IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 東洋紡エムシー株式会社の特許一覧

特許7437628耐炎化ポリフェニレンエーテル成形体、及び、耐炎化ポリフェニレンエーテル成形体の製造方法
<>
  • 特許-耐炎化ポリフェニレンエーテル成形体、及び、耐炎化ポリフェニレンエーテル成形体の製造方法 図1
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-02-15
(45)【発行日】2024-02-26
(54)【発明の名称】耐炎化ポリフェニレンエーテル成形体、及び、耐炎化ポリフェニレンエーテル成形体の製造方法
(51)【国際特許分類】
   C08J 7/00 20060101AFI20240216BHJP
   D01F 9/24 20060101ALI20240216BHJP
【FI】
C08J7/00 301
C08J7/00 CEZ
D01F9/24
【請求項の数】 9
(21)【出願番号】P 2022564600
(86)(22)【出願日】2021-03-23
(86)【国際出願番号】 JP2021012006
(87)【国際公開番号】W WO2022201311
(87)【国際公開日】2022-09-29
【審査請求日】2022-10-24
(73)【特許権者】
【識別番号】722014321
【氏名又は名称】東洋紡エムシー株式会社
(74)【代理人】
【識別番号】110000729
【氏名又は名称】弁理士法人ユニアス国際特許事務所
(72)【発明者】
【氏名】安井 章文
(72)【発明者】
【氏名】小城 優相
(72)【発明者】
【氏名】谷中 輝之
(72)【発明者】
【氏名】北條 健太
【審査官】斎藤 克也
(56)【参考文献】
【文献】国際公開第2016/093357(WO,A1)
【文献】国際公開第2021/111707(WO,A1)
【文献】国際公開第2013/184161(WO,A1)
【文献】特開2008-069478(JP,A)
【文献】国際公開第2021/111706(WO,A1)
【文献】国際公開第2021/200223(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
B01D 53/22
B01D 61/00 - 71/82
B01J 20/00 - 20/28
B01J 20/30 - 20/34
B29C 71/04
C01B 32/00 - 32/39
C02F 1/44
C08J 7/00 - 7/02
C08J 7/12 - 7/18
D01F 9/08 - 9/32
D03D 1/00 - 27/18
D04B 1/00 - 1/28
D04B 21/00 - 21/20
D04H 1/00 - 18/04
(57)【特許請求の範囲】
【請求項1】
赤外分光法による測定で、C=O伸縮振動に由来する波数1732cm-1の吸光度高さAとベンゼン環の炭素と炭素間の伸縮による骨格振動に由来する波長1600cm-1の吸光度高さBとの吸光度高さ比(A/B)が0.42以上であり、かつ比重が1.25以上であることを特徴とする耐炎化ポリフェニレンエーテルフィルム
【請求項2】
20℃における初期重量に対する、150℃における重量減少率(%)と400℃における重量減少率(%)との差が5.0%以下であることを特徴とする請求項1に記載の耐炎化ポリフェニレンエーテルフィルム
【請求項3】
LOI値が35以上であることを特徴とする請求項1又は2に記載の耐炎化ポリフェニレンエーテルフィルム
【請求項4】
400℃における強力保持率が40%以上であることを特徴とする請求項1~3のいずれかに記載の耐炎化ポリフェニレンエーテルフィルム
【請求項5】
ラジカル量が100g -1 以上であるポリフェニレンエーテル成形体を、空気中で、120~240℃で、1~30時間熱処理して不融化し、さらに空気中で、260~400℃で、0.1~10時間熱処理して耐炎化することを特徴とする耐炎化ポリフェニレンエーテル成形体の製造方法。
【請求項6】
前記ポリフェニレンエーテル成形体が、ポリフェニレンエーテル繊維であることを特徴とする請求項に記載の耐炎化ポリフェニレンエーテル成形体の製造方法。
【請求項7】
前記ポリフェニレンエーテル成形体が、ポリフェニレンエーテル不織布であることを特徴とする請求項に記載の耐炎化ポリフェニレンエーテル成形体の製造方法。
【請求項8】
前記ポリフェニレンエーテル成形体が、ポリフェニレンエーテル布帛であることを特徴とする請求項に記載の耐炎化ポリフェニレンエーテル成形体の製造方法。
【請求項9】
前記ポリフェニレンエーテル成形体が、ポリフェニレンエーテルフィルムであることを特徴とする請求項に記載の耐炎化ポリフェニレンエーテル成形体の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、赤外分光法で検出可能な特定の化学構造を有する耐炎化されたポリフェニレンエーテル成形体、及び、その製造方法に関する。
【背景技術】
【0002】
ポリフェニレンエーテル(以下、PPEと表記することもある)は、耐熱性、難燃性、強度、耐薬品性等に優れるため、ポリフェニレンエーテルから形成される成形体は幅広い分野で利用されており、例えば、ポリフェニレンエーテルを含む繊維が種々知られている(例えば、特許文献1~3参照)。しかしながら、ポリフェニレンエーテル繊維やポリフェニレンエーテル繊維からなる不織布等のポリフェニレンエーテル成形体は、難燃性に優れるものの、例えば、火炎から被覆物を護る耐炎シート等に使用するのには十分なものではなかった。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2004-190156号公報
【文献】特表2017-502179号公報
【文献】特開2008-138294号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1~3においては、ポリフェニレンエーテル繊維の耐炎化については何ら検討されていないものであった。従って、ポリフェニレンエーテル繊維やポリフェニレンエーテル繊維からなる不織布等のポリフェニレンエーテル成形体において、耐炎シート等に使用できる程度に十分な耐炎性、耐熱性、より高度な難燃性が付与されたものは未だないのが現状である。
【0005】
そこで、本発明の目的は、耐炎性、耐熱性、より高度な難燃性が付与された耐炎化ポリフェニレンエーテル成形体、及び耐炎化ポリフェニレンエーテル成形体の製造方法を提供することにある。
【課題を解決するための手段】
【0006】
本発明者らは、鋭意検討を行った結果、赤外分光法で検出可能な特定の化学構造を有する耐炎化ポリフェニレンエーテル成形体とすることにより、上記課題が解決できることを見出し、本発明を完成するに至った。
【0007】
すなわち、本発明は、赤外分光法による測定で、C=O伸縮振動に由来する波数1732cm-1の吸光度高さAとベンゼン環の炭素と炭素間の伸縮による骨格振動に由来する波長1600cm-1の吸光度高さBとの吸光度高さ比(A/B)が0.42以上であり、かつ比重が1.25以上であることを特徴とする耐炎化ポリフェニレンエーテル成形体に関する。
【0008】
前記耐炎化ポリフェニレンエーテル成形体は、20℃における初期重量に対する、150℃における重量減少率(%)と400℃における重量減少率(%)との差が5.0%以下であることが好ましい。
【0009】
前記耐炎化ポリフェニレンエーテル成形体のLOI値が35以上であることが好ましい。
