(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-02-16
(45)【発行日】2024-02-27
(54)【発明の名称】磁気的に浮遊状態で吊られる乗り物用の制御装置、乗り物及び輸送インフラストラクチャ
(51)【国際特許分類】
B60L 7/28 20060101AFI20240219BHJP
【FI】
B60L7/28
(21)【出願番号】P 2021533589
(86)(22)【出願日】2019-12-11
(86)【国際出願番号】 NL2019050825
(87)【国際公開番号】W WO2020122718
(87)【国際公開日】2020-06-18
【審査請求日】2022-12-07
(32)【優先日】2018-12-11
(33)【優先権主張国・地域又は機関】NL
(73)【特許権者】
【識別番号】521254605
【氏名又は名称】ハルト アイピー ベーフェー
(74)【代理人】
【識別番号】100095407
【氏名又は名称】木村 満
(74)【代理人】
【識別番号】100132883
【氏名又は名称】森川 泰司
(74)【代理人】
【識別番号】100148633
【氏名又は名称】桜田 圭
(74)【代理人】
【識別番号】100147924
【氏名又は名称】美恵 英樹
(72)【発明者】
【氏名】デ フェイ、ルク ヨハン リース
(72)【発明者】
【氏名】ファン デル メイス、マリヌス ヴィルヘルムス エリザ
(72)【発明者】
【氏名】コーヘル、バウケ ヤン
【審査官】岩田 健一
(56)【参考文献】
【文献】米国特許出願公開第2010/0132584(US,A1)
【文献】米国特許出願公開第2008/0257662(US,A1)
【文献】米国特許出願公開第2004/0055836(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
B60L 7/28
(57)【特許請求の範囲】
【請求項1】
磁気的に浮遊状態で吊られる乗り物用の制御装置であって、
第1のブレーキモジュールであって、第1の磁気活性ブレーキ素子と、前記第1の磁気活性ブレーキ素子に結合され、前記第1の磁気活性ブレーキ素子を制御して、該ブレーキモジュールに対する第1の所定位置に所定の大きさの第1のブレーキ磁場を与え
、前記乗り物の外部の第1のブレーキレールにおける前記位置での磁場の強さを制御する第1のブレーキ磁石アクチュエータとを含む、第1のブレーキモジュールと、
第1の横方向制御モジュールであって、第1の磁気活性制御素子と、前記第1の磁気活性制御素子に結合され、前記第1の磁気活性制御素子を制御して、該制御モジュールに対する第1の所定位置に所定の大きさの第1の制御磁場を与える第1の制御磁石アクチュエータとを含む、第1の横方向制御モジュールと、
を含み、
前記第1のブレーキ磁場および前記第1の制御磁場は、使用時に、2つの前記磁気活性素子の位置において、前記乗り物の意図される進行方向に対して実質的に垂直であ
り、
前記第1の磁気活性ブレーキ素子は、第1の永久磁石を含み、
前記第1のブレーキ磁石アクチュエータは、前記乗り物の意図される進行方向に対して実質的に垂直な方向において、前記第1のブレーキレールに向かう前記第1の永久磁石の動きを制御するように配置され、
前記第1の磁気活性制御素子は電磁石を含み、前記第1の制御磁石アクチュエータは、前記電磁石に供給される電流を制御するように配置されている、
制御装置。
【請求項2】
前記第1のブレーキモジュールは、ブレーキ力を提供するために
前記第1のブレーキ
レールと相互作用するように配置され、
前記第1の横方向制御モジュールは、第1の制御
レールと相互作用するように配置され、前記第1の横方向制御モジュールと前記第1の制御
レールとの間の制御距離を制御し、
前記制御距離は
、所定の範囲内にある、
請求項1に記載の制御装置。
【請求項3】
前記第1の磁気活性ブレーキ素子は第1の電磁石を含み、前記
第1のブレーキ磁石アクチュエータは該電磁石に供給される電流を制御するように配置され、
前記第1の磁気活性制御素子は電磁石を含み、前記
第1の制御磁石アクチュエータは該電磁石に供給される電流を制御するように配置されている、
請求項1
又は2に記載の制御装置。
【請求項4】
前記第1
のブレーキモジュールを制御して、前記第1の磁気活性ブレーキ素子と前記第1のブレーキ
レールとの間の相互作用により、前記第1のブレーキ
レールに対
して該制御装置
に所定のブレーキ力を提供させるように構成された制御プロセッサをさらに含む、
請求項2に記載の制御装置。
【請求項5】
前記第1の磁気活性ブレーキ
素子の制御に基づいて、前記第1の磁気活性制御
素子を制御し、前記制御距離を前記所定の範囲内に維持するように構成された制御プロセッサをさらに含む、
請求項2又は
4に記載の制御装置。
【請求項6】
第2のブレーキモジュールであって、第2の磁気活性ブレーキ素子と、前記第2の磁気活性ブレーキ素子に結合され、前記第2の磁気活性ブレーキ素子を制御して、該ブレーキモジュールに対する第2の所定位置に所定の大きさの第2のブレーキ磁場を与える第2のブレーキ磁石アクチュエータとを含む、第2のブレーキモジュールと、
第2の横方向制御モジュールであって、第2の磁気活性制御素子と、前記第2の磁気活性制御素子に結合され、前記第2の磁気活性制御素子を制御して、該制御モジュールに対する第2の所定位置に所定の大きさの第2の制御磁場を与える第2の制御磁石アクチュエータとを含む、第2の横方向制御モジュールと、
をさらに含み、
前記第2のブレーキ磁場および前記第2の制御磁場は、使用時に、2つの前記磁気活性素子の位置において、前記乗り物の進行方向に対して実質的に垂直であり、
前記第2の横方向制御モジュールは、第2の磁場が流れ出る第2の磁気活性素子の第2の極が、第1の磁場が流れ出る第1の磁気活性素子の第1の極と反対に向くように、前記第1の横方向制御モジュールの反対側に設けられる、
請求項1~
5のいずれか1項に記載の制御装置。
【請求項7】
前記制御プロセッサは、
前記乗り物が進んでいるガイドトラックの分岐
であって、第1の支線及び第2の支線を有する分岐に関する分岐情報を受信し、前記ガイドトラックは、前記ガイドトラックの第1の側にある前記第1のブレーキ
レールおよび前記第1の制御
レールと、前記ガイドトラックの第2の側にある第2のブレーキ
レールおよび第2の制御
レールとを含み、
前記所定の範囲内で前記制御距離を制御するための方向情報に対応する側にある制御モジュールを操作し、
前記分岐に近づくと、取る
支線に関する方向情報を受信するように構成され、
前記制御プロセッサはさらに、
ブレーキ信号を受信すると、
前記ブレーキ信号に従って前記ブレーキモジュールを操作し、
前記所定の範囲内で前記制御距離を制御するための前記方向情報に対応する側にある前記制御モジュールの動作を調整する、
ように構成される、
請求項4に従属する請求項
6に記載の制御装置。
【請求項8】
磁気的に浮遊状態で吊られる乗り物用の制御装置であって、
第1のブレーキモジュールであって、第1の磁気活性ブレーキ素子と、前記第1の磁気活性ブレーキ素子に結合され、前記第1の磁気活性ブレーキ素子を制御して、該ブレーキモジュールに対する第1の所定位置に所定の大きさの第1のブレーキ磁場を与え、前記乗り物の外部の第1のブレーキレールにおける前記位置での磁場の強さを制御する第1のブレーキ磁石アクチュエータとを含む、第1のブレーキモジュールと、
第1の横方向制御モジュールであって、第1の磁気活性制御素子と、前記第1の磁気活性制御素子に結合され、前記第1の磁気活性制御素子を制御して、該制御モジュールに対する第1の所定位置に所定の大きさの第1の制御磁場を与える第1の制御磁石アクチュエータとを含む、第1の横方向制御モジュールと、
を含み、
前記第1のブレーキ磁場および前記第1の制御磁場は、使用時に、2つの前記磁気活性素子の位置において、前記乗り物の意図される進行方向に対して実質的に垂直であり、
前記第1のブレーキモジュールは、ブレーキ力を提供するために前記第1のブレーキレールと相互作用するように配置され、
前記第1の横方向制御モジュールは、第1の制御レールと相互作用するように配置され、前記第1の横方向制御モジュールと前記第1の制御レールとの間の制御距離を制御し、
前記制御距離は、所定の範囲内にあり、
前記制御装置は、
前記第1のブレーキモジュールを制御して、前記第1の磁気活性ブレーキ素子と前記第1のブレーキレールとの間の相互作用により、前記第1のブレーキレールに対して該制御装置に所定のブレーキ力を提供させるように構成された制御プロセッサと、
第2のブレーキモジュールであって、第2の磁気活性ブレーキ素子と、前記第2の磁気活性ブレーキ素子に結合され、前記第2の磁気活性ブレーキ素子を制御して、該ブレーキモジュールに対する第2の所定位置に所定の大きさの第2のブレーキ磁場を与える第2のブレーキ磁石アクチュエータとを含む、第2のブレーキモジュールと、
第2の横方向制御モジュールであって、第2の磁気活性制御素子と、前記第2の磁気活性制御素子に結合され、前記第2の磁気活性制御素子を制御して、該制御モジュールに対する第2の所定位置に所定の大きさの第2の制御磁場を与える第2の制御磁石アクチュエータとを含む、第2の横方向制御モジュールと、
をさらに含み、
前記第2のブレーキ磁場および前記第2の制御磁場は、使用時に、2つの前記磁気活性素子の位置において、前記乗り物の進行方向に対して実質的に垂直であり、
前記第2の横方向制御モジュールは、第2の磁場が流れ出る第2の磁気活性素子の第2の極が、第1の磁場が流れ出る第1の磁気活性素子の第1の極と反対に向くように、前記第1の横方向制御モジュールの反対側に設けられ、
前記制御プロセッサは、
