(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-02-16
(45)【発行日】2024-02-27
(54)【発明の名称】電子ビーム溶接器具
(51)【国際特許分類】
H01J 37/315 20060101AFI20240219BHJP
H01J 37/30 20060101ALI20240219BHJP
H01J 37/06 20060101ALI20240219BHJP
H01J 37/04 20060101ALI20240219BHJP
H01J 37/244 20060101ALI20240219BHJP
【FI】
H01J37/315
H01J37/30 A
H01J37/06 B
H01J37/04 B
H01J37/04 Z
H01J37/244
H01J37/04 A
(21)【出願番号】P 2021569361
(86)(22)【出願日】2020-05-20
(86)【国際出願番号】 EP2020064031
(87)【国際公開番号】W WO2020234334
(87)【国際公開日】2020-11-26
【審査請求日】2023-05-11
(32)【優先日】2019-05-21
(33)【優先権主張国・地域又は機関】FR
(73)【特許権者】
【識別番号】521508829
【氏名又は名称】テクメタ エンジニアリング エスアーエス
(74)【代理人】
【識別番号】110002572
【氏名又は名称】弁理士法人平木国際特許事務所
(72)【発明者】
【氏名】オヴィン,ペーター
【審査官】右▲高▼ 孝幸
(56)【参考文献】
【文献】特開2000-260599(JP,A)
【文献】特開2011-238517(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01J 37
(57)【特許請求の範囲】
【請求項1】
電子ビーム(FE)を生成可能な電子銃(11)と、
第一の軸(Z)に沿って前記電子ビームを配向可能な集束手段(12)と、
前記第一の軸に平行に延びたアーム(13)であり、
前記第一の軸(Z)と垂直な平面において前記電子ビームの密度分布を変換する変換手段(14)と、
前記第一の軸と実質的に垂直な第二の軸(X)に沿って前記電子ビームを偏向させる偏向手段(15)と、
を備えた、アーム(13)と、
を備えたことを特徴とする電子ビーム溶接装置(10)。
【請求項2】
前記変換手段(14)が、少なくとも二つのコイル、好ましくは少なくとも四つのコイル(141A、141B、141C、141D)、特に少なくとも六つのコイルを備え、前記少なくとも二つのコイルが、前記第一の軸(Z)と実質的に垂直な磁気軸(AM1、AM2)を形成し、前記少なくとも二つのコイルが、交互のN磁極及びS磁極を生成するように、前記第一の軸周りに分布したことを特徴とする、請求項1に記載の溶接装置(10)。
【請求項3】
前記電子銃(11)、前記集束手段(12)、前記変換手段(14)、及び前記偏向手段(15)が、前記電子ビーム(FE)の経路に沿って、この順序で配置され、前記集束手段が、可変焦点距離を有し、前記集束手段が、前記変換手段の上流に位置決めされた焦点(PF)に前記電子ビームを集束可能であり、前記集束手段が、前記変換手段の下流に位置決めされた焦点(PF)に前記電子ビームを集束可能であることを特徴とする、請求項1又は2に記載の溶接装置(10)。
【請求項4】
前記偏向手段(15)が、電流が流れた場合に前記第一の軸(Z)と実質的に垂直に配向した磁界を生成可能なコイル(151)を備え、前記コイルが、前記第二の軸(X)の背後において、前記第一の軸(Z)の実質的に延長線上に位置決めされたことを特徴とする、請求項1~3のいずれか一項に記載の溶接装置(10)。
【請求項5】
前記偏向手段(15)が、前記コイル(151)の内側に配置された磁心(152)と、第一の側極(158)により前記磁心に連結された第一の金属板(153)と、第二の側極(158)により前記磁心に連結された第二の金属板(154)と、を備え、前記第一の板及び前記第二の板が、前記第一の軸(Z)の両側で対称に配置され、前記第一の板及び前記第二の板がそれぞれ、入口面(155)及び出口面(156)を備え、前記入口面が、前記第二の軸(X)と15°以上~40°以下の角度(A1)をなし、前記出口面が、前記第一の軸(Z)と0°以上~15°以下の角度(A2)をなすことを特徴とする、請求項4に記載の溶接装置(10)。
