(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-02-14
(45)【発行日】2024-02-22
(54)【発明の名称】真空ポンプ、及び、真空ポンプの洗浄システム
(51)【国際特許分類】
F04D 19/04 20060101AFI20240215BHJP
【FI】
F04D19/04 E
F04D19/04 H
(21)【出願番号】P 2020120673
(22)【出願日】2020-07-14
【審査請求日】2023-06-06
(73)【特許権者】
【識別番号】508275939
【氏名又は名称】エドワーズ株式会社
(74)【代理人】
【識別番号】100169960
【氏名又は名称】清水 貴光
(72)【発明者】
【氏名】市原 孝一
【審査官】大瀬 円
(56)【参考文献】
【文献】国際公開第2019/122873(WO,A1)
【文献】特開2019-082120(JP,A)
【文献】特開2004-111739(JP,A)
【文献】特開2019-120157(JP,A)
【文献】特開2019-012812(JP,A)
【文献】特開2018-080609(JP,A)
【文献】特開2018-040277(JP,A)
【文献】米国特許出願公開第2020/0105509(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
F04D 19/04
H01L 21/304
(57)【特許請求の範囲】
【請求項1】
吸気口と排気口とを有するハウジングと、
前記ハウジングの内側に、回転自在に支持されたロータ軸と、
前記ロータ軸に固定された回転翼を有し、前記ロータ軸と共に回転可能な回転体と、
を備えた真空ポンプであって、
複数の種類のラジカルを前記ハウジング内に供給可能な、少なくとも一つのラジカル供給口と前記ラジカル供給口に前記ラジカルを供給するラジカル供給手段を備
え、
前記ラジカル供給手段は、前記複数の種類のラジカルの発生に合わせたラジカル発生源と前記ラジカル発生源を駆動させる電源とを有し、
前記ラジカル発生源は、電極を交換可能になっており、前記ラジカル発生源の電源は、電圧出力可変機能を有し、各種のラジカルの発生は前記電極の交換と前記電源の電圧出力を調整することで実現可能となっている、ことを特徴とする真空ポンプ。
【請求項2】
前記複数の種類のラジカル発生源を駆動させる前記電源の少なくとも一部を、ポンプ制御用電源と共用する、ことを特徴とする請求項
1に記載の真空ポンプ。
【請求項3】
前記複数の種類のラジカル発生源を駆動させる前記電源の少なくとも一部を、チャンバのプラズマ発生用電源と共用する、ことを特徴とする請求項
1に記載の真空ポンプ。
【請求項4】
前記ラジカル供給手段は、前記ラジカル供給口に各々対応して設けられ、前記各ラジカル供給口から供給される前記ラジカルの供給を制御可能なバルブを有する、ことを特徴とする請求項
1乃至
3のいずれか1項に記載の真空ポンプ。
【請求項5】
前記各ラジカル供給口は、前記ロータ軸の軸方向において前記吸気口か
ら等距離の位置にそれぞれ配置されている、ことを特徴とする請求項1乃至
4のいずれか1項に記載の真空ポンプ。
【請求項6】
前記真空ポンプは、前記バルブを開閉制御するコントローラをさらに備えている、
ことを特徴とする請求項
4に記載の真空ポンプ。
【請求項7】
前記コントローラは、前記真空ポンプの稼動状況を表す稼働データに基づいて前記バルブを開閉制御する、ことを特徴とする請求項
6に記載の真空ポンプ。
【請求項8】
前記コントローラは、前記稼働データである前記ロータ軸を回転駆動させるモータの電流値が所定の閾値を超えたときに、副生成物の堆積が進行していて、その副生成物のクリーニングのために前記ラジカルの供給が必要であると判定する、ことを特徴とする請求項
7に記載の真空ポンプ。
【請求項9】
前記コントローラは、前記稼働データである前記ロータ軸を回転駆動させるモータの電流値が予め記憶された無負荷運転時の前記モータの電流値
と等しいときに前記バルブの開閉制御を行う、ことを特徴とする請求項
7に記載の真空ポンプ。
【請求項10】
前記コントローラは、前記稼働データである前記真空ポンプの圧力値が所定の閾値を超えたときに、副生成物の堆積が進行していて、その副生成物のクリーニングのために前記ラジカルの供給が必要であると判定する、
ことを特徴とする請求項
7に記載の真空ポンプ。
【請求項11】
前記コントローラは、前記稼働データである前記真空ポンプの圧力値が予め記憶された無負荷運転時の前記真空ポンプの圧力値
と等しいときに、前記バルブの開閉制御を行う、ことを特徴とする請求項
7に記載の真空ポンプ。
【請求項12】
吸気口と排気口とを有するハウジングと、
前記ハウジングの内側に、回転自在に支持されたロータ軸と、
前記ロータ軸に固定された回転翼を有し、前記ロータ軸と共に回転可能な回転体と、を備えた真空ポンプの洗浄システムであって、
複数の種類のラジカルを前記ハウジング内に供給可能な、少なくとも一つのラジカル供給手段を備
え、
前記ラジカル供給手段は、前記複数の種類のラジカルの発生に合わせたラジカル発生源と前記ラジカル発生源を駆動させる電源とを有し、
前記ラジカル発生源は、電極を交換可能になっており、前記ラジカル発生源の電源は、電圧出力可変機能を有し、各種のラジカルの発生は前記電極の交換と前記電源の電圧出力を調整することで実現可能となっている、ことを特徴とする真空ポンプの洗浄システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、真空ポンプ、及び、真空ポンプの洗浄システムに関するものであり、特に、真空ポンプ内にガスが固化して生成される堆積物等を無くすことができる真空ポンプ、及び、真空ポンプの洗浄システムに関するものである。
【背景技術】
【0002】
近年、被処理基板であるウエハから半導体素子を形成するプロセスにおいて、ウエハを高真空に保持された半導体製造装置の処理室内で処理して、製品の半導体素子を作る方法が取られている。ウエハを真空室で加工処理する半導体製造装置では、高真空度を達成して保持するためにターボ分子ポンプ部及びネジ溝ポンプ部などを備えた真空ポンプが用いられている(例えば、特許文献1参照)。
【0003】
ターボ分子ポンプ部は、ハウジングの内部に、薄い金属製の回転可能な回転翼とハウジングに固定された固定翼を有している。そして、回転翼を、例えば数百m/秒の高速で運転させ、吸気口側から入って来る加工処理に用いたプロセスガスをポンプ内部で圧縮して排気口側から排気するようにしている。
【0004】
ところで、真空ポンプの吸気口側より取り込まれたプロセスガスの分子は、真空ポンプ内で回転翼の回転に伴う排気口側への移動に伴う圧縮過程で、プロセスガスが固体化し、固体化された副生成物が固定翼や外筒内面等に付着されて堆積する。この固定翼や外筒内面等に付着したプロセスガスの副生成物としての堆積物は、排気口側に向うガス分子の進路を妨げる。このため、ターボ分子ポンプの排気能力の低下や、処理圧力の異常、堆積物の処理中断による生産効率の低下などの問題が発生していた。
また、真空ポンプ側から反跳したプロセスガスの粒子が半導体製造装置の処理室(チャンバ)に逆流し、ウエハを汚染する問題が発生していた。
【0005】
その対策として、真空ポンプの吸気口に、固定翼や外筒内面等に付着して堆積する堆積物を剥離して分解するためのラジカルを発生するラジカル供給装置を設けた真空ポンプも提案されている(例えば、特許文献2参照)。
【0006】
特許文献2で知られる技術は、真空ポンプの吸気口の近傍に、ラジカル供給部を設け、ラジカル供給部のノズルから内側中心に向けてラジカルを噴出するようにして供給している。
【先行技術文献】
【特許文献】
【0007】