前記乗り物が進んでいるガイドトラックの分岐であって、第1の支線及び第2の支線を有する分岐に関する分岐情報を受信し、前記ガイドトラックは、前記ガイドトラックの第1の側にある前記第1のブレーキレールおよび前記第1の制御レールと、前記ガイドトラックの第2の側にある第2のブレーキレールおよび第2の制御レールとを含み、
前記所定の範囲内で前記制御距離を制御するための方向情報に対応する側にある制御モジュールを操作し、
前記分岐に近づくと、取る支線に関する方向情報を受信するように構成され、
前記制御プロセッサはさらに、
ブレーキ信号を受信すると、
前記ブレーキ信号に従って前記ブレーキモジュールを操作し、
前記所定の範囲内で前記制御距離を制御するための前記方向情報に対応する側にある前記制御モジュールの動作を調整する、
ように構成される、
制御装置。
【請求項9】
磁気的に浮遊状態で吊られる乗り物用の制御装置であって、
第1のブレーキモジュールであって、第1の磁気活性ブレーキ素子と、前記第1の磁気活性ブレーキ素子に結合され、前記第1の磁気活性ブレーキ素子を制御して、該ブレーキモジュールに対する第1の所定位置に所定の大きさの第1のブレーキ磁場を与え、前記乗り物の外部の第1のブレーキレールにおける前記位置での磁場の強さを制御する第1のブレーキ磁石アクチュエータとを含む、第1のブレーキモジュールと、
第1の横方向制御モジュールであって、第1の磁気活性制御素子と、前記第1の磁気活性制御素子に結合され、前記第1の磁気活性制御素子を制御して、該制御モジュールに対する第1の所定位置に所定の大きさの第1の制御磁場を与える第1の制御磁石アクチュエータとを含む、第1の横方向制御モジュールと、
を含み、
前記第1のブレーキ磁場および前記第1の制御磁場は、使用時に、2つの前記磁気活性素子の位置において、前記乗り物の意図される進行方向に対して実質的に垂直であり、
前記第1のブレーキモジュールは、ブレーキ力を提供するために前記第1のブレーキレールと相互作用するように配置され、
前記第1の横方向制御モジュールは、第1の制御レールと相互作用するように配置され、前記第1の横方向制御モジュールと前記第1の制御レールとの間の制御距離を制御し、
前記制御距離は、所定の範囲内にあり、
前記制御装置は、
前記第1の磁気活性ブレーキ素子の制御に基づいて、前記第1の磁気活性制御素子を制御し、前記制御距離を前記所定の範囲内に維持するように構成された制御プロセッサと、
第2のブレーキモジュールであって、第2の磁気活性ブレーキ素子と、前記第2の磁気活性ブレーキ素子に結合され、前記第2の磁気活性ブレーキ素子を制御して、該ブレーキモジュールに対する第2の所定位置に所定の大きさの第2のブレーキ磁場を与える第2のブレーキ磁石アクチュエータとを含む、第2のブレーキモジュールと、
第2の横方向制御モジュールであって、第2の磁気活性制御素子と、前記第2の磁気活性制御素子に結合され、前記第2の磁気活性制御素子を制御して、該制御モジュールに対する第2の所定位置に所定の大きさの第2の制御磁場を与える第2の制御磁石アクチュエータとを含む、第2の横方向制御モジュールと、
をさらに含み、
前記第2のブレーキ磁場および前記第2の制御磁場は、使用時に、2つの前記磁気活性素子の位置において、前記乗り物の進行方向に対して実質的に垂直であり、
前記第2の横方向制御モジュールは、第2の磁場が流れ出る第2の磁気活性素子の第2の極が、第1の磁場が流れ出る第1の磁気活性素子の第1の極と反対に向くように、前記第1の横方向制御モジュールの反対側に設けられ、
前記制御プロセッサは、
前記乗り物が進んでいるガイドトラックの分岐であって、第1の支線及び第2の支線を有する分岐に関する分岐情報を受信し、前記ガイドトラックは、前記ガイドトラックの第1の側にある前記第1のブレーキレールおよび前記第1の制御レールと、前記ガイドトラックの第2の側にある第2のブレーキレールおよび第2の制御レールとを含み、
前記所定の範囲内で前記制御距離を制御するための方向情報に対応する側にある制御モジュールを操作し、
前記分岐に近づくと、取る支線に関する方向情報を受信するように構成され、
前記制御プロセッサはさらに、
ブレーキ信号を受信すると、
前記ブレーキ信号に従って前記ブレーキモジュールを操作し、
前記所定の範囲内で前記制御距離を制御するための前記方向情報に対応する側にある前記制御モジュールの動作を調整する、
ように構成される、
制御装置。
【請求項10】
前記制御プロセッサは、さらに、前記分岐に到着すると、前記方向情報に対応しない側にある前記制御モジュールを非アクティブ化するように構成される、
請求項
7~9のいずれか1項に記載の制御装置。
【請求項11】
輸送インフラストラクチャを構成する少なくとも1つのサスペンションレールに対して磁気的に浮遊状態で吊ることが可能に構成される乗り物であって、
請求項1~
10のいずれか1項に記載の制御装置を含む、
乗り物。
【請求項12】
請求項
11に記載の乗り物の輸送のために構成された、前記乗り物を案内するように構成されたガイドトラックを提供する輸送インフラストラクチャであって、
前記サスペンションレールと、
前記ガイドトラックに沿って設けられるブレーキレールを含み、前記ブレーキレールが前記ブレーキモジュールと係合するように構成されるブレーキトラックと、
前記ガイドトラックに沿って設けられる制御レールを含み、前記制御レールが前記制御モジュールと係合するように構成される制御トラックと、
を含む、
輸送インフラストラクチャ。
【請求項13】
少なくとも1つのサスペンションレールに対して磁気的に浮遊状態で吊ることが可能に構成される乗り物の輸送のために構成された、前記乗り物を案内するように構成されたガイドトラックを提供する輸送インフラストラクチャであって、
前記乗り物が含む制御装置は、
第1のブレーキモジュールであって、第1の磁気活性ブレーキ素子と、前記第1の磁気活性ブレーキ素子に結合され、前記第1の磁気活性ブレーキ素子を制御して、該ブレーキモジュールに対する第1の所定位置に所定の大きさの第1のブレーキ磁場を与える第1のブレーキ磁石アクチュエータとを含む、第1のブレーキモジュールと、
第1の横方向制御モジュールであって、第1の磁気活性制御素子と、前記第1の磁気活性制御素子に結合され、前記第1の磁気活性制御素子を制御して、該制御モジュールに対する第1の所定位置に所定の大きさの第1の制御磁場を与える第1の制御磁石アクチュエータとを含む、第1の横方向制御モジュールと、
を含み、
前記第1のブレーキ磁場および前記第1の制御磁場は、使用時に、2つの前記磁気活性素子の位置において、前記乗り物の意図される進行方向に対して実質的に垂直であり、
前記輸送インフラストラクチャは、
前記サスペンションレールと、
前記ガイドトラックに沿って設けられるブレーキレールを含み、前記ブレーキレールが前記ブレーキモジュールと係合するように構成されるブレーキトラックと、
前記ガイドトラックに沿って設けられる制御レールを含み、前記制御レールが前記制御モジュールと係合するように構成される制御トラックと、
を含む、
輸送インフラストラクチャ。
【請求項14】
前記ブレーキ
レールは、金属
から構成され、前記制御
レールは、金属
から構成される、
請求項
12又は13に記載の輸送インフラストラクチャ。
【請求項15】
前記ブレーキレールおよび前記制御レールのうちの少なくとも1つが複数のエアギャップを含む、
請求項
14に記載の輸送インフラストラクチャ。
【請求項16】
前記複数のエアギャップは、前記ブレーキレールおよび前記制御レールのうちの少なくとも1つの長さにわたって配置される、
請求項
15に記載の輸送インフラストラクチャ。
【請求項17】
前記複数のエアギャップは、前記ブレーキレールおよび前記制御レールのうちの少なくとも1つにおける隣接する3つの外面に開いている、
請求項
15又は
16に記載の輸送インフラストラクチャ。
【請求項18】
前記ブレーキレールおよび前記制御レールの少なくとも1つは、
金属からなる第1
の細長支持部材と、
複数の金属片であって、該複数の金属片の第1の側において
前記第1
の細長支持部材から
前記第1の細長支持部材の長さに対して垂直な方向に延びる、複数の金属片と、
を含む、
請求項
15~
17のいずれか1項に記載の輸送インフラストラクチャ。
【請求項19】
前記第1
の細長支持部材と平行に設けられ、前記第1の側と反対の第2の側においてある前記複数の金属片と接続された
金属からなる第2
の細長支持部材をさらに含む、
請求項
18に記載の輸送インフラストラクチャ。
【請求項20】
前記第1の細長支持部材の前記第1の側とは反対の前記第1の細長支持部材の第2の側において前記第1の細長支持部材から延び、前記第1の細長支持部材の長さに対して実質的に垂直に延びる第2の複数の金属片をさらに含む、
請求項
18に記載の輸送インフラストラクチャ。
【請求項21】
前記複数のエアギャップは、細長い形状を有する、
請求項
15~
20のいずれか1項に記載の輸送インフラストラクチャ。
【請求項22】
前記複数のエアギャップは、細長い形状を有し、
前記第1の細長支持部材と平行に設けられ、前記第1の側と反対の第2の側においてある前記複数の金属片と接続された金属からなる第2の細長支持部材をさらに含み、
前記複数のエアギャップは、前記
第1の細長支持部材に対して実質的に水平に配向されている、
請求項
18に記載の輸送インフラストラクチャ。
【請求項23】
前記複数のエアギャップは、細長い形状を有し、
前記複数のエアギャップは、前記
第1の細長支持部材に対して実質的に垂直に配向されている、
請求項
18に記載の輸送インフラストラクチャ。
【請求項24】
前記複数のエアギャップのうち、隣り合うエアギャップが、前記ブレーキレールおよび前記制御レールの少なくとも1つの長さに対して実質的に垂直な方向に設けられている、
請求項