【0010】
前記耐炎化ポリフェニレンエーテル成形体の400℃における強力保持率が40%以上であることが好ましい。
【0011】
前記耐炎化ポリフェニレンエーテル成形体が、耐炎化ポリフェニレンエーテル繊維であることが好ましい。
【0012】
前記耐炎化ポリフェニレンエーテル繊維の繊度が100dtex以下であることが好ましい。
【0013】
前記耐炎化ポリフェニレンエーテル繊維が、耐炎化ポリフェニレンエーテル短繊維であることが好ましい。
【0014】
前記耐炎化ポリフェニレンエーテル成形体が、耐炎化ポリフェニレンエーテル不織布であることが好ましい。
【0015】
前記耐炎化ポリフェニレンエーテル不織布を形成するポリフェニレンエーテル繊維の繊度が100dtex以下であることが好ましい。
【0016】
前記耐炎化ポリフェニレンエーテル成形体が、耐炎化ポリフェニレンエーテル布帛であることが好ましい。
【0017】
前記耐炎化ポリフェニレンエーテル成形体が、耐炎化ポリフェニレンエーテルフィルムであることが好ましい。
【0018】
また、本発明は、ポリフェニレンエーテル成形体を、空気中で、120~240℃で、1~30時間熱処理して不融化し、さらに空気中で、260~400℃で、0.1~10時間熱処理して耐炎化することを特徴とする耐炎化ポリフェニレンエーテル成形体の製造方法に関する。
【0019】
前記ポリフェニレンエーテル成形体は、ラジカル量が100g-1以上であることが好ましい。
【0020】
前記ポリフェニレンエーテル成形体が、ポリフェニレンエーテル繊維であることが好ましい。
【0021】
前記ポリフェニレンエーテル成形体が、ポリフェニレンエーテル不織布であることが好ましい。
【0022】
前記ポリフェニレンエーテル成形体が、ポリフェニレンエーテル布帛であることが好ましい。
【0023】
前記ポリフェニレンエーテル成形体が、ポリフェニレンエーテルフィルムであることが好ましい。
【発明の効果】
【0024】
本発明の耐炎化ポリフェニレンエーテル成形体は、赤外分光法による測定で、C=O伸縮振動に由来する波数1732cm-1の吸光度高さAとベンゼン環の炭素と炭素間の伸縮による骨格振動に由来する波長1600cm-1の吸光度高さBとの吸光度高さ比(A/B)が0.42以上であり、C=O構造を特定量有するものであり、かつ比重が1.25以上である。このような本発明の耐炎化ポリフェニレンエーテル成形体は、比重が高く、高度な難燃性、耐炎性、耐熱性等を示すものであり、高度な難燃性が要求される耐炎シート等に好適に用いることができる。また、本発明の製造方法によると、2段階の熱処理(不融化処理、耐炎化処理)を行うことで、高度な難燃性、耐炎性、耐熱性等を有する耐炎化ポリフェニレンエーテル成形体を製造することができる。
【図面の簡単な説明】
【0025】
図1】本発明で使用するポリフェニレンエーテル溶融紡糸繊維の製造方法の一実施形態を模式的に示す断面図である。
【発明を実施するための形態】
【0026】
1.耐炎化ポリフェニレンエーテル成形体
本発明の耐炎化ポリフェニレンエーテル成形体は、赤外分光法による測定で、C=O伸縮振動に由来する波数1732cm-1の吸光度高さAとベンゼン環の炭素と炭素間の伸縮による骨格振動に由来する波長1600cm-1の吸光度高さBとの吸光度高さ比(A/B)が0.42以上であり、かつ比重が1.25以上であることを特徴とする。
【0027】
前記C=O伸縮振動に由来する波長1732cm-1のピークは、ポリフェニレンエーテル成形体を耐炎化処理することにより形成される。このようなC=O構造を特定量有するポリフェニレンエーテル成形体とすることで、高度な難燃性、耐炎性、耐熱性等を付与できる。なお、本発明においては、C=O伸縮振動に由来するピークやベンゼン環の炭素と炭素間の伸縮による骨格振動に由来するピークは、赤外分光法による測定誤差を考慮して、それぞれ、波長1732±10cm-1、1600±10cm-1の範囲のピークとする。
【0028】
前記C=O伸縮振動に由来する波数1732cm-1の吸光度高さAとベンゼン環の炭素と炭素間の伸縮による骨格振動に由来する波長1600cm-1の吸光度高さBとの吸光度高さ比(A/B)は0.42以上であり、0.45以上であることが好ましく、0.50以上であることがより好ましい。吸光度高さ比が前記範囲にあることで、非常に高い難燃性を付与できるものであり、具体的には、LOI値(限界酸素指数)が30を超えることができるものである。また、耐炎性、耐熱性等も付与できる。従って、本発明の耐炎化ポリフェニレンエーテル成形体は、非常に高い難燃性、耐炎性、耐熱性等が要求される耐炎シート等として好適に用いることができるものである。また、前記吸光度高さ比の上限値は特に限定されるものではないが、1.5以下であることが好ましく、1.0以下であることがより好ましい。
【0029】
本発明の耐炎化ポリフェニレンエーテル成形体は、20℃における初期重量に対する、150℃における重量減少率(%)と400℃における重量減少率(%)との差が5.0%以下であることが好ましく、4.0%以下であることがより好ましく、3.5%以下であることがさらに好ましい。重量減少率の差が前記範囲にあることで、ポリマーの劣化が抑制され、耐久性を向上することができるため好ましい。また、重量減少率の差は、望ましくは0%であるが、通常0.1%以上程度の重量減少があり、0.15%以上程度である場合もある。
【0030】
本発明の耐炎化ポリフェニレンエーテル成形体の比重は、1.25以上であり、1.28以上であることが好ましく、1.3以上であることがより好ましく、1.35以上であることがさらに好ましく、1.38以上であることがさらに好ましく、1.40以上であることが特に好ましい。比重が前記範囲にあることで、ポリフェニレンエーテル成形体の耐炎化が十分に進行し、耐炎性が向上する。また、比重の上限値は特に限定されるものではないが、2.0以下であることが好ましく、1.8以下であることがより好ましい。
【0031】
本発明の耐炎化ポリフェニレンエーテル成形体のLOI値は、30以上であることが好ましく、30を超えることがより好ましく、32以上であることがさらに好ましく、35以上であることが特に好ましい。LOI値が前記範囲にあることで、得られた耐炎化ポリフェニレンエーテル成形体の難燃性が優れるため好ましい。ここで、LOI値とは、限界酸素指数のことであり、LOI値が大きい程、難燃性に優れるものである。従って、LOI値は大きければ大きい程好ましいものであり、その上限値は特に限定されないものである。
【0032】
本発明の耐炎化ポリフェニレンエーテル成形体の引張伸度は、5%以上であることが好ましく、7%以上であることがより好ましく、10%以上であることがさらに好ましい。引張伸度が前記範囲にあることで、加工性を向上させることができるため好ましい。また、引張伸度の上限値は特に限定されるものではないが、100%以下であることが好ましく、80%以下であることがより好ましい。
【0033】
本発明の耐炎化ポリフェニレンエーテル成形体の400℃での強力保持率が、40%以上であることが好ましく、50%以上であることがより好ましく、60%以上であることがさらに好ましい。400℃での強力保持率が前記範囲にあることで、高温で使用した際の耐久性が高いため好ましい。また、400℃での強力保持率の上限値は特に限定されるものではないが、100%以下であることが好ましく、99%以下であることがより好ましい。ここで、400℃での強力保持率とは、400℃で10分の熱処理を行った後の強度の保持率をいう。
【0034】
