(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-02-15
(45)【発行日】2024-02-26
(54)【発明の名称】水処理システム、水処理システムの運転管理支援システム及び水処理システムの運転方法
(51)【国際特許分類】
C02F 1/44 20230101AFI20240216BHJP
B01D 61/08 20060101ALI20240216BHJP
B01D 65/02 20060101ALI20240216BHJP
B01D 61/12 20060101ALI20240216BHJP
G06Q 10/04 20230101ALI20240216BHJP
【FI】
C02F1/44 A
B01D61/08
B01D65/02
B01D61/12
C02F1/44 D
G06Q10/04
(21)【出願番号】P 2020064988
(22)【出願日】2020-03-31
【審査請求日】2022-07-07
(73)【特許権者】
【識別番号】591030651
【氏名又は名称】水ing株式会社
(74)【代理人】
【識別番号】110000523
【氏名又は名称】アクシス国際弁理士法人
(72)【発明者】
【氏名】隋 鵬哲
(72)【発明者】
【氏名】島村 和彰
(72)【発明者】
【氏名】鈴木 美有
【審査官】相田 元
(56)【参考文献】
【文献】特開2007-185648(JP,A)
【文献】特開2001-327967(JP,A)
【文献】国際公開第2017/022113(WO,A1)
【文献】特開平08-126882(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B01D 53/22
B01D 61/00-71/82
C02F 1/44
G06Q 10/04
(57)【特許請求の範囲】
【請求項1】
供給水を逆浸透膜処理して濃縮水及び透過水を得る逆浸透膜装置と、
前記供給水の水温、pH、シリカ濃度、ナトリウム濃度、アルミニウム濃度、カルシウム濃度の少なくともいずれかを含む水質情報と、前記逆浸透膜装置に供給する前記供給水を加圧する加圧ポンプの吐出圧、前記透過水の流量、前記濃縮水の流量、逆浸透膜のフラックスの情報の少なくともいずれかを含む逆浸透膜装置情報とを含む逆浸透膜運転情報を収集し、収集した前記逆浸透膜運転情報を用いた機械学習により得られる学習済みモデルに基づいて、前記逆浸透膜装置の圧力損失及び/又は前記透過水の水質を
予測部で予測し、該予測の結果に基づいて、前記逆浸透膜装置の運転条件及び/又はメンテナンスタイミング情報を含む最適化情報を
最適化情報作製部で作製し、作製された前記最適化情報に基づいて前記逆浸透膜装置を
制御装置で制御する運転管理支援システムと
を備え
たことを特徴とする水処理システム。
【請求項2】
供給水を逆浸透膜処理して濃縮水及び透過水を得る逆浸透膜装置と、
前記供給水の水質情報、前記逆浸透膜装置に供給する前記供給水を加圧する加圧ポンプの吐出圧、前記透過水の流量、前記濃縮水の流量、逆浸透膜のフラックスの情報を含む逆浸透膜運転情報を収集し、収集した前記逆浸透膜運転情報を用いた機械学習により得られる学習済みモデルに基づいて、前記逆浸透膜装置の圧力損失及び/又は前記透過水の水質を予測し、該予測の結果に基づいて、前記逆浸透膜装置の運転条件及び/又はメンテナンスタイミング情報を含む最適化情報を作製し、作製された前記最適化情報に基づいて前記逆浸透膜装置を制御する運転管理支援システムと
を備え
たことを特徴とする水処理システム。
【請求項3】
前記逆浸透膜運転情報を用いた前記機械学習により得られる前記学習済みモデルに基づいて、前記透過水の導電率を予測することを含む請求項1又は2に記載の水処理システム。
【請求項4】
前記運転管理支援システムが、前記予測の結果に基づいて、前記運転条件として、前記加圧ポンプの前記吐出圧を制御する吐出圧制御情報及び/又は前記透過水の造水量を制御する透過水造水量制御情報についての前記最適化情報を作製し、作製した前記最適化情報に基づいて、前記加圧ポンプの吐出圧及び/又は前記透過水の造水量を制御することを特徴とする請求項1~3のいずれか1項に記載の水処理システム。
【請求項5】
前記運転管理支援システムが、前記予測の結果に基づいて、前記メンテナンスタイミング情報として、前記逆浸透膜装置の膜洗浄タイミング及び洗浄時間の制御情報を含む洗浄タイミング制御情報と、前記逆浸透膜装置の膜交換タイミングの制御情報を含む交換タイミング制御情報とについての前記最適化情報を作製し、作製した前記洗浄タイミング制御情報及び前記交換タイミング制御情報に基づいて、最適となる前記逆浸透膜装置の膜洗浄タイミング又は膜交換タイミングとなるときに、警告信号を発することを特徴とする請求項1~4のいずれか1項に記載の水処理システム。
【請求項6】
前記逆浸透膜装置の上流側に配置され、被処理水を前処理して前記逆浸透膜装置に供給するための前記供給水を得る前処理装置を更に備え、
前記運転管理支援システムが、前記前処理装置の運転条件を最適化するための前処理装置運転制御情報を作製し、作製した前処理装置運転制御情報に基づいて、前記前処理装置を制御することを特徴とする請求項1~5のいずれか1項に記載の水処理システム。
【請求項7】
前記前処理装置が、前記被処理水に凝集剤を添加する凝集剤添加手段を備え、
前記運転管理支援システムが、前記被処理水の水質の予測結果に基づいて、前記被処理水に注入する凝集剤注入率の最適化情報を作製し、作製した前記凝集剤注入率の前記最適化情報に基づいて、前記凝集剤注入率を制御することを特徴とする請求項6に記載の水処理システム。
【請求項8】
供給水を逆浸透膜処理して濃縮水及び透過水を得る逆浸透膜装置と、
前記供給水の水質情報、前記逆浸透膜装置に供給する前記供給水を加圧する加圧ポンプの吐出圧、前記透過水の流量、前記濃縮水の流量、逆浸透膜のフラックスの情報の少なくともいずれかを含む逆浸透膜運転情報を収集し、収集した前記逆浸透膜運転情報を用いた機械学習により得られる学習済みモデルに基づいて、前記逆浸透膜装置の圧力損失及び/又は前記透過水の水質を予測し、該予測の結果に基づいて、前記逆浸透膜装置の運転条件及び/又はメンテナンスタイミング情報を含む最適化情報を作製し、作製された前記最適化情報に基づいて前記逆浸透膜装置を制御する運転管理支援システムと