23に記載の輸送インフラストラクチャ。
【請求項25】
前記複数のエアギャップは、細長い形状を有し、
前記複数のエアギャップは、前記
第1の細長支持部材に対してある角度で配向されている、
請求項
18に記載の輸送インフラストラクチャ。
【請求項26】
前記ブレーキレールおよび前記制御レールの少なくとも1つは、一様な物質の細長素子を含む、
請求項
14~
25のいずれか1項に記載の輸送インフラストラクチャ。
【請求項27】
前記ブレーキレールおよび前記制御レールの少なくとも1つは、層状構造で構成された多数の構成要素
を含み、それらの層は水平に配向されている
、
請求項
14~
25のいずれか1項に記載の輸送インフラストラクチャ。
【請求項28】
前記ブレーキレールは、垂直に配向された多数の構成要素を含む、
請求項
14~
25のいずれか1項に記載の輸送インフラストラクチャ。
【請求項29】
前記構成要素は、前記乗り物の意図される前記
進行方向に対して平行な層状構造で構成される、
請求項
28に記載の輸送インフラストラクチャ。
【請求項30】
前記レールを構成する第1の構成要素は、前記レールを構成する第2の構成要素よりも高い鋼含有量を有する、
請求項
27、
28又は
29に記載の輸送インフラストラクチャ。
【請求項31】
少なくとも2つの構成要素は、異なる磁気的および/または電気的および/または伝導的特性を有する材料を含む、
請求項
27、
28又は
29に記載の輸送インフラストラクチャ。
【請求項32】
前記の少なくとも2つの構成要素は、以下の化合物
鉄、
鋼、
銅、
アルミニウム、
真ちゅう、
空気または空間
のうち少なくとも1つを含む、請求項
27~
31のいずれか1項に記載の輸送インフラストラクチャ。
【発明の詳細な説明】
【技術分野】
【0001】
その種々の態様及び例は、磁気的に浮遊状態で吊ることが可能な乗り物(magnetically suspendable vehicles)用のブレーキ、特に渦電流ブレーキを提供する分野に関する。
【背景技術】
【0002】
渦電流は、ブレーキ力が発生する2つのユニットが物理的に接触しないブレーキ効果で知られている。例として、ジェットコースターや高速列車がある。後者では、700系新幹線のように、円形渦電流ブレーキがボギーの車軸の周りのディスクと固定磁石とを含んで構成されたものがある。ドイツのICE3には、リニア渦電流ブレーキが備えられている。
【発明の概要】
【発明が解決しようとする課題】
【0003】
渦電流ブレーキとリニア渦電流ブレーキを使用すると、特に、乗り物の移動方向に垂直な力が乗り物に発生する。ジェットコースターやドイツのICE3のような高速列車では、磁石が垂直方向の磁場を与え、それらの磁石はトラックのレールに向かって移動する可能性がある。ICE3では、列車は、列車が乗るレールと相互作用する磁石を搭載している。この構成はまた、乗り物の移動方向に平行なブレーキ力に加えて、磁場の向きに平行な力をもたらす。これらの力は反発を引き起こし、導体が強磁性の場合、ブレーキの導体とブレーキの磁石の間の引力も生じる。
【0004】
ジェットコースターやドイツのICE3のような高速列車は、乗り物の下にあるレールと物理的に接触する車輪を使用して移動する。このようにして、列車は、2本のレールの間に拘束される。したがって、水平方向の場を備えるリニア渦電流ブレーキの使用は、ブレーキング中の乗り物の安定性に大きな影響を与えない。垂直方向の場が使用される場合、いくらかの追加の力は、列車の重量によって補償される。
【0005】
しかしながら、乗り物が磁気的に(非接触で)浮遊状態で吊られる場合には、垂直方向の場による渦電流ブレーキの作動によって生成される磁力は、レールの拘束がないことにより、乗り物の安定性に影響を与える可能性がある。特に垂直方向の安定性が問題になる可能性があり、そのような安定性は、最悪の場合、吊るされた状態の喪失に繋がる虞がある。
【課題を解決するための手段】
【0006】
以上を踏まえ、第1の態様は、磁気的に浮遊状態で吊られる乗り物(a magnetically suspended vehicle)用の制御装置を提供する。
(1)第1の態様の第1の観点に係る制御装置は、
第1のブレーキモジュールであって、第1の磁気活性ブレーキ素子と、前記第1の磁気活性ブレーキ素子に結合され、前記第1の磁気活性ブレーキ素子を制御して、該ブレーキモジュールに対する第1の所定位置に所定の大きさの第1のブレーキ磁場を与え、前記乗り物の外部の第1のブレーキレールにおける前記位置での磁場の強さを制御する第1のブレーキ磁石アクチュエータとを含む、第1のブレーキモジュールと、
第1の横方向制御モジュールであって、第1の磁気活性制御素子と、前記第1の磁気活性制御素子に結合され、前記第1の磁気活性制御素子を制御して、該制御モジュールに対する第1の所定位置に所定の大きさの第1の制御磁場を与える第1の制御磁石アクチュエータとを含む、第1の横方向制御モジュールと、
を含み、
前記第1のブレーキ磁場および前記第1の制御磁場は、使用時に、2つの前記磁気活性素子の位置において、前記乗り物の意図される進行方向に対して実質的に垂直であり、
前記第1の磁気活性ブレーキ素子は、第1の永久磁石を含み、
前記第1のブレーキ磁石アクチュエータは、前記乗り物の意図される進行方向に対して実質的に垂直な方向において、前記第1のブレーキレールに向かう前記第1の永久磁石の動きを制御するように配置され、
前記第1の磁気活性制御素子は電磁石を含み、前記第1の制御磁石アクチュエータは、前記電磁石に供給される電流を制御するように配置されている。
(2)第1の態様の第2の観点に係る制御装置は、
磁気的に浮遊状態で吊られる乗り物用の制御装置であって、
第1のブレーキモジュールであって、第1の磁気活性ブレーキ素子と、前記第1の磁気活性ブレーキ素子に結合され、前記第1の磁気活性ブレーキ素子を制御して、該ブレーキモジュールに対する第1の所定位置に所定の大きさの第1のブレーキ磁場を与え、前記乗り物の外部の第1のブレーキレールにおける前記位置での磁場の強さを制御する第1のブレーキ磁石アクチュエータとを含む、第1のブレーキモジュールと、
第1の横方向制御モジュールであって、第1の磁気活性制御素子と、前記第1の磁気活性制御素子に結合され、前記第1の磁気活性制御素子を制御して、該制御モジュールに対する第1の所定位置に所定の大きさの第1の制御磁場を与える第1の制御磁石アクチュエータとを含む、第1の横方向制御モジュールと、
を含み、
前記第1のブレーキ磁場および前記第1の制御磁場は、使用時に、2つの前記磁気活性素子の位置において、前記乗り物の意図される進行方向に対して実質的に垂直であり、
前記第1のブレーキモジュールは、ブレーキ力を提供するために前記第1のブレーキレールと相互作用するように配置され、
前記第1の横方向制御モジュールは、第1の制御レールと相互作用するように配置され、前記第1の横方向制御モジュールと前記第1の制御レールとの間の制御距離を制御し、
前記制御距離は、所定の範囲内にあり、
前記制御装置は、
前記第1のブレーキモジュールを制御して、前記第1の磁気活性ブレーキ素子と前記第1のブレーキレールとの間の相互作用により、前記第1のブレーキレールに対して該制御装置に所定のブレーキ力を提供させるように構成された制御プロセッサと、
第2のブレーキモジュールであって、第2の磁気活性ブレーキ素子と、前記第2の磁気活性ブレーキ素子に結合され、前記第2の磁気活性ブレーキ素子を制御して、該ブレーキモジュールに対する第2の所定位置に所定の大きさの第2のブレーキ磁場を与える第2のブレーキ磁石アクチュエータとを含む、第2のブレーキモジュールと、
第2の横方向制御モジュールであって、第2の磁気活性制御素子と、前記第2の磁気活性制御素子に結合され、前記第2の磁気活性制御素子を制御して、該制御モジュールに対する第2の所定位置に所定の大きさの第2の制御磁場を与える第2の制御磁石アクチュエータとを含む、第2の横方向制御モジュールと、
をさらに含み、
前記第2のブレーキ磁場および前記第2の制御磁場は、使用時に、2つの前記磁気活性素子の位置において、前記乗り物の進行方向に対して実質的に垂直であり、
前記第2の横方向制御モジュールは、第2の磁場が流れ出る第2の磁気活性素子の第2の極が、第1の磁場が流れ出る第1の磁気活性素子の第1の極と反対に向くように、前記第1の横方向制御モジュールの反対側に設けられ、
前記制御プロセッサは、
前記乗り物が進んでいるガイドトラックの分岐であって、第1の支線及び第2の支線を有する分岐に関する分岐情報を受信し、前記ガイドトラックは、前記ガイドトラックの第1の側にある前記第1のブレーキレールおよび前記第1の制御レールと、前記ガイドトラックの第2の側にある第2のブレーキレールおよび第2の制御レールとを含み、
前記所定の範囲内で前記制御距離を制御するための方向情報に対応する側にある制御モジュールを操作し、
前記分岐に近づくと、取る支線に関する方向情報を受信するように構成され、
前記制御プロセッサはさらに、
ブレーキ信号を受信すると、
前記ブレーキ信号に従って前記ブレーキモジュールを操作し、
前記所定の範囲内で前記制御距離を制御するための前記方向情報に対応する側にある前記制御モジュールの動作を調整する、
ように構成される。
(3)第1の態様の第3の観点に係る制御装置は、
磁気的に浮遊状態で吊られる乗り物用の制御装置であって、
第1のブレーキモジュールであって、第1の磁気活性ブレーキ素子と、前記第1の磁気活性ブレーキ素子に結合され、前記第1の磁気活性ブレーキ素子を制御して、該ブレーキモジュールに対する第1の所定位置に所定の大きさの第1のブレーキ磁場を与え、前記乗り物の外部の第1のブレーキレールにおける前記位置での磁場の強さを制御する第1のブレーキ磁石アクチュエータとを含む、第1のブレーキモジュールと、