【請求項6】
前記電子ビームの衝突を観察するビデオボアスコープ(16)を備え、前記ビデオボアスコープが、前記第一の軸(Z)と平行な軸に実質的に沿って延び、前記ビデオボアスコープが、前記第一の軸に沿う前記偏向手段の投影によって規定される容積内において、前記偏向手段(15)の背後に位置決めされたことを特徴とする、請求項1~5のいずれか一項に記載の溶接装置(10)。
【請求項7】
前記ビデオボアスコープ(16)が、前記第一の軸(Z)と平行に後退可能であるとともに、前記第一の板(153)と前記第二の板(154)との間で延伸可能であることを特徴とする、請求項5又は6に記載の溶接装置(10)。
【請求項8】
前記電子ビーム(FE)の予想外の偏向に際して、当該溶接装置の要素(18)を前記電子ビームから保護する保護ダイヤフラム(31)を備えること、
前記変換手段(14)と前記偏向手段(15)との間に置かれた磁界遮断要素(32)を備えること、
熱シールド、特に、冷却システムによって冷却される熱シールドを備えること、
及び/又は、
溶接対象部品からの金属突起物から溶接対象部品及び/又は当該溶接装置の要素を保護するように位置決めされた保護カバーを備えること、
を特徴とする、請求項1~7のいずれか一項に記載の溶接装置(10)。
【請求項9】
前記アーム(13)の全体形状が、円筒であり、前記円筒が、前記第一の軸に対して非ゼロ値(D2)だけオフセットした回転軸(Z1)を含むこと、
前記円筒が、80mm以下、特に70mm以下、好ましくは60mm以下の直径(D1)を有すること、
及び/又は
前記円筒が、200mm以上、特に400mm以上、好ましくは600mm以上の前記第一の軸(Z)に沿う長さ(L1)を有すること、
を特徴とする、請求項1~8のいずれか一項に記載の溶接装置(10)。
【請求項10】
前記電子ビーム(FE)を偏位させる偏位手段(17)と、
前記電子ビームの位置を検出する検出手段(18)であり、前記第一の軸(Z)の両側に配置された二つの電極(181、183)を備え、各電極が、前記電子ビームとの接触を検出可能である、検出手段(18)と、
を備えたことを特徴とする、請求項1~9のいずれか一項に記載の溶接装置(10)。
【請求項11】
前記電子ビーム(FE)を偏位させる偏位手段(17)と、
前記電子ビームの位置を検出する検出手段(18)であり、前記第一の軸(Z)の周りの正方形の四辺上に配置された四つの電極(181、182、183、184)を備え、各電極が、前記電子ビームとの接触を検出可能である、検出手段(18)と、
を備えたことを特徴とする、請求項1~10のいずれか一項に記載の溶接装置(10)。
【請求項12】
接地を目的としたフレーム(3)と、請求項1~11のいずれか一項に記載の溶接装置(10)と、を備え、前記溶接装置が、前記フレーム(3)に対して前記第一の軸(Z)の周りに回転移動可能であることを特徴とする溶接機器(1)。
【請求項13】
請求項1~11のいずれか一項に記載の溶接装置(10)又は請求項12に記載の溶接機器(1)により生成された電子ビーム(FE)によって、中心開口部を有する二つの部品(20A、20B)を溶接する方法において、
前記溶接装置の前記アーム(13)の周りで、溶接を目的とした二つの部品を相互に位置決めするステップと、
前記変換手段(14)を校正することにより、前記溶接装置の出力において所定の密度分布を有する電子ビームを生成するステップと、
前記二つの部品間に形成された界面に電子ビームを投射するステップと、
を含むことを特徴とする、溶接方法。
【請求項14】
前記校正ステップが、前記二つの部品(20A、20B)間に形成された界面(23)と平行若しくは前記二つの部品(20A、20B)間に形成された界面(23)と垂直、円形の均一状態、前記界面と平行な分布と円形の均一分布との間の任意の中間形態、又は前記界面と垂直な分布と円形の均一分布との間の任意の中間形態で密度が分布した電子ビーム(FE)を生成するように規定され、前記投射ステップが、前記二つの部品を溶接、特に、キーホール溶接するステップ、溶接部(22)を滑らかにするステップ、又は溶接部(22)を局所的に修復するステップ、特に、溶接部(22)のビードの端部を処理するステップであることを特徴とする、請求項13に記載の溶接方法。
