IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ パナソニックIPマネジメント株式会社の特許一覧

<>
  • 特許-空気調和装置 図1
  • 特許-空気調和装置 図2
  • 特許-空気調和装置 図3
  • 特許-空気調和装置 図4
  • 特許-空気調和装置 図5
  • 特許-空気調和装置 図6
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-02-15
(45)【発行日】2024-02-26
(54)【発明の名称】空気調和装置
(51)【国際特許分類】
   F25B 1/00 20060101AFI20240216BHJP
   F24F 11/84 20180101ALI20240216BHJP
   F25B 43/00 20060101ALI20240216BHJP
   F24F 110/12 20180101ALN20240216BHJP
   F24F 140/20 20180101ALN20240216BHJP
【FI】
F25B1/00 304T
F24F11/84
F25B43/00 R
F24F110:12
F24F140:20
【請求項の数】 8
(21)【出願番号】P 2020094731
(22)【出願日】2020-05-29
(65)【公開番号】P2021188835
(43)【公開日】2021-12-13
【審査請求日】2023-04-28
(73)【特許権者】
【識別番号】314012076
【氏名又は名称】パナソニックIPマネジメント株式会社
(74)【代理人】
【識別番号】110001081
【氏名又は名称】弁理士法人クシブチ国際特許事務所
(72)【発明者】
【氏名】武居 秀憲
(72)【発明者】
【氏名】松本 拓
(72)【発明者】
【氏名】金澤 訓
(72)【発明者】
【氏名】横山 暢之
【審査官】森山 拓哉
(56)【参考文献】
【文献】特開平11-270918(JP,A)
【文献】国際公開第2019/082372(WO,A1)
【文献】特開2007-263383(JP,A)
【文献】米国特許出願公開第2019/0323752(US,A1)
【文献】特開平10-089780(JP,A)
【文献】特開2007-212078(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F25B 1/00
F24F 11/84
F25B 43/00
F24F 110/12
F24F 140/20
(57)【特許請求の範囲】
【請求項1】
圧縮機と、凝縮器と、減圧装置と、蒸発器とが配管で接続された冷媒回路を備える空気調和装置であって、
前記凝縮器の出口に配置され前記凝縮器内の冷媒の流出量を調整する膨張弁と、前記膨張弁と前記減圧装置との間に配置され前記凝縮器から流出した冷媒を貯蔵可能なレシーバタンクと、前記膨張弁を開閉制御して前記凝縮器内の冷媒の液量を調整する制御部とを備え、
前記制御部は、前記凝縮器から流出する冷媒の温度と前記凝縮器の外気温度との温度差分が、予め設定された所定値に近づくように前記膨張弁を開閉制御する
ことを特徴とする空気調和装置。
【請求項2】
前記制御部は、前記温度差分が前記所定値よりも大きい場合に前記膨張弁を閉制御し、前記温度差分が前記所定値よりも小さい場合に前記膨張弁を開制御する
ことを特徴とする請求項1に記載の空気調和装置。
【請求項3】
前記制御部は、前記温度差分が前記所定値よりも大きい場合に、前記凝縮器から流出する冷媒の過冷却度が目標の過冷却度よりも大きい場合には、前記膨張弁を閉制御に代えて開制御する
ことを特徴とする請求項2に記載の空気調和装置。
【請求項4】
前記制御部は、前記温度差分が前記所定値よりも小さい場合に、前記凝縮器から流出する冷媒の過冷却度が以前の過冷却度よりも大きく且つ前記過冷却度が目標の過冷却度よりも小さい場合には、前記膨張弁を開制御に代えて閉制御する
ことを特徴とする請求項2又は3に記載の空気調和装置。
【請求項5】
前記制御部は、前記温度差分が前記所定値よりも小さい場合に、前記凝縮器から流出する冷媒の過冷却度が以前の過冷却度よりも小さく且つ前記過冷却度が目標の過冷却度よりも小さい場合には、前記膨張弁を開制御に代えて開閉制御しない
ことを特徴とする請求項2乃至4のいずれか一項に記載の空気調和装置。
【請求項6】
前記圧縮機の出口側に配置され前記圧縮機から流出する冷媒の圧力を検知する高圧センサと、前記凝縮器の出口側に配置され前記凝縮器から流出する冷媒の温度を検知する冷媒温度センサと、を備え、
前記制御部は、前記高圧センサの検知結果に基づいて前記凝縮器の冷媒の飽和温度を決定すると共に、前記飽和温度と、前記冷媒温度センサの検知結果に基づいて、前記凝縮器から流出する冷媒の過冷却度を演算する
ことを特徴とする請求項3乃至5のいずれか一項に記載の空気調和装置。
【請求項7】
前記凝縮器の外気の温度を検知する外気温度センサと、前記凝縮器の冷媒の出口に配置され前記凝縮器から流出する冷媒の温度を検知する冷媒温度センサと、を備え、
前記制御部は、前記外気温度センサと前記冷媒温度センサとの検知結果に基づいて、前記凝縮器から流出する冷媒の温度と前記凝縮器の外気温度との温度差分を演算する