第1の横方向制御モジュールであって、第1の磁気活性制御素子と、前記第1の磁気活性制御素子に結合され、前記第1の磁気活性制御素子を制御して、該制御モジュールに対する第1の所定位置に所定の大きさの第1の制御磁場を与える第1の制御磁石アクチュエータとを含む、第1の横方向制御モジュールと、
を含み、
前記第1のブレーキ磁場および前記第1の制御磁場は、使用時に、2つの前記磁気活性素子の位置において、前記乗り物の意図される進行方向に対して実質的に垂直であり、
前記第1のブレーキモジュールは、ブレーキ力を提供するために前記第1のブレーキレールと相互作用するように配置され、
前記第1の横方向制御モジュールは、第1の制御レールと相互作用するように配置され、前記第1の横方向制御モジュールと前記第1の制御レールとの間の制御距離を制御し、
前記制御距離は、所定の範囲内にあり、
前記制御装置は、
前記第1の磁気活性ブレーキ素子の制御に基づいて、前記第1の磁気活性制御素子を制御し、前記制御距離を前記所定の範囲内に維持するように構成された制御プロセッサと、
第2のブレーキモジュールであって、第2の磁気活性ブレーキ素子と、前記第2の磁気活性ブレーキ素子に結合され、前記第2の磁気活性ブレーキ素子を制御して、該ブレーキモジュールに対する第2の所定位置に所定の大きさの第2のブレーキ磁場を与える第2のブレーキ磁石アクチュエータとを含む、第2のブレーキモジュールと、
第2の横方向制御モジュールであって、第2の磁気活性制御素子と、前記第2の磁気活性制御素子に結合され、前記第2の磁気活性制御素子を制御して、該制御モジュールに対する第2の所定位置に所定の大きさの第2の制御磁場を与える第2の制御磁石アクチュエータとを含む、第2の横方向制御モジュールと、
をさらに含み、
前記第2のブレーキ磁場および前記第2の制御磁場は、使用時に、2つの前記磁気活性素子の位置において、前記乗り物の進行方向に対して実質的に垂直であり、
前記第2の横方向制御モジュールは、第2の磁場が流れ出る第2の磁気活性素子の第2の極が、第1の磁場が流れ出る第1の磁気活性素子の第1の極と反対に向くように、前記第1の横方向制御モジュールの反対側に設けられ、
前記制御プロセッサは、
前記乗り物が進んでいるガイドトラックの分岐であって、第1の支線及び第2の支線を有する分岐に関する分岐情報を受信し、前記ガイドトラックは、前記ガイドトラックの第1の側にある前記第1のブレーキレールおよび前記第1の制御レールと、前記ガイドトラックの第2の側にある第2のブレーキレールおよび第2の制御レールとを含み、
前記所定の範囲内で前記制御距離を制御するための方向情報に対応する側にある制御モジュールを操作し、
前記分岐に近づくと、取る支線に関する方向情報を受信するように構成され、
前記制御プロセッサはさらに、
ブレーキ信号を受信すると、
前記ブレーキ信号に従って前記ブレーキモジュールを操作し、
前記所定の範囲内で前記制御距離を制御するための前記方向情報に対応する側にある前記制御モジュールの動作を調整する、
ように構成される。
【0007】
例えば、実質的に水平に向く磁場成分を有する渦電流ブレーキを提供することにより、(垂直な)サスペンションで生成される渦電流によって励起される磁力の影響が低減され、好ましくは最小化される。
【0008】
一実装形態は、第2のブレーキ磁石アクチュエータに結合された第2の磁気活性ブレーキ素子をさらに含むブレーキモジュールであって、前記第2のブレーキ磁石アクチュエータが、前記第2の磁気活性素子を制御し、該ブレーキモジュールに対する第2の所定位置において所定の大きさの第2のブレーキ磁場を与え、第2のブレーキ磁場の第2の磁力線は、使用時に、前記第1のブレーキ磁場の磁力線に実質的に平行であり、それとは反対の向きを有し、第1の力線が流れ出る第1の極は、前記第2の磁気活性素子と反対を向き、第2の力線が流れ出る第2の極は、前記第1の磁気活性素子と反対を向く。
【0009】
この実装形態では、前記乗り物のボギーのいずれかの側において渦電流による誘導磁場で生じる横方向の力は、それらが同じ大きさである場合に互いに打ち消し合う可能性がある。この点で、ボギーは、トラックに対して乗り物のサスペンションを提供するように構成される。したがって、前記ボギーは、安全および/または快適なサスペンションを提供するために、ヒンジ、ばね、他の要素、またはそれらの組み合わせを含み得る。
【0010】
前記ブレーキモジュールの他の実装形態は、使用時に、ガイド磁力線が前記乗り物の進行方向に対して実質的に水平であり、実質的に垂直であるガイド磁場を与えるように構成された磁気活性ガイド素子を含む。この実装形態は、前記磁気活性ガイド素子を制御して、前記ブレーキモジュールに対する第1の所定位置に所定の大きさのガイド磁場を与えるように構成されたガイド磁石アクチュエータと、コントローラとをさらに含む。前記コントローラは、輸送インフラストラクチャに対する前記乗り物の特定位置を取得または維持するために必要な合計の力を取得するように構成され、前記磁気活性ブレーキ素子の作動によって与えられる必要なブレーキ力に基づき、前記ブレーキ磁場の大きさと、結果として生じる前記ブレーキモジュールへの横方向ブレーキ力とを決定し、前記ガイドアクチュエータを制御して、前記磁気活性ガイド素子が前記所定位置にガイド磁場を与えて磁気的なガイド力をもたらすことを可能にし、前記横方向ブレーキ力と前記磁気ガイド力の合計が必要な力の合計に実質的に等しくなるようにする。
【0011】
特に、曲がり箇所で、および/または、ブレーキレールが前記乗り物の片側にのみ設けられている場合、例えば渦電流によって引き起こされるブレーキに起因する横方向の力は、互いに打ち消し合わない。このような場合、この実装形態に設けられる追加の制御が要求される。
【0012】
第2の態様は、輸送インフラストラクチャを構成する少なくとも1つのガイドレールに対して磁気的に浮遊状態で吊ることが可能に構成される乗り物を提供し、この乗り物は、前記第1の態様に記載のブレーキモジュールを含む。
【0013】
第3の態様は、前記第2の態様に記載の乗り物の輸送のために構成された輸送インフラストラクチャを提供し、この輸送インフラストラクチャは、前記乗り物を案内するために構成されたトラックを備え、前記インフラストラクチャは、前記トラックに沿って設けられるブレーキレールを含み、前記ブレーキレールは、前記ブレーキモジュールに対して前記所定の第1の位置に設けられるように、前記乗り物を構成し前記トラックに沿って設けられる前記ブレーキモジュールと係合するように構成される。
【0014】
前記第3の態様の一実装形態では、前記ブレーキレールは層状構造で構成される。この実装形態では、特に、前記レールにおいて励起される電流は、制御されて低減または抑制されてもよい。
【0015】
他の実装形態では、少なくとも2つの層は、異なる磁気的および/または電気的および/または伝導性を有する材料を含む。
【0016】
異なる材料は、前記乗り物の異なる速度において異なる渦電流ブレーキ特性を提供する。異なる層に異なる材料が設けられたブレーキレールを提供することによって、広い速度範囲で効率的なブレーキをかけることができる。さらに、強磁性材料を含む層を組み込むことにより、ガイド、推進、およびサスペンションを含むがこれらに限定されない他の目的のために前記ブレーキレールを使用することができる。
【0017】
なお、以下で説明する複数の実装形態は、上方から浮遊状態で吊られた乗り物(vehicles that are suspended from above)に関連するが、これら種々の態様の実装形態は、下方から磁気的に浮遊状態で吊られて浮かぶ乗り物(floating vehicles magnetically suspended from below)の概念に関して除外されないことに留意されたい。
【図面の簡単な説明】
【0018】
次に、その種々の態様及び実装形態について図面と併せてさらに詳細に説明する。図面では、
【
図1】チューブとそこに設けられた乗り物とを含む輸送インフラストラクチャの断面図。
【
図5】輸送インフラストラクチャの分岐を上方から見た図。
【
図6A】共有されたサスペンションとブレーキレールを示す図。
【
図6B】層状ブレーキレールの他の実施形態を示す図。
【
図7A】第1のブレーキレールの他の実施形態を示す図。
【
図7C】第1のブレーキレールの他の変形例を示す図。
【発明を実施するための形態】
【0019】
図1は、輸送システム100を示す。輸送システム100は、断面で示すチューブ110を含み、この断面はチューブ110の長さに垂直な平面で規定される。チューブ110の内部においては、第1のサスペンションレール112および第2のサスペンションレール114がチューブ110の上部に設けられている。チューブ110の両側であって、好ましくは上半分もしくは下半分に、第1のガイドレール122および第2のガイドレール124が設けられ、同様に第1のブレーキレール132及び第2のブレーキレール134が設けられている。これらのサスペンションレール及びガイドレールは、チューブ110及びこれらレールの少なくとも一部によって規定される輸送インフラストラクチャ内におけるトラックを提供する。
【0020】
チューブ110の内部には、乗り物としてのキャリッジ160が設けられている。キャリッジ160は、人、物品、双方、片方、またはそれらの組み合わせを運ぶために用いられ得る。キャリッジ160は、キャリッジ160を吊るための基礎としてのボギー140に接続されている。ボギー140とキャリッジとの間に、第1のエアスプリング172及び第2のエアスプリング174を含む複数の懸架箇所を設けることができる。追加のエアスプリングが設けられてもよく、代替的または追加的に、他のタイプのばね又はダンパーが使用されてもよい。ボギー140は、好ましくは、キャリッジ160と同様に細長く、ボギー140とキャリッジ160の前端と後端の間における隅に、追加のエアスプリングが設けられてもよい。