【請求項15】
前記校正ステップが、前記二つの部品(20A、20B)間に形成された界面(23)と垂直に密度が分布した電子ビームを生成するように規定され、前記投射ステップが、前記二つの部品間に予め形成された溶接部を滑らかにするステップであることを特徴とする、請求項13又は14に記載の溶接方法。
【請求項16】
前記校正ステップが、円形の均一状態に密度が分布した電子ビームを生成するように規定され、前記投射ステップが、溶接部を局所的に修復するステップ又は溶接部(22)のビードの端部を処理するステップであり、前記電子ビームのパワーが特に、前記電子ビームが前記溶接部のビードの端部に達した際に、徐々にゼロまで低下することを特徴とする、請求項13~15のいずれか一項に記載の溶接方法。
【請求項17】
前記電子銃が、アノード及びカソードを備え、前記アノードと前記カソードとの間の電圧(U)が、前記投射ステップにおいて、60kV以下、特に、45kV以下であることを特徴とする、請求項13~16のいずれか一項に記載の溶接方法。
【請求項18】
請求項10に記載の溶接装置を調整する方法において、
前記電子ビームを振動状態で偏位させるステップであり、前記電子ビームが、前記検出手段(18)の第一の電極(181)と第二の電極(182)との間に規定された第一の平面において振動し、前記第二の電極が、前記電子ビーム(FE)に関して前記第一の電極の反対にあり、前記振動の振幅が、時間とともに増大する、ステップと、
前記第一の電極及び前記第二の電極の一方の電極に対する前記電子ビームの接触を検出するステップと、
前記電子ビームを振動状態で偏位させるステップであり、前記電子ビームが、前記第一の平面において振動し、前記振動の振幅が、前記電子ビームが前記電極に接触した時点で達した値に保たれ、時間とともに増大する第一のオフセットの前記電子ビームへの適用によって、前記第一の電極及び前記第二の電極の他方の電極へと前記電子ビームを徐々にシフトさせる、ステップと、
前記他方の電極に対する前記電子ビームの接触を検出するステップと、
前記電子ビームが前記他方の電極と接触した時点で前記電子ビームに適用される前記第一のオフセット(OF1)を2で割った値だけ、前記他方の電極へと前記電子ビームをシフトさせることにより、前記電子ビームをセンタリングするステップと、
を含むことを特徴とする、調整する方法。
【請求項19】
請求項11に記載の溶接装置を調整する方法において、
請求項18に記載の調整方法を実行するステップと、
前記電子ビームを振動状態で偏位させるステップであり、前記電子ビームが、前記検出手段の第三の電極(183)と第四の電極(184)との間に規定された第二の平面において振動し、前記第四の電極が、前記電子ビームに関して前記第三の電極の反対にあり、前記第二の平面が、前記第一の平面と垂直であり、前記振動の振幅が、時間とともに増大する、ステップと、
前記第三の電極及び前記第四の電極の一方の電極に対する前記電子ビームの接触を検出するステップと、
前記電子ビームを振動状態で偏位させるステップであり、前記電子ビームが、前記第二の平面において振動し、前記振動の振幅が、前記電子ビームが前記電極に接触した時点で達した値に保たれ、時間とともに増大する第二のオフセットの前記電子ビームへの適用によって、前記第三の電極及び前記第四の電極の他方の電極へと前記電子ビームを徐々にシフトさせる、ステップと、
前記他方の電極に対する前記電子ビームの接触を検出するステップと、
前記電子ビームが前記他方の電極と接触した時点で前記電子ビームに適用される前記第二のオフセットを2で割った値だけ、前記他方の電極へと前記電子ビームをシフトさせることにより、前記電子ビームをセンタリングするステップと、
