ部の構成>
インバータ部5の正極入力端に、コンバータ部2の正極出力端が第1電源線LHの電源線部LH1,リアクトルL3,電源線部LH2,ダイオードD43および電源線部LH3を介して接続され、インバータ部5の負極入力端に、コンバータ部2の負極出力端が第2電源線LLを介して接続されている。このインバータ部5は、正極入力端と負極入力端とに印加される直流リンク電圧Vdclinkから変換された三相交流電圧を出力端Pu,Pv,Pwから出力する。
【0055】
インバータ部5は、6つのスイッチング素子Sup,Svp,Swp,Sun,Svn,Swnを含む。スイッチング素子Sup,Svp,Swpは、それぞれ出力端Pu,Pv,Pwと第1電源線LHの電源線部LH3との間に接続され、スイッチング素子Sun,Svn,Swnは、それぞれ出力端Pu,Pv,Pwと第2電源線LLとの間に接続される。インバータ部5は、PWM制御のいわゆる電圧形インバータを構成し、6つのダイオードDup,Dvp,Dwp,Dun,Dvn,Dwnを含む。
【0056】
ダイオードDup,Dvp,Dwp,Dun,Dvn,Dwnは、いずれもそのカソードを第1電源線LHの電源線部LH3側に、そのアノードを第2電源線LL側に向けて配置される。ダイオードDupは、出力端Puと電源線部LH3との間で、スイッチング素子Supと並列に接続される。同様にして、ダイオードDvp,Dwp,Dun,Dvn,Dwnは、それぞれスイッチング素子Svp,Swp,Sun,Svn,Swnと並列に接続される。
【0057】
例えばスイッチング素子Sup,Svp,Swp,Sun,Svn,Swnには、IGBT(絶縁ゲート型バイポーラトランジスタ)が採用される。
【0058】
この実施形態では、インバータ部5の出力端Pu,Pv,Pwに接続された誘導性負荷はモータ6であり、インバータ部5からの三相交流電圧に応じてモータ6が回転する。
【0059】
上記電力変換装置では、単相交流電圧Vinの瞬時値の絶対値が直流電圧指令値Vdc*よりも高い第1区間において、バッファ回路4aの出力端を第1電源線LHの電源線部LH3から遮断し、インバータ部5の電圧飽和時の出力電圧から換算される直流電圧が直流電圧指令値Vdc*と等しくなるようにインバータ部5のPWM制御のスイッチングパターンが選択されて、コンバータ部2から出力された整流電圧によりインバータ部5に電力を供給する第1変換動作を行うと共に、整流電圧によりバッファ回路4aに充電する。
【0060】
一方、単相交流電圧Vinの瞬時値の絶対値が直流電圧指令値Vdc*以下の第2区間において、バッファ回路4aの出力端を第1電源線LHの電源線部LH3に接続し、インバータ部5の電圧飽和時の出力電圧から換算される直流電圧が直流電圧指令値Vdc*と等しくなるようにインバータ部5のPWM制御のスイッチングパターンが選択されて、バッファ回路4aからインバータ部5に電力を供給する第2変換動作を行う。
【0061】
ここで、「インバータ部5の電圧飽和時の出力電圧から換算される直流電圧」は、インバータ部5の変調率1における出力電圧に基づいて求めることができる。この実施形態のインバータ部5のPWM制御方式が相電圧制御であるので、インバータ部5の直流電圧は、インバータ部5の変調率1における出力電圧実効値の2√2/√3倍となる。なお、インバータ部5のPWM制御方式が線間電圧制御である場合は、インバータ部5の直流電圧は、インバータ部5の変調率1における出力電圧実効値の√2倍となる。
【0062】
上記電力変換装置によれば、電源周期に合わせて第1変換動作と第2変換動作を交互に行って降圧動作することで、部分負荷において電源周期を第1区間と第2区間で2分している場合、バッファ回路4aからの放電電荷が半減し、第1区間でのバッファ回路4aへの充電電流のピーク電流が低減されて、入力力率が改善されると共に、バッファ回路4aからの放電による電圧降下の期間が半減する。これにより、部分負荷効率を向上できる。
【0063】
また、上記電力変換装置では、充電回路4bによって、第1区間においてバッファ回路4aに整流電圧により充電することによって、充電回路4b以外の充電経路(D43およびD42)を介した充電電流の分流を抑制することができ、充電損失を低減することができる。
【0064】
<等価回路>
上記電力変換装置は、
図2に示すように、単相交流電圧Vinを変換して整流電圧を出力する電圧源|Vin|と、電圧源|Vin|の出力端に一端が接続され、所定の第1デューティdrecで導通する第1スイッチSrecと、第1スイッチSrecの他端に一端が接続され、所定の第2デューティdcで導通する第2スイッチScと、第2スイッチScの他端に一端が接続され、他端が電圧源|Vin|の共通端に接続されたコンデンサC4と、第2スイッチScと並列接続されたクランプダイオードD42と、第1スイッチSrecの他端に第1端が接続され、電圧源|Vin|の共通端に第2端が接続され、第1端または第2端のいずれか一方が択一的に第3端と導通し、所定の第3デューティdzで第1端と第3端とが導通する第3スイッチSzと、第1スイッチSrecの他端に一端が接続され、他端が第3スイッチSzの第3端に接続された電流源Idcとを有する等価回路で表される。
【0065】