を備え、
前記逆浸透膜装置が、
互いに直列に接続された複数の逆浸透膜バンクと、
前記逆浸透膜バンクの運転状況を測定可能な計器と、
を備え、
前記運転管理支援システムが、前記複数の逆浸透膜バンクのそれぞれに対してそれぞれ最適となる洗浄タイミング、洗浄時間、又は交換タイミングとなるように、前記最適化情報を作製し、作製した前記最適化情報に基づいて、前記逆浸透膜装置の運転を制御することを特徴とする水処理システム。
【請求項9】
供給水を逆浸透膜処理して濃縮水及び透過水を得る逆浸透膜装置を備える水処理システムの運転管理支援システムであって、
前記供給水の水温、pH、シリカ濃度、ナトリウム濃度、アルミニウム濃度、カルシウム濃度の少なくともいずれかの情報を含む水質情報と、前記逆浸透膜装置に供給する前記供給水を加圧する加圧ポンプの吐出圧、前記透過水の流量、前記濃縮水の流量、前記逆浸透膜のフラックスの情報の少なくともいずれかを含む逆浸透膜装置情報とを含む逆浸透膜運転情報を取得する取得部と、
前記逆浸透膜運転情報を用いて、前記水処理システムの学習済みモデルを作製する学習部と、
前記学習済みモデルを用いて、前記逆浸透膜の圧力損失及び/又は前記透過水の水質を予測する予測部と、
前記予測部の予測結果に基づいて、前記逆浸透膜装置の運転条件及び/又はメンテナンスタイミング情報を含む前記逆浸透膜装置の最適化情報を作製する最適化情報作製部と、
前記最適化情報に基づいて、前記水処理システムを制御するための制御信号を出力する制御部と、
を備える水処理システムの運転管理支援システム。
【請求項10】
供給水を逆浸透膜処理して濃縮水及び透過水を得る逆浸透膜装置を備える水処理システムの運転方法において、
前記供給水の水温、pH、シリカ濃度、ナトリウム濃度、アルミニウム濃度、カルシウム濃度の少なくともいずれかの情報を含む水質情報と、前記逆浸透膜に供給する前記供給水を加圧する加圧ポンプの吐出圧、前記透過水の流量、前記濃縮水の流量、前記逆浸透膜のフラックスの情報の少なくともいずれかを含む逆浸透膜装置情報とを含む逆浸透膜運転情報を収集し、
収集した前記逆浸透膜運転情報を用いた機械学習により得られる学習済みモデルに基づいて、前記逆浸透膜の圧力損失及び/又は前記透過水の水質を予測し、
予測の結果に基づいて、前記逆浸透膜装置の運転条件及び/又はメンテナンスタイミング情報を含む最適化情報を作製し、
前記最適化情報に基づいて、前記水処理システムを制御する
ことを特徴とする水処理システムの運転方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、水処理システムに関し、特に、逆浸透膜装置を利用した水処理システム、水処理システムの運転管理支援システム及び水処理システムの運転方法に関する。
【背景技術】
【0002】
工業用純水の製造、海水の淡水化、工業廃水の回収及び再利用には、逆浸透膜を用いた水処理システムが利用される。このような逆浸透膜を用いた水処理システムにおいては、被処理水温度の上昇、膜劣化に伴う脱塩率の低減の発生、濃縮の進行に伴うスケールの発生、膜ファウリングの進行に伴う濾過差圧の上昇等の種々の運転トラブルが生じることが知られており、運転条件を最適化するための種々の工夫がなされている。
【0003】
例えば、特開平8-180311号公報(特許文献1)には、水透過係数という指標を用いて逆浸透膜の状態を判断し、膜洗浄又は膜交換を行うタイミングを決定する技術が提案されている。
【0004】
特開2013-161336号公報(特許文献2)には、水処理プラントの運転において、複数の予測モデルと、プラント設備の稼働実績データ、現在の稼働状況に関するデータ、気象観測データ、及び天気予報に関するデータを用いて、プラント設備の監視対象量を予測する技術が提案されている。
【先行技術文献】
【特許文献】
【0005】
【文献】特開平8-180311号公報
【文献】特開2013-161336号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
特許文献1に記載される技術においては、逆浸透膜を評価するために、透過水流量、供給水圧力、及び供給水側膜面浸透圧の3つの測定結果に基づく水透過係数を算出している。しかしながら、逆浸透膜モジュールの性能評価に際しては、透過水流量、供給水圧力、及び供給水側膜面浸透圧以外の因子が複合的に影響を与える場合があるため、より適切な性能評価方法としてはまだ検討の余地がある。
【0007】
特許文献2に記載される技術は、主として、下水処理場での自動監視を目標としており、気象観測データ及び天気情報等を利用することには意味があると思われる。しかしながら、逆浸透膜の性能評価に対して特許文献2を適用しても最適な監視が行えるとは限らない。
【0008】
上記課題を鑑み、本発明は、逆浸透膜装置を備える水処理システム内の運転状況を適切に評価でき、水処理システムの運転条件の最適化を行うことが可能な水処理システム、水処理システムの運転管理支援システム及び水処理システムの運転方法を提供する。
【課題を解決するための手段】
【0009】
本発明者は鋭意検討を重ねた結果、逆浸透膜装置を備える水処理システムの運転情報を用いて人工知能モデルを作製し、作製した人工知能モデルを利用して逆浸透膜の圧力損失及び/又は透過水の水質を予測し、予測結果に基づき水処理システムの運転条件の最適化を図ることが有効であるとの知見を得た。
【0010】
上記の知見を基礎として完成した本発明は一側面において、供給水を逆浸透膜処理して濃縮水及び透過水を得る逆浸透膜装置と、供給水の水質情報、逆浸透膜装置に供給する供給水を加圧する加圧ポンプの吐出圧、透過水の流量、濃縮水の流量、逆浸透膜のフラックスの情報の少なくともいずれかを含む逆浸透膜運転情報を収集し、収集した逆浸透膜運転情報を用いた機械学習により得られる学習済みモデルに基づいて、逆浸透膜装置の圧力損失及び/又は透過水の水質を予測し、予測の結果に基づいて、逆浸透膜装置の運転条件及び/又はメンテナンスタイミング情報を含む最適化情報を作製し、作製された最適化情報に基づいて逆浸透膜装置を制御する運転管理支援システムとを備える水処理システムである。