【文献】特開2019-82120公報
【文献】特開2008-248825号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
特許文献2に記載の発明は、ラジカル供給部からのラジカルを、半導体製造装置等のチャンバと隣接する側における吸気口の近傍で、かつ、回転翼及び固定翼の最も上側の位置において、ノズルから内側中心に向け噴出して供給する構成を採っている。そして、ラジカル供給部から供給されるラジカルは、外筒内を排気口側に向かってプロセスガスと共に流され、途中、固定翼や外筒内面等に付着している堆積物を分解して粒子化し、プロセスガスと共に排気口から排出する構造になっている。
【0009】
このようにチャンバと隣接する側吸気口の近傍で、かつ、回転翼及び固定翼の最も上側の位置からラジカルを供給する構造では、真空ポンプの入口側となる吸気口における副生成物がラジカルに反応して粒子化されると、それがチャンバ内に逆流し、ウエハの不良を引き起こす要因となる問題点があった。
【0010】
また、ラジカルは、原料ガスに大きなエネルギーを与えて、強制的に分子結合を引き離す不安定な物質であるため、比較的短時間で再結合し、活性を失ってしまう。そのため、真空ポンプの吸気口から供給しても、ラジカル同士の衝突、ステータ翼ブレードやハウジングとの衝突などにより、真空ポンプの排気口付近まで到達する前に再結合して活性を失ってしまう。したがって、真空ポンプの内部にラジカルが行き渡らず、効果的にクリーニングできないという問題点があった。
【0011】
さらに、ラジカルを供給してクリーニングを行う場合には、ラジカルが供給過剰になると、副生成物の分解以外に、プロセスチャンバや真空ポンプを構成する部品を劣化させてしまうという問題点もあった。
【0012】
また、最近では、単一のラジカルの反応で粒子化できない、例えばTiN(錫)等の副生成物が見られるようになってきた。
【0013】
そこで、副生成物をラジカルにより分解して粒子化し、外部に効果的に排出できる真空ポンプを提供するために解決すべき技術的課題が生じてくるのであり、本発明はこの課題を解決することを目的とする。
【課題を解決するための手段】
【0014】
本発明は上記目的を達成するために提案されたものであり、請求項1に記載の発明は、吸気口と排気口とを有するハウジングと、前記ハウジングの内側に、回転自在に支持されたロータ軸と、前記ロータ軸に固定された回転翼を有し、前記ロータ軸と共に回転可能な回転体と、を備えた真空ポンプであって、複数の種類のラジカルを前記ハウジング内に供給可能な、少なくとも一つのラジカル供給口と前記ラジカル供給口に前記ラジカルを供給するラジカル供給手段を備え、前記ラジカル供給手段は、前記複数の種類のラジカルの発生に合わせたラジカル発生源と前記ラジカル発生源を駆動させる電源とを有し、前記ラジカル発生源は、電極を交換可能になっており、前記ラジカル発生源の電源は、電圧出力可変機能を有し、各種のラジカルの発生は前記電極の交換と前記電源の電圧出力を調整することで実現可能となっている、真空ポンプを提供する。
【0015】
この構成によれば、単一のラジカルの反応では粒子化できない場合、ラジカル供給手段のラジカル供給口から複数の種類のラジカルを供給して、複数のラジカルを用いて段階を経て粒子化可能な副生成物でなる堆積物を効果的に粒子化して排出することができる。また、ラジカル供給手段は、異なる種類のラジカルの発生に合わせたラジカル発生源とラジカル発生源を駆動させる電源とを有しているので、異なる種類のラジカルの発生に合わせたラジカル発生源とラジカル発生源を駆動させる電源とで、異なる種類のラジカルを発生させて、複数のラジカルを用いて段階を経て粒子化可能な副生成物でなる堆積物を効果的に粒子化して排出することができる。さらに、ラジカル発生源は、電極を交換可能で、また電源は、電圧出力可変機能を有しているので、各種のラジカルの発生は電極の交換と電源の電圧出力を調整することで実現することができる。
【0018】
請求項2に記載の発明は、請求項1に記載の構成において、前記異なる種類のラジカル発生源を駆動させる前記電源の少なくとも一部を、ポンプ制御用電源と共用する、真空ポンプを提供する。
【0019】
異なる種類の各ラジカル発生源を駆動させるためには各々電源が必要となるが、電源が複数になるとコスト上昇やスペース不足が問題になる場合があるが、この構成では、電源の少なくとも一部を、ポンプ制御用電源と共用することにより、コスト低減、スペース低減の効果が期待できる。
【0020】
請求項3に記載の発明は、請求項1に記載の構成において、前記異なる種類のラジカル発生源を駆動させる前記電源の少なくとも一部を、チャンバのプラズマ発生用電源と共用する、真空ポンプを提供する。
【0021】
異なる種類の各ラジカル発生源を駆動させるためには各々電源が必要となるが、電源が複数になるとコスト上昇やスペース不足が問題になる場合があるが、この構成では、電源の少なくとも一部を、ポンプ制御用電源と共用することにより、コスト低減、スペース低減の効果が期待できる。チャンバのプラズマ発生用電源と共用化することにより、コスト低減、スペース低減の効果が期待できる。
【0024】
請求項4に記載の発明は、請求項1乃至3のいずれか1項に記載の構成において、前記ラジカル供給手段は、前記ラジカル供給口に各々対応して設けられ、前記各ラジカル供給口から供給される前記ラジカルの供給を制御可能なバルブを有する、真空ポンプを提供する。
【0025】
この構成によれば、各ラジカル供給口から供給されるラジカルの供給量を各ラジカル供給口に対応して設けられたバルブにより制御して、各ラジカル供給口から必要とする量のラジカルを供給することができる。
【0026】
請求項5に記載の発明は、請求項1乃至4のいずれか1項に記載の構成において、前記各ラジカル供給口は、前記軸方向において前記吸気口から略等距離の位置にそれぞれ配置されている、真空ポンプを提供する。
【0027】
この構成によれば、各ラジカル供給口を、軸方向において吸気口から略等距離の位置にそれぞれ配置しているので、各ラジカル供給口から供給するラジカルの量とタイミングの調整がし易くなる。
【0028】
請求項6に記載の発明は、請求項4に記載の構成において、前記真空ポンプは、前記バルブを開閉制御するコントローラをさらに備えている、真空ポンプを提供する。
【0029】
この構成によれば、各ラジカル供給口から供給するラジカルの量とタイミングの調整を、コントローラを通じて簡単に行うことができる。また、このコントローラでは、外部装置(例えば、半導体製造装置)からの信号を受けて、任意にラジカルを真空ポンプ内に供給できる。
【0030】
請求項7に記載の発明は、請求項6に記載の構成において、前記コントローラは、前記真空ポンプの稼動状況を表す稼働データに基づいて前記バルブを開閉制御する、真空ポンプを提供する。
【0031】
この構成によれば、コントローラ自身が、真空ポンプの稼動データから真空ポンプの状態を判断して、自動的にラジカルを真空ポンプ内に供給できる。
【0032】
請求項8に記載の発明は、請求項7に記載の構成において、前記コントローラは、前記稼働データである前記ロータ軸を回転駆動させるモータの電流値が所定の閾値を超えたときに、副生成物の堆積が進行していて、その副生成物のクリーニングのために前記ラジカルの供給が必要であると判定する、真空ポンプを提供する。
【0033】
この構成によれば、稼働データである、ロータ軸を回転駆動させるモータの電流値が所定の閾値を超えたときに、副生成物の堆積が進行していて、その副生成物のクリーニングのためにラジカルの供給が必要であるとコントローラが判断して、真空ポンプ内にラジカルを自動的に供給できる。
【0034】