本発明の耐炎化ポリフェニレンエーテル成形体の400℃での伸度保持率が、40%以上であることが好ましく、50%以上であることがより好ましく、55%以上であることがさらに好ましい。400℃での伸度保持率が前記範囲にあることで、高温で使用した際の耐久性が高いため好ましい。また、400℃での伸度保持率の上限値は特に限定されるものではないが、100%以下であることが好ましく、99%以下であることがより好ましい。ここで、400℃での伸度保持率とは、400℃で10分の熱処理を行った後の伸度の保持率をいう。
【0035】
前記耐炎化ポリフェニレンエーテル成形体としては、代表的には、耐炎化ポリフェニレンエーテル繊維、耐炎化ポリフェニレンエーテル不織布、耐炎化ポリフェニレンエーテル布帛、又は耐炎化ポリフェニレンエーテルフィルムを挙げることができる。前記耐炎化ポリフェニレンエーテル繊維は、長繊維であってもよく、短繊維であってもよい。
【0036】
前記耐炎化ポリフェニレンエーテル成形体が耐炎化ポリフェニレンエーテル繊維である場合、その繊度は、特に限定されず、繊維が使用される目的に応じて適宜決定できるが、例えば、100dtex以下であることが好ましく、95dtex以下であることがより好ましく、90dtex以下であることがさらに好ましい。繊度が前記範囲にあることで、織物、編物、短繊維不織布、布帛など、様々な形状に加工することができるようになるため好ましい。また、繊度の下限値は特に限定されるものではないが、0.1dtex以上であることが好ましく、0.2dtex以上であることがより好ましい。
【0037】
前記耐炎化ポリフェニレンエーテル繊維の引張強度は、0.8cN/dtex以上であることが好ましく、0.85cN/dtex以上であることがより好ましく、0.90cN/dtex以上であることがさらに好ましい。引張強度が前記範囲にあることで、繊維としての扱い性が良好になるため好ましい。また、引張強度の上限値は特に限定されるものではないが、50cN/dtex以下であることが好ましく、40cN/dtex以下であることがより好ましい。
【0038】
前記耐炎化ポリフェニレンエーテル成形体が耐炎化ポリフェニレンエーテル短繊維である場合、その長さは特に制限されず、用途に応じて適宜調整することができるが、通常、1~200mmであり、好ましくは2~180mm、より好ましくは5~150mmである。
【0039】
前記耐炎化ポリフェニレンエーテル成形体が耐炎化ポリフェニレンエーテル不織布である場合、その目付は、特に限定されず、不織布が使用される目的に応じて適宜決定できるが、例えば、3g/m以上であることが好ましく、5g/m以上であることがより好ましい。また、1000g/m以下であることが好ましく、800g/m以下であることがより好ましい。
【0040】
前記耐炎化ポリフェニレンエーテル不織布の厚さは、特に限定されず、不織布が使用される目的に応じて適宜決定できるが、例えば、0.01~100mm程度であることが好ましく、0.05~80mm程度であることがより好ましい。
【0041】
前記耐炎化ポリフェニレンエーテル不織布の引張強度は、0.5cN/25mm以上であることが好ましく、0.7cN/25mm以上であることがより好ましく、1.0cN/25mm以上であることがさらに好ましい。引張強度が前記範囲にあることで、不織布としての扱い性が良好になるため好ましい。また、引張強度の上限値は特に限定されるものではないが、50cN/25mm以下であることが好ましく、40cN/25mm以下であることがより好ましい。
【0042】
前記耐炎化ポリフェニレンエーテル不織布を形成するポリフェニレンエーテル繊維の繊度は、特に限定されず、不織布が使用される目的に応じて適宜決定できるが、例えば、100dtex以下であることが好ましく、90dtex以下であることがより好ましく、80dtex以下であることがさらに好ましい。繊度が前記範囲にあることで、不織布としてしなやかで扱いやすくなるため好ましい。また、繊度の下限値は特に限定されるものではないが、0.1dtex以上であることが好ましく、0.3dtex以上であることがより好ましい。
【0043】
前記耐炎化ポリフェニレンエーテル成形体が耐炎化ポリフェニレンエーテル布帛である場合、その目付は、特に限定されず、布帛が使用される目的に応じて適宜決定できるが、例えば、5g/m以上であることが好ましく、10g/m以上であることがより好ましい。また、2000g/m以下であることが好ましく、1500g/m以下であることがより好ましい。
【0044】
前記耐炎化ポリフェニレンエーテル布帛の厚さは、特に限定されず、布帛が使用される目的に応じて適宜決定できるが、例えば、0.1~20mmであることが好ましく、0.2~18mmであることがより好ましい。
【0045】
前記耐炎化ポリフェニレンエーテル布帛の引張強度は、1cN/25mm以上であることが好ましく、2cN/25mm以上であることがより好ましく、3cN/25mm以上であることがさらに好ましい。引張強度が前記範囲にあることで、布帛としての扱い性が良好になるため好ましい。また、引張強度の上限値は特に限定されるものではないが、5000cN/25mm以下であることが好ましく、4000cN/25mm以下であることがより好ましい。
【0046】
前記耐炎化ポリフェニレンエーテル布帛を形成するポリフェニレンエーテル繊維の繊度は、特に限定されず、布帛が使用される目的に応じて適宜決定できるが、例えば、100dtex以下であることが好ましく、90dtex以下であることがより好ましく、80dtex以下であることがさらに好ましい。繊度が前記範囲にあることで、布帛としてしなやかで扱いやすくなるため好ましい。また、繊度の下限値は特に限定されるものではないが、0.1dtex以上であることが好ましく、0.3dtex以上であることがより好ましい。
【0047】
本発明の耐炎化ポリフェニレンエーテル成形体は、ポリフェニレンエーテル成形体に耐炎化処理を施したものである。以下、耐炎化処理を施すポリフェニレンエーテル成形体について説明する。
【0048】
<ポリフェニレンエーテル成形体>
本発明で用いる前記ポリフェニレンエーテル成形体は、ポリフェニレンエーテル成分を含むものである。
【0049】
前記ポリフェニレンエーテル成分としては、特に限定されるものではなく、本分野において通常用いられているものを挙げることができる。具体的には、下記一般式(1):
【化1】
(式中、R、Rは、それぞれ独立に、水素原子、又は、置換基を有していてもよい炭素数1~10の炭化水素基であり、Rは、それぞれ独立に、置換基を有していてもよい炭素数1~10の炭化水素基を表す)
で表される繰り返し単位を有する単独重合体、又は異なる2種以上の一般式(1)の繰り返し単位を含有する共重合体や、前記一般式(1)の繰り返し単位と一般式(1)以外の繰り返し単位を有する共重合体を挙げることができる。
【0050】
前記一般式(1)中のR、Rとしては、例えば、水素原子、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、ペンチル基、シクロペンチル基、ヘキシル基、シクロヘキシル基、オクチル基、デシル基等の炭素数1~10のアルキル基、フェニル基、4-メチルフェニル基、1-ナフチル基、2-ナフチル基等の炭素数6~10のアリール基、ベンジル基、2-フェニルエチル基、1-フェニルエチル基等の炭素数7~10のアラルキル基等も挙げることができる。
【0051】