【0021】
ボギー140は、キャリッジ160の動きに対する安全で快適かつ効率的な制御を可能にするために、いくつかの磁気活性素子を備えている。ボギー140の上部には、第1の磁気活性サスペンション素子142と第2の磁気活性サスペンション素子144が設けられている。
【0022】
これら磁気活性サスペンション素子は、サスペンションレールと係合する。第1の磁気活性サスペンション素子142は第1のサスペンションレール112と係合し、第2の磁気活性サスペンション素子144は第2のサスペンションレール114と係合する。ここでの係合とは、磁気活性サスペンション素子が、キャリッジ160を備えたボギー140をサスペンションレールに引き付けてサスペンションを提供する磁力を提供する磁場を与えることを意味する。
【0023】
ボギー140の両サイドには、第1の磁気活性ガイド素子152と第2の磁気活性ガイド素子154が設けられている。これら磁気活性ガイド素子は、ガイドレールと係合する。第1の磁気活性ガイド素子152は第1のガイドレール122と係合し、第2の磁気活性ガイド素子154は第2のガイドレール154と係合する。ここでの係合とは、磁気活性ガイド素子が、キャリッジ160を備えたボギー140をガイドレールに引き付け、又は、ガイドレールから引き離して、キャリッジ160を備えたボギー140案内する磁力を提供する磁場を与えることを意味する。より具体的には、磁気活性ガイド素子により、キャリッジ160の移動方向に対して垂直な実質的に水平な方向における、チューブ110の中におけるキャリッジ160の横方向位置の制御を可能とする。複数の磁気活性ガイド素子は、ボギー140の各サイドにおいてボギー140に接して一列に設けられてもよい。
【0024】
ボギー140の両サイドには、第1の磁気活性ブレーキ素子162と第2の磁気活性ブレーキ素子164が設けられている。これら磁気活性ブレーキ素子は、ブレーキレールと係合する。第1の磁気活性ブレーキ素子162は第1のブレーキレール132と係合し、第2の磁気活性ブレーキ素子164は第2のブレーキレール134と係合する。ここでの係合とは、磁気活性ブレーキ素子が、ブレーキレールに渦電流を生成する意図で磁場を与えることを意味する。したがって、磁気活性ブレーキ素子とブレーキレールは、渦電流ブレーキを構成する。複数の磁気活性ブレーキ素子は、ボギー140の各サイドにおいてボギー140に接して一列に設けられてもよい。
【0025】
図2は、渦電流ブレーキの概略機能を示す。第1の磁気活性ブレーキ素子152のN極を参照すると、磁力線はN極から始まって第1のブレーキレール122へと延びている。第1のブレーキレール122と第1の磁気活性ブレーキ素子152の相対的な動きにより、第1の磁気活性素子152によって与えられる磁場は、第1のブレーキレール122に電流、つまり渦電流を生成することになる。
【0026】
このように生成された電流は、
図2に示すような磁場を与える。生成された磁場は、第1の磁気活性ブレーキ素子152と第1のブレーキレール122との間に、進行方向の反対方向に作用する効力を発生させる。第1の磁気活性ブレーキ素子152がキャリッジ160に接続され、第1のブレーキレール122がチューブ110に接続されているので、第1の磁気活性ブレーキ素子152の操作により、電流が生成した磁場の効果が第1のブレーキレールに対して変化し、キャリッジ160のブレーキを制御することができる。
【0027】
図1に示すように、磁気活性ブレーキ素子は、水平方向においてブレーキレールと隣り合って設けられている。磁気活性ブレーキ素子をブレーキレールと係合させるために、磁気活性ブレーキ素子は、そのシステムの使用において、キャリッジ160の移動方向に対して実質的に水平な方向であって垂直な方向に、磁力線が磁気活性ブレーキ素子から流れ出る磁場を与える。なお、磁気活性ブレーキ素子から流れ出る磁力線が、使用時に水平ではなく、水平面に対してある角度にあるように、磁気活性ブレーキ素子が設けられる実施形態が想定され得ることに留意されたい。その角度は、5度程度の小さいものでもよく、30度、45度、60度程度のより大きいものであってもよい。さらには、その角度は上向きでも下向きでもよい。
【0028】
磁気活性ブレーキ素子が作動すると、磁力が励起され、磁気活性ブレーキ素子と、つまり一方でキャリッジと、他方でブレーキレールとの間で相互作用する。
【0029】
磁場の磁力線が磁気活性ブレーキ素子によって与えられる場合は、磁気活性ブレーキ素子とブレーキレールとの間の相互作用に起因する力は、この実施形態では、サスペンション力に対して垂直である。したがって、これらの力が直交関係にあることで、ブレーキはサスペンションから独立し、安全性が向上する。
【0030】
図3は、
図1の図面の左上の詳細図を示す。
図3は、チューブ110に接続された第1のガードレール122と、チューブに接続された第1のブレーキレール132を示している。第1の磁気活性ガイド素子152は第1のガイド磁石アクチュエータ182に接続され、第1の磁気活性ブレーキ素子162は第1のブレーキ磁石アクチュエータ192に接続される。第1のガイド磁石アクチュエータ182及び第1のブレーキ磁石アクチュエータ192の双方は、第1のガイド磁石アクチュエータ182及び第1のブレーキ磁石アクチュエータ192を操作するように構成されたボギー制御ユニット146に接続されている。
【0031】
図4A及び
図4Bは、磁石アクチュエータが磁気活性素子をどのように作動させるかの例を示す。磁気活性素子は、ボギー140に対する特定位置で、その特定位置で所定の大きさを有する磁場が提供されるように作動される。当該特定位置は、特に、ボギー140又はキャリッジ160の側面、遠位又は近位、あるいは磁気活性素子が係合することが意図されるレールの中央の位置である。
【0032】
図4A及び
図4Bは、第1の磁気活性ブレーキ素子162を示す。なお、他の磁気活性素子が同様に実装され得ることに留意されたい。
図4Aは、機械的な作動例を示す。第1の磁気活性素子162は、この例では、N極412及びS極414を有する永久磁石410を含む。一実施形態では、永久磁石410は、磁石のアレイで特にハルバッハ配列を含んで実装される。永久磁石410は、第1のブレーキレール132に対して永久磁石410を横方向に動かすために歯車422と係合するように配置された歯付きラック416を備えている。
【0033】
永久磁石410は、移動方向に対して垂直に並進することができる。他の実施形態では、永久磁石410は、第1のブレーキレール132に向かって他の方向に移動するが、それでも乗り物160の移動方向に対して垂直な成分を有する。さらに他の実施形態では、永久磁石410は、他の移動を介して第1のブレーキレール132に向かってもたらされる。このようにして、第1のブレーキレール132の位置での磁場強度が制御されることで、ブレーキ力が制御される。
【0034】
図4Bは、電気的な作動例を示す。第1の磁気活性素子162は、この例では、巻線454が覆って設けられるコア452を含む電磁石450を含む。電磁石450は、第1のブレーキ磁石アクチュエータ192として、コントローラブルな電流源462及び電流コントローラ464に導電性接続部を介して接続される。電流コントローラ464は、コントローラブルな電流源462によって供給される電流を制御するように構成されている。コントローラブルな電流源462によって供給される電流を制御することで、第1のブレーキレール162の位置における磁場の大きさを制御することができる。これにより、このように構成された渦電流ブレーキのブレーキ力を制御することができる。
【0035】
ブレーキレールまで所定の距離で与えられる磁力は、様々なパラメータに依存し得る。したがって、永久磁石410の動きの制御、または電磁石450に供給される電流の制御は、異なる制御パラメータに基づいて実行され得る。一実施形態では、制御パラメータは、適用されるブレーキ力である。他の制御パラメータは、加速度、ジャーク(またはその制限)、乗り物の速度、障害物に対する位置、曲がりに対する位置といった乗り物のジオメトリ、その他、またはそれらの組み合わせであり得る。この目的のために、ボギー140は、速度センサー、ジャイロスコープ、加速度計、その他、またはそれらの組み合わせを含むがこれらに限定されない種々のセンサーであって、ボギーコントローラ146への入力を提供するセンサーを含んでもよい。
【0036】
渦電流ブレーキが作動すると、磁気活性ブレーキ素子がブレーキレールから押し離される。ブレーキレールがチューブ110の両側に設けられた場合のリニアな引っ張りにおける力は、ボギー140の互いに反対の横側面で補いあう。しかしながら、トラックの分岐では、ブレーキレールがチューブ110の両側に存在しない場合がある。これは、
図5に示されている。
【0037】
図5は、チューブ110内の分岐500を示す。この分岐500は上面視で示されている。第1のサスペンションレール112は、分岐した第1のサスペンションレール112’に接続され、第2のサスペンションレール114は、分岐した第2のサスペンションレール114’に接続されている。例えば、第1の磁気活性ガイド素子152を非アクティブ化することによって、キャリッジ160は、カーブした軌道に従って、分岐したチューブ管100’へ案内される。軌道の曲率により、遠心力512がキャリッジ160に作用する。
【0038】
カーブした軌道に適切に従うために、第2の磁気活性ガイド素子154が作動される。この例では、2つの第2の磁気活性ガイド素子が、キャリッジ160の前側(あるいは実際にはボギー140)と、キャリッジ160またはボギー140の後側に設けられる。遠心力が打ち消されるように2つの第2の磁気活性ガイド素子が作動され、その結果、キャリッジ160は、図示のカーブした軌道に従う。