ことを特徴とする請求項1乃至6のいずれか一項に記載の空気調和装置。
【請求項8】
第1負荷モードと、前記第1負荷モードとは異なる第2負荷モードとで運転可能に構成され、
前記レシーバタンクは、前記冷媒回路に収容される冷媒について、前記第1負荷モードの成績係数が最高となる冷媒の量と、前記第2負荷モードの成績係数が最高となる冷媒の量と、の差分以上の量を収容可能な容量に構成されている
ことを特徴とする請求項1乃至7のいずれか一項に記載の空気調和装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、空気調和装置に関する。
【背景技術】
【0002】
従来、液冷媒を一時的に貯蔵させるレシーバタンクを備えた空気調和装置が知られている(例えば、特許文献1参照)。特許文献1では、凝縮器として機能する室外機の下流側に流量調節弁が配置され、流量調節弁により流量調節された冷媒が流入可能な箇所にレシーバタンクが配置され、レシーバタンクから流出した冷媒が流入可能な箇所に膨張弁が配置され、膨張弁の下流側に蒸発器として機能する室内機が配置されている。特許文献1には、冷房運転時において、室内機から流出する冷媒の温度などに基づいて膨張弁を開閉制御すると共に、圧縮機の運転台数等や回転数に基づく冷媒流量に基づいて流量調節弁を調整制御することが記載されている。特許文献1では、空調負荷が変わっても最適な凝縮圧力を保って、冷媒の凝縮作用性を向上させようとしている。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2016-173200号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、蒸発器の出口の温度や、圧縮機の運転台数等は、凝縮器の状態を示す間接的な情報であって直接的な情報ではない。このため、蒸発器の出口の温度等に基づいて、膨張弁等を開閉制御しても、凝縮器内の冷媒量やレシーバタンク内の冷媒量は、結果的に調節されるに過ぎないため、凝縮器内の冷媒量に対して凝縮器の状態が適切に反映されていない恐れがある。
本発明は、上述した事情に鑑みてなされたものであり、運転負荷が異なる場合でも、凝縮器の状態に基づいて成績係数を良好にしながら凝縮器を機能させることができる空気調和装置を提供することを目的とする。
【課題を解決するための手段】
【0005】
前記課題を解決するために、本発明は、圧縮機と、凝縮器と、減圧装置と、蒸発器とが配管で接続された冷媒回路を備える空気調和装置であって、前記凝縮器の出口に配置され前記凝縮器内の冷媒の流出量を調整する膨張弁と、前記膨張弁と前記減圧装置との間に配置され前記凝縮器から流出した冷媒を貯蔵可能なレシーバタンクと、前記膨張弁を開閉制御して前記凝縮器内の冷媒の液量を調整する制御部とを備え、前記制御部は、前記凝縮器から流出する冷媒の温度と前記凝縮器の外気温度との温度差分が、予め設定された所定値に近づくように前記膨張弁を開閉制御することを特徴とする。
これによれば、凝縮器から流出する冷媒の温度と凝縮器の外気温度という凝縮器の状態に基づいて、膨張弁を開閉制御することができる。また、凝縮器内の冷媒の液量を調整する際に余る冷媒はレシーバタンクに貯蔵させることができる。
【発明の効果】
【0006】
本発明によれば、運転負荷が異なる場合でも、凝縮器の状態に基づいて成績係数を良好にしながら凝縮器を機能させることができる。
【図面の簡単な説明】
【0007】
図1】第1実施形態に係る空気調和装置の構成を示す図
図2】冷媒回路への封入冷媒量と成績係数と通年エネルギー消費効率との関係を示す図
図3】第1実施形態の空気調和装置の制御部のブロック図
図4】第1実施形態の凝縮器における冷媒の状態を示す模式図
図5】第1実施形態の凝縮器に保有される冷媒量に対する成績係数と凝縮圧力と凝縮器の出口の冷媒温度との関係を示す図
図6】第1実施形態の制御部の動作を示すフローチャート
【発明を実施するための形態】
【0008】
第1の発明は、圧縮機と、凝縮器と、減圧装置と、蒸発器とが配管で接続された冷媒回路を備える空気調和装置であって、前記凝縮器の出口に配置され前記凝縮器内の冷媒の流出量を調整する膨張弁と、前記膨張弁と前記減圧装置との間に配置され前記凝縮器から流出した冷媒を貯蔵可能なレシーバタンクと、前記膨張弁を開閉制御して前記凝縮器内の冷媒の液量を調整する制御部とを備え、前記制御部は、前記凝縮器から流出する冷媒の温度と前記凝縮器の外気温度との温度差分が、予め設定された所定値に近づくように前記膨張弁を開閉制御する。
これによれば、凝縮器から流出する冷媒の温度と凝縮器の外気温度という凝縮器の状態に基づいて、膨張弁を開閉制御することにより、凝縮器内の冷媒の液量を調整することができると共に、成績係数を良好とする場合に余る冷媒はレシーバタンクに貯蔵させることができる。このため、運転負荷が異なる場合でも、凝縮器の状態に基づいて成績係数を良好にしながら凝縮器を機能させることができる。
【0009】
第2の発明は、前記制御部は、前記温度差分が前記所定値よりも大きい場合に前記膨張弁を閉制御し、前記温度差分が前記所定値よりも小さい場合に前記膨張弁を開制御する。