上記第3スイッチSzと電流源Idcで3相電圧形のインバータ部5が構成されている。なお、インバータ部5は、3n相電圧形インバータ(nは2以上の整数)でもよい。
【0066】
また、
図2に示す電力変換装置は、電圧源|Vin|の出力端に一端が接続されたリアクトルL4と、リアクトルL4の他端にアノードが接続され、カソードがコンデンサC4の第2スイッチSc側に接続されたダイオードD40と、ダイオードD40のアノードに一端が接続され、他端が電圧源|Vin|の共通端に接続され、所定の第4デューティdlで導通する第4スイッチSlとを備える。
【0067】
図2に示された等価回路では、コンバータ部2およびフィルタ部3からインバータ部5に流れる電流は、第1スイッチSrecを経由する電流irec1として等価的に表されている。同様に、コンデンサC4からインバータ部5に流れる放電電流は、第2スイッチScを流れる電流icとして等価的に表されている。直流電圧を一定に制御するためのインバータ部5において出力端Pu,Pv,Pwが第1電源線LHの電源線部LH3,第2電源線LLの一方に共通して接続されるときにインバータ部5を介してモータ6(誘導性負荷)に流れる電流も、第3スイッチSzを経由する電流izとして等価的に表されている。インバータ部5のPWM変調に伴う同様の還流成分は電流源Idcの表記に含まれている。
図2では、充電回路4bを構成するリアクトルL4とダイオードD40とスイッチSlとが表され、リアクトルL4を流れる電流ilが付記されている。
【0068】
また、
図2の等価回路においては、フィルタ部3の出力電圧が電圧源|Vin|で示されている。電圧源|Vin|はコンバータ部2が出力する整流電圧(=交流電圧Vinの絶対値)を出力する。つまり、等価回路は、コンバータ部2からインバータ部5へと電流が流れるとき(第1スイッチSrecが導通するとき)には、整流電圧がインバータ部5に入力されるという考えに基づいている。
【0069】
この等価回路において、第1~第3スイッチSrec,Sc,Szが導通するそれぞれのデューティを、第1デューティdrec,第2デューティdc,第3デューティdzとすると、
drec+dc+dz=1
の関係が成立する。
【0070】
なお、
図2から分かるように、コンバータ部2を流れる電流irecは、第1スイッチSrecを導通する電流irec1と、リアクトルL4を流れる電流ilとの和と等しい。また、電流Irec1は第1デューティdrecと直流電流Idcとの積で表されるので、電流irecは上記式に示すように、drec・Idcと、電流ilとの和で表される。
【0071】
なお、電流irec1,ic,izのそれぞれは、直流電流Idcに第1デューティdrec,第2デューティdc,第3デューティdzを乗算したものである。したがって、電流irec1,ic,izは、第1~第3スイッチSrec,Sc,Szのスイッチング周期における平均値である。また、電流ilも同様にスイッチSlのスイッチング周期における平均値である。
【0072】
また、直流電流Idcは、第1~第3スイッチSrec,Sc,Szをそれぞれ導通する電流irec1,ic,izの総和であるので、次式が成立する。
【数6】
【0073】
よって、第1デューティdrec,第2デューティdc,第3デューティdzは、各電流irec1,ic,izに対する直流電流Idcの電流分配率と見ることができる。
【0074】
上記電圧源|Vin|の瞬時値が直流電圧指令値Vdc*よりも高い第1区間において、第2スイッチScをオフし、電流源Idcに入力される直流電圧Vdcが直流電圧指令値Vdc*と等しくなるように第1デューティdrecと第3デューティdzとが選択され、電圧源|Vin|から電流源Idcに電力を供給する第1変換動作を行うと共に、整流電圧によりクランプダイオードD42を介してコンデンサC4に充電する。
【0075】
一方、電圧源|Vin|の瞬時値が直流電圧指令値Vdc*以下の第2区間において、第1スイッチSrecをオフし、電流源Idcに入力される直流電圧Vdcが直流電圧指令値Vdc*と等しくなるように第2デューティdcと第3デューティdzとが選択され、コンデンサC4から電流源Idcに電力を供給する第2変換動作を行う。
【0076】
ここで、電流源Idcに入力される直流電圧Vdcは、第1スイッチSrecから出力される平均電圧をVrecとし、第2スイッチScから出力される平均電圧をVcとすると、
Vdc=Vrec・drec+Vc・dc
で表される。
【0077】
また、上記電力変換装置では、部分負荷より大きな負荷において、所定の第4デューティdlで導通する第4スイッチSlによって、リアクトルL4とダイオードD40を介して充電されるコンデンサC4への充電電圧を昇圧して、昇圧動作により電圧利用効率を高める変換動作が第1,第2変換動作とは別に行うことが可能になる。
【0078】
上記構成の電力変換装置は、バッファ回路4aを介さずコンバータ部2から流れる電流のデューティである第1デューティdrecと、バッファ回路4aを介して流れる電流のデューティである第2デューティdcと、インバータ部5において零相電流が流れるデューティである第3デューティdzは、
drec+dc+dz=1