【0011】
本発明に係る水処理システムは一実施態様において、運転管理支援システムが、予測の結果に基づいて、運転条件として、加圧ポンプの吐出圧を制御する吐出圧制御情報及び/又は透過水の造水量を制御する透過水造水量制御情報についての最適化情報を作製し、作製した最適化情報に基づいて、加圧ポンプの吐出圧及び/又は透過水の造水量を制御する。
【0012】
本発明に係る水処理システムは別の一実施態様において、運転管理支援システムが、予測の結果に基づいて、メンテナンスタイミング情報として、逆浸透膜装置の膜洗浄タイミング及び洗浄時間の制御情報を含む洗浄タイミング制御情報と、逆浸透膜装置の膜交換タイミングの制御情報を含む交換タイミング制御情報とについての最適化情報を作製し、作製した洗浄タイミング制御情報及び交換タイミング制御情報に基づいて、最適となる逆浸透膜装置の膜洗浄タイミング又は膜交換タイミングとなるときに、警告信号を発する。
【0013】
本発明に係る水処理システムは更に別の一実施態様において、逆浸透膜装置の上流側に配置され、被処理水を前処理して逆浸透膜装置に供給するための供給水を得る前処理装置を更に備え、運転管理支援システムが、前処理装置の運転条件を最適化するための前処理装置運転制御情報を作製し、作製した前処理装置運転制御情報に基づいて、前処理装置を制御する。
【0014】
本発明に係る水処理システムは更に別の一実施態様において、前処理装置が、被処理水に凝集剤を添加する凝集剤添加手段を備え、運転管理支援システムが、被処理水の水質の予測結果に基づいて被処理水に注入する凝集剤注入率の最適化情報を作製し、作製した最適化情報に基づいて凝集剤注入率を制御する。
【0015】
本発明に係る水処理システムは更に別の一実施態様において、逆浸透膜装置が、互いに直列に接続された複数の逆浸透膜バンクと、逆浸透膜バンクの運転状況を測定可能な計器と、を備えており、運転管理支援システムが、複数の逆浸透膜バンクのそれぞれに対してそれぞれ最適となる洗浄タイミング、洗浄時間、又は交換タイミングとなるように、最適化情報を作製し、作製した最適化情報に基づいて、逆浸透膜装置を制御する。
【0016】
本発明は、別の一側面において、供給水を逆浸透膜処理して濃縮水及び透過水を得る逆浸透膜装置を備える水処理システムの運転管理支援システムであって、供給水の水質情報、逆浸透膜に供給する供給水を加圧する加圧ポンプの吐出圧、透過水の流量、濃縮水の流量、逆浸透膜のフラックスの情報の少なくともいずれかを含む逆浸透膜運転情報を取得する取得部と、逆浸透膜運転情報を用いて、水処理システムの学習済みモデルを作製する学習部と、学習済みモデルを用いて、逆浸透膜の圧力損失及び/又は透過水の水質を予測する予測部と、予測部の予測結果に基づいて、逆浸透膜装置の運転条件及び/又はメンテナンスタイミング情報を含む逆浸透膜装置の運転最適化情報を作製する最適化情報作製部と、最適化情報に基づいて、水処理システムを制御するための制御信号を出力する制御部と、を備える水処理システムの運転管理支援システムである。
【0017】
本発明は更に別の一側面において、供給水を逆浸透膜処理して濃縮水及び透過水を得る逆浸透膜装置を備える水処理システムの運転方法において、供給水の水質情報、逆浸透膜装置に供給する供給水を加圧する加圧ポンプの吐出圧、透過水の流量、濃縮水の流量、逆浸透膜のフラックスの情報の少なくともいずれかを含む逆浸透膜運転情報を収集し、収集した逆浸透膜運転情報を用いた機械学習により得られる学習済みモデルに基づいて、逆浸透膜装置の圧力損失及び/又は透過水の水質を予測し、予測の結果に基づいて、逆浸透膜装置の運転条件及び/又はメンテナンスタイミング情報を含む最適化情報を作製し、最適化情報に基づいて、水処理システムを制御することを含む水処理システムの運転方法である。
【発明の効果】
【0018】
本発明によれば、逆浸透膜装置を備えた水処理システム内の運転状況を適切に評価でき、水処理システムの運転条件の最適化を行うことが可能な水処理システム、水処理システムの運転管理支援システム及び水処理システムの運転方法が提供できる。
【図面の簡単な説明】
【0019】
【
図1】本発明の実施の形態に係る水処理システムの一例を説明する概略図である。
【
図2】本発明の実施の形態に係る水処理システムの運転管理支援システムの構成例を示す概略図である。
【
図3】本発明の実施の形態に係る水処理システムの運転方法の一例を示すフロー図である。
【
図4】本発明の実施の形態に係る水処理システムの別の装置態様を示す概略図である。
【
図5】本発明の実施の形態に係る学習済みモデルを用いて逆浸透膜装置の全体圧力損失の予測を行った場合における予測値(sim)と実測値(obs)の相関関係を表したグラフである。
【
図6】本発明の実施の形態に係る学習済みモデルを用いて逆浸透膜装置の全体圧力損失の予測を行った場合における予測値(sim)と実測値(obs)の比較結果を表すグラフである。
【
図7】本発明の実施の形態に係る学習済みモデルを用いて透過水の導電率の予測を行った場合における予測値(sim)と実測値(obs)の相関関係を表したグラフである。
【
図8】本発明の実施の形態に係る学習済みモデルを用いて透過水の導電率の予測を行った場合における予測値(sim)と実測値(obs)の比較結果を表すグラフである。
【発明を実施するための形態】
【0020】
以下、図面を参照しながら本発明の実施の形態を説明する。以下に示す実施の形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであってこの発明の技術的思想は構成部品の構造、配置等を下記のものに特定するものではない。
【0021】
(水処理システム)
本発明の実施の形態に係る水処理システム1000は、
図1に示すように、供給水を逆浸透膜処理して透過水を得る逆浸透膜装置10と、被処理水に前処理を行い、逆浸透膜装置10へ供給水を生成する前処理装置20と、逆浸透膜装置10及び前処理装置20の運転管理支援を行う運転管理支援システム30とを備える。