これによれば、温度差分が所定値よりも大きい場合には凝縮器の過冷却度が小さいと想定され易いため、膨張弁を閉制御することにより凝縮器内の冷媒の液量を増大させ易くすると共に、温度差分が所定値よりも小さい場合には凝縮器の過冷却度が大きいと想定され易いため、膨張弁を開制御することにより凝縮器内の冷媒の液量を減少させ易くすることで、成績係数が最高となるように、過冷却度を調整し易くできる。
【0010】
第3の発明は、前記制御部は、前記温度差分が前記所定値よりも大きい場合に、前記凝縮器から流出する冷媒の過冷却度が目標の過冷却度よりも大きい場合には、前記膨張弁を閉制御に代えて開制御する。
これによれば、温度差分が所定値よりも大きい場合には膨張弁を閉制御すれば成績係数が良くなると想定されるが、凝縮器の負荷によっては膨張弁の開閉と過冷却度の大小は相関しないため、目標の過冷却度に基づく制御により、より精度良く成績係数が最高となるように凝縮器内の冷媒の液量を調整できる。
【0011】
第4の発明は、前記制御部は、前記温度差分が前記所定値よりも小さい場合に、前記凝縮器から流出する冷媒の過冷却度が以前の過冷却度よりも大きく且つ前記過冷却度が目標の過冷却度よりも小さい場合には、前記膨張弁を開制御に代えて閉制御する。
これによれば、温度差分が所定値よりも小さい場合には膨張弁を開制御すれば成績係数が良くなると想定されるが、凝縮器の負荷によっては膨張弁の開閉と過冷却度の大小は相関しないため、目標の過冷却度に基づく制御により、より精度良く成績係数が最高となるように凝縮器内の冷媒の液量を調整できる。
【0012】
第5の発明は、前記制御部は、前記温度差分が前記所定値よりも小さい場合に、前記凝縮器から流出する冷媒の過冷却度が以前の過冷却度よりも小さく且つ前記過冷却度が目標の過冷却度よりも小さい場合には、前記膨張弁を開制御に代えて開閉制御しない。
これによれば、温度差分が所定値よりも小さい場合に、凝縮器から流出する冷媒の過冷却度が以前の過冷却度よりも小さい場合には、膨張弁の開度が既に小さいと想定されるため、過冷却度が目標の過冷却度よりも小さい場合でも、膨張弁を閉制御しないことにより、膨張弁を閉め過ぎることを抑制できる。
【0013】
第6の発明は、前記圧縮機の出口側に配置され前記圧縮機から流出する冷媒の圧力を検知する高圧センサと、前記凝縮器の出口側に配置され前記凝縮器から流出する冷媒の温度を検知する冷媒温度センサと、を備え、前記制御部は、前記高圧センサの検知結果に基づいて前記凝縮器の冷媒の飽和温度を決定すると共に、前記飽和温度と、前記冷媒温度センサの検知結果に基づいて、前記凝縮器から流出する冷媒の過冷却度を演算する。
これによれば、高圧センサと冷媒温度センサとの検知結果に基づいて、過冷却度を演算することができる。
【0014】
第7の発明は、前記凝縮器の外気の温度を検知する外気温度センサと、前記凝縮器の冷媒の出口に配置され前記凝縮器から流出する冷媒の温度を検知する冷媒温度センサと、を備え、前記制御部は、前記外気温度センサと前記冷媒温度センサとの検知結果に基づいて、前記凝縮器から流出する冷媒の温度と前記凝縮器の外気温度との温度差分を演算する。
これによれば、外気温度センサと冷媒温度センサの検知結果に基づいて、温度差分を演算することができる。
【0015】
第8の発明は、第1負荷モードと、前記第1負荷モードとは異なる第2負荷モードとで運転可能に構成され、前記レシーバタンクは、前記冷媒回路に収容される冷媒について、前記第1負荷モードの成績係数が最高となる冷媒の量と、前記第2負荷モードの成績係数が最高となる冷媒の量と、の差分以上の量を収容可能な容量に構成されている。
これによれば、空気調和装置の運転負荷が異なる第1負荷モードと第2負荷モードのいずれでも、成績係数が最高となる冷媒の量で運転することができる。
【0016】
以下、本発明の一実施の形態を、図面を参照して説明する。
[1.第1実施形態]
図1は、第1実施形態に係る空気調和装置1の構成を示す図である。
空気調和装置1は、圧縮機2と、凝縮器3と、減圧装置4と、蒸発器5と、を備える。また、空気調和装置1は、膨張弁11と、レシーバタンク12と、過冷却熱交換器13と、リキッド弁14とを備える。
【0017】
圧縮機2と、凝縮器3と、膨張弁11と、レシーバタンク12と、過冷却熱交換器13と、減圧装置4と、蒸発器5とが、冷媒配管15で接続されている。また、過冷却熱交換器13と、リキッド弁14とが、分岐配管16で接続されている。
圧縮機2と、凝縮器3と、膨張弁11と、レシーバタンク12と、過冷却熱交換器13と、減圧装置4と、蒸発器5と、リキッド弁14と、冷媒配管15と、分岐配管16とで、本実施形態では、冷媒回路17が構成される。冷媒回路17では、冷媒が矢印Y1の方向に循環する。
【0018】
圧縮機2は、入口側から冷媒を吸引して圧縮し、出口側から吐出する。
凝縮器3は、凝縮器3内のガス冷媒と、凝縮器3の外気とを熱交換させて、ガス冷媒を凝縮させる。
減圧装置4は、高圧の冷媒を減圧して膨張させる。減圧装置4は、膨張弁で構成されており、開度を調整制御可能に構成されている。
蒸発器5は、蒸発器5内の液冷媒と、蒸発器5の外気とを熱交換させ、液冷媒を気化させる。
【0019】