の条件を満たすと共に、単相交流電圧Vinの最大値をVm、単相交流電圧Vinの角速度をωとし、時間をtとするとき、第1区間における第1デューティdrecと第2デューティdcは、
【数7】
で表され、第2区間の期間における第1デューティdrecと第2デューティdcは
【数8】
で表され、インバータ部5は、相電圧指令値Vu*,Vv*,Vw*と第1デューティdrecと第2デューティdcおよび第3デューティdzに基づいてPWM制御される(
図7参照)。
【0079】
ここで、単相交流電圧Vinの瞬時値の絶対値が直流電圧指令値Vdc*よりも高い第1区間と、単相交流電圧Vinの瞬時値の絶対値が直流電圧指令値Vdc*以下の第2区間との境界位相角φは、
【数9】
で表される。例えば、直流電圧指令値Vdc*をVm/√2(Vmは単相交流電圧Vinの最大値)とすると、境界位相角φは45degとなる。
【0080】
上記電力変換装置によれば、第1変換動作の期間と第2変換動作の期間における1デューティdrecと第2デューティdcと第3デューティdzの上記条件を満たすように、電源周期に合わせて第1変換動作と第2変換動作を交互に行うことによって、部分負荷効率を向上できる。
【0081】
図3Aは
図2に示す電力変換装置の等価回路の通流比の波形を示し、
図3Bは上記電力変換装置の等価回路の各部の平均電圧波形および平均電流波形を示し、
図3Cは上記電力変換装置の等価回路の各部の電流波形を示し、
図3Dは上記電力変換装置の等価回路の各部の瞬時電力波形を示している。
図3A~
図3Dにおいて、drecは第1デューティ、dcは第2デューティ、dzは第3デューティ、Vrecは第1スイッチSrecから出力される平均電圧、Vcは第2スイッチScから出力される平均電圧、Idcは電流源Idcに入力される平均電流、Irec1は第1スイッチSrecの入力電流、Icは第2スイッチScの入力電流、Irecは電圧源|Vin|の入力電流、IlはリアクトルL4の入力電流、Pinは電圧源|Vin|からの瞬時電力、Pdcは電流源Idcに供給される瞬時電力、PbufはコンデンサC4から電流源Idcに供給される瞬時電力である。
【0082】
ここで、直流電圧指令値Vdc*をVm/√2としている(Vmは単相交流電圧Vinの最大値)。
図3A~
図3Dでは、第1変換動作(充電)の第1区間が、
45deg~135deg、225deg~315deg
であり、第2変換動作(放電)の第2区間が、
0deg~45deg、135deg~225deg、315deg~360deg
である。
【0083】
また、
図4は
図1に示す電力変換装置の各部の電圧,電流のシミュレーション波形を示す。
図4において、直接変換は、第1変換動作(充電)の第1区間であり、間接変換は、第2変換動作(放電)の第2区間である。また、
図4において、Vinは単相交流電圧、Vdclinkはインバータ部5に入力される直流リンク電圧、v3はフィルタ部3のコンデンサC3の両端電圧、Idclinkはインバータ部5に入力される電流、i4は電流阻止部4cのダイオードD43に流れる電流、iD40はダイオードD40に流れる電流、iC4はバッファ回路4aのコンデンサC4に流れる電流、Idc0は充電回路4bに入力される電流、iC3はフィルタ部3のコンデンサC3に流れる電流、Iinはコンバータ部2の入力電流である。
【0084】
<変形例>
図5は第1実施形態の変形例の電力変換装置の各部の電圧,電流のシミュレーション波形を示す。この変形例では、直流電圧指令値Vdc*を0.5Vmとしている(Vmは単相交流電圧Vinの最大値)。境界位相角φは30degとなる。
【0085】
図5では、第1変換動作(充電)の第1区間が、
30deg~150deg、210deg~330deg
であり、第2変換動作(放電)の第2区間が、
0deg~30deg、150deg~210deg、330deg~360deg
である。この変形例では、直流電圧指令値Vdc*を0.5Vm(<Vm/√2)とすることで、直流電圧指令値Vdc*がVm/√2のときよりも第1区間に対する第2区間の割合を減らしている。
【0086】
<制御装置の構成>
図6は第1実施形態の電力変換装置の制御装置10のブロック図である。制御装置10は、
図6に示すように、インバータ制御部101と、放電制御部102と、充電制御部103とを備える。
【0087】
インバータ制御部101は、第1デューティdrecと、第2デューティdcと、相電圧指令値Vu*,Vv*,Vw*とに基づいて、インバータ制御信号SSup,SSvp,SSwp,SSun,SSvn,SSwnを出力する。インバータ制御信号SSup,SSvp,SSwp,SSun,SSvn,SSwnはそれぞれ、インバータ部5のスイッチング素子Sup,Svp,Swp,Sun,Svn,Swnの動作を制御する。
【0088】
また、インバータ制御部101は、出力電圧指令生成部1011、振幅変調指令部1012、積和演算部1013、比較部1014、論理演算部1015、キャリア生成部1016とを有している。出力電圧指令生成部1011は、位相θ(=ωt)、q軸電流Iq、d軸電流Id、回転角速度ωmおよびその指令値ωm*に基づいて、相電圧指令値Vu*,Vv*,Vw*を生成する。振幅変調指令部1012は、第1デューティdrecと第2デューティdcとに基づいて、積和演算部1013の動作を制御する。積和演算部1013は、相電圧指令値Vu*,Vv*,Vw*と、第1デューティdrecおよび第2デューティdcとの積和演算を行って信号波Mを生成する。比較部1014は、信号波MとキャリアCA2との値の比較結果を論理演算部1015へ出力する。論理演算部1015は、比較部1014による比較結果に対して論理演算を行って、インバータ制御信号SSup,SSvp,SSwp,SSun,SSvn,SSwnを出力する。