請求項9に記載の発明は、請求項7に記載の構成において、前記コントローラは、前記稼働データである前記ロータ軸を回転駆動させるモータの電流値が予め記憶された無負荷運転時の前記モータの電流値と略等しいときに前記バルブの開閉制御を行う、真空ポンプを提供する。
【0035】
この構成によれば、コントローラ自身が真空ポンプの電流値について、無負荷運転時のモータの電流値と現在の真空ポンプの電流値を比較して、無負荷運転時のモータの電流値に略等しいときに、プロセスガスの流入がないと判断して、真空ポンプ内にラジカルを自動的に供給できる。
【0036】
請求項10に記載の発明は、請求項7に記載の構成において、前記コントローラは、前記稼働データである前記真空ポンプの圧力値が所定の閾値を超えたときに、副生成物の堆積が進行していて、その副生成物のクリーニングのために前記ラジカルの供給が必要であると判定する、真空ポンプを提供する。
【0037】
この構成によれば、コントローラ自身が真空ポンプの圧力値から真空ポンプ内の副生成物の堆積の状態を判断して、副生成物のクリーニングのために真空ポンプ内へのラジカル供給の要否を決定し、必要とするときには真空ポンプ内にラジカルを自動的に供給できる。
【0038】
請求項11に記載の発明は、請求項7に記載の構成において、前記コントローラは、前記稼働データである前記真空ポンプの圧力値が予め記憶された無負荷運転時の前記真空ポンプの圧力値と略等しいときに、前記バルブの開閉制御を行う、真空ポンプを提供する。
【0039】
この構成によれば、コントローラ自身が真空ポンプの圧力値について、無負荷運転時の圧力値と現在の真空ポンプの圧力値を比較して、無負荷運転時の真空ポンプの圧力値に略等しいときに、プロセスガスの流入がないと判断して、真空ポンプ内にラジカルを自動的に供給できる。
【0040】
請求項12に記載の発明は、吸気口と排気口とを有するハウジングと、前記ハウジングの内側に、回転自在に支持されたロータ軸と、前記ロータ軸に固定された回転翼を有し、前記ロータ軸と共に回転可能な回転体と、を備えた真空ポンプの洗浄システムであって、複数の種類のラジカルを前記ハウジング内に供給可能な、少なくとも一つのラジカル供給手段を備え、前記ラジカル供給手段は、前記複数の種類のラジカルの発生に合わせたラジカル発生源と前記ラジカル発生源を駆動させる電源とを有し、前記ラジカル発生源は、電極を交換可能になっており、前記ラジカル発生源の電源は、電圧出力可変機能を有し、各種のラジカルの発生は前記電極の交換と前記電源の電圧出力を調整することで実現可能となっている、真空ポンプの洗浄システムを提供する。
【0041】
このシステム構成によれば、単一のラジカルの反応では粒子化できない場合、ラジカル供給手段のラジカル供給口から複数の種類のラジカルを供給して、複数のラジカルを用いて段階を経て粒子化可能な副生成物でなる堆積物を効果的に粒子化して排出することができる。また、ラジカル供給手段は、異なる種類のラジカルの発生に合わせたラジカル発生源とラジカル発生源を駆動させる電源とを有しているので、異なる種類のラジカルの発生に合わせたラジカル発生源とラジカル発生源を駆動させる電源とで、異なる種類のラジカルを発生させて、複数のラジカルを用いて段階を経て粒子化可能な副生成物でなる堆積物を効果的に粒子化して排出することができる。さらに、ラジカル発生源は、電極を交換可能で、また電源は、電圧出力可変機能を有しているので、各種のラジカルの発生は電極の交換と電源の電圧出力を調整することで実現することができる。
【発明の効果】
【0042】
発明によれば、複数の種類のラジカルをハウジング内に供給可能な、ラジカル供給口と該ラジカル供給口にラジカルを供給するラジカル供給手段を備えているので、単一のラジカルの反応で粒子化できないような場合には、ラジカル供給手段のラジカル供給口から複数の種類のラジカルを供給して、複数のラジカルを用いて段階を経て粒子化可能な副生成物でなる堆積物を効果的に粒子化して排出し、クリーニング処理をすることができる。
また、ラジカルを真空ポンプ内に供給することにより、真空ポンプ内に副生成物を反応させるのに必要十分な量のラジカルを供給することができるので、真空ポンプの材料自体の劣化を最小限に抑えることが可能になるとともに、ラジカル生成に必要なガスの供給量も最小限に抑えることができる。
また、各ラジカル供給口を、ロータ軸の軸方向において吸気口に最も近い固定翼よりも排気口側に位置させて設けた場合では、ラジカルと反応して粒子化された後の粒子の一部が吸気口側(チャンバ側)に戻ろうとしたようなとき、吸気口側に向かう粒子の一部は、吸気口側に配置されている固定翼とぶつかるようにして吸気口側に向かうのを阻止し、粒子の一部が吸気口側に戻らないように抑制することもできるので、半導体製造装置等においての不良率を低減させることが可能になる。
また、ラジカルによって副生成物を粒子化して真空ポンプ内から排出することができるので、半導体製造装置等を停止させて、真空ポンプを清掃、修理、交換する必要がなくなり、半導体の生産効率の向上だけでなく、清掃、修理、交換コストの削減を図ることができる。
【図面の簡単な説明】
【0043】
【
図1】本発明の実施の形態に係る真空ポンプの実施例として示すターボ分子ポンプの縦断面図である。
【
図2】同上ターボ分子ポンプにおけるアンプ回路の一例を示す図である。
【
図3】同上ターボ分子ポンプにおけるアンプ回路で検出した電流指令値が検出値より大きい場合の一制御例を示すタイムチャートである。
【
図4】同上ターボ分子ポンプにおけるアンプ回路で検出した電流指令値が検出値より小さい場合の一制御例を示すタイムチャートである。
【
図5】同上ターボ分子ポンプにおけるコントローラによる一制御例を説明するタイムチャートである。
【
図6】同上ターボ分子ポンプにおけるラジカル供給口の配置位置の効果を説明するための模式図である。
【
図7】本発明の実施の形態に係る真空ポンプの他の実施例として示すターボ分子ポンプの縦断面図である。
【発明を実施するための形態】
【0044】
本発明は、副生成施物をラジカルにより分解して粒子化し、効果的に排出できる真空ポンプを提供するという目的を達成するために、吸気口と排気口とを有するハウジングと、前記ハウジングの内側に、回転自在に支持されたロータ軸と、前記ロータ軸に固定された複数の回転翼を有し、前記ロータ軸と共に回転可能な回転体と、を備えた真空ポンプであって、複数の種類のラジカルを前記ハウジング内に供給可能な、少なくとも一つのラジカル供給口と前記ラジカル供給口に前記ラジカルを供給するラジカル供給手段を備えている、構成としたことにより実現した。
【実施例】
【0045】
以下、本発明の実施形態に係る一実施例を添付図面に基づいて詳細に説明する。なお、以下の実施例において、構成要素の数、数値、量、範囲等に言及する場合、特に明示した場合及び原理的に明らかに特定の数に限定される場合を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でも構わない。
【0046】
また、構成要素等の形状、位置関係に言及するときは、特に明示した場合及び原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似又は類似するもの等を含む。
【0047】
また、図面は、特徴を分かり易くするために特徴的な部分を拡大する等して誇張する場合があり、構成要素の寸法比率等が実際と同じであるとは限らない。また、断面図では、構成要素の断面構造を分かり易くするために、一部の構成要素のハッチングを省略することがある。
【0048】
また、以下の説明において、上下や左右等の方向を示す表現は、絶対的なものではなく、本発明のターボ分子ポンプの各部が描かれている姿勢である場合に適切であるが、その姿勢が変化した場合には姿勢の変化に応じて変更して解釈されるべきものである。また、実施例の説明の全体を通じて同じ要素には同じ符号を付している。