凝縮器3の出口側には、膨張弁11が配置されている。膨張弁11は、開度を調整制御可能に構成されている。膨張弁11の開度が調整されることにより、凝縮器3から流出する冷媒の流出量が調整可能である。
膨張弁11の下流側には、レシーバタンク12が配置されている。レシーバタンク12には、凝縮器3から流出した冷媒が貯蔵可能に構成されている。
【0020】
レシーバタンク12の下流側には過冷却熱交換器13が配置されている。
レシーバタンク12の下流側であって、過冷却熱交換器13の上流側には、冷媒配管15から分岐する分岐配管16が接続されている。分岐配管16には、リキッド弁14が接続されている。リキッド弁14は、開度を調整制御可能に構成されている。リキッド弁14は、レシーバタンク12から流出した冷媒を減圧して膨張させる。
【0021】
リキッド弁14の下流側には、過冷却熱交換器13が配置される。過冷却熱交換器13では、リキッド弁14で膨張して過冷却熱交換器13の蒸発側を流れる冷媒と、凝縮器3で凝縮されて過冷却熱交換器13の凝縮側を流れる冷媒とが熱交換可能に設けられている。これにより、過冷却熱交換器13は、過冷却熱交換器13の凝縮側を流れる冷媒を冷却して過冷却する、あるいは、すでに過冷却状態で凝縮側を流れる冷媒の過冷却度合いを大きくする。
過冷却熱交換器13から延びる分岐配管16は、蒸発器5の下流側であって圧縮機2の上流側で冷媒配管15に接続される。
【0022】
圧縮機2の冷媒の入口側には、冷媒の圧力を検知する低圧センサ21が配置されている。低圧センサ21は、圧縮機2に流入する冷媒の圧力を検知する。
圧縮機2の冷媒の出口側には、冷媒の圧力を検知する高圧センサ22が配置されている。高圧センサ22は、圧縮機2から圧縮されて流出する冷媒の圧力を検知する。
【0023】
凝縮器3には、外気温度センサ23が配置されている。外気温度センサ23は、凝縮器3に吸い込まれる外気の温度を検知する。
凝縮器3の冷媒の出口側には、冷媒温度センサ24が配置されている。冷媒温度センサ24は、凝縮器3から流出する冷媒の温度を検知する。
【0024】
図2は、冷媒回路17への封入冷媒量と成績係数C10、C20、C11、C21と通年エネルギー消費効率A1、A2との関係を示す図である。なお、図2では、横軸は封入冷媒量を示すが、縦軸は示される値の種類毎に対応する単位をとり、図の上下の位置関係は、異なる値の大小関係を必ずしも表すものではない。
図2において、左側はレシーバタンク12が無い場合の関係を示し、右側はレシーバタンク12が備えられた本実施形態の空気調和装置1の関係を示す。
一般に、成績係数(COP:Coefficient Of Performance)C10、C20、C11、C21や、通年エネルギー消費効率(APF:Annual Performance Factor)A1、A2は、冷媒回路17に封入された封入冷媒量に応じて変化する。
【0025】
例えば、レシーバタンク12が無い場合には、定格冷房標準(第1負荷モード)の成績係数C10や、定格冷房標準よりも運転負荷の小さい中間冷房中温(第2負荷モード)の成績係数C20は、封入冷媒量が増加するにしたがって山状に増減し、成績係数C10、C20は、それぞれ、封入冷媒量R1、R2の場合に、最高値を示す。定格冷房標準の成績係数C10は封入冷媒量が多い領域で増減し、また、中間冷房中温の成績係数C20は、封入冷媒量が少ない場合に増減する。成績係数C10が最高値となる封入冷媒量R1は、成績係数C20が最高値となる封入冷媒量R2よりも大きい。
【0026】
また、通年エネルギー消費効率A1は、封入冷媒量が増加するにしたがって増減し、封入冷媒量R2のときに最高値を示す。通年エネルギー消費効率A1は、成績係数C20が最高値を示す封入冷媒量R2の場合と、成績係数C10が最高値を示す封入冷媒量R1の場合とでは、値に差ΔA1が生じる。
【0027】
一方、レシーバタンク12を設ける場合、冷媒回路17に封入される封入冷媒量が、成績係数C10、C20が最高値を示す封入冷媒量R1、R2よりも多い場合には、各運転時に、多い分の余剰冷媒量をレシーバタンク12に一時的に貯蔵することが可能となる。したがって、例えば、封入冷媒量R1、R2の差分以上の容量Vを有するレシーバタンク12を冷媒回路17に配置することで、運転時に、余剰冷媒量をレシーバタンク12に一時的に貯蔵させて運転することが可能となる。これにより、定格冷房標準の成績係数C10と、中間冷房中温の成績係数C20とは、右側の図のように、封入冷媒量R1、R2に容量Vの冷媒量を加算した範囲全体で最高値を有する成績係数C11、C21の曲線にすることができる。成績係数C11、C21では、最高値を示す封入冷媒量が範囲W0で重複する。
【0028】
この場合の通年エネルギー消費効率A2では、重複する範囲W0において、最高値を示し、その最高値は、レシーバタンク12が無い場合の通年エネルギー消費効率A1の最高値よりも差ΔA2だけ大きい。レシーバタンク12を設け、重複する範囲の封入冷媒量を冷媒回路17に封入することで、運転負荷が異なる場合であっても、最高の成績係数C11、C21にすることができる。
【0029】
図3は、第1実施形態の空気調和装置1の制御部100のブロック図である。