【0039】
図5はまた、点線によって、第2の磁気活性ブレーキ素子164を作動することによって生成される力を示す。キャリッジ160の前側(あるいは実際にはボギー140)と、キャリッジ160すなわちボギー140の後側に、2つの第2の磁気活性ブレーキ素子が設けられる。上で論じたように、第2の磁気活性ブレーキ素子を作動させることによる渦電流ブレーキの動作は、ブレーキを有効にする第1の抗力534および第2の抗力534’をもたらす。そして、第2の磁気活性ブレーキ素子を作動させると、上述のように、第1の横力532および第2の横力532’が生じ、これらの力は、キャリッジを第2のガイドレールから押し離し、カーブした軌道から離すように作用する。
【0040】
分岐の中央においては、第1のブレーキレール122が存在せず、第1の横力532および第2の横力532’の少なくとも1つは、乗り物の左側にある磁気活性ブレーキ素子の作動によって補われない。したがって、分岐500において、水平渦電流ブレーキの動作中に、渦電流ブレーキの動作による反発力は、第2の磁気活性ガイド素子のさらなる作動によって補われる必要がある。
【0041】
ボギー制御ユニット146(
図3)は、キャリッジ160の速度と、第2の磁気活性ブレーキ素子の駆動の仕方と、キャリッジ160が分岐したチューブ100’に適切に入るために従うべき軌道の曲率との少なくとも1つに基づいて、キャリッジ160が分岐したチューブ100’に適切に入るように第2の磁気活性ガイド要素がどのように作動されるかを決定するように構成されている。磁気活性ガイド素子を作動させる方法を決定すると、ボギー制御ユニット146は、決定の通りに第2の磁気活性ガイド素子が作動されるように、第2のガイド磁石アクチュエータを作動させる。
【0042】
さらに、ボギー制御ユニット146は、ブレーキ動作において磁気活性ブレーキ素子を操作することによって、磁気活性ガイド素子を制御してボギー140に作用する力を補うように構成されている。磁気活性ブレーキ素子を作動させると、ボギー140及びキャリッジ160の移動方向と反対に作用するブレーキ力が生じるが、磁気活性ブレーキ素子を隣接するブレーキレールから押しのける力も生じる。そのような力は、例えば、ボギー140とガイドトラックまたはチューブ110の壁との間の距離を所定の範囲内に維持するために、磁気活性ガイド素子を操作することで打ち消されてもよい。さらに、磁気活性ブレーキ素子を使用して、キャリッジ160を備えるボギー140をブレーキレールから押し離すことができる。
【0043】
上記の例では、輸送インフラストラクチャは、サスペンション、ガイド、ブレーキ用の3種類のレールで構成されている。この一群においては、目的ごとに材料が最適化され、レールがさらに構築されてもよい。サスペンションレールは、好ましくは、磁気活性サスペンション素子とサスペンションレールとの間に有意な磁力を与えるように、強磁性材料から製造される。
【0044】
有効な力を減少させる可能性があり、抗力およびエネルギーの損失をもたらす可能性があるサスペンションレールには、少量の渦電流が発生することが好ましい。これは特に、サスペンションレールがボギー140及びキャリッジ160を備えた乗り物の推進にも使用される場合に当てはまる。少量の渦電流を確保することは、層状構造でサスペンションレールを設けることで実施することができ、それらの層は、磁気活性サスペンション素子によって励起されるサスペンション場の方向に対して平行に設けられる。層間には、電気絶縁層を設けることができる。
【0045】
ブレーキレールは、励起磁場が有意な渦電流を生成するが、渦電流によって比較的低い磁気相互作用を生成するように設けられることが好ましい。したがって、ある層状構造は好ましくなく、いずれにせよ、それらの層がブレーキ場の方向に対して平行である層状構造は好ましくない。しかしながら、それらの層は、磁気活性ブレーキ素子によって励起されるブレーキ場に対して垂直に配向され得る。したがって、ブレーキ電流は、好ましくは、銅またはアルミニウムのような非強磁性材料に供給される。一実施形態では、特定の場所におけるブレーキレールを構成する材料は、その特定の場所で予想される速度に応じて選択することができる。高速では高導電性材料が好ましく、低速では低導電性材料が好ましい。
【0046】
ガイドレールとしては、強磁性体が好ましい。さらに、層がガイド場の方向に対して平行に設けられる場合は、渦電流が好ましくは低く保たれるように、層状構造が好ましい。ガイド場はサスペンション場に対して実質的に垂直に配向されているため、ガイドとサスペンションに同じレールを使用することはかなり困難だが、これはオプションとして除外されない。効率性は、ある角度の層を相互に直交する方向の場に与えることによって得ることができる。このような角度は、好ましくは45°であるが、いずれの場の方向でも30°と60°の間であってもよい。
【0047】
図6Aは、具体的な実施形態として、サスペンションレール112をさらに詳細に示す。乗り物の移動方向は紙面に対して垂直である。層状または一様な物質である単一の材料の使用は、上記およびより一般的な態様を実施するためのオプションであるが、この実施形態は、異なる材料の層を含むサスペンションレール112を示す。より具体的には、
図6Aに示される第1のサスペンションレール112は、アルミニウム、他の常磁性材料、またはそれらの組み合わせといった、常磁性材料の第1の層610を含む。さらに、ギャップが設けられてもよく、その場合、これらの層の1つは、空気または空間であり得る。
【0048】
第1のサスペンションレール112は、銅、鉛、その他、またはそれらの組み合わせといった、反磁性材料の第2の層612をさらに含む。第1のサスペンションレール112は、鋼、鉄、コバルト、ニッケル、その他、またはそれらの組み合わせといった、強磁性材料の第3の層614をさらに含む。なお、すべての層について、特定の合金を使用できることに留意されたい。第4の層616は、1つ又は複数の常磁性材料をまた含み、第5の層618は、1つ又は複数の反磁性材料をまた含む。なお、任意の数の任意の厚さの層における、強磁性材料の層と他の材料を含む層とを組み合わせる際に、様々なオプションが想定され得ることに留意されたい。
【0049】
図6Aは、第1の磁気活性ブレーキ素子162をさらに示す。第1のブレーキレール132と係合する位置に設けられるのではなく、第1の磁気活性ブレーキ素子162は、第1のサスペンションレール112と係合するように配置される。第1の磁気活性ブレーキ素子162は、巻線454が覆って設けられるコア452を含む電磁石450を含む。電磁石450のコアは、第1のサスペンションレール112の層の配向に対して垂直に設けられる。したがって、電磁石450によって励起された磁場は、層の配向に対して実質的に垂直に与えられる。このようにして、巻線454の作動にあたっては、各層の面内に向けられ、そして電磁石450によって励起された場に対して垂直な渦電流が、著しい抵抗に遭遇しないように生成され、そして有意なブレーキ効果を与える。
【0050】
また、
図6Aは、第1の磁気活性サスペンション素子142の一部として、さらなるコア552およびさらなる巻線554を含むさらなる電磁石が示されている。さらなるコア552は、第1のサスペンションレールの層に対して平行に配向されている。このようにして、さらなる電磁石によって励起された場によって生成された渦電流の大きさは、低く保たれる。他方で、第3の層614に設けられる強磁性材料により、サスペンション力は、さらなる巻線554の励起によって生成される。このようにして、この実施形態は、第1のサスペンション112レールが第1のブレーキレール132の機能も提供することを可能にする。代替的または追加的に、第1のブレーキレール132および第2のブレーキレール134は、
図6Aに示されるように具現化され得る。
【0051】
電磁石450に近い第1のサスペンションレール112の一部が反磁性および/または常磁性材料のより多くの層を含む、様々なさらなるオプションが想定され得る。電磁石450からさらに離れた位置で、第1のサスペンションレールは、強磁性材料のより多くの層を含み得る。この実施形態では、さらなる電磁石またはより概略的には第1の磁気活性サスペンション素子142が、
図6Aに示されるように、第1のサスペンションレール120の左側の下に設けられる。
【0052】
異なる材料を使用することによるブレーキ効果はキャリッジの速度に応じて変化するので、種々の層に異なる複数の常磁性および/または反磁性材料を使用することが好ましい実施形態である。したがって、ブレーキとサスペンションを共有するレールまたは専用のブレーキレールに、異なる常磁性および/または反磁性材料の複数の層を設けることは、キャリッジ160の広い速度範囲にわたって最適なブレーキングを提供する。
【0053】
他の実施形態では、
図6Aに示されるようなブレーキレール112は、図の平面に対して垂直な軸上で90°回転されてもよい。このようにして、それらの異なる材料はすべて、第1の磁気活性ブレーキ素子162に面しているブレーキレール112の第1の平面に設けられる。第1の磁気活性サスペンション素子142に面するブレーキレール112の第2の平面は、第1の磁気活性サスペンション素子142の機能に対して最適な、あるいは少なくともより好ましい特性を有する、すなわち、サスペンションを提供する材料を含み得る。
【0054】
他の実施形態では、チューブ110の各サイドにあるレールは、ガイドとブレーキのために共有される。そのような実施形態では、ブレーキは、