【0049】
図1は本発明に係る真空ポンプとしてのターボ分子ポンプ100の一実施例を示すもので、
図1はその縦断面図である。以下の説明において、
図2の左右方向左側を装置の前後方向前方、右側を後方とし、また上下方向を上下、紙面に垂直な方向を左右として説明する。
【0050】
図1において、ターボ分子ポンプ100は、円筒状をしたハウジングとしての外筒127の上端に吸気口101が形成されている。そして、外筒127の内方には、ガスを吸引排気するためのタービンブレードである複数の回転翼102(102a、102b、102c・・・)を周部に放射状、かつ多段に形成した回転体103が備えられている。この回転体103の中心にはロータ軸113が取り付けられており、このロータ軸113は、例えば5軸制御の磁気軸受により空中に浮上支持、かつ位置制御されている。
【0051】
上側径方向電磁石104は、4個の電磁石がX軸とY軸とに対をなして配置されている。この上側径方向電磁石104の近接に、かつ上側径方向電磁石104のそれぞれに対応されて4個の上側径方向センサ107が備えられている。上側径方向センサ107は、例えば伝導巻線を有するインダクタンスセンサや渦電流センサなどが用いられ、ロータ軸113の位置に応じて変化するこの伝導巻線のインダクタンスの変化に基づいてロータ軸113の位置を検出する。この上側径方向センサ107はロータ軸113、すなわちそれに固定された回転体103の径方向変位を検出し、コントローラ200に送るように構成されている。
【0052】
このコントローラ200においては、例えばPID調節機能を有する補償回路が、上側径方向センサ107によって検出された位置信号に基づいて、上側径方向電磁石104の励磁制御指令信号を生成し、
図2に示すアンプ回路150(後述する)が、この励磁制御指令信号に基づいて、上側径方向電磁石104を励磁制御することで、ロータ軸113の上側の径方向位置が調整される。
【0053】
そして、このロータ軸113は、高透磁率材(鉄、ステンレスなど)などにより形成され、上側径方向電磁石104の磁力により吸引されるようになっている。かかる調整は、X軸方向とY軸方向とにそれぞれ独立して行われる。また、下側径方向電磁石105及び下側径方向センサ108が、上側径方向電磁石104及び上側径方向センサ107と同様に配置され、ロータ軸113の下側の径方向位置を上側の径方向位置と同様に調整している。
【0054】
さらに、軸方向電磁石106A、106Bが、ロータ軸113の下部に備えた円板状の金属ディスク111を上下に挟んで配置されている。金属ディスク111は、鉄などの高透磁率材で構成されている。ロータ軸113の軸方向変位を検出するために軸方向センサ109が備えられ、その軸方向位置信号がコントローラ200に送られるように構成されている。
【0055】
そして、コントローラ200において、例えばPID調節機能を有する補償回路が、軸方向センサ109によって検出された軸方向位置信号に基づいて、軸方向電磁石106Aと軸方向電磁石106Bのそれぞれの励磁制御指令信号を生成し、アンプ回路150が、これらの励磁制御指令信号に基づいて、軸方向電磁石106Aと軸方向電磁石106Bをそれぞれ励磁制御することで、軸方向電磁石106Aが磁力により金属ディスク111を上方に吸引し、軸方向電磁石106Bが金属ディスク111を下方に吸引し、ロータ軸113の軸方向位置が調整される。
【0056】
このように、コントローラ200は、この軸方向電磁石106A、106Bが金属ディスク111に及ぼす磁力を適当に調節し、ロータ軸113を軸方向に磁気浮上させ、空間に非接触で保持するようになっている。なお、これら上側径方向電磁石104、下側径方向電磁石105及び軸方向電磁石106A、106Bを励磁制御するアンプ回路150については、後述する。
【0057】
一方、モータ121は、ロータ軸113を取り囲むように周状に配置された複数の磁極を備えている。各磁極は、ロータ軸113との間に作用する電磁力を介してロータ軸113を回転駆動するように、コントローラ200によって制御されている。また、モータ121には図示しない例えばホール素子、レゾルバ、エンコーダなどの回転速度センサが組み込まれており、この回転速度センサの検出信号によりロータ軸113の回転速度が検出されるようになっている。
【0058】
さらに、例えば下側径方向センサ108近傍に、図示しない位相センサが取り付けてあり、ロータ軸113の回転の位相を検出するようになっている。コントローラ200では、この位相センサと回転速度センサの検出信号を共に用いて磁極の位置を検出するようになっている。
【0059】
回転翼102(102a、102b、102c、102d・・・)とわずかの空隙を隔てて複数枚の固定翼123a、123b、123c、123d・・・が配設されている。回転翼102(102a、102b、102c、102d・・・)は、それぞれ排気ガスの分子を衝突により下方向に移送するため、ロータ軸113の軸線に垂直な平面から所定の角度だけ傾斜して形成されている。
【0060】
また、固定翼123も、同様にロータ軸113の軸線に垂直な平面から所定の角度だけ傾斜して形成され、かつ外筒127の内方に向けて回転翼102の段と互い違いに配設されている。そして、固定翼123の外周端は、複数の段積みされた固定翼スペーサ125(125a、125b、125c、125d・・・)の間に嵌挿された状態で支持されている。
【0061】
固定翼スペーサ125はリング状の部材であり、例えばアルミニウム、鉄、ステンレス、銅などの金属、又はこれらの金属を成分として含む合金などの金属によって構成されている。固定翼スペーサ125の外周には、わずかの空隙を隔てて外筒127が固定されている。外筒127の底部にはベース部129が配設されている。ベース部129には排気口133とパージガス用供給口134が形成され、外部に連通されている。チャンバ側から吸気口101に入ってベース部129に移送されてきた排気ガスと後述するラジカル供給口201aから移送されてきたラジカルは、排気口133へと送られる。
【0062】
さらに、ターボ分子ポンプ100の用途によって、固定翼スペーサ125の下部とベース部129の間には、ネジ付スペーサ131が配設される。ネジ付スペーサ131は、アルミニウム、銅、ステンレス、鉄、又はこれらの金属を成分とする合金などの金属によって構成された円筒状の部材であり、その内周面に螺旋状のネジ溝131aが複数条刻設されている。ネジ溝131aの螺旋の方向は、回転体103の回転方向に排気ガスの分子が移動したときに、この分子が排気口133の方へ移送される方向である。
【0063】
回転体103の回転翼102(102a、102b、102c・・・)に続く最下部には円筒部103bが垂下されている。この円筒部103bの外周面は、円筒状で、かつネジ付スペーサ131の内周面に向かって張り出されており、このネジ付スペーサ131の内周面と所定の隙間を隔てて近接されている。回転翼102及び固定翼123によってネジ溝131aに移送されてきた排気ガスは、ネジ溝131aに案内されつつベース部129へと送られる。
【0064】
ベース部129は、ターボ分子ポンプ100の基底部を構成する円盤状の部材であり、一般には鉄、アルミニウム、ステンレスなどの金属によって構成されている。ベース部129はターボ分子ポンプ100を物理的に保持すると共に、熱の伝導路の機能も兼ね備えているので、鉄、アルミニウムや銅などの剛性があり、熱伝導率も高い金属が使用されるのが望ましい。
【0065】
また、ターボ分子ポンプ100の用途によって、固定翼スペーサ125と回転翼102の間に、ラジカル供給口201aとラジカル供給バルブ201bとラジカル発生源201cとを有するラジカル供給手段201が複数配設される。本実施例では、ラジカル供給手段201は、ラジカル供給手段201Aとラジカル供給手段201Bの2つのラジカル供給手段201を設けているが、1つ以上のラジカル供給手段201であればよい。