制御部100は、CPUやMPU等のプログラムを実行するプロセッサ110、及び、記憶部120を備え、空気調和装置1の各部を制御する。制御部100は、プロセッサ110が、記憶部120に記憶された制御プログラム121を読み出して処理を実行するように、ハードウェア及びソフトウェアの協働により各種処理を実行する。
【0030】
記憶部120は、プロセッサ110が実行するプログラムや、プロセッサ110により処理されるデータを記憶する記憶領域を有する。記憶部120は、プロセッサ110が実行する制御プログラムや、空気調和装置1の各種設定に係る設定データ、その他の各種データを記憶する。記憶部120は、プログラムやデータを不揮発的に記憶する不揮発性記憶領域を有する。また、記憶部120は、揮発性記憶領域を備え、プロセッサ110が実行するプログラムや処理対象のデータを一時的に記憶するワークエリアを構成してもよい。
【0031】
制御部100には、制御部100に信号を入力する要素として、入力部101と、低圧センサ21と、高圧センサ22と、外気温度センサ23と、冷媒温度センサ24とが電気的に接続されている。
【0032】
入力部101は、操作スイッチや、タッチパネル、マウス、キーボード等の入力手段を備え、作業者の入力手段に対する操作を検出し、検出結果を制御部100に出力する。制御部100は、入力部101からの入力に基づいて、入力手段に対する操作に対応する処理を実行する。
【0033】
制御部100には、制御部100が制御信号を出力する要素として、表示部102と、圧縮機2と、膨張弁11と、減圧装置4と、リキッド弁14とが制御可能に電気的に接続されている。
【0034】
表示部102は、LEDや表示パネル等を備え、制御部100の制御に従って、LEDの所定の態様での点灯/点滅/消灯や、表示パネルへの情報の表示等を実行する。
【0035】
制御部100は、入力部101と、低圧センサ21と、高圧センサ22と、外気温度センサ23と、冷媒温度センサ24の入力信号、検知信号に基づいて、表示部102と、圧縮機2と、膨張弁11と、減圧装置4と、リキッド弁14とを制御する。
【0036】
図4は、第1実施形態の凝縮器3における冷媒の状態を示す模式図である。
凝縮器3では、圧縮機2で圧縮された高温、高圧のガス冷媒Rgが凝縮されて液冷媒Rlとなる。液冷媒Rlは飽和温度よりも冷却された場合に過冷却される。液温度に対する飽和温度の差分を過冷却度SCという。
図4において、領域W1は、ガス冷媒Rgが液冷媒Rlに凝縮する凝縮域(以降、凝縮域W1という)を示す。また、領域W2は、液冷媒Rlからガス冷媒Rgが発生するフラッシュガス領域(以降、フラッシュガス領域W2という)を示す。さらに、領域W3は、液冷媒Rlが過冷却された過冷却領域(以降、過冷却領域W3という)を示す。
凝縮域W1では、ガス冷媒Rgと液冷媒Rlの面積と、凝縮圧力には相関関係がある。
【0037】
図5は、第1実施形態の凝縮器3に保有される冷媒量に対する成績係数Cと凝縮圧力Pと凝縮器3の出口の冷媒温度Tとの関係を示す図である。図5において、横軸は、凝縮器3に保有される冷媒量を示すが、縦軸は、示す値に応じた単位をとる。
図5に示すように、冷媒温度Tは、冷媒量が増加するのに応じて、外気温度T0に向かって単調に漸減する。また、凝縮圧力Pは、冷媒量が増加するのに応じて右上がりに増大する。また、成績係数Cは、冷媒量が増加するのに応じて増減し、冷媒量R0の場合に最大値を示す。
冷媒量R0の近傍は、成績係数Cが良好であり凝縮器3を機能させる場合は、この冷媒量R0の近傍範囲となる冷媒量となるように運転させることが望ましい。そして、冷媒量は、冷媒重量を示すが、ガス冷媒Rgに比べて液冷媒Rlの密度が十倍以上あるため、液冷媒Rlの割合を調整することで、冷媒量の制御が可能となる。
【0038】
そこで、本実施形態の制御部100は、冷媒量の最適制御処理を実行する。冷媒量の最適制御処理では、外気温度T0に対する冷媒温度Tの差分である温度差分ΔT(=T-T0)が所定値ΔTaに近づくように膨張弁11を開閉制御して、凝縮器3の過冷却された液冷媒Rlの量を調整する。基本的には、膨張弁11の開閉制御により、凝縮器3内の凝縮圧力Pを制御可能となるため、それに応じて液冷媒の量も変更される。本実施形態において、温度差分ΔTが所定値ΔTaに近づくとは、温度差分ΔTが所定値ΔTaに近づく場合と、温度差分ΔTが所定値ΔTaに対して予め設定された温度の範囲ΔTa+α~ΔTa-β(図5参照)に留まることも意味するものとする。範囲ΔTa+α~ΔTa-βは、冷媒量R0の成績係数Cに対して許容可能な成績係数Cとなる範囲である。なお、所定値ΔTaとしては、例えば、2℃以上5℃以下を設定可能である。本実施形態では、一例として、3℃を設定している。
【0039】
図6は、第1実施形態の制御部100の動作を示すフローチャートである。
次に、空気調和装置1の制御部100が実行する冷媒量の最適制御処理の動作を説明する。
【0040】
制御部100は、冷媒量の最適制御処理を開始すると、圧縮機2の運転設定に応じた運転負荷(運転モード)の情報を取得する(ST1)。