を含むことを特徴とする、調整する方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電子ビーム溶接装置に関する。また、本発明は、このような溶接装置を備えた溶接機器に関する。さらに、本発明は、このような溶接装置又は溶接機器によって、中心開口部を有する二つの部品を溶接する方法に関する。
【背景技術】
【0002】
今日では、溶接による二つの部品の組み立てに、多くの技術を利用可能である。これらの技術の中で、電子ビーム溶接は、電子ビームと組み立て対象部品との間の相互作用を利用する溶接方法である。真空中に高速で発射された電子は、両部品の界面に衝突する。そして、衝突の瞬間に電子の大きな運動エネルギーが熱に変換されることで、材料が融けて溶接される。電子ビームを狭いエリアに集中させ得ることにより、比較的変形が少なく、熱の影響を受けるエリアが限られたアセンブリを得ることができる。したがって、この技術は、高い精度及び高い品質を要するアセンブリに好適である。
【0003】
特に、粒子加速器キャビティを構成するニオブセルの溶接による組み立ては、セル内面に欠陥が生じないように、細心の注意を払って実行する必要がある。具体的には、このような欠陥によって、粒子加速器の性能が大きく低下する可能性もある。
【0004】
粒子加速器キャビティを構成するセルは、中心開口部が内部を貫通する軸対称部品である。粒子加速器キャビティの二つのセルの組み立てに可能な限り良好な表面状態を得るため、溶接を内側から実行するのが好ましい。すなわち、組み立て対象セルの内周に沿って溶接線を設定するのが好ましい。したがって、この作業に必要な溶接装置は、中心開口部を通じて溶接対象セルに挿入可能であるものとする。このため、セルへの挿入を意図したアームを備えた溶接装置を使用することが知られている。アームは、溶接対象セルの回転軸と平行に延び、セルの半径のうちの一つと平行な電子ビームの配向を可能にする肘部で終端する。
【0005】
従来技術により知られる溶接装置は、出力での電子ビームの制御が不十分である。特に、溶接装置の出力における電子ビームの密度分布の制御が不十分なため、二つの溶接対象部品間の界面において、加熱されるエリアが過剰に広くなったり狭くなったりする可能性がある。したがって、金属が達する温度の制御も不十分となる可能性がある。そして、溶接ビードの形状又は構造に欠陥が生じる可能性もある。また、溶接中に金属が突き出る可能性もある。そして、これらの突起が二つの溶接対象部品に再付着することで、これらを損傷させてしまう可能性もある。
【0006】
また、電子ビームの軸が多くの動作パラメータの影響を受ける場合もある。そして、二つの溶接対象セル間の界面に対してビームの軸がオフセットすることにより、溶接欠陥が生じる可能性もある。
【0007】
さらに、既存の溶接装置に取り付けられるアームは、嵩張ることが多い。したがって、中心開口部の直径が小さな部品には挿入できない。また、アームの長さは、複数のセルをそれぞれの回転軸に沿って組み立てるのに不十分な場合がある。アームの直径を小さく、長さを大きくすると、アームの剛性が低下し、一般的には、電子ビームのガイドが悪化する。したがって、アームの直径を小さく、長さを大きくすることは、電子ビームの精度と相容れないように思われる。
【0008】
最後に、電子ビームの調整には一般的に、多くの操作を要する。特に、部品の検査又は調整の実行のため、溶接装置を含む真空筐体の開放が必要になることが多い。筐体を開放すると、内部の真空度が低下する。その後、溶接作業を実行可能となるには、再び真空状態にする必要がある。以上から、これらの介入は面倒であり、溶接機器の産業利用とは相容れない。
【発明の概要】
【発明が解決しようとする課題】
【0009】
本発明の目的は、上記欠点を克服して、従来技術により知られる溶接装置を改良した溶接装置を提供することである。
【0010】
より正確に、本発明の第一の課題は、密度分布が可変で良好に制御された電子ビームを生成可能な電子ビーム溶接装置である。
【0011】
本発明の第二の課題は、完全に位置決めされた電子ビームを生成可能な電子ビーム溶接装置である。
【0012】
本発明の第三の課題は、構成が簡単で、調整のために配置された筐体を開放する必要がない電子ビーム溶接装置である。
【0013】