前記炭化水素基が置換基を有する場合、その置換基としては、フッ素原子等のハロゲン原子、メトキシ基等のアルコキシ基等が挙げられる。置換基を有する炭化水素基の具体例としては、例えば、トリフルオロメチル基等を挙げることができる。
【0052】
これらの中でも、R、Rとしては、水素原子、メチル基が好ましく、水素原子であることがより好ましい。
【0053】
前記一般式(1)中のRとしては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、ペンチル基、シクロペンチル基、ヘキシル基、シクロヘキシル基、オクチル基、デシル基等の炭素数1~10のアルキル基、フェニル基、4-メチルフェニル基、1-ナフチル基、2-ナフチル基等の炭素数6~10のアリール基、ベンジル基、2-フェニルエチル基、1-フェニルエチル基等の炭素数7~10のアラルキル基等も挙げることができる。
【0054】
前記炭化水素基が置換基を有する場合、その置換基としては、フッ素原子等のハロゲン原子、メトキシ基等のアルコキシ基が挙げられる。置換基を有する炭化水素基の具体例としては、例えば、トリフルオロメチル基等を挙げることができる。
【0055】
これらの中でも、Rとしては、メチル基が好ましい。
【0056】
前記一般式(1)の繰り返し単位としては、具体的には、2,6-ジメチル-1,4-フェニレンエーテル、2,6-ジエチル-1,4-フェニレンエーテル、2-メチル-6-エチル-1,4-フェニレンエーテル、2,6-ジプロピル-1,4-フェニレンエーテルから誘導される繰り返し単位を挙げることができる。これらの中でも、2,6-ジメチル-1,4-フェニレンエーテルから誘導される繰り返し単位が好ましい。
【0057】
また、前記ポリフェニレンエーテルは、本発明の効果を損なわない範囲で、前記一般式(1)以外の繰り返し単位を含むことができる。このような一般式(1)以外の繰り返し単位の含有量は、本発明の効果を損なわない範囲であれば特に限定されないが、例えば、前記共重合体中に5モル%以下程度であることが好ましく、含まないことがより好ましい。
【0058】
前記ポリフェニレンエーテルの分子量は特に限定されるものではないが、重量平均分子量(Mw)が40,000~100,000であることが好ましく、50,000~80,000であることがより好ましい。また、数平均分子量(Mn)は、7,000~30,000であることが好ましく、8,000~20,000であることがより好ましい。また、分子量分散(Mw/Mn)は、3.5~8.0であることが好ましく、4.0~6.0であることがより好ましい。
【0059】
ポリフェニレンエーテルは、一般的に、高い溶融粘度を有しており、ポリフェニレンエーテルを高含有で含む場合や、それ単独では溶融成形が難しいとされていた。従って、ポリフェニレンエーテル成形体を得る際にポリフェニレンエーテルを溶融する工程を要する場合(例えば、溶融紡糸等)には、転位構造を有するポリフェニレンエーテル成分を含むポリフェニレンエーテルを用いる方法や、高ガラス転移点温度を有するポリフェニレンエーテル成分と低ガラス転移点温度を有するポリフェニレンエーテル成分を混合する方法等を用いることが好ましい。これらの方法により、ポリフェニレンエーテルの溶融粘度を低下させることができるため、ポリフェニレンエーテルの溶融が可能となり、溶融紡糸繊維、不織布、及びフィルム等の成形体を形成することができる。
【0060】
<<転位構造を有するポリフェニレンエーテル>>
前記転位構造を有するポリフェニレンエーテルとしては、例えば、下記一般式(2):
【化2】
(式中、R、Rは、それぞれ独立に、水素原子、又は、置換基を有していてもよい炭素数1~10の炭化水素基であり、Rは、それぞれ独立に、置換基を有していてもよい炭素数1~10の炭化水素基であり、R3’は、前記Rから水素原子が1個除かれた2価の基を表す)
で表される転位構造を有するポリフェニレンエーテル成分を含むポリフェニレンエーテルとすることが好ましい。このような転位構造を有することで、溶融成形が可能な程度に流動性が向上して、溶融紡糸繊維、不織布、及びフィルム等を形成することができる。
【0061】
前記一般式(2)中のR~Rとしては、前記一般式(1)のものと同様のものを例示することができる。前記一般式(2)中の「~」は、その先の構造は特に限定されないことを示す。「~」の部分は、パラ結合で連続するフェニレンエーテル単位から形成されていてもよく、また、その中に部分的にオルト位で結合する部分を有していてもよい。
【0062】
前記R3’は、前記Rから水素原子が1個除かれた2価の基を表し、メチレン基であることが好ましい。
【0063】
前記転位構造を有するポリフェニレンエーテル成分は、前記一般式(1)の繰り返し単位を有する単独重合体、異なる2種以上の一般式(1)の繰り返し単位を含有する共重合体、又は、前記一般式(1)の繰り返し単位と一般式(1)以外の繰り返し単位を含む共重合体中に、前記一般式(2)で表される転位構造を有するものが好ましい。
【0064】
前記転位構造を有するポリフェニレンエーテル成分における転位構造量は、特に限定されるものではないが、前記ポリフェニレンエーテル成分中の全ポリフェニレンエーテル構造単位に対して、0.1モル%以上であることが好ましく、0.12モル%以上であることがより好ましく、0.15モル%以上であることがさらに好ましく、0.2モル%以上であることが特に好ましい。さらに安定して吐出させるためには0.3モル%以上が好ましい。また、転位構造量の上限値は特に限定されないが、10モル%以下であることが好ましく、9モル%以下であることがより好ましい。転位構造を有するポリフェニレンエーテル成分における転位構造量が前記範囲にあることで、溶融成形が可能な程度に流動性が向上し、溶融押出成形体とすることができる傾向にあるため好ましい。
【0065】
前記転位構造を有するポリフェニレンエーテルは、ポリマー中にラジカルを有することが好ましい。また、前記ポリフェニレンエーテルが有するラジカル量は、100g-1以上であることが好ましく、120g-1以上であることがより好ましく、150g-1以上であることがさらに好ましい。前記ポリフェニレンエーテルが有するラジカル量を100g-1以上にすることで、比重が1.25以上である耐炎化ポリフェニレンエーテル成形体を製造しやすくなる。また、前記ポリフェニレンエーテルが有するラジカル量の上限値は特に限定されないが、酸化劣化の観点から、10000g-1以下であることが好ましく、9000g-1以下であることがより好ましく、8000g-1以下であることがさらに好ましい。
【0066】
前記転位構造を有するポリフェニレンエーテル成分の形成方法は、後述の通りである。
【0067】
前記、高ガラス転移点温度を有するポリフェニレンエーテル成分と低ガラス転移点温度を有するポリフェニレンエーテル成分を混合して、溶融粘度を低下させる方法については、ポリフェニレンエーテル成形体の製造方法で説明する。
【0068】
<ポリフェニレンエーテル成分以外の成分>
本発明で用いるポリフェニレンエーテル成形体には、前記ポリフェニレンエーテル成分以外の樹脂成分を含むことができる。ポリフェニレンエーテル以外の樹脂成分としては、スチレン、ポリエチレン、ポリプロピレンやポリアミド4、ポリアミド6、ポリアミド10、ポリアミド11、ポリアミド66、ポリアミド6T、ポリアミド6T/11等のポリアミド、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル、ポリカーボネート等を挙げることができる。但し、その含有量は、5質量%以下であることが好ましく、2質量%以下であることがより好ましく、含まない(0質量%)ことがさらに好ましい。