【0022】
逆浸透膜装置10は、供給水を逆浸透膜処理する逆浸透膜バンク3を備える。逆浸透膜バンク3は、複数の逆浸透膜エレメントを収容した複数の逆浸透膜モジュールを備える。
図1の例では逆浸透膜バンク3は1つ示されているが、典型的には、逆浸透膜バンク3は、供給水の流れに対して互いに直列に複数本配置することができる。例えば、
図4に示すように、逆浸透膜バンク3を供給水の流れに対して直列に多段に配置することにより、上流側の逆浸透膜バンク3から排出される濃縮水を有効利用でき、全体としての透過水量を多く得ることができる。
【0023】
なお、第1段目の逆浸透膜バンク(ファーストバンク、1ステージともいう)の濃縮水を後段の第2段目の逆浸透膜バンク(セカンドバンク、2ステージともいう)で処理する構成を2バンク構成、更に、セカンドバンクの濃縮水を更に第3段目の逆浸透膜バンクで処理する構成を3バンク構成という。
【0024】
図1に示すように、逆浸透膜バンク3の上流側には、逆浸透膜バンク3の供給水を加圧する加圧ポンプ2が接続されている。逆浸透膜バンク3から濃縮水を排出する配管には、圧力調整弁6及びフラッシング弁7が接続される。逆浸透膜バンク3の濃縮水出口側及び透過水出口側の配管には、洗浄薬液を収容する洗浄タンク4と、洗浄タンク4内の洗浄薬液を逆浸透膜へ送給して洗浄を行うためのポンプ5とが接続されている。
【0025】
逆浸透膜バンク3から排出される濃縮水の水量を測定するために、逆浸透膜バンク3の濃縮水出口側の配管には、濃縮水流量計(FI2)16が配置されている。逆浸透膜バンク3から得られる透過水の水量を測定するために、逆浸透膜バンク3の透過水出口側の配管には、透過水流量計(FI1)17が配置されている。透過水を流す配管には更に、導電率、水温等を含む透過水の水質を測定可能な測定計(CIR)15が配置されている。
【0026】
供給水を逆浸透膜バンク3へ供給するための配管には、供給水のpHを測定するためのpH計11が配置されている。逆浸透膜バンク3の上流側の配管には、逆浸透膜バンク3へ流入する供給水の水温を測定するための温度計(TIC)12が配置されている。逆浸透膜バンク3の入口側と出口側の配管にはそれぞれ入口圧力計(PI1)13、出口圧力計(PI2)14が配置されており、圧力計13、14の出力圧力差により、逆浸透膜バンク3の圧力損失が測定できるようになっている。
【0027】
前処理装置20は、原水である被処理水を汲み上げるためのブースターポンプ21と、被処理水に凝集剤等の薬品を供給する薬品供給部(凝集剤などの添加手段)22と、被処理水に含まれる濁質等不純物を除去するための前処理を行う前処理手段23と、被処理水の水温を測定する温度計(TIC)24とを備える。前処理手段23としては、例えば、スクリーン装置、砂ろ過装置、凝集沈殿装置、空気浮揚装置、膜分離装置等を含む。
【0028】
(運転管理支援システム)
本発明の実施の形態に係る運転管理支援システム30は、逆浸透膜装置10及び前処理装置20に接続され、所定の制御ストラテジーに基づいて、所定の動作指令を送出する汎用又は専用の情報処理装置が利用可能である。
【0029】
例えば、
図2に示すように、本発明の実施の形態に係る運転管理支援システム30は、水処理システム1000が備える各装置(逆浸透膜装置10、前処理装置20)の運転を制御可能な制御装置100と、各種制御に必要な情報記憶可能な記憶装置110と、入力装置120と、出力装置130と、通信手段140とを備えることができる。
【0030】
運転管理支援システム30の一部は、
図1に示されるように、必ずしも逆浸透膜装置10及び前処理装置20と近接して配置される必要はなく、例えば、ネットワーク40を介して、逆浸透膜装置10及び前処理装置20に接続されてもよい。そして、運転管理支援システム30が、ネットワーク40を介して接続された別の遠隔サポートセンタ1002(
図2)等から遠隔制御(オンライン制御)又は自動運転制御されるように構成してもよい。
【0031】
運転管理支援システム30は、ネットワーク40を介して、遠隔サポートセンタ1002又はサーバ50と通信可能に接続され、運転管理支援システム30が作製する学習済みモデル、或いはサーバ50又は別の水処理システム1001に記録された情報を通信手段140を介して互いに送受信して共有できるように構成されていてもよい。
【0032】
制御装置100は、取得部101と、学習部102と、予測部103と、最適化情報作製部104と、制御部105と、警告部106とを備える。記憶装置110は、運転情報記憶手段111と、学習済みモデル記憶手段112と、予測結果記憶手段113と、最適化情報記憶手段114とを備える。
【0033】
取得部101は、例えば、
図1の構成を備える水処理システム1000におけるリアルタイムの逆浸透膜運転情報及び過去数十年間分の逆浸透膜運転情報を取得し、運転情報記憶手段111に記憶させる。この逆浸透膜運転情報には、供給水及び透過水の水質情報、逆浸透膜装置10の設置条件、運転条件及び運転結果を含む逆浸透膜装置情報、及び逆浸透膜装置10のメンテナンス情報等が含まれる。
【0034】
供給水の水質情報としては、供給水の水温、pH、シリカ、ナトリウムやアルミなどの金属類、有機物の情報が含まれる。透過水の水質情報としては、透過水の導電率、透過水中のナトリウム、アルミ等の金属類の測定結果の情報等が含まれる。逆浸透膜装置10の設置条件としては、逆浸透膜装置10の装置構成の情報等が含まれる。例えば、本実施形態に係る水処理システム1000に導入される逆浸透膜バンク3の段数、逆浸透膜バンク3が複数ある場合にはその接続関係、逆浸透膜バンク3に収容される逆浸透膜モジュール及び逆浸透膜エレメントの数、逆浸透膜のフラックス、及び逆浸透膜の特性を評価するために必要な特性情報(逆浸透膜の寸法、型番、膜の材質、有効ろ過面積、設計流入流量、設計透過水流量、設計透過流束等)等が逆浸透膜装置10の装置構成の情報として含まれる。逆浸透膜装置10の運転条件としては、供給水の供給流量、供給水を加圧する加圧ポンプ2の吐出圧等が含まれる。逆浸透膜装置10の運転結果としては、逆浸透膜処理で得られた透過水流量、透過流束、濃縮水の流量、透過水積算水量の各種測定結果等が含まれる。これら逆浸透膜運転情報は運転情報記憶手段111に記憶される。