【0089】
放電制御部102は、デューティ演算部1021、比較器1022を有する。デューティ演算部1021は、位相θと振幅VmとコンデンサC4の両端電圧Vc(
図1ではv4)および直流電圧指令値Vdc*に基づいて、第1デューティdrecと第2デューティdcとを生成する。比較器1022は、第2デューティdcとキャリアCA1とを比較して、スイッチScを導通させる放電スイッチ信号SScを生成する。
【0090】
充電制御部103は、振幅決定部103aと、充電指令生成部103bと、充電動作制御部103cとを有する。この充電制御部103は、部分負荷においては、スイッチSlを常にオフにする充電スイッチ信号SSlを生成する。
【0091】
振幅決定部103aは、減算器1031と、比例積分制御器1032とを含む。減算器1031は、両端電圧Vcおよび平均電圧指令値Vc*から偏差ΔVcを求める。比例積分制御器1032は、偏差ΔVcに対して比例積分制御を行って振幅Imを決定する。振幅Imは、相電圧指令値Vu*,Vv*,Vw*に影響を与え、インバータ部5の動作は相電圧指令値Vu*,Vv*,Vw*の影響を受けて、偏差ΔVcを小さくする。充電指令生成部103bは、充電波形テーブル1033と、乗算器1034とを含む。充電波形テーブル1033は、分配率kと位相θ(=ωt)とを入力し、位相θについての関数F(θ)(=F(ωt))を出力する。乗算器1034は、振幅Imと関数F(ωt)とを乗算し、充電指令iL*を決定する。充電動作制御部103cは、充電指令iL*およびリアクトルL4の両端の電圧Vlに基づいて、充電回路4bの動作を制御する。詳しくは、リアクトルL4に流れるリアクトル電流ilが、充電指令iL*に対応するリアクトル電流指令il*となるように、スイッチSlを制御する充電スイッチ信号SSlを生成する。
【0092】
次に、第1実施形態の電力変換装置の制御装置10の動作を
図7に従って説明する。
【0093】
制御装置10において、キャリア生成部1016から出力されるキャリアCA1は第2デューティdcと比較される。キャリアCA1は周期tsで繰り返される鋸波形をしている。
【0094】
キャリアCA1が第2デューティdc以下となる期間が期間tcであり、キャリアCA1が第2デューティdc以上となる期間が期間trec’である。キャリアCA1が第2デューティdc以下であるときにスイッチScが導通するように、スイッチScを開閉する。
【0095】
なお、キャリアCA1が値(dc+dz/2)以上かつ値(drec+dc+dz/2)以下となる期間trecとし、キャリアCA1が第2デューティdc以上かつ値(dc+dz/2)以下、あるいは値(drec+dc+dz/2)以上かつ値1(=drec+dc+dz)となる期間をtz/2としている。
【0096】
また、キャリア生成部1016から出力されるキャリアCA2は、期間tcにおいて、電圧指令値dc(1-Vu*),dc(1-Vv*),dc(1-Vw*)と比較される。キャリアCA2は、期間tcにおいて第2デューティdcを最大値とする。キャリアCA2は、期間trecにおいて、電圧指令値dz+drec(1-Vu*),dz+drec(1-Vv*),dz+drec(1-Vw*)と比較される。キャリアCA2は、期間trecにおいて、放電補デューティ(1-dc)(=dz+drec)を最大値とする。
【0097】
このようにして、電圧指令値を用いて、インバータ部5は、周期tsのうち、期間tctrecのいずれにおいても、比(1-Vu*):(Vu*-Vv*):(Vv*-Vw*)の期間で採用される電圧ベクトルV0,V4,V6に基づいて動作する。
【0098】
さらに、インバータ部5は、バッファ回路4aが転流するタイミングを含む区間(期間tz/2を含む)で電圧ベクトルV0が採用されることにより、直流電流Idclinkが流れない状態でバッファ回路4aが転流することになる。
【0099】
なお、
図7において、キャリアCA1は、傾斜が逆すなわち徐々に下降する傾斜であってもよいし、キャリアCA1は三角波であってもよい。
【0100】
図8は第1実施形態の電力変換装置を誘導性負荷であるモータ6の駆動に用いた場合の回転数と変換効率の関係を示し、
図9は上記電力変換装置をモータ6の駆動に用いた場合の回転数と入力力率の関係を示し、
図10は上記電力変換装置をモータ6の駆動に用いた場合の回転数とモータ入力電圧の関係を示している。
図8では、横軸は回転数[rps]を表し、縦軸は変換効率を表している。また、
図9では、横軸は回転数[rps]を表し、縦軸は入力力率を表している。また、
図10では、横軸は回転数[rps]を表し、縦軸はモータ入力電圧[Vmean]を表している。
【0101】
図8~