【0069】
また、前記ポリフェニレンエーテル成形体には、本発明の効果を損なわない範囲で、滑剤、可塑剤、酸化防止剤、紫外線吸収剤、ダル剤、静電防止剤等の添加剤も添加することができる。
【0070】
<ポリフェニレンエーテルの含有量>
また、本発明で用いるポリフェニレンエーテル成形体において、ポリフェニレンエーテルの含有量が、成形体を形成する全成分中95質量%以上であることが好ましく、98質量%以上であることがより好ましく、実質的にポリフェニレンエーテルのみ(100質量%)からなることがさらに好ましい。ポリフェニレンエーテル成形体における前記ポリフェニレンエーテルの含有量が前記範囲にあることで、得られた成形体の機械的強度に優れるのみならず、耐熱性、耐薬品性、難燃性等に優れるものであり、好ましい。
【0071】
<ポリフェニレンエーテル成形体の製造方法>
<<ポリフェニレンエーテル繊維>>
ポリフェニレンエーテル成形体が、ポリフェニレンエーテル繊維である場合、当該ポリフェニレンエーテル繊維の製造方法としては、溶融紡糸や乾式紡糸や湿式紡糸等の各種製造方法により製造することができる。これらの中でも、生産性が高くできること等から、溶融紡糸が好ましい。
【0072】
ポリフェニレンエーテル溶融紡糸繊維を製造する場合の一例を、図1を用いて説明する。原料であるポリフェニレンエーテルを図1のホッパー1からシリンダー及びスクリューを備えた押出機2に投入し、溶融したポリフェニレンエーテルはギアポンプ3により吐出速度を計量し、微細なサンドなどで構成された濾材4を通過して紡糸ノズル5から吐出されて、溶融紡糸繊維を得ることができる。また、濾材4上には、金属不織布などで構成されたフィルター6を設置することが好ましい。フィルター6を設置することで、あらかじ異物を除去することができ、前記濾材4の目詰まり等を防ぐことができるため好ましい。
【0073】
また、紡糸ノズル5の直下には、保温スペース7を設け、当該領域に、窒素等の不活性ガスを導入8して紡糸することが、酸化的架橋によるノズル詰まりの抑制の観点から好ましく、加熱トーチ9により、加熱した不活性化ガスを導入することがより好ましい。加熱した不活性ガスの温度は、100~500℃であることが好ましく、200~400℃であることがより好ましい。
【0074】
紡糸速度は、特に限定されるものではなく、求められる繊度等に応じて適宜設定することができるが、細繊度の繊維を安定して得るためには、100~400m/分程度であることが好ましく、100~200m/分程度であることがより好ましい。
【0075】
前記紡糸ノズルの単孔吐出量は、0.4g/分以下であることが好ましく、0.3g/分以下であることがより好ましく、0.2g/分以下であることがさらに好ましい。また、単孔吐出量の下限は特に限定されないが、0.05g/分以上であることが好ましく、0.1g/分以上であることがより好ましく、0.12g/分以上であることがさらに好ましい。単孔吐出量を前記範囲にすることで、細繊度のポリフェニレンエーテル繊維を得ることができるため好ましい。
【0076】
原料であるポリフェニレンエーテルとしては、前記一般式(1)の繰り返し単位を有する単独重合体、又は異なる2種以上の一般式(1)の繰り返し単位を含有する共重合体や、前記一般式(1)の繰り返し単位と一般式(1)以外の繰り返し単位を有する共重合体を挙げることができる。前記共重合体における一般式(1)以外の繰り返し単位の含有量としては、前述のものを挙げることができる。これらの中でも、前記一般式(1)の繰り返し単位を有する単独重合体が好ましい。
【0077】
前記一般式(1)の繰り返し単位を有する単独重合体としては、具体的には、ポリ(2,6-ジメチル-1,4-フェニレンエーテル)、ポリ(2,6-ジエチル-1,4-フェニレンエーテル)、ポリ(2-メチル-6-エチル-1,4-フェニレンエーテル)、ポリ(2,6-ジプロピル-1,4-フェニレンエーテル)等を挙げることができるが、これらの中でも、ポリ(2,6-ジメチル-1,4-フェニレンエーテル)が好ましい。
【0078】
前記ポリ(2,6-ジメチル-1,4-フェニレンエーテル)としては、市販品も好適に用いることができ、具体的は、例えば、SABIC Innovative Plastic製のPPO640、PPO646、PPOSA120、旭化成ケミカルズ(株)製のザイロンS201A、ザイロンS202A等を挙げることができる。
【0079】
また、原料であるポリフェニレンエーテルを溶融するに当たり、高ガラス転移点温度を有するポリフェニレンエーテル成分と低ガラス転移点温度を有するポリフェニレンエーテル成分を混合することにより、溶融粘度を低下させることができる。
【0080】
高ガラス転移点温度を有するポリフェニレンエーテル成分のガラス転移点温度は、170℃以上であることが好ましく、200℃以上であることがより好ましく、210℃以上であることさらに好ましい。また、ガラス転移点温度の上限値は230℃以下であることが好ましい。高ガラス転移点温度を有するポリフェニレンエーテル成分のガラス転移点温度が前記範囲にあることで、高い耐熱性を有するポリフェニレンエーテル成形体が得られるため、好ましい。
【0081】
低ガラス転移点温度を有するポリフェニレンエーテル成分のガラス転移点温度は、170℃未満であることが好ましい。ガラス転移点温度が170℃未満のポリフェニレンエーテル成分を加えることで、溶融粘度が低下して、流動性が向上する。
【0082】
ガラス転移点温度が170℃以上であるポリフェニレンエーテル成分の含有量は、原料であるポリフェニレンエーテル中、70質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。また、ガラス転移点温度が170℃以上であるポリフェニレンエーテル成分の含有量の上限値は特に限定されるものではないが、100質量%以下であることが好ましい。本発明においては、ガラス転移点温度が高い(すなわち高分子量)のポリフェニレンエーテル成分を前記範囲で含むことが、得られるポリフェニレンエーテル溶融押出成形体の機械的強度、耐熱性、耐薬品性、難燃性等に優れるため、好ましい。
【0083】
また、原料であるポリフェニレンエーテルと共に、ポリフェニレンエーテル成分以外の樹脂成分や添加剤を含むことができる。ポリフェニレンエーテル成分以外の樹脂成分や添加剤としては、前述の通りである。また、ポリフェニレンエーテル成分以外の樹脂成分の含有量は、原料中に5質量%以下であることが好ましく、2質量%以下であることがより好ましく、含まない(0質量%)ことがさらに好ましい。
【0084】
前記シリンダー及びスクリューを備えた押出機としては、本分野で通常用いることができる単軸押出機や二軸押出機を用いることができる。本発明においては、二軸押出機を用いることが好ましい。
【0085】
スクリューの周速については、特に限定されず、本分野において通常用いる範囲とすることができる。但し、転位構造を有するポリフェニレンエーテルを用いて成形体を形成する場合、前記スクリューの周速は、原料であるポリフェニレンエーテルの転位反応が起こるスクリューの周速が必要である。また、スクリューの周速は、転位構造を有するポリフェニレンエーテルが有するラジカル量を100g-1以上にする観点から、3.6m/min以上であることが好ましく、3.7m/min以上であることがより好ましく、3.8m/min以上であることがさらに好ましい。また、スクリューの周速の上限値は、特に限定されないが、94.2m/min以下であることが好ましい。本発明においては、スクリュー回転数を上げてスクリューの周速を3.6m/min以上とすることで、シリンダー内の原料ポリフェニレンエーテルに高剪断力を付与することができ、それにより、ポリフェニレンエーテルの分子鎖を切断し、ラジカルを発生させることができる。その結果、ラジカル量が100g-1以上であり、転位構造を有するポリフェニレンエーテルを得ることができる。前記転位構造を有するポリフェニレンエーテルが形成されることで、ポリフェニレンエーテルを溶融押出成形することが可能になる。