【0035】
取得部101は、更に、水処理システム1000の運転時に得られる各種計器(温度計12、24、pH計11、圧力計13、14、流量計16、17、水質測定計15)の測定結果を取得することにより、水処理システム1000の運転状況をモニタリングする。
【0036】
学習部102は、逆浸透膜運転情報を用いて、所定の機械学習アルゴリズムを用いた機械学習により水処理システムの学習済みモデル(人工知能モデル)を作製する。機械学習アルゴリズムとしては、例えば、PCR法(主成分回帰法)、PLS法(部分最小二乗法)、SVR法(サポートベクター回帰法)、ARIMA、ニューラルネットワーク(ANNやRNN)法、ランダムフォレスト法、決定木法等を用いた種々の解析ツールの中から適切なものを適宜選択して使用することができる。
【0037】
学習部102により作製される学習済みモデルは、全結合ニューラルネットワークモデル、ランダムフォレストモデル、クラスタリングモデル、又はRNNモデルの任意のいずれかを含むことができる。中でも、本実施形態では、学習部102が、PCR法等の線形モデルよりも、ニューラルネットワーク法などを利用した非線形モデルを作製することによって、目的変数とする逆浸透装置の圧力損失及び/又は透過水の水質の予測精度が高まる点で好ましい。
【0038】
機械学習モデルのパラメータ、例えば全結合ニューラルネットワーク法における層の数、及び各層のニューロンの数については説明変数の数に応じて適宜変更されるため、以下に限定されるものではないが、例えば、各層のニューロンの数を1~50、更には1~30とすることができ、層の数は1層、更には1~4層とすることができる。このようにして作製された学習済みモデルは、所定の説明変数を受け取り、所定の目的変数を出力するように構成される。学習済みモデルは、学習済みモデル記憶手段112に記憶される。
【0039】
予測部103は、学習済みモデルを用いて、水処理システムの運転結果の予測を行う。本実施形態では、予測部103が、逆浸透膜装置の圧力損失及び/又は透過水の水質を少なくとも予測することを含む。予測部103が予測する透過水の水質としては、例えば、透過水の導電率、ナトリウム(Na)などの金属類の濃度等を含む。
【0040】
本実施形態によれば、説明変数として所定の変数、例えば、供給水の水質情報、逆浸透膜に供給する供給水を加圧する加圧ポンプの吐出圧、透過水の流量、濃縮水の流量、逆浸透膜のフラックスの情報を利用することにより、逆浸透膜装置の圧力損失及び/又は透過水の水質を精度良く予測することができるため、熟練者の経験に寄らず、予測結果に応じた水処理システム内の運転状況をより適切に評価できる。この評価結果に基づいて、水処理システム1000の最適化情報を作製し、この最適化情報に基づいて、水処理システム1000の運転条件及びメンテナンスタイミング情報を少なくとも最適化できる。
【0041】
予測部103は、例えば、説明変数として、(1)逆浸透膜バンク3に流入する供給水の水温[℃]、(2)逆浸透膜バンク3に流入する供給水のpH[-]、(3)逆浸透膜バンク3に流入する供給水の圧力[MPa]、(4)逆浸透膜バンク3に流入する供給水の流量[m3/h](5)逆浸透膜バンク3の交換又は洗浄後、次の交換又は洗浄を行うまでに逆浸透膜装置10から得られる透過水の積算水量[m3]、(6)濃縮水流量[m3/h]、(7)逆浸透膜のフラックス比[-]を用い、目的変数として、(8)逆浸透膜バンク3の差圧(圧力損失)[MPa]及び/又は(9)透過水の導電率[μS/cm]を出力するように構成された学習済みモデルを用いて計算を実行することにより、逆浸透膜バンク3の圧力損失及び/又は透過水の水質を予測することができる。
【0042】
予測部103は、逆浸透膜バンク3に流入する供給水の水質(シリカ、ナトリウムやカルシウムやアルミなどの金属類、有機物、などの濃度)等の水質情報を更に説明変数として加えることで差圧の上昇や運転トラブルの発生(回収率の低下、スケールの形成など)をより精度よく予測できるという効果が得られる。例えば、説明変数として、上述の(1)~(7)に加えて(10)供給水のシリカ濃度、(11)供給水のナトリウム濃度、(12)供給水のカルシウム濃度、(13)供給水のアルミ等の金属濃度、(14)供給水の有機物濃度の少なくともいずれかを更に考慮に入れることができる。
【0043】
上述の説明変数に用いられる「逆浸透膜のフラックス比」は、逆浸透膜の実測フラックス値と標準フラックス値との比(実測フラックス値/標準フラックス値)で表される。このフラックス比を、説明変数として用いることにより、予測対象とする水処理システムが、取得部101が取得した水処理システム運転情報の逆浸透膜装置の構成(逆浸透膜の種類や本数)が異なる場合があっても、予測性を適正に維持することができる。
【0044】
最適化情報作製部104は、予測部103の予測結果に基づいて逆浸透膜装置10の運転状態を診断し、水処理システム1000の最適化情報を作製する。ここで「最適化情報」とは、運転コストを削減できるように水処理システム1000を最適化するための制御条件をいい、本実施形態では、逆浸透膜装置のメンテナンスタイミング情報及び/又は運転情報を少なくとも含む。メンテナンスタイミング情報としては、逆浸透膜装置10の膜洗浄タイミング及び洗浄時間を制御するための洗浄タイミング制御情報、及び逆浸透膜装置10の膜交換タイミングを制御するための交換タイミング制御情報が含まれる。逆浸透膜装置10の運転条件には、少なくとも加圧ポンプの吐出圧を制御する吐出圧制御情報及び/又は透過水の造水量を制御する透過水造水量制御情報を含む。
【0045】