制御部100は、センサ22~24により検知する(ステップST2)。すなわち、制御部100は、外気温度センサ23より凝縮器3の外気温度T0を検知する。また、制御部100は、冷媒温度センサ24より凝縮器3から流出する冷媒の冷媒温度Tを検知する。さらに、制御部100は、高圧センサ22により、圧縮機2から流出する冷媒の冷媒圧力を検知する。
制御部100は、外気温度T0に対する冷媒温度Tの差分である温度差分ΔTを演算する(ステップST3)。
【0041】
制御部100は、予め設定されたルックアップテーブル情報に基づいて、飽和温度T1と、目標過冷却度SC0を決定する(ステップST4)。すなわち、制御部100は、予め設定された第1のルックアップテーブル情報を参照して、検知された冷媒圧力に対応する飽和温度T1を決定する(ステップST4)。また、制御部100は、予め設定された第2のルックアップテーブル情報を参照して、圧縮機2の運転負荷と冷媒温度Tとに対応する目標とすべき目標過冷却度SC0を決定する(ステップST4)。
制御部100は、冷媒温度Tに対する飽和温度T1の差分である過冷却度SCを演算する(ステップST5)。
【0042】
制御部100は、温度差分ΔTが予め設定された所定値ΔTaよりも大きいか否かを判別する(ステップST6)。
【0043】
制御部100は、温度差分ΔTが所定値ΔTaよりも大きいと判別した場合(ステップST6:YES)、過冷却度SCが目標過冷却度SC0よりも小さいか否かを判別する(ステップST7)。
制御部100は、過冷却度SCが目標過冷却度SC0よりも小さいと判別した場合(ステップST7:YES)、所定の開度分、膨張弁を閉制御する(ステップST8)。
制御部100は、過冷却度SCが目標過冷却度SC0よりも小さくない、すなわち、過冷却度SCが目標過冷却度SC0よりも大きい又は過冷却度SCが目標過冷却度SC0に等しいと判別した場合(ステップST7:NO)、所定の開度分、膨張弁を開制御する(ステップST9)。
制御部100は、過冷却度SCの記憶情報を更新して保持する(ステップST10)。これにより、現在の過冷却度SCを以前の過冷却度SC1として参照可能とする。
【0044】
ステップST6において、制御部100は、温度差分ΔTが所定値ΔTaよりも大きくない、すなわち、温度差分ΔTが所定値ΔTaよりも小さい又は温度差分ΔTが所定値ΔTaに等しいと判別した場合(ステップST6:NO)、過冷却度SCが、記憶保持されている前過冷却度SC1よりも大きいか否かを判別する(ステップST11)。
制御部100は、過冷却度SCが前過冷却度SC1よりも大きいと判別した場合(ステップST11:YES)、過冷却度SCが目標過冷却度SC0よりも小さいか否かを判別する(ステップST12)。
【0045】
制御部100は、過冷却度SCが目標過冷却度SC0よりも小さいと判別した場合(ステップST12:YES)、所定の開度分、膨張弁11を閉制御する(ステップST13)。
制御部100は、過冷却度SCが、目標過冷却度SC0よりも小さくない、すなわち、過冷却度SCが目標過冷却度SC0よりも大きい又は過冷却度SCが目標過冷却度SC0と等しいと判別した場合(ステップST12:NO)、所定の開度分、膨張弁11を開制御する(ステップST14)。
【0046】
制御部100は、過冷却度SCが前過冷却度SC1よりも大きくない、すなわち、過冷却度SCが前過冷却度SC1よりも小さい又は過冷却度SCが前過冷却度SC1と等しいと判別した場合(ステップST11:NO)、過冷却度SCが目標過冷却度SC0よりも小さいか否かを判別する(ステップST21)。
制御部100は、過冷却度SCが目標過冷却度SC0よりも小さいと判別した場合(ステップST21:YES)、膨張弁11の開度を制御せずにステップST10に移行する。
制御部100は、過冷却度SCが目標過冷却度SC0よりも小さくない、すなわち、過冷却度SCが目標過冷却度SC0よりも大きい又は過冷却度SCが目標過冷却度SC0と等しいと判別した場合(ステップST21:NO)、所定の開度分、膨張弁11を開制御する(ステップST22)。
【0047】
そして、ステップST10において、過冷却度の記憶情報を更新して保持すると、制御部100は、運転終了か否かを判別する(ステップST23)。
制御部100は、運転終了と判別した場合(ステップST23:YES)、冷媒量の最適制御処理を終了する。
制御部100は、運転終了でないと判別した場合(ステップST23:NO)、ステップST1に移行する。
【0048】
空気調和装置1では、圧縮機2が動作を開始すると、その運転の負荷に応じて冷媒が循環する。本実施形態では、凝縮器3の外気温度T0と、凝縮器3の出口の冷媒温度Tとに基づいて、膨張弁11の開度を調節しながら、レシーバタンク12に余剰冷媒を貯蔵させることで、凝縮器3内の液冷媒の重量が調節される。これにより、負荷に応じて最適な成績係数Cとなるように、凝縮器3の過冷却度SCが調整される。
【0049】
従来は、蒸発器の出口温度や、圧縮機の運転台数などに基づいて、弁の開度を調節して、凝縮圧力を調整しており、結果的に凝縮器内の冷媒の重量が調節されるに過ぎない。このため、凝縮器内の冷媒量やレシーバタンク内の冷媒量に対して凝縮器の状態が適切に反映されていない恐れがある。
【0050】