【0066】
また、各ラジカル供給手段201(201A、201B)のラジカル供給口201aは、回転体103の軸方向(
図1では、ターボ分子ポンプ100の上下方向)において、少なくとも吸気口101に最も近い固定翼102aより排気口133側、すなわち
図1の実施例では固定翼123cと回転翼102dとの間に設けられている。したがって、各ラジカル供給手段201のラジカル供給口201aは、それぞれ吸気口101からの高さ位置が同じ、すなわち軸方向において吸気口101から略等距離の位置となり、また回転方向に略等間隔ずつ離した状態で、ラジカル供給方向が回転体103の軸心に向かうようにして回転翼102及び固定翼123と略平行に配置されている。よって、各ラジカル供給口201aからは、ラジカルが回転体103の軸心に向かって各々吹き出される。また、各ラジカル供給口201aから吹き出されるラジカルは、複数のラジカルを用いて段階を経て粒子化可能な副生成物でなる堆積物を効果的に粒子化してラジカルと共に排気口133から排出することができるように複数の種類のラジカルが用意される。よって、この実施例では、各ラジカル供給口201aからは、それぞれ異なる種類のラジカルが供給できるように構成されている。なお、単一のラジカルだけで済む場合は、各ラジカル供給口201aからは同じ種類のラジカルを供給することもある。また、異なる種類のラジカルの供給を必要とする場合でも、同じラジカル供給口201aを兼用して、同じラジカル供給口201aから異なる種類のラジカルを供給するようにして、ラジカル供給口201aの数を減らす場合もある。
【0067】
各ラジカル供給手段201のラジカル供給バルブ201bは、それぞれラジカル供給口201aとラジカル発生源201cとの間に配設されている。各ラジカル供給バルブ201bは、対応しているラジカル発生源201cからラジカル供給口201aに供給されるラジカルの供給量をそれぞれ調整することができる。各ラジカル供給バルブ201bの開閉制御は、前記コントローラ200により行われる。コントローラ200は、マイクロコンピュータを主体として構成されている。コントローラ200には、各種の制御回路の他、ターボ分子ポンプ100の全体を予め決められた手順で制御可能にするプログラムが組み込まれてユニット化されている。
【0068】
各ラジカル供給手段201のラジカル発生源201cは、上述したように複数種類のラジカルを用いて段階を経て粒子化可能な副生成物を粒子化できるように、想定される副生成物に応じた種類の異なる複数のラジカルをそれぞれ供給できるように設定している。しかし、単一のラジカルで粒子化できるときには、全てのラジカル発生源201cから同じ種類のラジカルを供給する場合もある。
【0069】
次に、このように構成されるターボ分子ポンプ100に関して、その上側径方向電磁石104、下側径方向電磁石105及び軸方向電磁石106A、106Bを励磁制御するアンプ回路150について説明する。このアンプ回路150の回路図を
図2に示す。
【0070】
図2において、上側径方向電磁石104等を構成する電磁石巻線151は、その一端がトランジスタ161を介して電源171の正極171aに接続されており、また、その他端が電流検出回路181及びトランジスタ162を介して電源171の負極171bに接続されている。そして、トランジスタ161、162は、いわゆるパワーMOSFETとなっており、そのソース-ドレイン間にダイオードが接続された構造を有している。
【0071】
このとき、トランジスタ161は、そのダイオードのカソード端子161aが正極171aに接続されると共に、アノード端子161bが電磁石巻線151の一端と接続されるようになっている。また、トランジスタ162は、そのダイオードのカソード端子162aが電流検出回路181に接続されると共に、アノード端子162bが負極171bと接続されるようになっている。
【0072】
一方、電流回生用のダイオード165は、そのカソード端子165aが電磁石巻線151の一端に接続されると共に、そのアノード端子165bが負極171bに接続されるようになっている。また、これと同様に、電流回生用のダイオード166は、そのカソード端子166aが正極171aに接続されると共に、そのアノード端子166bが電流検出回路181を介して電磁石巻線151の他端に接続されるようになっている。そして、電流検出回路181は、例えばホールセンサ式電流センサや電気抵抗素子で構成されている。
【0073】
以上のように構成されるアンプ回路150は、一つの電磁石に対応されるものである。そのため、磁気軸受が5軸制御で、電磁石104、105、106A、106Bが合計10個ある場合には、電磁石のそれぞれについて同様のアンプ回路150が構成され、電源171に対して10個のアンプ回路150が並列に接続されるようになっている。
【0074】
さらに、アンプ制御回路191は、例えば、コントローラの図示しないディジタル・シグナル・プロセッサ部(以下、DSP部という)によって構成され、このアンプ制御回路191は、トランジスタ161、162のon/offを切り替えるようになっている。
【0075】
アンプ制御回路191は、電流検出回路181が検出した電流値(この電流値を反映した信号を電流検出信号191cという)と所定の電流指令値とを比較するようになっている。そして、この比較結果に基づき、PWM制御による1周期である制御サイクルTs内に発生させるパルス幅の大きさ(パルス幅時間Tp1、Tp2)を決めるようになっている。その結果、このパルス幅を有するゲート駆動信号191a、191bを、アンプ制御回路191からトランジスタ161、162のゲート端子に出力するようになっている。
【0076】
なお、回転体103の回転速度の加速運転中に共振点を通過する際や定速運転中に外乱が発生した際等に、高速かつ強い力での回転体103の位置制御をする必要がある。そのため、電磁石巻線151に流れる電流の急激な増加(あるいは減少)ができるように、電源171としては、例えば50V程度の高電圧が使用されるようになっている。また、電源171の正極171aと負極171bとの間には、電源171の安定化のために、通常コンデンサが接続されている(図示略)。
【0077】
かかる構成において、トランジスタ161、162の両方をonにすると、電磁石巻線151に流れる電流(以下、電磁石電流iLという)が増加し、両方をoffにすると、電磁石電流iLが減少する。
【0078】
また、トランジスタ161、162の一方をonにし他方をoffにすると、いわゆるフライホイール電流が保持される。そして、このようにアンプ回路150にフライホイール電流を流すことで、アンプ回路150におけるヒステリシス損を減少させ、回路全体としての消費電力を低く抑えることができる。また、このようにトランジスタ161、162を制御することにより、ターボ分子ポンプ100に生じる高調波等の高周波ノイズを低減することができる。さらに、このフライホイール電流を電流検出回路181で測定することで電磁石巻線151を流れる電磁石電流iLが検出可能となる。
【0079】
すなわち、検出した電流値が電流指令値より小さい場合には、
図3に示すように制御サイクルTs(例えば100μs)中で1回だけ、パルス幅時間Tp1に相当する時間分だけトランジスタ161、162の両方をonにする。そのため、この期間中の電磁石電流iLは、正極171aから負極171bへ、トランジスタ161、162を介して流し得る電流値iLmax(図示せず)に向かって増加する。
【0080】
一方、検出した電流値が電流指令値より大きい場合には、