図10において、黒色丸印(●)は、第1実施形態の電力変換装置で直流電圧指令値Vdc*を0.7Vmとした変換動作を行った場合であり、白色丸印(○)は、第1実施形態の電力変換装置で直流電圧指令値Vdc*を0.5Vmとした変換動作を行った場合である。また、白色三角印(△)は、バッファ回路を用いずにダイオードブリッジ回路による全波整流動作を行う電力変換装置の場合である。
【0102】
また、
図8~
図10において、黒色三角印(▲)は、従来の半周期スイッチング方式(特許第5629885号参照)と連続スイッチング方式(特許第5804167参照)を用いた場合である(
図10では「従来方式」)。ここで、回転数50rps未満の軽負荷の低速域では半周期スイッチング方式で変換動作を行い、回転数50rps以上の負荷が大きい中高速域では連続スイッチング方式で変換動作を行う。
【0103】
図8,
図9に示すように、第1実施形態の電力変換装置の変換効率は従来の電力変換装置や全波整流動作に比べて向上し、入力力率は従来の電力変換装置よりも少し悪いが全波整流動作に比べて大幅に改善されている。
【0104】
このように、回転数50rps未満の軽負荷の低速域において、第1実施形態の電力変換装置での入力力率は0.1~0.2ポイント改善でき、変換効率は0.5~1.0パーセント改善でき、通年効率の改善に寄与できる。
【0105】
また、
図10に示すように、電圧利用率0.7(Vdc*を0.7Vm)および0.5(Vdc*を0.5Vm)では、電源電圧が200Vの場合、50rps、40rps付近で電力変換装置の出力電圧が飽和するため、例えば50rps以上で連続スイッチング方式の変換動作を行う制御に切り換えて、モータ電流を低減する運転方法が効率面で有利である。
【0106】
そこで、本開示の第1実施形態の電力変換装置では、第1変換動作と第2変換動作を行う第1モードと連続スイッチング方式(特許第5804167)の変換動作を行う第2モードとを備える。
【0107】
インバータ部5の出力周波数が第1閾値(例えば50rps)以下である第1モードの状態から、インバータ部5の出力周波数が第1閾値(例えば50rps)よりも高くなると、第2モードに移行し、インバータ部5の出力周波数が第2閾値(例えば50rps)よりも高い第2モードの状態から、インバータ部5の出力周波数が第2閾値(例えば50rps)以下になると、第1モードに移行する。
【0108】
このように、第1変換動作と第2変換動作を行う第1モードと、連続スイッチング方式の変換動作を行う第2モードとを、負荷の増減に対して相間関係を有するインバータ部5の出力周波数に応じて切り換えることにより、負荷に応じて効率のよい変換動作を行うことが可能になる。
【0109】
なお、第1閾値よりも第2閾値を所定値(例えば5rps)低くして、第1モードと第2モードとの切り換えにヒステリシスを設けることによって、安定した切り換え動作ができる。
【0110】
また、第1実施形態では、第1モードと第2モードとを、負荷の増減に対して相間関係を有するインバータ部5の出力周波数に応じて切り換えたが、負荷の増減に対して相間関係を有するインバータ部5の変調率に応じて切り換えてもよい。この場合、負荷に応じて効率のよい変換動作を行うことが可能になる。また、第1モードと第2モードとの切り換えにヒステリシスを設けることによって、安定した切り換え動作ができる。
【0111】
また、第1実施形態の電力変換装置では、インバータ部5の出力周波数に応じた直流電圧指令値Vdc*を設定して、例えば、直流電圧指令値Vdc*をVm/√2→0.5Vmとして第1区間に対する第2区間の割合を減らすことで、第1区間でのバッファ回路4aへの充電電流のピーク電流がさらに低減されて、入力力率がより改善され、バッファ回路4aからの放電による電圧降下の期間がさらに短くなり、部分負荷効率をさらに向上できる。
【0112】
なお、上記第1モードにおいて、インバータ部5の変調率に応じた直流電圧指令値Vdc*を設定するようにしてもよい。この場合、インバータ部の変調率に応じた直流電圧指令値Vdc*を設定して第1区間に対する第2区間の割合を減らすことで、第1区間でのバッファ回路4aへの充電電流のピーク電流がさらに低減されて、入力力率がより改善され、バッファ回路4aからの放電による電圧降下の期間がさらに短くなり、部分負荷効率をさらに向上できる。
【0113】
以下に、従来の半周期スイッチング方式(特許第5629885号参照)と連続スイッチング方式(特許第5804167参照)について簡単に説明する。
【0114】
<半周期スイッチング方式>
半周期スイッチング方式(特許第5629885号参照)では、脈動電力Pbufを半周期毎にバッファ回路で充放電することにより電力脈動を軽減しつつ、定常電力のみをインバータ部に供給する変換動作を行う。半周期スイッチング方式の電力変換装置における変換動作の制御は特許第5629885号で公知であるため、詳細な説明は省略する。
【0115】
<連続スイッチング方式>
連続スイッチング方式(特許第5804167参照)では、半周期スイッチング方式と異なり電源位相において排他的な期間は設定されず、連続してバッファ回路で充放電することにより、電圧利用率の高い変換動作を行う。連続スイッチング方式の電力変換装置における変換動作の制御は特許第5629885号で公知であるため、詳細な説明は省略する。