図6Aに示されるようなレールと組み合わせて、磁気活性ガイド素子に対してある角度の下で、磁気活性ブレーキ素子を設けることによって実施され得る。その角度は、好ましくは約90度であるが、そのような角度に限定されない。
【0055】
図6Bは、層状のブレーキレールのさらに他の実施形態を示す。
図6Bに示されるようなブレーキレール112では、その材料は、ブレーキレール112の長さにわたって、ブレーキレール112に設けられる断続的で任意に定期的に繰り返される様式で設けられる。この実施形態では、材料間に電気絶縁体を設けずに、材料を通る循環渦電流を可能にしてブレーキ効果を高めることが好ましい場合があるが、そのような絶縁は何らかの理由で好ましい場合には存在していてもよい。代替的または追加的に、第1のブレーキレール132および第2のブレーキレール134は、
図6Bに示されるように具現化され得る。
【0056】
さらに他の実施形態では、第1のブレーキレール132又は第1のサスペンションレール112、そして第2のブレーキレール134及び第2のサスペンションレール114の様々な材料が、移動方向に積み重ねられる。
図7A、
図7Bおよび
図7Cは、第1のブレーキレール132の材料の積み重ねの具体的な実施形態を示す。これらの例は、第1のサスペンションレール112、第2のブレーキレール134、および第2のサスペンションレール114にも適用することができる。
図7A、
図7Bおよび
図7Cによって示される実施形態では、複数の金属片は複数のエアギャップで分離されている。複数の金属片は、少なくとも1つの細長支持部材に取り付けられる。
【0057】
図7Aは、第1の例を示す。第1の例では、細長支持部材702が設けられている。細長支持部材702から、一セットの第1の複数の金属片712が細長支持部材702から離れて延びている。これら金属片は、好ましくは、細長支持部材702の長さに垂直な方向にすべて、したがって互いに平行に延びるが、細長支持部材702に対してある角度で設けられてもよい。その角度は、0°と90°の間、20°と80°の間、30°と60°の間、および40°と50°の間であってもよい。45°は1つオプションである。上記で参照されたいずれかの値の間の他の角度または角度の範囲であってもよく、例えば、30°と90°の間、または10°と60°の間であってもよい。ブロック矢印は、キャリッジ160の移動方向を示している。
【0058】
第1の複数の金属片712が延びる側と反対の細長体の側において、第2の複数の金属片714は、細長支持部材702の長さに垂直な方向に、そして第1の複数の金属片が延びる方向と反対の方向に延びる。
【0059】
細長体702、第1の複数の金属片712、および第2の複数の金属片714は、好ましくは、1つの同じ材料で提供され、その結果、第1のブレーキレール132は、鋸引き、フライス加工、研削、その他またはそれらの組み合わせによって1つの材料の一部から製造され、第1の複数の金属片の間に複数のエアギャップを形成する。他の実施形態では、第1の複数の片712、第2の複数の片714、および細長支持部材702は、異なる材料を含み得る。
【0060】
一実施形態では、2つ、3つ、4つ、またはそれ以上の異なる材料が、第1の複数の片712および第2の複数の片714に使用される。この実施形態では、第2、第3、第4、第n番目の片のすべてが、同じ材料から、または合金のような同じ化合物から作られる。
図6Aと併せて説明したのと同じ金属のセットから、種々の異なる金属を選択してもよい。
【0061】
第1のブレーキレール132の他の任意の実施形態と組み合わせ得るまた別の実施形態では、複数のエアギャップの幅は、細長支持部材702の長さに沿って測られる第1の複数の金属片712および第2の複数の金属片714の幅と実質的に等しい。さらに別の実施形態では、複数のエアギャップの幅は、細長支持部材702の長さに沿って測られる、第1の複数の金属片712および第2の複数の金属片714の幅よりも小さい又は大きい。
【0062】
さらに他の実施形態では、細長支持部材702の長さに沿って測られる、複数のエアギャップの幅および/または第1の複数の金属片712と第2の複数の金属片714の幅は、細長支持部材702の長さに沿って変更されてもよい。その変更は、周期的、増分、減分、ランダム、またはそれらの任意の組み合わせであり得る。
【0063】
図7Aでは、第1の複数の金属片712は、第2の複数の金属片714と同じ幅を有し、同じ位置および同じ間隔で離間されているものとして示されている。他の実施形態では、第1の複数の金属片712の幅、位置、および周期性は、第2の複数の金属片714のものとは異なっていてもよい。例えば、第1の複数の金属片712の位置は、第2の複数の金属片714の位置から半周期それており、第1の複数の金属片712と第2の複数の金属片714の両方が実質的に同じ周期で離間していてもよい。
【0064】
図7Aは、細長支持部材702の一端から細長支持部材702の他端まで、細長支持体の長さに対して垂直に延びる第1の複数の金属片712を示している。また、
図7Aは、実質的に正方形の断面を有するものとして、第1の複数の金属片712および第2の複数の金属片714を示している。他の実施形態では、第1の複数の金属片および第2の複数の金属片は、長方形、円筒形、三角形、別の多角形の形状、その他、またはそれらの組み合わせといった、別の形状を有していてもよい。さらに、第1の複数の金属片は、細長支持部材702よりも幅が広くても狭くてもよい。
【0065】
図7Bは、
図7Aに示されるような第1のブレーキレール132の変形例としての他の第1のブレーキレール132を示す。ブロック矢印は、キャリッジ160の移動方向を示す。
図7Bの第1のブレーキレール132は、間に複数のエアギャップが設けられた1セットの第1の複数の金属片712を含む。この第1の複数の金属片712のセットは、第1の細長体702と第2の細長体704との間に配置されている。第1の細長体702、第2の細長体704、及び、
図7Aと併せて説明した第1の複数の金属片712のセットの様々な形状及び構成は、
図7Bに示されるような第1のブレーキレールにも適用されてもよい。
【0066】
図7Cは、
図7Aおよび
図7Bに示されるような第1のブレーキレール132の変形例としてのさらに他の第1のブレーキレール132を示す。ブロック矢印は、キャリッジ160の移動方向を示す。
図7Bの第1のブレーキレール132は、間に複数のエアギャップが設けられた一セットの第1の複数の金属片712を含む。第1の複数の金属片712のセットは、第1の細長体702上に配置されている。第1の細長体702、第2の細長体704、及び、
図7Aと併せて説明した第1の複数の金属片712のセットの様々な形状及び構成は、
図7Cに示されるような第1のブレーキレールにも適用されてもよい。
【0067】
上記の実施形態では、1から2セットの複数の片と、1から2セットの複数のエアギャップを有する実施形態を説明した。なお、第1のブレーキレール132の長さに実質的に平行に設けられる1つまたは複数の細長支持体に対して平行に設けられる複数のエアギャップの複合層を備えた実施形態も想定され得ることに留意されたい。ある具体的な実施形態では、4から10個の細長支持体が互いに平行に設けられ、複数の金属片としての複数のスタッドによって接続される。結果として生じる第1のブレーキレール132は、細長支持体に対して垂直な方向に積み重ねられた状態で、細長支持体に対して垂直ではなく、細長支持体に対して平行に配向された複数のエアギャップを有し得る。
【0068】
上記の説明において、層、領域、または基部などの所定要素が他の要素に対して「接して」または「上」にあると言及される場合、所定要素は他の要素に直接接しているか、または、介在する要素も存在し得ることが理解されるであろう。また、上記の説明で与えられた値は、例として与えられ、他の値が可能で、および/または、図られ得ることが理解されるであろう。
【0069】
さらに、本発明はまた、本明細書に記載の実施形態で提供されるよりも少ない構成要素で実施されてもよく、そこでは1つの構成要素が複数の機能を実行する。同様に、本発明は、図に示されているよりも多くの要素を使用して具体化されてもよく、そこでは、提供された前記実施形態における1つの構成要素によって実行される機能が複数の構成要素に分配される。
【0070】
なお、本願のこれらの図は、非限定的な例示としてあげられた本発明の実施形態の概略図にすぎないことに留意されたい。明確化および簡潔な説明のために、特徴は、同じまたは別個の実施形態の一部として本明細書に記載されているが、本発明の範囲は、記載された特徴のすべてまたはいくつかの組み合わせを有する実施形態を含み得ることが理解されよう。「含む」という言葉は、クレームに記載されているもの以外の機能またはステップの存在を排除するものではない。さらに、単数を示す用語は、「1つだけ」に限定されると解釈されるべきではなく、代わりに「少なくとも1つ」を意味するために使用され、複数が除外されるものではない。
【0071】
当業者は、本発明の範囲から逸脱することなく、説明に開示された様々なパラメータおよび値が変更され得ることと、開示された、および/または主張された様々な実施形態が組み合わされ得ることを容易に理解するであろう。
【0072】
請求項の参照記号は、請求項の範囲を制限するものではなく、単に請求項の読みやすさを高めるために挿入されるものであると規定される。
【0073】
(付記)
(付記1)
磁気的に浮遊状態で吊られる乗り物用の制御装置であって、
第1のブレーキモジュールであって、第1の磁気活性ブレーキ素子と、前記第1の磁気活性ブレーキ素子に結合され、前記第1の磁気活性ブレーキ素子を制御して、該ブレーキモジュールに対する第1の所定位置に所定の大きさの第1のブレーキ磁場を与える第1のブレーキ磁石アクチュエータとを含む、第1のブレーキモジュールと、