図4に示すように制御サイクルTs中で1回だけパルス幅時間Tp2に相当する時間分だけトランジスタ161、162の両方をoffにする。そのため、この期間中の電磁石電流iLは、負極171bから正極171aへ、ダイオード165、166を介して回生し得る電流値iLmin(図示せず)に向かって減少する。
【0081】
そして、いずれの場合にも、パルス幅時間Tp1、Tp2の経過後は、トランジスタ161、162のどちらか1個をonにする。そのため、この期間中は、アンプ回路150にフライホイール電流が保持される。
【0082】
かかる構成において、回転翼102がロータ軸113と共にモータ121により回転駆動されると、回転翼102と固定翼123の作用により、吸気口101を通じてチャンバから排気ガスが吸気される。吸気口101から吸気された排気ガスは、回転翼102と固定翼123の間を通り、ベース部129へ移送される。このとき、排気ガスが回転翼102に接触する際に生ずる摩擦熱や、モータ121で発生した熱の伝導などにより、回転翼102の温度は上昇するが、この熱は、輻射又は排気ガスの気体分子などによる伝導により固定翼123側に伝達される。
【0083】
固定翼スペーサ125は、外周部で互いに接合しており、固定翼123が回転翼102から受け取った熱や排気ガスが固定翼123に接触する際に生ずる摩擦熱などを外部へと伝達する。
【0084】
なお、上記では、ネジ付スペーサ131は回転体103の円筒部103bの外周に対応させて配設し、ネジ付スペーサ131の内周面にネジ溝131aが刻設されているとして説明した。しかしながら、これとは逆に円筒部103bの外周面にネジ溝が刻設され、その周囲に円筒状の内周面を有するスペーサが配置される場合もある。
【0085】
また、ターボ分子ポンプ100の用途によっては、吸気口101から吸引されたガスが上側径方向電磁石104、上側径方向センサ107、モータ121、下側径方向電磁石105、下側径方向センサ108、軸方向電磁石106A、106B、軸方向センサ109などで構成される電装部に侵入することのないよう、電装部は周囲をステータコラム122で覆われ、このステータコラム122内はパージガス用供給口134から供給されるパージガスにて所定圧に保たれる。
【0086】
供給されたパージガスは、例えば、保護ベアリング120とロータ軸113間、モータ121のロータとステータ間、ステータコラム122と回転翼102の内周側円筒部の間の隙間を通じて排気口133へ送出される。
【0087】
ここに、ターボ分子ポンプ100は、機種の特定と、個々に調整された固有のパラメータ(例えば、機種に対応する諸特性)に基づいた制御を要する。この制御パラメータを格納するために、上記ターボ分子ポンプ100は、その本体内に電子回路部141を備えている。電子回路部141は、EEP-ROM等の半導体メモリ及びそのアクセスのための半導体素子等の電子部品、それらの実装用の基板143等から構成される。この電子回路部141は、ターボ分子ポンプ100の下部を構成するベース部129の例えば中央付近の図示しない回転速度センサの下部に収容され、気密性の底蓋145によって閉じられている。
【0088】
ところで、半導体の製造工程では、チャンバに導入されるプロセスガスの中には、その圧力が所定値よりも高くなり、或いは、その温度が所定値よりも低くなると、固体となる性質を有するものがある。ターボ分子ポンプ100内部では、排気ガスの圧力は、吸気口101で最も低く排気口133で最も高い。プロセスガスが吸気口101から排気口133へ移送される途中で、その圧力が所定値よりも高くなったり、その温度が所定値よりも低くなったりすると、プロセスガスは、固体状となり、ターボ分子ポンプ100内部に付着して副生成物として堆積する。
【0089】
例えば、Alエッチング装置にプロセスガスとしてSiCl4が使用された場合、低真空(760[torr]~10-2[torr])かつ、低温(約20[℃])のとき、固体生成物(例えばAlCl3)が析出し、ターボ分子ポンプ100内部に付着堆積することが蒸気圧曲線からわかる。これにより、ターボ分子ポンプ100内部にプロセスガスの副生成物が堆積すると、この堆積物がポンプ流路を狭め、ターボ分子ポンプ100の性能を低下させる原因となる。そして、前述した生成物は、排気口付近やネジ付スペーサ131付近の圧力が高い部分で凝固、付着し易い状況にあった。
【0090】
そのため、この問題を解決するために、従来はベース部129等の外周に図示しないヒータや環状の水冷管149を巻着させ、かつ例えばベース部129に図示しない温度センサ(例えばサーミスタ)を埋め込み、この温度センサの信号に基づいてベース部129の温度を一定の高い温度(設定温度)に保つようにヒータの加熱や水冷管149による冷却の制御(以下TMSという。TMS;Temperature Management System)が行われている。
【0091】
また、ターボ分子ポンプ100では、ターボ分子ポンプ100内でプロセスガスを圧縮する過程でも、ガスが固化し、外筒127の内部に堆積する。そこで、コントローラ200は、プロセス処理の合間に、ラジカル供給手段201を駆動させ、ラジカル供給口201aから外筒127内にラジカルを、ラジカル供給バルブ201bの開閉を調整しながら供給して排気口133に向けて流す。そして、堆積された副生成物をラジカルで反応分解させて粒子化し、ラジカルと共に排気口133から外筒127の外部に排出させる。
【0092】
図5に、コントローラ200の一動作例を示す。
図5では、チャンバとターボ分子ポンプ100間に設けた図示しないチャンババルブの開閉動作と、
図1に示すラジカル供給手段201Aにおけるラジカル供給バルブ201bの開閉動作と、同じくラジカル供給手段201Bにおけるラジカル供給バルブ201bの開閉動作を各々示すタイミングチャートである。
図5において、Y軸は開閉動作量、X軸は処理時間Tを表している。つぎに、
図5のタイミングチャートを用いてコントローラ200の動作を説明する。
【0093】
コントローラ200は、チャンバ内でウエハにエッチングなど、化学反応処理を行っている作業aのとき、ターボ分子ポンプ100内に堆積している副生成物を粒子化して排出処理を行う。
【0094】
この排出処理では、まず、図示しないチャンババルブを、開(Open)から閉(Close)にし、チャンバ内からのプロセスガスがターボ分子ポンプ100内に流れ込まないようにする。チャンババルブが閉じられたことが確認されたら、チャンバ内の作業aが開始される。次いで、チャンババルブが閉じられてから時間t5(0.3分)経たら、ラジカル供給手段201Aのラジカル供給バルブ201bを、閉(Close)から開(Open)に切り換え、このラジカル供給バルブ201bの開(Open)を、例えば時間t6(1分間)保持する。そして、ラジカル供給バルブ201bが開(Open)の間に、ラジカル発生源201cから種類Aのラジカルを供給し、ラジカル供給手段201Aのラジカル供給口201aから外筒127内に種類Aのラジカル(例えば、Oラジカル)を供給する。なお、ラジカルを供給するとき、コントローラ200はモータ121の駆動を制御しているので、モータ回転の変更をするのに十分な時間がある場合には、モータ121の回転を定格回転よりも低い回転に切り換え、回転体103の駆動を低速で運転させることもできる。そして、回転体103が回転している状態で、外筒127内に種類Aのラジカルを供給する。
【0095】
ラジカル供給手段201Aのラジカル供給口201aから外筒127内に供給された種類Aのラジカルは、回転翼102と固定翼123との隙間を通って排気口133に向かって外筒127内を流され、排気口133から外筒127の外へ排出される。また、種類Aのラジカルが回転翼102と固定翼123との隙間を流れるとき、種類Aのラジカルが外筒127内に体積する堆積物に触れると、種類Aのラジカルと反応する堆積物に大きなエネルギーを与え、強制的に堆積物の表面の分子鎖を切断して低分子量の粒子化されたガスに分解する。そして、種類Aのラジカルで低分子量に分解されて粒子化されたガスは、ラジカルと共に排気口133を通って外部に排出される。