【0116】
この連続スイッチング方式の変換動作は、
図1,
図2に示す電力変換装置において、第1モードの第1,第2変換動作と組み合わせる第2モードとすることにより、負荷に応じて効率のよい変換動作を行うことが可能になる。
【0117】
なお、上記第1実施形態では、第1モードと第2モードとを、負荷の増減に対して相間関係を有するインバータ部5の出力周波数に応じて切り換えたが、本開示の電力変換装置は、部分負荷の領域のみにおいて第1モードで動作する電力変換装置でもよい。
【0118】
また、
図1に示す回路図で表される電力変換装置は、本開示の電力変換装置の構成を示す一例であり、本開示の電力変換装置は、
図2に示す等価回路で表される回路を備える電力変換装置であればよい。
【0119】
〔第2実施形態〕
図11は本開示の第2実施形態の電力変換装置の回路図である。この第2実施形態の電力変換装置は、フィルタ部3を除いて第2実施形態の電力変換装置と同一の構成をしている。
【0120】
この第2実施形態の電力変換装置では、
図11に示すように、コンバータ部2がフィルタ部3を介して単相交流電源1と接続されている。フィルタ部3はリアクトルL3とコンデンサC3とを備えている。リアクトルL3は、単相交流電源1の一方の出力端とコンバータ部2の一方の入力端との間に設けられている。コンデンサC3は単相交流電源1の2つの出力端の間に設けられている。フィルタ部3は電流の高周波成分を除去する。
【0121】
上記第2実施形態の電力変換装置は、第1実施形態の電力変換装置と同様の第1変換動作と第2変換動作を行う。
【0122】
上記第2実施形態の電力変換装置は、第1実施形態の電力変換装置と同様の効果を有する。また、第2実施形態の電力変換装置では、単相交流電源1側のフィルタ部3により、充電回路4bに入力される電流Idc0とコンデンサC3の進み電流iC3との和が入力電流となるため、入力力率が改善される。
【0123】
図12は第2実施形態の電力変換装置の各部の電圧,電流のシミュレーション波形を示す。
図12において、直接変換は、第1変換動作(充電)の第1区間であり、間接変換は、第2変換動作(放電)の第2区間である。また、
図12において、Vinは単相交流電圧、Vdclinkはインバータ部5に入力される直流リンク電圧、v3はフィルタ部3のコンデンサC3の両端電圧、Idclinkはインバータ部5に入力される電流、i4は第1電源線LHにおいて充電回路4bからバッファ回路4aに流れる電流、iD40はダイオードD40に流れる電流、iC4はバッファ回路4aのコンデンサC4に流れる電流、Idc0は充電回路4bに入力される電流、iC3はフィルタ部3のコンデンサC3に流れる電流、Iinはコンバータ部2の入力電流である。
【0124】
図12では、直流電圧指令値Vdc*をVm/√2とし(Vmは単相交流電圧Vinの最大値)、第1変換動作(充電)の第1区間が、
45deg~135deg、225deg~315deg
であり、第2変換動作(放電)の第2区間が、
0deg~45deg、135deg~225deg、315deg~360deg
である。
【0125】
なお、上記第2実施形態の電力変換装置の構成では、半周期スイッチング方式(特許第5629885号参照)の変換動作も可能である。
【0126】
〔第3実施形態〕
図13は本開示の第3実施形態の電力変換装置の回路図である。この第3実施形態の電力変換装置は、整流部7と回路構成を除いて第2実施形態の電力変換装置と同一の構成をしている。
【0127】
この第3実施形態の電力変換装置では、フィルタ部3が整流部7を介してバッファ回路4aの入力側の第1電源線LHに接続されている。整流部7は、単相交流電源1から入力される単相交流電圧Vinを単相全波整流して整流電圧を出力する。
【0128】
コンバータ部2の正極出力端に充電回路4bのリアクトルL4側の一端を第3電源線LH4を介して接続している。コンバータ部2の負極出力端に充電回路4bの他端を第2電源線LLを介して接続している。
【0129】
上記第3実施形態の電力変換装置では、第1実施形態の電力変換装置と同様の第1変換動作と第2変換動作を行う第1モードと連続スイッチング方式(特許第5804167)の変換動作を行う第2モードとを備える。
【0130】
インバータ部5の出力周波数が第1閾値(例えば50rps)以下である第1モードの状態から、インバータ部5の出力周波数が第1閾値(例えば50rps)よりも高くなると、第2モードに移行し、インバータ部5の出力周波数が第2閾値(例えば50rps)よりも高い第2モードの状態から、インバータ部5の出力周波数が第2閾値(例えば50rps)以下になると、第1モードに移行する。
【0131】
なお、充電回路4bは、部分負荷より大きい負荷の第2モードの場合に、コンバータ部2からの直流電圧を昇圧して、昇圧された直流電圧はコンデンサC4に印加される。
【0132】
このように、第1変換動作と第2変換動作を行う第1モードと、連続スイッチング方式の変換動作を行う第2モードとを、負荷の増減に対して相間関係を有するインバータ部5の出力周波数に応じて切り換えることにより、負荷に応じて効率のよい変換動作を行うことが可能になる。
【0133】