第1の横方向制御モジュールであって、第1の磁気活性制御素子と、前記第1の磁気活性制御素子に結合され、前記第1の磁気活性制御素子を制御して、該制御モジュールに対する第1の所定位置に所定の大きさの第1の制御磁場を与える第1の制御磁石アクチュエータとを含む、第1の横方向制御モジュールと、
を含み、
前記第1のブレーキ磁場および前記第1の制御磁場は、使用時に、2つの前記磁気活性素子の位置において、前記乗り物の意図される進行方向に対して実質的に垂直である、
制御装置。
【0074】
(付記2)
前記第1のブレーキモジュールは、ブレーキ力を提供するために第1のブレーキトラックと相互作用するように配置され、
前記第1の横方向制御モジュールは、第1の制御トラックと相互作用するように配置され、前記第1の横方向制御モジュールと前記第1の制御トラックとの間の制御距離を制御し、
前記制御距離は、好ましくは所定の範囲内にある、
付記1に記載の制御装置。
【0075】
(付記3)
前記第1の磁気活性ブレーキ素子は、第1の永久磁石を含み、
前記ブレーキ磁石アクチュエータは、前記乗り物の意図される進行方向に対して実質的に垂直な方向における第1の永久磁石の動きを制御するように配置され、
前記第1の磁気活性制御素子は電磁石を含み、前記制御磁石アクチュエータは、前記電磁石に供給される電流を制御するように配置されている、
付記1又は2に記載の制御装置。
【0076】
(付記4)
前記第1の磁気活性ブレーキ素子は第1の電磁石を含み、前記ブレーキ磁石アクチュエータは該電磁石に供給される電流を制御するように配置され、
前記第1の磁気活性制御素子は電磁石を含み、前記制御磁石アクチュエータは該電磁石に供給される電流を制御するように配置されている、
付記1~3のいずれか1つに記載の制御装置。
【0077】
(付記5)
前記第1の磁気活性ブレーキモジュールを制御して、前記第1の磁気活性ブレーキ素子と前記第1のブレーキトラックとの間の相互作用により、前記第1のブレーキトラックに対する該制御装置への所定のブレーキ力を提供させるように構成された制御プロセッサをさらに含む、
付記2に記載の制御装置。
【0078】
(付記6)
前記第1の磁気活性ブレーキモジュールの制御に基づいて、前記第1の磁気活性制御モジュールを制御し、前記制御距離を前記所定の範囲内に維持するように構成された制御プロセッサをさらに含む、
付記2又は5に記載の制御装置。
【0079】
(付記7)
第2のブレーキモジュールであって、第2の磁気活性ブレーキ素子と、前記第2の磁気活性ブレーキ素子に結合され、前記第2の磁気活性ブレーキ素子を制御して、該ブレーキモジュールに対する第2の所定位置に所定の大きさの第2のブレーキ磁場を与える第2のブレーキ磁石アクチュエータとを含む、第2のブレーキモジュールと、
第2の横方向制御モジュールであって、第2の磁気活性制御素子と、前記第2の磁気活性制御素子に結合され、前記第2の磁気活性制御素子を制御して、該制御モジュールに対する第2の所定位置に所定の大きさの第2の制御磁場を与える第2の制御磁石アクチュエータとを含む、第2の横方向制御モジュールと、
をさらに含み、
前記第2のブレーキ磁場および前記第2の制御磁場は、使用時に、2つの前記磁気活性素子の位置において、前記乗り物の進行方向に対して実質的に垂直であり、
前記第2の横方向制御モジュールは、第2の磁場が流れ出る第2の磁気活性素子の第2の極が、第1の磁場が流れ出る第1の磁気活性素子の第1の極と反対に向くように、前記第1の横方向制御モジュールの反対側に設けられる、
付記1~6のいずれか1つに記載の制御装置。
【0080】
(付記8)
前記制御プロセッサは、
前記乗り物が進んでいるガイドトラックの分岐に関する分岐情報を受信し、前記ガイドトラックは、前記ガイドトラックの第1の側にある前記第1のブレーキトラックおよび前記第1の制御トラックと、前記ガイドトラックの第2の側にある第2のブレーキトラックおよび第2の制御トラックとを含み、
前記所定の範囲内で前記制御距離を制御するための方向情報に対応する側にある制御モジュールを操作し、
前記分岐に近づくと、取る方向に関する方向情報を受信するように構成され、
前記制御プロセッサはさらに、
ブレーキ信号を受信すると、
前記ブレーキ信号に従って前記ブレーキモジュールを操作し、
前記所定の範囲内で前記制御距離を制御するための前記方向情報に対応する側にある前記制御モジュールの動作を調整する、
ように構成される、
付記4に従属する付記7に記載の制御装置。
【0081】
(付記9)
前記制御プロセッサは、さらに、前記分岐に到着すると、前記方向情報に対応しない側にある前記制御モジュールを非アクティブ化するように構成される、
付記8に記載の制御装置。
【0082】
(付記10)
輸送インフラストラクチャを構成する少なくとも1つのサスペンションレールに対して磁気的に浮遊状態で吊ることが可能に構成される乗り物であって、
付記1~9のいずれか1つに記載の制御装置を含む、
乗り物。
【0083】
(付記11)
付記10に記載の乗り物の輸送のために構成された、前記乗り物を案内するように構成されたガイドトラックを提供する輸送インフラストラクチャであって、
前記サスペンションレールと、
前記ガイドトラックに沿って設けられるブレーキレールを含み、前記ブレーキレールが前記ブレーキモジュールと係合するように構成されるブレーキトラックと、
前記ガイドトラックに沿って設けられる制御レールを含み、前記制御レールが前記制御モジュールと係合するように構成される制御トラックと、
を含む、
輸送インフラストラクチャ。
【0084】
(付記12)
前記ブレーキトラックは、金属を含むブレーキレールを含む、前記制御トラックは、金属を含む制御レールを含む、
付記11に記載の輸送インフラストラクチャ。
【0085】
(付記13)
前記ブレーキレールおよび前記制御レールのうちの少なくとも1つが複数のエアギャップを含む、
付記12に記載の輸送インフラストラクチャ。
【0086】
(付記14)
前記複数のエアギャップは、前記ブレーキレールおよび前記制御レールのうちの少なくとも1つの長さにわたって配置される、
付記13に記載の輸送インフラストラクチャ。
【0087】
(付記15)
前記複数のエアギャップは、前記ブレーキレールおよび前記制御レールのうちの少なくとも1つにおける隣接する3つの外面に開いている、
付記13又は14に記載の輸送インフラストラクチャ。
【0088】
(付記16)
前記ブレーキレールおよび前記制御レールの少なくとも1つは、
第1の金属細長支持部材と、
複数の金属片であって、該複数の金属片の第1の側において第1の前記細長支持部材から該細長支持部材の長さに対して垂直な方向に延びる、複数の金属片と、
を含む、
付記12~15のいずれか1つに記載の輸送インフラストラクチャ。
【0089】
(付記17)
前記第1の金属細長支持部材と平行に設けられ、前記第1の側と反対の第2の側においてある前記複数の金属片と接続された第2の金属細長支持部材をさらに含む、
付記16に記載の輸送インフラストラクチャ。
【0090】
(付記18)
前記第1の細長支持部材の前記第1の側とは反対の前記第1の細長支持部材の第2の側において前記第1の細長支持部材から延び、前記第1の細長支持部材の長さに対して実質的に垂直に延びる第2の複数の金属片をさらに含む、
付記16に記載の輸送インフラストラクチャ。
【0091】
(付記19)
前記複数のエアギャップは、細長い形状を有する、
付記13~18のいずれか1つに記載の輸送インフラストラクチャ。
【0092】
(付記20)
前記複数のエアギャップは、前記細長支持部材に対して実質的に水平に配向されている、
付記19に記載の輸送インフラストラクチャ。
【0093】
(付記21)
前記複数のエアギャップは、前記細長支持部材に対して実質的に垂直に配向されている、
付記19に記載の輸送インフラストラクチャ。
【0094】
(付記22)
多数の隣り合うエアギャップが、前記ブレーキレールおよび前記制御レールの少なくとも1つの長さに対して実質的に垂直な方向に設けられている、
付記21に記載の輸送インフラストラクチャ。
【0095】
(付記23)
前記複数のエアギャップは、前記細長支持部材に対してある角度で配向されている、
付記19に記載の輸送インフラストラクチャ。
【0096】
(付記24)
前記ブレーキレールおよび前記制御レールの少なくとも1つは、一様な物質の細長素子を含む、
付記12~23のいずれか1つに記載の輸送インフラストラクチャ。
【0097】
(付記25)
前記ブレーキレールおよび前記制御レールの少なくとも1つは、層状構造で構成された多数の構成要素含み、それらの層は水平に配向されている。
付記12~23のいずれか1つに記載の輸送インフラストラクチャ。
【0098】
(付記26)
前記ブレーキレールは、垂直に配向された多数の構成要素を含む、
付記12~23のいずれか1つに記載の輸送インフラストラクチャ。
【0099】
(付記27)
前記構成要素は、前記乗り物の意図される前記移動方向に対して平行な層状構造で構成される、
付記26に記載の輸送インフラストラクチャ。
【0100】
(付記28)
前記レールを構成する第1の構成要素は、前記レールを構成する第2の構成要素よりも高い鋼含有量を有する、
付記25、26又は27に記載の輸送インフラストラクチャ。
【0101】
(付記29)
少なくとも2つの構成要素は、異なる磁気的および/または電気的および/または伝導的特性を有する材料を含む、
付記25、26又は27に記載の輸送インフラストラクチャ。
【0102】
(付記30)
前記の少なくとも2つの構成要素は、以下の化合物
鉄、
鋼、
銅、
アルミニウム、
真ちゅう、
空気または空間
のうち少なくとも1つを含む、付記25~29のいずれか1つに記載の輸送インフラストラクチャ。