【0096】
また、ラジカル供給手段201Aのラジカル供給口(A)201aから外筒127内に供給している種類Aのラジカルの時間t6(1分間)の供給を終えたら、ラジカル供給手段201Aのラジカル供給バルブ201bを開(Open)から閉(Close)に再び切り換え、ラジカル供給口201aから外筒127内に供給している種類Aのラジカルの供給を停止する。
【0097】
ラジカル供給手段201Aのラジカル供給バルブ201bが閉(Close)に切り換えられたら、時間t7(0.5分)後に、ラジカル供給手段201Bのラジカル供給バルブ(B)201bを、閉(Close)から開(Open)に切り換え、このラジカル供給手段201Bにおけるラジカル供給バルブ201bの開(Open)を、例えば時間t8(1分間)保持する。そして、ラジカル供給手段201Bにおけるラジカル供給バルブ201bが開(Open)の間に、ラジカル供給手段201Bにおけるラジカル発生源201cからラジカル供給口201aを通して、外筒127内に種類Bのラジカル(例えば、Fラジカル)を供給する。なお、種類Bのラジカルを供給するときも、コントローラ200はモータ121の駆動を制御しているので、モータ回転の変更をするのに十分な時間がある場合には、モータ121の回転を定格回転よりも低い回転に切り換え、回転体103の駆動を低速で運転させることもできる。そして、回転体103が回転している状態で、外筒127内に種類Bのラジカルを供給する。
【0098】
ラジカル供給手段201Bのラジカル供給口201aから外筒127内に供給された種類Bのラジカルは、回転翼102と固定翼123との隙間を通って排気口133に向かって外筒127内を流され、排気口133から外筒127の外へ排出される。また、種類Bのラジカルが回転翼102と固定翼123との隙間を流れるとき、種類Bのラジカルが外筒127内に体積する堆積物に触れると、種類Bのラジカルと反応する堆積物に大きなエネルギーを与え、強制的に堆積物の表面の分子鎖を切断して低分子量の粒子化されたガスに分解する。そして、種類Aのラジカルで低分子量に分解されたガスは、ラジカル供給手段201Aのときと同じように排気口133を通って外部に排出される。
【0099】
また、ラジカル供給手段201Bのラジカル供給口201aから外筒127内に供給している種類Bのラジカルの時間t8(1分間)の供給を終えたら、ラジカル供給手段201Bのラジカル供給バルブ201bを開(Open)から閉(Close)に再び切り換え、ラジカル供給口201aから外筒127内に供給している種類Bのラジカルの供給を停止する。
【0100】
これにより、外筒127内に堆積している堆積物をA種類のラジカルとB種類のラジカルとで粒子化して除去し、減少させることができる。
【0101】
一方、ラジカル供給手段201Bのラジカル供給バルブ201bが開(Open)から閉(Close)に切り換えられる頃、チャンバ内における時間t1(3分間)の作業aも終了する。
【0102】
次いで、チャンバ内では、ウエハのクリーニング処理等など、作業bを開始する。作業bでは、チャンババルブを時間t2(0.5分)の間、開放して、その後、時間t3(1分)の間休み、再び時間t4(0.5分)の間、開放する。そしてチャンババルブを開放している間、チャンバ内のプロセスガスをターボ分子ポンプ100の吸気口101を通して外筒127内に流し、チャンバ内で用いたプロセスガスをターボ分子ポンプ100(外筒127)内で圧縮して、排気口133から排気する。
【0103】
これにより、チャンバ側の作業とターボ分子ポンプ100の作業の一サイクルが終了し、以後、システムを停止するまで、一連の動作が繰り返される。
【0104】
したがって、この実施例の構造によれば、ラジカル供給手段201Aのラジカル供給口201aから種類Aのラジカルを流し、ラジカル供給手段201Bのラジカル供給口201aから種類Bのラジカルを流すようにして、複数の種類A、Bのラジカルを外筒127内に供給するようにしているので、単一のラジカル(種類A又は種類B)の反応で粒子化できない場合でも、ラジカル供給手段201Aのラジカル供給口201aと、ラジカル供給手段201Bのラジカル供給口201aと、から種類Aと種類Bのラジカルを各々供給して、先に種類Aのラジカルに反応させた副生成物を、種類Bのラジカルに反応させることにより、単一のラジカルだけで粒子化できない副生成物でなる堆積物を効果的にガス状に粒子化して排出し、クリーニング処理をすることができる。
【0105】
また、ラジカルをターボ分子ポンプ100内に供給することにより、ターボ分子ポンプ100内に副生成物を反応させるのに必要十分な量のラジカルを供給することができるので、ターボ分子ポンプ100の材料自体の劣化を最小限に抑えることが可能になるとともに、ラジカル生成に必要なガスの供給量も最小限に抑えることができる。
【0106】
また、本実施例のターボ分子ポンプ100では、
図1に示すように、ラジカル供給手段201A、201Bの各ラジカル供給口201aを、ロータ軸113の軸方向において吸気口101に最も近い固定翼102aよりも排気口133側に位置させて設けている。すなわち、ラジカル供給口201aを、固定翼123cと回転翼102dとの間に設けている。これにより、ラジカルと反応して粒子化された後の粒子Eと粒子Fの動きをそれぞれ
図6に模式的に示すと、回転翼102dとぶつかった粒子Eは下側に案内されて排気口133側に向かうが、回転翼102dとぶつかった一部の粒子Fが吸気口101側(チャンバ側)に跳ね返されると、跳ね返された粒子Fは、吸気口101側に配置されている固定翼と123cとぶつかり、吸気口101側に向かうのを阻止される。したがって、回転翼102dで吸気口101側に跳ね返された粒子Fがチャンバ内に逆流して、ウエハ等の不良を引き起こす要因をなくすことができる。
【0107】
また、粒子化のためのラジカルは、ターボ分子ポンプ100の構成部品(主としてアルミニウムやステンレス等)を劣化させる虞があるが、本実施例では、ラジカル供給口201aを、直接、ターボ分子ポンプ100に対して搭載している。したがって、チャンバから排気口133までの構成に影響されることなく、ターボ分子ポンプ100に最低限必要なラジカルを直接的に供給できる。
【0108】
なお、ラジカル供給バルブ201bの開閉を制御して、ラジカル発生源201cからのラジカルをラジカル供給口201aから供給する量、及びタイミングの調整はコントローラ200の制御下で行われる。コントローラ200の制御方法としては、次の(1)~(5)のような方法が考えられる。
【0109】
(1)ターボ分子ポンプ100の稼動状況を表す稼働データに基づいて、コントローラ200がラジカル供給バルブ201bを開閉制御する。この制御方法の場合では、コントローラ200自身が、ターボ分子ポンプ100の稼動データから真空ポンプの状態を判断して、自動的にラジカルを真空ポンプ内に供給することができる。
【0110】
(2)ターボ分子ポンプ100の稼動状況を表す稼働データであるロータ軸113を回転駆動させるモータ121の電流値が所定の閾値を超えたときに、副生成物の堆積が進行していて、その副生成物のクリーニングのためにラジカルの供給が必要であると判定して、コントローラ200がラジカル供給バルブ201bを開閉制御する。この制御方法の場合では、稼働データである、ロータ軸113を回転駆動させるモータ121の電流値が所定の閾値を超えたときに、コントローラ200がラジカルの供給が必要であると判断して、自動的にラジカルをターボ分子ポンプ100内に供給することができる。