【0086】
シリンダー内の温度は、低すぎると樹脂の流動性が悪く、高すぎると流動性は改善されるものの、樹脂の熱分解による発泡現象が発生するため、そのバランスが取れる加工温度を選択する必要がある。シリンダー内の温度としては、例えば、250~350℃であることが好ましく、280~330℃であることがより好ましい。
【0087】
<<ポリフェニレンエーテル短繊維>>
ポリフェニレンエーテル短繊維は、例えば、前記ポリフェニレンエーテル繊維を合糸してトウ状にした繊維をカットすることにより得ることができる。
【0088】
<<ポリフェニレンエーテル不織布>>
ポリフェニレンエーテル不織布の製造方法としては、特に限定されるものではなく、本分野において通常用いられる方法を適宜採用することができる。不織布の製造方法としては、例えば、スパンボンド法、メルトブロー法、スパンレース法、ニードルパンチ法、サーマルボンド法、ケミカルボンド法等を挙げることができる。これらの中でも、スパンボンド法が好ましい。
【0089】
ポリフェニレンエーテル不織布の形成に用いる原料等については、ポリフェニレンエーテル繊維で記載したものと同様のものを用いることができる。
【0090】
<<ポリフェニレンエーテル布帛>>
ポリフェニレンエーテル布帛は、前記ポリフェニレンエーテル繊維から形成されるものである。前記布帛は、さらに、全芳香族ポリエステル繊維、ポリベンゾオキサゾール(PBO)繊維、ポリベンゾイミダゾール(PBI)繊維、ポリベンゾチアゾール(PBTZ)繊維、ポリイミド(PI)繊維、ポリスルホンアミド(PSA)繊維、ポリエーテルエーテルケトン(PEEK)繊維、ポリエーテルイミド(PEI)繊維、ポリアリレート(PAr)繊維、メラミン繊維、フェノール繊維、フッ素系繊維、ポリフェニレンスルフィド(PPS)繊維、セルロース繊維、ポリオレフィン繊維、アクリル繊維、レーヨン繊維、コットン繊維、獣毛繊維、ポリウレタン繊維、ポリ塩化ビニル繊維、ポリ塩化ビニリデン繊維、アセテート繊維、及びポリカーボネート繊維からなる群より選択される一種以上の繊維を含んでいてもよい。
【0091】
ポリフェニレンエーテル布帛に含まれる前記ポリフェニレンエーテル繊維の割合は、機械的強度、難燃性、耐熱性、高温安定性、耐薬品性等の観点から、例えば、50~100質量%であり、好ましくは55~98質量%、より好ましくは60~95質量%、さらに好ましくは65~90質量%である。
【0092】
ポリフェニレンエーテル布帛は、一般的な方法で製造することができ、例えば、上記繊維の紡績糸を混綿して紡績糸を得た後、単糸または双糸にてレピア織機などを用いて、綾織、平織などの組織に製織する方法が挙げられる。
【0093】
<<その他の成形体>>
前述の通り、本発明の耐炎化ポリフェニレンエーテル成形体としては、代表的には、耐炎化ポリフェニレンエーテル繊維、耐炎化ポリフェニレンエーテル不織布、又は耐炎化ポリフェニレンエーテル布帛を挙げることができるが、例えば、耐炎化ポリフェニレンエーテルフィルム等も挙げることができる。これらの製造方法としては、本分野において通常用いられている方法により製造することができる。なお、実施例に記載の各測定方法は、耐炎化PPE繊維及び耐炎化PPEフィルムについての測定方法を記載しているが、耐炎化PPE不織布及び耐炎化PPE布帛等の成形体においても実施例に記載の測定方法を準用して測定することができる。
【0094】
2.耐炎化ポリフェニレンエーテル成形体の製造方法
本発明の耐炎化ポリフェニレンエーテル成形体の製造方法は、ポリフェニレンエーテル成形体を、空気中で、120~240℃で、1~30時間熱処理して不融化し(不融化処理)、さらに空気中で、260~400℃で、0.1~10時間熱処理して耐炎化する(耐炎化処理)ことを特徴とする。
【0095】
ポリフェニレンエーテル成形体としては、前述のものを適宜用いることができる。
【0096】
前記不融化処理では、ポリフェニレンエーテル成形体を、空気中で、120~220℃で、1~30時間処理をする。ここで、空気中とは、特に調整されていない環境のことである。また、処理温度は、120~240℃であり、140~230℃であることが好ましく、160~220℃であることがより好ましい。また、処理時間は、1~30時間であり、1.5~25時間であることが好ましく、2~20時間であることがより好ましい。前記処理時間及び処理温度とすることで、引き続き行う耐炎化処理において、ポリフェニレンエーテル成形体が溶融してしまうことなく、適切な耐炎化処理を施すことができる。
【0097】
前記不融化処理の後に、耐炎化処理として、空気中で、260~400℃で、0.1~10時間処理をする。空気中とは、特に調整されていない環境のことである。また、処理温度は、260~400℃であり、270~380℃であることが好ましく、280~360℃であることがより好ましい。また、処理時間は、0.1~10時間であり、0.3~8時間であることが好ましく、0.5~6時間であることがより好ましい。前記処理時間及び処理温度とすることで、ポリフェニレンエーテル成形体にC=O結合構造が形成され、非常に高い難燃性、耐炎性、耐熱性等を示す耐炎化された成形体とすることができる。
【0098】
<用途>
前記耐炎化ポリフェニレンエーテル短繊維は、例えば、耐熱バインダー、C/Cコンポジット、産業用ブラシ、及びブレーキ材等に用いることができる。
【0099】
前記耐炎化ポリフェニレンエーテル不織布は、例えば、自動車用吸音材、自動車内装材、断熱材、家庭用消火布、防火カバー、ダクト用表面材、プラスチック防炎材、延焼防止材、粉塵飛散防止用表面材、セメント補強材、摩擦材、グランドパッキング、シール材、消防服、溶接火花防護シート等に用いることができる。
【0100】
前記耐炎化ポリフェニレンエーテル布帛は、例えば、断熱材、作業衣(消防用、レース用、飛行士用)、耐熱手袋、防災頭巾、輸送機器の内装材、耐熱性衣料、及び電磁波シールド材等に用いることができる。
【実施例
【0101】
以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明は以下の実施例によって限定されるものではない。なお、以下の実施例における物性等の評価方法は以下の通りである。
【0102】
(1)成形体中の転位構造量
共鳴周波数600MHzのH-NMR測定にて行った。測定装置は、BRUKER社製のNMR装置(装置名:AVANCE-NEO600)を用い、測定は以下の通りに行った。
実施例及び比較例で得られた成形体(試料)10mgを重クロロホルムに溶解後、その溶液を1時間以内にNMRチューブに充填し測定を行った。ロック溶媒には重クロロホルムを用い、待ち時間を1秒、データ取り込み時間を4秒、積算回数を64回とした。
転位構造量の解析は以下の通り実施した。
ポリフェニレンエーテルの3、5位のR、R基のプロトンに由来するピークと、転位構造中のR3’で示される2価の基(メチレン基等)のプロトンに由来するピークのそれぞれのピーク積分値をA、Bとし、転位構造量は以下の式により求めた。