これに対して、本実施形態では、凝縮器3の出口の冷媒温度Tと、凝縮器3の外気温度T0とに基づく温度差分ΔTに基づいて、膨張弁11の開閉制御を行っており、凝縮器3の状態を適切に反映させた状態で、凝縮器3内の液冷媒Rlの量を調整して、過冷却度SCを調整し易くなっている。したがって、運転負荷が異なる場合でも、凝縮器3の状態に基づいて成績係数Cが良好な状態にしながら凝縮器3を機能させることができる。
【0051】
具体的には、冷媒量の最適制御処理のステップST6により、凝縮器3の出口の冷媒温度Tと、凝縮器3の外気温度T0との温度差分ΔTが所定値ΔTaより大きいか否か判別される。ここで、図5に示すように、温度差分ΔTが予め設定された所定値ΔTaよりも大きい場合、凝縮器3の液冷媒の量が少なくて過冷却度が小さく、凝縮器3の負荷は小さい状態と想定される。また、温度差分ΔTが予め設定された所定値ΔTaよりも小さい場合、凝縮器3の液冷媒の量が多くて過冷却度が大きく、凝縮器3の負荷は大きい状態と想定される。したがって、温度差分ΔTが予め設定された所定値ΔTaよりも大きいか否かを判別することにより、膨張弁11を制御可能とする。これにより、凝縮器3内の液冷媒Rlの量を調整可能であり、過冷却度を調整可能である。
【0052】
また、空気調和装置1の運転負荷や、凝縮器3の外気温度、凝縮器3に取り入れられる外気の量などの外部要因により凝縮器3の負荷が変動した場合には、膨張弁11の開閉と、過冷却度SCの大小関係が逆になる場合があるため、本実施形態の冷媒量の最適制御処理では、さらに、ステップST7、ST12、ST21により、過冷却度SCと目標過冷却度SC0との大小を判別して、膨張弁11の開閉制御を行っている。したがって、温度差分ΔTと所定値ΔTaとの大小に基づくのみで膨張弁11の開閉制御を行う場合に比べて、より精度良く成績係数Cを向上させることができる。
【0053】
また、温度差分ΔTが所定値ΔTaよりも小さい場合には過冷却度SCが大きく凝縮器3の負荷が大きいと想定される。この場合に、現在の過冷却度SCが以前の過冷却度SC1よりも小さい場合には、膨張弁11の開度が十分に小さい場合がある。このため、冷媒量の最適制御処理のステップST11、ST21では、温度差分ΔTが所定値ΔTaよりも小さく且つ現在の過冷却度SCが以前の過冷却度SC1よりも小さい場合には、目標過冷却度SC0に現在過冷却度SCが到達してなくても、膨張弁11を閉制御しない。これにより、冷媒回路17を閉じてしまい冷媒の循環を止めてしまうことを抑制している。
【0054】
以上説明したように、本実施形態の空気調和装置1は、圧縮機2と、凝縮器3と、減圧装置4と、蒸発器5とが冷媒配管15で接続された冷媒回路17を備える空気調和装置1であって、凝縮器3の出口に配置され凝縮器3内の冷媒の流出量を調整する膨張弁11と、膨張弁11と減圧装置4との間に配置され凝縮器3から流出した冷媒を貯蔵可能なレシーバタンク12と、膨張弁11を開閉制御して凝縮器3内の冷媒の液量を調整する制御部100とを備え、制御部100は、凝縮器3から流出する冷媒の温度Tと凝縮器3の外気温度T0との温度差分ΔTが、予め設定された所定値ΔTaに近づくように膨張弁11を開閉制御する。
これによれば、凝縮器3から流出する冷媒の温度Tと凝縮器3の外気温度T0という凝縮器3の状態に基づいて、膨張弁11を開閉制御することにより、凝縮器3内の冷媒の液量を調整することができると共に、成績係数Cを良好とする場合に余る冷媒はレシーバタンク12に貯蔵させることができる。このため、運転負荷が異なる場合でも、凝縮器3の状態に基づいて成績係数Cを良好にしながら凝縮器3を機能させることができる。
【0055】
本実施形態では、制御部100は、温度差分ΔTが所定値ΔTaよりも大きい場合に膨張弁11を閉制御し、温度差分ΔTが所定値ΔTaよりも小さい場合に膨張弁11を開制御する。
これによれば、温度差分ΔTが所定値ΔTaよりも大きい場合には凝縮器3の過冷却度SCが小さいと想定され易いため、膨張弁11を閉制御することにより凝縮器3内の冷媒の液量を増大させ易くすると共に、温度差分ΔTが所定値ΔTaよりも小さい場合には凝縮器3の過冷却度SCが大きいと想定され易いため、膨張弁11を開制御することにより凝縮器3内の冷媒の液量を減少させ易くすることで、成績係数Cが最高となるように、過冷却度を調整し易くできる。
【0056】
また、本実施形態では、制御部100は、温度差分ΔTが所定値ΔTaよりも大きい場合に、凝縮器3から流出する冷媒の過冷却度SCが目標の過冷却度SC0よりも大きい場合には、膨張弁11を閉制御に代えて開制御する。
これによれば、温度差分ΔTが所定値ΔTaよりも大きい場合には膨張弁11を閉制御すれば成績係数Cが良くなると想定されるが、外部要因により凝縮器3の負荷が変動した場合には、膨張弁11の開閉と過冷却度SCの大小は相関しないため、目標の過冷却度SC0に基づく制御により、より精度良く成績係数Cが最高となるように凝縮器3内の冷媒の液量を調整できる。
【0057】
また、本実施形態では、制御部100は、温度差分ΔTが所定値ΔTaよりも小さい場合に、凝縮器3から流出する冷媒の過冷却度SCが以前の過冷却度SC1よりも大きく且つ過冷却度SCが目標過冷却度SC0よりも小さい場合には、膨張弁11を開制御に代えて閉制御する。