【0111】
(3)ターボ分子ポンプ100の稼動状況を表す稼働データであるロータ軸113を回転駆動させるモータ121の電流値が、予め記憶された無負荷運転時のモータ121の電流値と略等しいときに、コントローラ200がラジカル供給バルブ201bを開閉制御する方法。この制御方法の場合では、コントローラ200がターボ分子ポンプ100の電流値について、無負荷運転時のモータ121の電流値と現在のターボ分子ポンプ100の電流値を比較して、無負荷運転時のモータ121の電流値に略等しいときに、プロセスガスの流入がないと判断して、ターボ分子ポンプ単体でクリーニングの実施可否を判定して、ターボ分子ポンプ100内にラジカルを自動的に供給することができる。
【0112】
(4)ターボ分子ポンプ100の稼動状況を表す稼働データである圧力値が所定の閾値を超えたときに、コントローラ200が副生成物の堆積が進行していて、その副生成物のクリーニングのためにラジカルの供給が必要であると判定する。この制御方法の場合では、コントローラ200がターボ分子ポンプ100の圧力値からターボ分子ポンプ100の状態を判断して、ラジカルの供給の要否を判定して、供給を必要とするときにはターボ分子ポンプ100内にラジカルを自動的に供給することができる。
【0113】
(5)ターボ分子ポンプ100の稼動状況を表す稼働データであるターボ分子ポンプ100の圧力値が予め記憶された無負荷運転時の前記真空ポンプの圧力値と略等しいときに、前記バルブの開閉制御を行う。この制御方法の場合では、コントローラ200がターボ分子ポンプ100の圧力値について、無負荷運転時の圧力値と現在のターボ分子ポンプ100の圧力値を比較して、無負荷運転時のターボ分子ポンプ100の圧力値に略等しいときに、プロセスガスの流入がないと判断して、ターボ分子ポンプ単体でクリーニングの実施可否を判定して、ターボ分子ポンプ100内にラジカルを自動的に供給することができる。
【0114】
実施例1に示したターボ分子ポンプ100では、複数の種類(種類A、種類B)のラジカルを供給する場合について説明したが、種類Aのラジカル又は種類Bのラジカルの、単一のラジカルを供給するだけでよいときには、各ラジカル供給口201aから同じ種類のラジカルを同時に供給するようにしてもよい。
【0115】
図7は、本発明に係る真空ポンプであるターボ分子ポンプ100の他の実施例を示すもので、
図7はその縦断面図である。
図7に示す実施例の構成は、
図1に示したターボ分子ポンプ100のラジカル供給手段201A、ラジカル供給手段201Bに加えて、ラジカル供給手段201A、ラジカル供給手段201Bに対してロータ軸113の軸方向下側の位置に所定量だけ離した状態でおいて、下側のラジカル供給手段201Cとラジカル供給手段201Dとを設けたものである。そして、下側のラジカル供給手段201C及びラジカル供給手段201Dの構成は、外筒127に設けられている高さ位置が異なるだけで、
図1に示したラジカル供給手段201A及びラジカル供給手段201Bの構成と基本的には同一であるので、同一の構成部分は同一符号を付して重複説明を省略する。
【0116】
すなわち、
図7に示す真空ポンプであるターボ分子ポンプ100では、上側のラジカル供給手段201Aのラジカル供給口201aとラジカル供給手段201Bのラジカル供給口201aを、固定翼123cと回転翼102dとの間に設けている。これはロータ軸113の軸方向において、吸気口101に最も近い固定翼102aより排気口133側に位置した位置である。一方、下側のラジカル供給手段201Dのラジカル供給口201aとラジカル供給手段201Dも、ロータ軸113の軸方向において、吸気口101から最も遠い回転翼102jより排気口133側に近い、回転翼102jとネジ付スペーサ131との間に設けている。
【0117】
図7に示すターボ分子ポンプ100における上側のラジカル供給手段201Aとラジカル供給手段201B、及び、下側のラジカル供給手段201Cとラジカル供給手段201Dは、コントローラ200による制御により、
図5に示したタイミングチャートと同じようにして、作業aの間にラジカル処理をするように、作業aの間に異なる種類A、種類B、種類C、種類Dのラジカルをそれぞれ予め決められた手順で流すことにより、複数のラジカルを用いて段階を経て粒子化可能な副生成物でなる堆積物を効果的に粒子化して排出することができる。
【0118】
図7に示した、この実施例の場合では、
図1に示した実施例の場合と同様な効果が得られる。加えて、ラジカルにも効果の持続性が長いものと、短いものとがある。したがって、ラジカルの寿命(効果持続性能の寿命)が長い種類A及び種類Bのラジカルと、種類A及び種類Bのラジカルの寿命よりも短い種類C及び種類Dのラジカルの、二種類のラジカルを組み合わせて使用すると、種類A、種類B、種類C、種類Dのラジカルの寿命を同じにして効率的に使用することができる。
【0119】
なお、上記各実施例において、ラジカル供給手段201A、ラジカル供給手段201B、ラジカル供給手段201C、ラジカル供給手段201Dのラジカル発生電源と半導体製造装置におけるチャンバ内の電源とを、共用することも可能である。そして、ラジカル供給手段201A、ラジカル供給手段201B、ラジカル供給手段201C、ラジカル供給手段201Dの各ラジカル発生電源と、半導体製造装置におけるチャンバ内の電源とを共用すると、電源の数が減り、コスト低減またはスペース低減の効果が期待できる。
【0120】
また、本発明は、本発明の精神を逸脱しない限り種々の改変を成すことができ、そして、本発明が該改変されたものに及ぶことは当然である。
【符号の説明】
【0121】
100 :ターボ分子ポンプ
101 :吸気口
102 :回転翼
102a :固定翼
102c :回転翼
102d :回転翼
102j :回転翼
103 :回転体
103b :円筒部
104 :上側径方向電磁石
105 :下側径方向電磁石
106A :軸方向電磁石
106B :軸方向電磁石
107 :上側径方向センサ
108 :下側径方向センサ
109 :軸方向センサ
111 :金属ディスク
113 :ロータ軸
120 :保護ベアリング
121 :モータ
122 :ステータコラム
123 :固定翼
123a :固定翼
123b :固定翼
123c :固定翼
123d :固定翼
123e :固定翼
125 :固定翼スペーサ
127 :外筒(ハウジング)
129 :ベース部
131 :ネジ付スペーサ
131a :ネジ溝
133 :排気口
134 :パージガス用供給口
141 :電子回路部
143 :基板
145 :底蓋
149 :水冷管
150 :アンプ回路
151 :電磁石巻線
161 :トランジスタ
161a :カソード端子
161b :アノード端子
162 :トランジスタ
162a :カソード端子
162b :アノード端子
165 :ダイオード
165a :カソード端子
165b :アノード端子
166 :ダイオード
166a :カソード端子
166b :アノード端子
171 :電源
171a :正極
171b :負極
181 :電流検出回路
191 :アンプ制御回路
191a :ゲート駆動信号
191b :ゲート駆動信号
191c :電流検出信号
200 :コントローラ
201 :ラジカル供給手段
201A :ラジカル供給手段
201B :ラジカル供給手段
201C :ラジカル供給手段
201D :ラジカル供給手段
201a :ラジカル供給口
201b :バルブ
201c :ラジカル発生源
A :種類
B :種類
E :粒子
F :粒子
T :処理時間
Tp1 :パルス幅時間
Tp2 :パルス幅時間
Ts :制御サイクル
c :種類
d :種類
iL :電磁石電流
iLmax :電流値
iLmin :電流値