転位構造量(mol%)={B/(A+B)}×100
【0103】
(2)ラジカル量
電子スピン共鳴装置(ESR、日本電子株式会社製、JES-FA100)を用いて以下の条件でポリフェニレンエーテル中のラジカル量を測定した。嵩密度が0.1~0.2g/cmになるように0.1gのサンプルを詰めた。ただし、サンプル形状によって0.1~0.2g/cmの範囲に入らない場合は、0.2g/cm以上となっても良い。ラジカル量は下記式により求めた。
サンプルの規格化強度=サンプルのシグナル強度/マンガン強度
ブランクの規格化強度=ブランクのシグナル強度/マンガン強度
ラジカル量=(サンプルの規格化強度-ブランクの規格化強度)/サンプル重量
(測定条件)
サンプルチューブ:EPW-005J(シゲミ製)
マンガン強度:320~322mTの範囲の2回積分値
サンプル、ブランクのシグナル強度:322.1~329.3mTの範囲の2回積分値
Magnetic Field:325.8±7.5mT
Microwave Power:0.1mW
Sweep Time:4min
Modulation Width:0.12mT
Amplitude:1000
Time Constant:0.3sec
Mn Marker:800
Scans:2
【0104】
(3)比重
乾式自動密度計(製品名:アキュピックII1340、(株)島津製作所製)を用い、10cmのセルにサンプルが8割程度になるように詰めて、ヘリウムガスにて測定した。
【0105】
(4)繊度
JIS L-1095 9.4.1に記載の方法で測定した。
【0106】
(5)引張強度、引張伸度
JIS L1013 8.5.1に準拠して測定した。繊維の場合、単繊維で評価し、チャック間距離は10mm、引張速度は10mm/minで測定した。不織布の場合は、幅25mm、長さ100mmにサンプリングし、チャック間距離が50mm、引張速度は100mm/minで測定した。引張伸度は強度が最大となるときの伸度とした。
【0107】
(6)吸光度高さ比(A/B)
実施例1~7、比較例1~7で得られた繊維を乳鉢で粉末にし、KBrと混ぜて錠剤にして、測定試料とした。また、実施例8~11で得られたフィルムはそのまま測定試料とした。
赤外分光光度計(FTIR)(製品名:3100FT-IR/600UMA、バリアン社製)を用い、得られた試料を顕微透過法により以下の条件で吸光度を測定した。
(測定条件)
視野:80mm×80mm
測定波長範囲:400cm-1から4000cm-1
積算回数:128回
分解能:4cm-1
得られたスペクトルの、波長1550~1480cm-1の最小値及び1900~1800cm-1の最小値を結ぶ基準線を引き、当該基準線からのピーク高さ(ピーク吸光度高さ)で評価を実施した。
1742~1722cm-1のピーク高さを吸光度高さA、1610~1590cm-1のピーク高さを吸光度高さBとし、A/Bの値で規定した。
【0108】
(7)重量減少率の差
熱重量装置(製品名:TGA Q50、TA INSTRUMENTS製)を用いて、サンプル10mgをアルミパンに詰め、20℃から480℃まで20℃/minで昇温して、150℃における重量と400℃における重量を測定した。そして、下記式により、20℃における初期重量に対する、150℃における重量減少率(%)と400℃における重量減少率(%)とを求め、それらの差を算出した。
150℃における重量減少率(%)={(20℃における初期重量-150℃における重量)/20℃における初期重量}×100
400℃における重量減少率(%)={(20℃における初期重量-400℃における重量)/20℃における初期重量}×100
【0109】
(8)400℃強力保持率
各サンプルを400℃のオーブンに入れ10分処理した後のサンプルの強度を、前記「(3)引張強度、引張伸度」に記載の方法で測定し、以下の式より400℃強力保持率を求めた。
400℃強力保持率(%)=(処理後のサンプル強度/処理前のサンプル強度)×100
【0110】
(9)400℃伸度保持率
各サンプルを400℃のオーブンに入れ10分処理した後のサンプルの伸度を、前記「(3)引張強度、引張伸度」に記載の方法で測定し、以下の式より400℃伸度保持率を求めた。
400℃伸度保持率(%)=(処理後のサンプル伸度/処理前のサンプル伸度)×100
【0111】
(10)LOI値(難燃性)
JIS L 1091 E法に準拠して測定した。酸素指数の決定は50mm以上燃焼し続けた時で、点火器の熱源はプロパンガスを用いた。繊維は、約5mm程度の短繊維にし、水に分散させて抄紙し、220℃でヒートカレンダー加工した。サイズは直径25mmの円形で、目付は140g/mとなるように作製した。不織布は加工せずにそのまま評価した。
【0112】
(11)接炎テスト
(11-1)自己消火性
サンプルにバーナーで10秒接炎し、炎を離したあと、炎が消えるかを評価した。ガスはメタンガスを用いた。10秒以内に炎が消えたものを自己消火性がある(〇)と判断し、10秒以内に炎が消えなかったものを自己消火性がない(×)と判断した。
(11-2)収縮・変形
サンプルにバーナーで10秒接炎し、炎を離したあと、サンプルが収縮・変形しているかを評価した。ガスはメタンガスを用いた。サンプルが収縮・変形していないものを〇、サンプルが収縮・変形しているものを×として、評価した。
【0113】
(12)350℃収縮率
各耐炎化ポリフェニレンエーテル繊維のサンプルを350℃のオーブンに入れ、1時間後のサンプルの寸法をノギスで測定し、下記式により350℃収縮率を求めた。
350℃収縮率(%)=100-{(熱処理後のサンプルの寸法/熱処理前のサンプルの寸法)×100}
【0114】
<耐炎化ポリフェニレンエーテル繊維>
実施例1
ポリ(2,6-ジメチル-1,4-フェニレンエーテル)(PPO640、ガラス転移点温度(Tg):221℃、SABIC Innovative Plastic製)を、(株)テクノベル製2軸押出機(製品名:KZW15TW-30MG)を用いて押出した。前記2軸押出機は、シリンダーが4ゾーンを有しており、ホッパー側からシリンダーをそれぞれ、シリンダー1、2、3、4とし、シリンダー1~3は280℃に設定し、シリンダー4およびシリンダーヘッド部は300℃に設定し、スクリュー回転数は700rpmに設定してスクリューの周速を33.0m/minとした。
【0115】
押出機の下流には、ギアポンプを設置してポリマーの吐出速度を計量し、金属不織布フィルター(製品名:NF-07、日本精線(株)製)を介してノズル(ノズル孔直径:0.45mm、ノズル孔ランド長:1.35mm、ノズル孔数:48個)へ押し出した(総吐出量:10.15g/分、単孔吐出量:0.211g/分)。ノズル直下には面ヒータを配置し、ノズル温度が316℃となるように設定した。ノズル直下には60mmの保温スペースを設け、この領域に400℃に加熱した窒素を連続的に導入した。ノズルから吐出されたポリマーを紡糸速度95m/分にて巻き取った。得られた繊維は、転位構造を有するものであり(転位構造量:全PPEユニットに対して2.7mol%)、繊維中に残存するラジカル量は410g-1であった。
【0116】
このようにして得られた繊維を分繊し、それぞれ融着しないようにして空気中で、200℃×2時間熱処理(不融化処理)したのち、1℃/分で280℃まで昇温し、空気中で、280℃×2時間熱処理(耐炎化処理)をし、耐炎化させた。得られた耐炎化ポリフェニレンエーテル繊維の比重は、1.42であり、繊度は、26.1dtexであった。
【0117】