これによれば、温度差分が所定値よりも小さい場合には膨張弁を開制御すれば成績係数が良くなると想定されるが、外部要因により凝縮器3の負荷が変動した場合には、膨張弁11の開閉と過冷却度SCの大小は相関しないため、目標の過冷却度に基づく制御により、より精度良く成績係数が最高となるように凝縮器内の冷媒の液量を調整できる。
【0058】
また、本実施形態では、制御部100は、温度差分ΔTが所定値ΔTaよりも小さい場合に、凝縮器3から流出する冷媒の過冷却度SCが前過冷却度SC1よりも小さく且つ過冷却度SCが目標の過冷却度SC0よりも小さい場合には、膨張弁11を開制御に代えて開閉制御しない。
これによれば、温度差分ΔTが所定値ΔTaよりも小さい場合に、凝縮器3から流出する冷媒の過冷却度SCが前過冷却度SC1よりも小さい場合には、膨張弁11の開度が既に小さいと想定されるため、過冷却度SCが目標過冷却度SC1よりも小さい場合でも、膨張弁11を閉制御しないことにより、膨張弁11を閉め過ぎることを抑制できる。
【0059】
また、本実施形態では、圧縮機2の出口側に配置され圧縮機2から流出する冷媒の圧力を検知する高圧センサ22と、凝縮器3の出口側に配置され凝縮器3から流出する冷媒の温度Tを検知する冷媒温度センサ24と、を備え、制御部100は、高圧センサ22の検知結果に基づいて凝縮器3の冷媒の飽和温度T1を決定すると共に、飽和温度T1と、冷媒温度センサ24の検知結果に基づいて、凝縮器3から流出する冷媒の過冷却度SCを演算する。
これによれば、高圧センサ22と冷媒温度センサ24との検知結果に基づいて、過冷却度SCを演算することができる。
【0060】
また、本実施形態では、凝縮器3の外気の温度T0を検知する外気温度センサ23と、凝縮器3の冷媒の出口に配置され凝縮器3から流出する冷媒の温度Tを検知する冷媒温度センサ24と、を備え、制御部100は、外気温度センサ23と冷媒温度センサ24との検知結果に基づいて、凝縮器3から流出する冷媒の温度Tと凝縮器3の外気温度T0との温度差分ΔTを演算する。
これによれば、外気温度センサ23と冷媒温度センサ24の検知結果に基づいて、温度差分ΔTを演算することができる。
【0061】
また、本実施形態では、定格冷房標準と、定格冷房標準とは異なる中間冷房中温とで運転可能に構成され、レシーバタンク12は、冷媒回路17に収容される冷媒について、定格冷房標準の成績係数C11が最高となる冷媒の量と、中間冷房中温の成績係数C21が最高となる冷媒の量と、の差分以上の量を収容可能な容量Vに構成されている。
これによれば、空気調和装置1の運転負荷が異なる定格冷房標準と中間冷房中温のいずれでも、成績係数Cが最高となる冷媒の量で運転することができる。
【0062】
上述した各実施形態は、あくまでも本発明の一態様を示すものであり、本発明の範囲内で任意に変形および応用が可能である。
【0063】
上述した各実施形態では、冷媒回路17の各機器はそれぞれ一つずつ設けられる構成を説明したが、一部の機器を複数設けてもよい。
【0064】
また、上述した各実施形態では、四方弁など冷媒の循環方向を切り替える構成にしてもよい。この場合、冷房運転と暖房運転とで、ある熱交換器の役割は凝縮器と蒸発器とで切り替わるが、本発明は凝縮器として機能する熱交換器に適用可能である。
【0065】
上述した実施形態では、定格冷房標準と、中間冷房中温の構成を説明したが、さらに負荷が異なる運転可能な構成でもよく、レシーバタンク12の容量Vは、各運転の成績係数が最高値を示す封入冷媒量に関する最大値と最小値との差分以上を収容可能な容量であればよい。
【0066】
また、制御部100の機能は、複数のプロセッサ、又は、半導体チップにより実現してもよい。
【0067】
また、図3に示した各部は一例であって、具体的な実装形態は特に限定されない。上述した実施形態においてソフトウェアで実現される機能の一部をハードウェアとしてもよく、或いは、ハードウェアで実現される機能の一部をソフトウェアで実現してもよい。
【0068】
また、例えば、図6に示す動作のステップ単位は、制御部100の各部の動作の理解を容易にするために、主な処理内容に応じて分割したものであり、処理単位の分割の仕方や名称によって、本発明が限定されることはない。処理内容に応じて、さらに多くのステップ単位に分割してもよい。また、1つのステップ単位がさらに多くの処理を含むように分割してもよい。また、そのステップの順番は、本発明の趣旨に支障のない範囲で適宜に入れ替えてもよい。
【産業上の利用可能性】
【0069】
以上のように、本発明に係る空気調和装置は、レシーバタンクを備える用途に利用可能である。
【符号の説明】
【0070】
1 空気調和装置
2 圧縮機
3 凝縮器
4 減圧装置
5 蒸発器
11 膨張弁
12 レシーバタンク
15、16 配管
17 冷媒回路
22 高圧センサ
23 外気温度センサ
24 冷媒温度センサ
100 制御部
C 成績係数
R0 冷媒量
SC 過冷却度
SC0 目標の過冷却度
SC1 以前の過冷却度
T 冷媒温度(冷媒の温度)
T0 外気温度
T1 飽和温度
ΔT 温度差分
ΔTa 所定値
図1
図2
図3
図4
図5
図6