現在の水処理システム1000の運転では、水処理システム1000内に配置された種々の測定装置による測定結果及び運転条件の設計値に基づいて、水処理システム1000の運転に従事する操作者の熟練度及び長年の感覚に依存した運転条件の変更が行われている。しかしながら、逆浸透膜装置のトラブル原因は複合的であり、特に、回収率の低下、透過水への不純物の混入、又は逆浸透膜の膜ファウリングやスケールの発生による圧力損失の増大等による種々の要因が重なりあう場合も多い。そのため、現在は装置トラブルが発生する前に、予め逆浸透膜モジュールを交換しておくなどの、比較的余裕を持った運転管理が行われており、必ずしも効率的な運転とはいえない。また、熟練者が運転結果を参照しても膨大なデータの中から必ずしも適正な判断を行えているとはいえない場合もある。
【0046】
本発明の実施の形態に係る水処理システム1000及び水処理システム1000の運転管理支援システム30によれば、最適化情報作製部104が、機械学習による学習済みモデルを利用した水処理システム1000の運転条件及び/又はメンテナンスタイミング情報の最適化情報を自動的に作製する。例えば、洗浄のタイミングについては、洗浄周期を横軸とし、運転コスト(洗浄コスト)を縦軸とし、予測部103の予測結果に基づいて最適化情報作製部104が相関グラフを作製し、運転コストの最低点となる洗浄周期を自動的に決定することができ、必要に応じて、この洗浄周期を実際の運転結果に基づいてリアルタイムで更新することもできる。その結果、熟練者の熟練度によらず、逆浸透膜装置10のメンテナンスタイミング情報を最適化することができる。その結果、装置トラブルを抑制しながら、逆浸透膜装置10のメンテナンスタイミングをより最適化することができ、運転コストを削減できる。
【0047】
最適化情報としては、例えば、以下の制御情報を含むことができる。
・逆浸透膜装置10の膜洗浄タイミングを制御するための洗浄タイミング制御情報、
・逆浸透膜装置10の膜交換タイミングを制御するための交換タイミング制御情報、
・逆浸透膜装置10の供給水を加圧する加圧ポンプの吐出圧の制御に関する吐出圧制御情報、
・逆浸透膜バンク3が多段の場合は各段の透過水の造水量の制御に関する透過水造水量制御情報、及び各段の膜洗浄タイミングや交換タイミングをそれぞれ制御する制御情報
【0048】
(洗浄タイミング制御情報)
逆浸透膜装置10の洗浄周期を長くすると、透過水を得るための処理時間を長く保つことができ稼働時間を上げることができる一方で、一回の洗浄処理に負荷がかかる結果となる。逆に、洗浄周期を短くすると、透過水を得るための処理時間が短くなり稼働時間が低下する一方で、一回の洗浄処理が容易になる。最適化情報作製部104は、予測部103の予測結果と、供給水の水質や操作条件を総合的に勘案し、最適な洗浄周期及び洗浄時間となる制御情報を含む洗浄タイミング制御情報を作製する。これにより、供給水の水質や操作条件に応じて最適となる膜洗浄タイミングを選択できる。また、従来に比べて、不必要な洗浄薬液の供給等による逆浸透膜バンク3内の逆浸透膜モジュールの劣化や、洗浄作業に要する作業時間も低減できるため、洗浄処理に係るコストを低減できる。
【0049】
(交換タイミング制御情報)
最適化情報作製部104は、予測部103の予測結果と、供給水の水質や操作条件を総合的に勘案し、最適な膜交換周期となる制御情報を含む膜交換タイミング制御情報を作製する。これにより、供給水の水質や操作条件に応じて最適となる膜交換タイミングを選択し、逆浸透膜を延命することができる。更に、逆浸透膜装置10では、複数本直列接続された逆浸透膜バンクのうち、特定の逆浸透膜バンク、又は複数本並列接続された逆浸透膜バンクのうち、特定の逆浸透膜バンクの消耗が激しくなる場合がある。最適化情報作製部104は、予測部103の予測結果に基づいて複数本の逆浸透膜バンクや逆浸透膜モジュールをすべて交換するための交換頻度の情報だけでなく、個々の逆浸透膜バンクや逆浸透膜モジュールのそれぞれの交換タイミングをそれぞれ最適化するための制御情報、即ち、第1の逆浸透膜バンク3a及び第2の逆浸透膜バンク3bの交換箇所及び交換順序をそれぞれ最適化した交換位置順序制御情報を更に作製することができる。交換位置順序制御情報は、第1の逆浸透膜バンク3a及び第2の逆浸透膜バンク3bの操作条件(供給水の水質、圧力および産水量など)及び/又は第1の逆浸透膜バンク3a及び第2の逆浸透膜バンク3bの運転状況を測定可能な圧力計等の計器の測定結果から予測を行うことで、複数の逆浸透膜バンクやモジュールがある場合にその交換箇所及び交換順序を最適化することができる。その結果、実際には交換寿命を迎えていない逆浸透膜バンクやモジュールの交換を少なくし、逆浸透膜の長寿命化を図るとともに、交換が必要な逆浸透膜バンクやモジュールについては、交換頻度を最適化することができる。
【0050】
(吐出圧制御情報)
図1の水処理システム全体のエネルギー消費量を鑑みた場合、逆浸透膜モジュールを加圧する加圧ポンプ2は、エネルギー消費量が最も大きい。また、供給水の濃度が高いほど、単位造水量あたりの加圧ポンプ2のエネルギー消費量が増大する。最適化情報作製部104は、予測部103の予測結果に基づいて、加圧ポンプ2の吐出圧を最適化することにより、加圧ポンプの省エネを実現することができる。
【0051】
(透過水造水量制御情報)
水処理システム1000は、複数の逆浸透膜バンクを利用することにより、透過水の回収率を向上できる。水質変動により高導電率の供給水を処理する場合には加圧ポンプ2の圧力を上げる必要があるが、低導電率の供給水を処理する場合には加圧ポンプの加圧を低減することができる場合もある。また、逆浸透膜バンクを直列に多段に接続した場合には、後段の逆浸透膜バンクの流入水濃度が高くなるために、膜ファウリングやスケールが発生しやすい。その結果、後段の逆浸透膜バンクの単位造水量当たりのエネルギー消費量が、前段の逆浸透膜バンクよりも高くなり、更に、後段の逆浸透膜バンクの膜洗浄の周期も短くなり、洗浄コストが高くなる場合がある。最適化情報作製部104が、供給水の水質及び予測部103の各逆浸透膜バンクの圧力損失及び/又は透過水の水質の予測結果に基づいて、逆浸透膜バンクの単位造水量当たりのエネルギー消費量が低く保てるように、加圧ポンプ2の吐出圧を低減する、或いは供給水量を調整して逆浸透膜の各段から得られる透過水の造水量を最適化することにより、水処理にかかるエネルギー消費量を低減することができる。
【0052】