なお、第1閾値よりも第2閾値を所定値(例えば5rps)低くして、第1モードと第2モードとの切り換えにヒステリシスを設けることによって、安定した切り換え動作ができる。
【0134】
また、第3実施形態では、第1モードと第2モードとを、負荷の増減に対して相間関係を有するインバータ部5の出力周波数に応じて切り換えたが、負荷の増減に対して相間関係を有するインバータ部5の変調率に応じて切り換えてもよい。この場合、負荷に応じて効率のよい変換動作を行うことが可能になる。また、第1モードと第2モードとの切り換えにヒステリシスを設けることによって、安定した切り換え動作ができる。
【0135】
上記第3実施形態の電力変換装置は、第2実施形態の電力変換装置と同様の効果を有する。
【0136】
〔第4実施形態〕
図14は本開示の第4実施形態の電力変換装置の回路図である。
【0137】
この第4実施形態の電力変換装置は、
図14に示すように、フィルタ部3と、コンバータ部12と、バッファ回路4aと、インバータ部5と、制御装置(図示せず)とを備えている。また、電力変換装置は、コンバータ部12の正極出力端が第1電源線LHに接続され、コンバータ部12の負極出力端が第2電源線LLに接続されている。
【0138】
コンバータ部12がフィルタ部3を介して単相交流電源1と接続されている。フィルタ部3はリアクトルL3とコンデンサC3およびスイッチSWを備えている。リアクトルL3は、単相交流電源1の2つの出力端のうちの一方とコンバータ部12との間に接続されている。コンデンサC3とスイッチSWは、単相交流電源1の2つの出力端の間に直列に接続されている。フィルタ部3は電流の高周波成分を除去する。なお、この電力変換装置では、第2モードとしてPWMコンバータとして動作するために、スイッチSWを開いてコンデンサC3を遮断することにより、リアクトルL3を連系リアクトルとして機能させる。このとき、バッファ回路4aはスイッチScを導通状態としてコンデンサC4は平滑回路として機能させる。
【0139】
コンバータ部12は、スイッチング素子Sspと、スイッチング素子Ssnと、スイッチング素子Srpと、スイッチング素子Srnとを備えている。コンバータ部12の入力側が単相交流電源1に接続され、出力側が第1電源線LHと第2電源線LLに接続されている。また、コンバータ部12のスイッチング素子Ssp,Ssn,Srp,Srnは、ブリッジ回路を構成している。
【0140】
スイッチング素子Ssp,Ssn,Srp,Srnは、例えば、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)であり、制御装置によってオン/オフが制御される。なお、スイッチング素子Ssp,Ssn,Srp,SrnにMOSFETを用いることで、第2モードのPWMコンバータとして動作する際、スイッチングを高速で行えるため、スイッチング損失を低減できる利点がある。また、スイッチング素子Ssp,Ssn,Srp,Srnは、その内部に寄生ダイオードを有している。寄生ダイオードは、スイッチング素子Ssp,Ssn,Srp,Srnのソースとドレインとの間に存在するpn接合の部分である。
【0141】
なお、スイッチング素子Ssp,Ssn,Srp,Srnの飽和電圧(オン状態におけるドレイン・ソース間電圧)は、寄生ダイオードの順方向の電圧降下よりも低いことが好ましい。これによって、寄生ダイオードに電流を流すよりも、スイッチング素子Ssp,Ssn,Srp,Srnのソース・ドレインに電流を流すほうが電圧降下が小さくなり、導通損失を低減できる。つまり、オフ状態のスイッチング素子Sspにおいて寄生ダイオードに電流を流すよりも、オン状態のスイッチング素子Sspに電流を流すほうが導通損失が小さくなるようにしている。なお、他のスイッチング素子Ssn,Srp,Srnについても同様である。
【0142】
上記電力変換装置では、バッファ回路4aのコンデンサC4は、第1実施形態のような充電回路4bを介さずに充電される。
【0143】
上記第4実施形態の電力変換装置は、第1実施形態の電力変換装置と同様の第1変換動作と第2変換動作を行うと同時に、コンバータ部12のブリッジ回路によって同期整流による全波整流を行う。詳しくは、コンバータ部2は、単相交流電圧Vinに同期して各スイッチング素子Ssp,Ssn,Srp,Srnのうち1対を第1変換動作の期間にオンし、第2変換動作の期間に全てオフすることにより、単相交流電圧Vinを同期整流して整流電圧を出力する。
【0144】
これにより、上記電力変換装置は、第2実施形態の電力変換装置と同様の効果を有すると共に、軽負荷時の損失が低減され、ダイオードブリッジ回路に比べて軽負荷時の効率が改善される。
【0145】
〔第5実施形態〕
図15は本開示の第5実施形態の電力変換装置の回路図である。第5実施形態の電力変換装置は、コンデンサC3とバッファ回路4aを除いて第4実施形態の電力変換装置と同一の構成をしている。
【0146】
この第5実施形態の電力変換装置は、
図15に示すように、コンバータ部12と、バッファ回路4aと、インバータ部5と、制御装置(図示せず)とを備えている。また、電力変換装置は、コンバータ部12の正極出力端が第1電源線LHに接続され、コンバータ部12の負極出力端が第2電源線LLに接続されている。
【0147】