本発明の第四の課題は、特に小型で、小径の中心開口部を備えるとともに長さの大きな二つの部品を内側から溶接可能な電子ビーム溶接装置である。
【課題を解決するための手段】
【0014】
本発明は、
電子ビームを生成可能な電子銃と、
第一の軸に沿って電子ビームを配向可能な集束手段と、
第一の軸に平行に延びたアームであり、
第一の軸と垂直な平面において電子ビームの密度分布を変換する変換手段と、
第一の軸と実質的に垂直な第二の軸に沿って電子ビームを偏向させる偏向手段と、
を備えた、アームと、
を備えた電子ビーム溶接装置に関する。
【0015】
変換手段が、少なくとも二つのコイル、好ましくは少なくとも四つのコイル、特に少なくとも六つのコイルを備え、少なくとも二つのコイルが、前記第一の軸と実質的に垂直な磁気軸を形成し、少なくとも二つのコイルが、交互のN磁極及びS磁極を生成するように、前記第一の軸周りに分布していてもよい。
【0016】
電子銃、集束手段、変換手段、及び偏向手段が、電子ビームの経路に沿って、この順序で配置され、集束手段が、可変焦点距離を有し、集束手段が、変換手段の上流に位置決めされた焦点に電子ビームを集束可能であり、集束手段が、変換手段の下流に位置決めされた焦点に電子ビームを集束可能であってもよい。
【0017】
偏向手段が、電流が流れた場合に前記第一の軸と実質的に垂直に配向した磁界を生成可能なコイルを備え、前記コイルが、前記第二の軸の背後において、第一の軸の実質的に延長線上に位置決めされていてもよい。
【0018】
偏向手段が、前記コイルの内側に配置された磁心と、第一の側極(flanc polaire)により磁心に連結された第一の金属板と、第二の側極により磁心に連結された第二の金属板と、を備え、第一の板及び第二の板が、前記第一の軸の両側で対称に配置され、第一の板及び第二の板がそれぞれ、入口面及び出口面を備え、入口面が、前記第二の軸と15°以上~40°以下の角度をなし、出口面が、前記第一の軸と0°以上~15°以下の角度をなしていてもよい。
【0019】
この溶接装置が、電子ビームの衝突を観察するビデオボアスコープを備え、ビデオボアスコープが、前記第一の軸と平行な軸に実質的に沿って延び、ビデオボアスコープが、前記第一の軸に沿う偏向手段の投影によって規定される容積内において、偏向手段の背後に位置決めされていてもよい。
【0020】
ビデオボアスコープが、第一の軸と平行に後退可能であるとともに、第一の板と第二の板との間で延伸可能であってもよい。
【0021】
この溶接装置が、
電子ビームの予想外の偏向に際して、当該溶接装置の要素を電子ビームから保護する保護ダイヤフラムを備えること、
変換手段と偏向手段との間に置かれた磁界遮断要素を備えること、
熱シールド、特に、冷却システムによって冷却される熱シールドを備えること、
及び/又は、
溶接対象部品からの金属突起物から溶接対象部品及び/又は当該溶接装置の要素を保護するように位置決めされた保護カバーを備えること、
を実行していてもよい。
【0022】
アームの全体形状が、円筒であり、前記円筒が、前記第一の軸に対して非ゼロ値だけオフセットした回転軸を含むこと、
前記円筒が、80mm以下、特に70mm以下、好ましくは60mm以下の直径を有すること、
及び/又は
前記円筒が、200mm以上、特に400mm以上、好ましくは600mm以上の前記第一の軸に沿う長さを有すること、
を実行していてもよい。
【0023】
この溶接装置が、
電子ビームを偏位させる偏位手段と、
電子ビームの位置を検出する検出手段であり、第一の軸の両側に配置された二つの電極を備え、各電極が、電子ビームとの接触を検出可能である、検出手段と、
を備えていてもよい。
【0024】
この溶接装置が、
電子ビームを偏位させる偏位手段と、
電子ビームの位置を検出する検出手段であり、第一の軸の周りの正方形の四辺上に配置された四つの電極を備え、各電極が、電子ビームとの接触を検出可能である、検出手段と、
を備えていてもよい。
【0025】
また、本発明は、接地を目的としたフレームと、上記規定のような溶接装置と、を備えた溶接機器であって、溶接装置が、フレームに対して前記第一の軸の周りに回転移動可能である、溶接機器に関する。
【0026】