最適化情報作製部104は、更に、交換タイミング制御情報、メンテナンス制御情報、吐出圧制御情報及び透過水造水量制御情報をそれぞれ最適化するように構成できる。例えば、操作者の要望に応じて、入力装置120等を介して、上記4つの最適化情報について、各制御情報を最適化するための優先順位を設定することができる。そして、最適化情報作製部104が、優先順位に応じた最適化情報を作製することにより、操作者の要望、供給水及び透過水の水質、或いは逆浸透膜モジュールの特性等に応じたフレキシブルな運転を行うことができる。作製された最適化情報は最適化情報記憶手段114に記憶される。制御部105は、作製された最適化情報に基づいて、水処理システム1000の運転を制御する。
【0053】
警告部106は、水処理システム1000の操作者に対して、所定の警告信号を、出力装置130を介して出力するための警告信号を送出する。例えば、最適化情報作製部104が作製した洗浄タイミング制御情報及び交換タイミング制御情報に基づいて、最適な洗浄タイミング及び交換タイミングとなる時期に、警告信号を出力するように構成される。警告部106を備えることにより、適正な洗浄タイミング及び交換タイミングを水処理システム1000の操作者が早期に知ることができるため、洗浄及び交換に必要な準備を行うことができる。
【0054】
(前処理装置の予測制御)
運転管理支援システム30は、逆浸透膜装置10の運転状況に応じて、前処理装置20の運転条件が最適化されるように前処理装置20の運転条件を制御することもできる。その場合、取得部101は、被処理水の水質情報と、前処理装置20の設置条件、運転条件及び運転結果とを含む前処理装置運転制御情報を更に取得する。学習部102は、前処理装置運転制御情報及び逆浸透膜運転情報を用いた機械学習により学習済みモデルを作製する。予測部103は、学習部102が作製した学習済みモデルを用いて、前処理装置20の薬品供給部22及び前処理手段23の運転条件、例えば、薬品供給部22から被処理水へ供給される薬剤の注入率(注入量と処理水水量との比率)、前処理手段23へ供給される被処理水の流量等を予測する。最適化情報作製部104は、前処理装置20の運転条件を最適化するための前処理装置運転制御情報を更に作製する。
【0055】
例えば、前処理手段23として凝集砂ろ過や凝集膜ろ過が利用される場合、予測部103が被処理水の水質を予測し、最適化情報作製部104が被処理水に添加する凝集剤注入率の最適化情報を作製することにより凝集剤注入率の最適化を行い、供給水の水質を安定化させることができるため、水質変動等による逆浸透膜バンク3の膜ファウリングやスケールの発生を抑制できる。その結果、本発明の実施の形態に係る水処理システムによれば、逆浸透膜バンク3の洗浄回数及び交換回数を低減することができ、効率的な水処理を行うことができる。
【0056】
(水処理システムの運転方法)
図1又は
図2に示す水処理システム1000の運転管理支援システム30を用いた水処理システムの運転方法の運転フローの一例を
図3に示す。
図3のステップS1に示すように、運転管理支援システム30が備える取得部101が、供給水及び透過水の水質情報と、逆浸透膜装置の設置条件、運転条件及び運転結果を含む逆浸透膜装置情報と、逆浸透膜装置のメンテナンス情報の少なくともいずれかを含む逆浸透膜運転情報を取得し、水処理システム運転情報を運転情報記憶手段111に記憶させる。取得部101は更に、
図1の水処理システム1000の運転時のモニタリングにより得られる各計器(温度計12、24、pH計11、圧力計13、14、流量計16、17、水質測定計15)のリアルタイムの測定結果を取得することができる。
【0057】
ステップS2において、学習部102が、水処理システムの学習済みモデルを作製する。学習済みモデルは学習済みモデル記憶手段112に記憶される。引き続き、ステップS3において、予測部103が、逆浸透膜運転情報及び学習済みモデルを用いて、逆浸透膜装置10の圧力損失及び/又は透過水の水質、例えば、透過水の導電率を少なくとも予測する。
【0058】
ステップS4において、最適化情報作製部104が、逆浸透膜装置の圧力損失及び/又は透過水の水質の予測結果に基づいて、逆浸透膜装置の運転状態を診断し、逆浸透膜装置のメンテナンスタイミングを含む水処理システム1000の最適化情報を作製する。作製された最適化情報は、最適化情報記憶手段114へ記憶される。制御部105は、最適化情報作製部104が作製した最適化情報に基づいて、逆浸透膜装置10を制御する。
【0059】
本発明の実施の形態に係る水処理システム1000及び水処理システムの運転管理支援システム30によれば、逆浸透膜装置10の逆浸透膜運転情報を用いて学習済みモデルを作製し、作製した学習済みモデルを利用して逆浸透膜装置10の圧力損失及び/又は水質(導電率)を予測し、予測結果に基づき水処理システムの最適化情報を作製することにより、逆浸透膜装置10を備えた水処理システム1000内の運転状況を適切に評価でき、水処理システム1000の運転条件の最適化を行うことができる。
【0060】
図4に、
図1の逆浸透膜バンクを多段に直列接続した場合の逆浸透膜装置10の別の構成例を示す。
図4の例では逆浸透膜バンク3a、3bの二段で構成された例が示されているが、上述の通り、逆浸透膜バンク3a、3bは2本以上配置されていてもよいことは勿論である。なお、
図4の例では簡略化のため、洗浄時に使用される洗浄タンク4及びポンプ5等の記載は省略している。
【0061】
第1の逆浸透膜バンク3aの濃縮水は、第2の逆浸透膜バンク3bへ供給される。第2の逆浸透膜バンク3bは、第1の逆浸透膜バンク3aの濃縮水を受け入れて、濃縮水と透過水とを生成する。第1の逆浸透膜バンク3aの透過水と第2の逆浸透膜バンク3bの透過水は混合され、水処理システム1000の外部へ送られる。
【0062】