単相交流電源1の一方の出力端にコンバータ部12の一方の入力端をリアクトルL3を介して接続している。単相交流電源1の他方の出力端にコンバータ部12の他方の入力端を接続している。コンバータ部12の正極出力端と負極出力端との間にコンデンサC3を接続している。
【0148】
バッファ回路4aは、第1電源線LHと第2電源線LLとの間に、第1電源線LHから順に直列に接続されたコンデンサC1とトランジスタScとコンデンサC2とを有する。また、バッファ回路4aは、トランジスタScと逆並列接続されたクランプダイオードD42と、コンデンサC1とトランジスタScとの接続点にカソードが接続され、アノードが第2電源線LLに接続されたダイオードD43と、コンデンサC2とトランジスタScとの接続点にアノードが接続され、カソードが第1電源線LHに接続されたダイオードD44とを有する。このバッファ回路4aは、いわゆるバレーフィル回路(谷埋め回路)を用いて構成している。
ここで、トランジスタScは、第2モードとしてPWMコンバータとして動作する際にScを導通状態としてコンデンサC4は平滑回路として機能させるが、並列にフィルタ用のコンデンサC3が電圧源として存在するために、第4実施形態と異なり第1モードでは切換えることができない。ここでは、第2モードにおいてコンデンサC1とコンデンサC2の直列電位及び、コンデンサC3の電位が電源波高値より昇圧されてから、トランジスタScをオンすることにより、コンデンサ相互の短絡電流を回避することができる。
【0149】
図16は第5実施形態の電力変換装置の各部の電圧,電流のシミュレーション波形を示す。
図16において、直接変換は、第1変換動作(充電)の第1区間であり、間接変換は、第2変換動作(放電)の第2区間である。また、
図16において、Vinは単相交流電圧、Vdclinkはインバータ部5に入力される直流リンク電圧、Idclinkはインバータ部5に入力される電流、IC1はコンデンサC1に流れる電流、Idc0は充電回路4bに入力される電流、iC3はフィルタ部3のコンデンサC3に流れる電流、Iinはコンバータ部2の入力電流である。
【0150】
図16では、直流電圧指令値Vdc*を0.5Vmとし(Vmは単相交流電圧Vinの最大値)、第1変換動作(充電)の第1区間が、
30deg~150deg、210deg~330deg
であり、第2変換動作(放電)の第2区間が、
0deg~30deg、150deg~210deg、330deg~360deg
である。
【0151】
図17は第5実施形態の電力変換装置におけるフィルタ回路を形成するリアクトルのインダクタンスと損失との関係を示し、
図18は上記インダクタンスとピーク電流との関係を示す。
図17,
図18では、ルームエアコン200V機種の最大入力20Aへ適用するものとして試算している。ここで、リアクトルとフィルタ回路を形成するコンデンサの容量を1000μFとし、負荷は中大型ルームエアコンの中間運転領域における代表値として550Wにて試算している。
【0152】
図17,
図18では、ダイオードブリッジ回路を用いた従来の電力変換装置において単相交流電源に接続されたリアクトルのインダクタンスに対する損失[W]を「ダイオード整流」で示し、MOSFETによるブリッジ回路を用いて同期整流を行う従来の電力変換装置において単相交流電源に接続されたリアクトルのインダクタンスに対する損失[W]を「MOSFET同期整流」で示し、第5実施形態の電力変換装置においてリアクトルL3のインダクタンスに対する損失[W]を「MOSFET同期整流+本発明」で示している。
【0153】
図17は、静特性に基づきブリッジ回路の損失を計算した結果であり、
図18に示す特性よりピーク電流値が低く力率が高い程、同期整流効果が大きくなる。
【0154】
また、第5実施形態の電力変換装置では、
図17に示すように、リアクトルL3のインダクタンスを小さい値にした場合にも、部分負荷時の効率を改善した上で最大負荷時の効率低下を回避して、部分負荷から最大負荷までの広い運転範囲を確保できる。
【0155】
本開示の具体的な実施の形態について説明したが、本開示は上記第1~第5実施形態に限定されるものではなく、本開示の範囲内で種々変更して実施することができる。例えば、上記第1~第5実施形態で記載した内容を適宜組み合わせたものを、本開示の一実施形態としてもよい。
【符号の説明】
【0156】
1…単相交流電源
2,12…コンバータ部
3…フィルタ部
4a…バッファ回路
4b…充電回路
4c…電流阻止部
5…インバータ部
6…モータ(誘導性負荷)
10…制御装置
101…インバータ制御部
102…放電制御部
103…充電制御部
C3…コンデンサ
C4…コンデンサ
D21~D24…ダイオード
D41…ダイオード
D42…クランプダイオード
D43…ダイオード
D40…ダイオード
Dup,Dvp,Dwp,Dun,Dvn,Dwn…ダイオード
Idc…電流源
L3…リアクトル
L4…リアクトル
LH…第1電源線
LL…第2電源線
LH4…第3電源線
Sc…トランジスタ(第2スイッチ)
Sl…トランジスタ(第4スイッチ)
Srec…第1スイッチ
Ssp,Ssn,Srp,Srn…スイッチング素子
Sup,Svp,Swp,Sun,Svn,Swn…スイッチング素子
Sz…第3スイッチ
|Vin|…電圧源