得られた耐炎化ポリフェニレンエーテル繊維を赤外分光法で測定すると、1732cm-1にC=O伸縮振動に由来するピークが観測された。また、C=O伸縮振動に由来する波数1732cm-1の吸光度高さAとベンゼン環の炭素と炭素間の伸縮による骨格振動に由来する波長1600cm-1の吸光度高さBとの吸光度高さ比(A/B)は、0.65であった。各評価結果は表1及び2に示す。
【0118】
実施例2~6、比較例1
用いた原料PPEの種類、耐炎化処理の条件を表1に示す通り変更した以外は実施例1と同様の方法により、耐炎化ポリフェニレンエーテル繊維を製造した。各評価結果は表1及び2に示す。
【0119】
実施例7
EBC300(NMVコーポレーション)を用いて、加速電圧200kV、及び電子線量100kGyの条件で、実施例1と同様の方法で紡糸した繊維に電子線を20回照射した。照射雰囲気は窒素雰囲気下で行った。その後、180℃×16時間熱処理(不融化処理)したのち、1℃/分で280℃まで昇温し、空気中で、280℃×2時間熱処理(耐炎化処理)をし、耐炎化させて耐炎化ポリフェニレンエーテル繊維を製造した。各評価結果は表1に示す。製造した耐炎化ポリフェニレンエーテルフィルムの比重は1.53であり、耐炎化が十分に進んでいた。
【0120】
比較例2
実施例1で得られたポリフェニレンエーテル溶融紡糸繊維(耐炎化処理なし)を用いて各種評価を行った。各評価結果は表1に示す。
【0121】
比較例3
パラ系アラミド繊維(製品名:ケブラー、東レ・デュポン製)(耐炎化処理なし)を用いて各種評価を行った。各評価結果は表1に示す。
【0122】
比較例4
アクリロニトリル(PAN)系耐炎化不織布(製品名:NEW LASTAN TOP5150Z、旭化成(株)製)の単繊維を用いて各種評価を行った。各評価結果は表1に示す。
【0123】
比較例5
ノボロイド繊維(製品名:カイノール、群栄化学工業(株)製)を用いて、各種評価を行った。各評価結果は表1に示す。
【0124】
比較例6
耐炎化処理(280℃、2時間の熱処理)を行わず、不融化処理(180℃、16時間の熱処理)のみを行った以外は実施例1と同様の方法により処理をして、ポリフェニレンエーテル繊維を製造した。各評価結果は表1に示す。
【0125】
比較例7
不融化処理(200℃、2時間の熱処理)を行わず、耐炎化処理(280℃、2時間の熱処理)のみを行った以外は実施例1と同様の方法により処理をしたが、耐炎化処理の際にポリフェニレンエーテル繊維が溶融してしまい、耐炎化繊維は得られなかった。
【0126】
【表1】
【0127】
【表2】
【0128】
<耐炎化ポリフェニレンエーテルフィルム>
実施例8
ポリ(2,6-ジメチル-1,4-フェニレンエーテル)(PPO640、ガラス転移点温度(Tg):221℃、SABIC Innovative Plastic製)を、(株)テクノベル製2軸押出機(製品名:KZW15TW-45MG)を用いて押出した。前記2軸押出機は、320℃に設定し、スクリュー回転数は150rpmに設定してスクリューの周速を7.1m/minとした。
【0129】
押出機の下流には、ギアポンプを設置してポリマーの吐出速度を計量し、5.0g/minの吐出量で(株)テクノベル製Tダイ(TDS/150-SGI)へ押し出した。Tダイから押し出されたポリマーを引き取り速度3.3m/minで(株)テクノベル製ロール(FPU-200-SGI)で巻き取って、溶融ポリフェニレンエーテルフィルムを作製した。得られたフィルム中に残存するラジカル量は1600g-1であった。その後、得られたフィルムを空気中で200℃×2時間熱処理(不融化処理)したのち、1℃/分で280℃まで昇温し、空気中で、280℃×2時間熱処理(耐炎化処理)して耐炎化ポリフェニレンエーテルフィルムを製造した。各評価結果は表3に示す。製造した耐炎化ポリフェニレンエーテルフィルムの比重は1.27であり、耐炎化が十分に進んでいた。
【0130】
実施例9及び10
表3に記載の製造条件に変更した以外は実施例8と同様の方法により、耐炎化ポリフェニレンエーテルフィルムを製造した。各評価結果は表3に示す。実施例9の耐炎化ポリフェニレンエーテルフィルムの比重は1.25、実施例10の耐炎化ポリフェニレンエーテルフィルムの比重は1.29であり、耐炎化が十分に進んでいた。
【0131】
実施例11
EBC300(NMVコーポレーション)を用いて、加速電圧200kV、及び電子線量100kGyの条件で、実施例10と同様の方法で製膜したフィルムに電子線を20回照射した。照射雰囲気は窒素雰囲気下で行った。その後、実施例8と同様の方法で耐炎化処理を行って耐炎化ポリフェニレンエーテルフィルムを製造した。各評価結果は表3に示す。製造した耐炎化ポリフェニレンエーテルフィルムの比重は1.35であり、耐炎化が十分に進んでいた。
【0132】
【表3】
【0133】
なお、表1、3中の「PPO640」は、ポリ(2,6-ジメチル-1,4-フェニレンエーテル)(PPO640、ガラス転移点温度(Tg):221℃、SABIC Innovative Plastic製)を、「SA120」は、ポリ(2,6-ジメチル-1,4-フェニレンエーテル)(PPOSA120、ガラス転移点温度(Tg):159℃、SABIC Innovative Plastic製)を、「パラ系アラミド」は、パラ系アラミド繊維(製品名:ケブラー、東レ・デュポン製)を、「耐炎化PAN」は、アクリロニトリル系耐炎化不織布(製品名:NEW LASTAN TOP5150Z、旭化成(株)製)の単繊維を、「ノボロイド」は、ノボロイド繊維(製品名:カイノール、群栄化学工業(株)製)を表す。
【0134】
表1に示すように、本発明の耐炎化ポリフェニレンエーテル繊維は、非常に高いLOI値を有しており、接炎テストにおいても非常に優れていた。また、150℃と400℃の重量減少率差も小さく、400℃の強力保持率、伸度保持率も非常に高いものであった。また、本発明の耐炎化ポリフェニレンエーテル繊維は、比重が1.37以上であり、耐炎化が十分に進んでいた。一方、比重が1.19である比較例1の耐炎化ポリフェニレンエーテル繊維は、接炎テストにおいて、自己消化性は優れていたが、収縮・変形が起こり、十分なものではなかった。比較例2の耐炎化していないポリフェニレンエーテル繊維は、重量減少率差は小さいものの、400℃の強力保持率、伸度保持率、LOI値、接炎テストにおいて劣るものであり、十分なものではなかった。比較例3の未処理のパラ系アラミド繊維においても、各種評価において十分なものではなかった。また、比較例4の耐炎化したアクリロニトリル(PAN)系繊維では、接炎テストにおいて優れているものであったが、重量減少率差が大きく、400℃における伸度保持率に劣り、十分なものではなかった。比較例5の硬化ノボロイド繊維では、接炎化テストでは優れているものであったが、その他の評価において全て劣るものであった。また、比較例6のPPE繊維を不融化した繊維では、接炎テストにおいて、自己消化性は優れていたが、収縮・変形が起こり、十分なものではなかった。また、比較例7では、耐炎化処理の前に、不融化処理を行っていないため、耐炎化処理の際に、ポリフェニレンエーテル繊維が溶融してしまい、評価ができなかった。
【0135】
表3に示すように、本発明の耐炎化ポリフェニレンエーテルフィルムは、比重が1.25以上であり、耐炎化が十分に進んでおり、接炎テストにおいても非常に優れていた。
【符号の説明】
【0136】
1 ホッパー
2 押出機
3 ギアポンプ
4 フィルター
5 紡糸ノズル
6 濾材
7 保温スペース
8 不活性ガスの導入
9 加熱トーチ
図1