逆浸透膜バンク3bから排出される濃縮水の水量を測定するために、逆浸透膜バンク3bの濃縮水出口側の配管には流量計(FI3)16bが配置されている。逆浸透膜バンク3bから排出される透過水の水量を測定するために、逆浸透膜バンク3bの透過水出口側の配管には、流量計(FI4)17bが配置されている。逆浸透膜バンク3bの入口側の配管には圧力計(PI2)14aが接続され、逆浸透膜バンク3bの出口側の配管には圧力計(PI4)14bが配置されており、逆浸透膜バンク3bに流入する流入水の圧力を計測する圧力計13bと、逆浸透膜バンク3bで処理された濃縮水の圧力を計測する圧力計14bとの圧力差により、逆浸透膜バンク3bの圧力損失を測定できるようになっている。
【0063】
図4に示す水処理システムの学習済みモデルの作製に際しては、例えば以下の変数が説明変数として利用できる。
(a)供給水水質
(b)加圧ポンプ2の吐出圧[MPa]
(c)一段目(逆浸透膜バンク3a)透過水流量[m
3/h]
(d)二段目(逆浸透膜バンク3b)透過水流量[m
3/h]
(e)透過水合計流量[m
3/h]
(f)逆浸透膜バンク3a、3bのいずれかを交換後、次の交換を行うまでに逆浸透膜バンク3a、3bで得られる透過水の透過水積算水量[m
3/h]
(g)逆浸透膜バンク3a、3bのいずれかを洗浄後、次の洗浄を行うまでに逆浸透膜バンク3a、3bで得られる透過水の透過水積算水量[m
3/h]
(h)水処理システム1000から排出される濃縮水流量[m
3/h]
(i)供給水の水温[℃]
(j)逆浸透膜バンク3a、3bにそれぞれ流入する供給水のpH[-]
(k)一段目(逆浸透膜バンク3a)フラックス比[-]
(l)二段目(逆浸透膜バンク3b)フラックス比[-]
【0064】
目的変数としては、例えば以下の変数が利用できる。
(A)一段目(逆浸透膜バンク3a)圧力損失[MPa]
(B)二段目(逆浸透膜バンク3b)圧力損失[MPa]
(C)全体圧力損失[MPa]
(D)透過水導電率[μS/cm]
【0065】
上述の(a)~(l)を説明変数とし、(A)~(D)を目的変数とし、ニューラルネットワークを用いて予測を行った場合における、全体圧力損失の予測値(sim)と実測値(obs)との相関関係を表すグラフの例を
図5に示す。予測値と実測値の相関係数は0.987であり、適切な予測が行えていることが分かる。また、
図5の予測結果と実測結果を用い、運転時間を横軸として別の表現手法で比較した結果を
図6に示す。
図6においても予測値(sim)と実測値(Obs)がほぼ一致し、比較的精度よく予測が行えていることが分かる。
【0066】
同様に、上述の(a)~(l)を説明変数とし、(A)~(D)を目的変数とし、ニューラルネットワークを用いて予測を行った場合において、透過水導電率の予測値(sim)と実測値(obs)との相関関係を表すグラフの例を
図7に示す。予測値と実測値の相関係数は0.966であり、適切な予測が行えていることが分かる。
図7の予測結果と実測結果を用い、運転時間を横軸として別の表現手法で比較した結果を
図8に示す。
図8においても逆浸透膜装置の透過水導電率に関し、比較的精度よく予測が行えていることが分かる。
【0067】
このように、本発明の実施の形態の変形例に係る水処理システム1000によれば、運転管理支援システム30が作製した学習済みモデルに基づいて、逆浸透膜バンク3a、3bの圧力損失及び/又は透過水の導電率を適切に予測することができるため、逆浸透膜装置10を備えた水処理システム1000内の運転状況を適切に評価でき、水処理システム1000の運転条件の最適化が行える。
【0068】
例えば、第1の逆浸透膜バンク3aの濃縮水を処理する第2の逆浸透膜バンク3bは、第1の逆浸透膜バンク3a内に通水される供給水よりも高濃度となる濃縮水を処理するため第1の逆浸透膜バンク3aよりも膜閉塞等のトラブルが発生しやすいため、より頻繁に洗浄及び交換を行う必要がある。更には、水処理システム1000の装置構成の特性によっては、原因は不明であるが、特定の逆浸透膜バンクのみが、他の逆浸透膜バンクに比べて、意図せずに圧力損失が大きくなる等して膜寿命が短くなったり、トラブルが多く発生したりする場合がある。本実施形態に係る水処理システム1000によれば、複数の逆浸透膜バンク3a、3bの各逆浸透膜バンクに対して圧力損失及び透過水の導電率の予測を行うことにより、複数の逆浸透膜バンクの個々の特性に応じた最適な洗浄及び交換頻度を調整することができる。
【0069】
このように、本発明は上記の実施の形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではなく、上述の開示に基づいて、当業者であれば種々の態様を実施することができる。
【0070】
例えば、本実施形態では、上述の学習済みモデルを用いて逆浸透膜モジュールの圧力損失及び/又は透過水の導電率を予測する方法について説明したが、これ以外にも、既存の運転情報を利用して種々の予測を行うことができる。
【0071】
例えば、本発明の水処理システムの学習済みモデルの作製に際し、過去の運転情報と現在の運転結果に基づいて、原水水質の変動による逆浸透膜バンク3a、3bの差圧の異常上昇を予測し、その予測結果に基づいて、逆浸透膜バンク3a、3bの洗浄タイミング及び交換タイミングの情報を含むメンテナンス情報を最適化した最適化情報を作製し、その最適化情報に基づいて、
図1又は
図4の水処理装置を運転するように構成されてもよい。このように、本発明は実施段階においては、その要旨を逸脱しない範囲において変形し具体化し得るものである。
【符号の説明】
【0072】
2…加圧ポンプ
3、3a、3b…逆浸透膜バンク
4…洗浄タンク
5…洗浄用ポンプ
6…圧力調整弁
7…フラッシング弁
10…逆浸透膜装置
11…pH計
12…温度計
13、14、14a、14b…圧力計
15…水質測定計
16、17、17a、17b…流量計
20…前処理装置
21…ブースターポンプ
22…薬品供給部
23…前処理手段
24…温度計
30…運転管理支援システム
40…ネットワーク
50…サーバ
100…制御装置
101…取得部
102…学習部
103…予測部
104…最適化情報作製部
105…制御部
106…警告部
110…記憶装置
111…運転情報記憶手段
112…学習済みモデル記憶手段
113…予測結果記憶手段
114…最適化情報記憶手段
120…入力装置
130…出力装置
140…通信手段
1000、1001…水処理システム
1002…遠隔サポートセンタ