また、本発明は、上記規定のような溶接装置又は上記規定のような溶接機器により生成された電子ビームによって、中心開口部を有する二つの部品を溶接する方法であって、
溶接装置のアームの周りで、溶接を目的とした二つの部品を相互に位置決めするステップと、
変換手段を校正することにより、溶接装置の出力において所定の密度分布を有する電子ビームを生成するステップと、
二つの部品間に形成された界面に電子ビームを投射するステップと、
を含む、溶接方法に関する。
【0027】
校正ステップが、二つの部品間に形成された界面と平行若しくは二つの部品間に形成された界面と垂直、円形の均一状態、界面と平行な分布と円形の均一分布との間の任意の中間形態、又は界面と垂直な分布と円形の均一分布との間の任意の中間形態で密度が分布した電子ビームを生成するように規定され、投射ステップが、二つの部品を溶接、特に、キーホール溶接するステップ、溶接を滑らかにするステップ、又は溶接を局所的に修復するステップ、特に、溶接のビードの端部を処理するステップであってもよい。
【0028】
校正ステップが、二つの部品間に形成された界面と垂直に密度が分布した電子ビームを生成するように規定され、投射ステップが、二つの部品間に予め形成された溶接を滑らかにするステップであってもよい。
【0029】
校正ステップが、円形の均一状態に密度が分布した電子ビームを生成するように規定され、投射ステップが、溶接を局所的に修復するステップ又は溶接のビードの端部を処理するステップであり、電子ビームのパワーが特に、電子ビームが溶接ビードの端部に達した際に、徐々にゼロまで低下するようになっていてもよい。
【0030】
電子銃が、アノード及びカソードを備え、アノードとカソードとの間の電圧が、投射ステップにおいて、60kV以下、特に、45kV以下であってもよい。
【0031】
また、本発明は、上記規定のような溶接装置を調整する方法であって、
電子ビームを振動状態で偏位させるステップであり、電子ビームが、偏位手段の第一の電極と第二の電極との間に規定された第一の平面において振動し、第二の電極が、電子ビームに関して第一の電極の反対にあり、振動の振幅が、時間とともに増大する、ステップと、
第一の電極及び第二の電極の一方の電極に対する電子ビームの接触を検出するステップと、
電子ビームを振動状態で偏位させるステップであり、電子ビームが、第一の平面において振動し、振動の振幅が、電子ビームが前記電極に接触した時点で達した値に保たれ、時間とともに増大する第一のオフセットの電子ビームへの適用によって、第一の電極及び第二の電極の他方の電極へと電子ビームを徐々にシフトさせる、ステップと、
前記他方の電極に対する電子ビームの接触を検出するステップと、
電子ビームが前記他方の電極と接触した時点で電子ビームに適用される第一のオフセットを2で割った値だけ、前記他方の電極へと電子ビームをシフトさせることにより、電子ビームをセンタリングするステップと、
を含む、調整方法に関する。
【0032】
また、この調整プロセスは、
電子ビームを振動状態で偏位させるステップであり、電子ビームが、偏位手段の第三の電極と第四の電極との間に規定された第二の平面において振動し、第四の電極が、電子ビームに関して第三の電極の反対にあり、第二の平面が、第一の平面と垂直であり、振動の振幅が、時間とともに増大する、ステップと、
第三の電極及び第四の電極の一方の電極に対する電子ビームの接触を検出するステップと、
電子ビームを振動状態で偏位させるステップであり、電子ビームが、第二の平面において振動し、振動の振幅が、電子ビームが前記電極に接触した時点で達した値に保たれ、時間とともに増大する第二のオフセットの電子ビームへの適用によって、第三の電極及び第四の電極の他方の電極へと電子ビームを徐々にシフトさせる、ステップと、
前記他方の電極に対する電子ビームの接触を検出するステップと、
電子ビームが前記他方の電極と接触した時点で電子ビームに適用される第二のオフセットを2で割った値だけ、前記他方の電極へと電子ビームをシフトさせることにより、電子ビームをセンタリングするステップと、
を含んでいてもよい。
【0033】
以下、特定の一実施形態に関する以下の記述において、本発明の上記課題、特徴、及び利点を詳細に説明するが、これは、添付の図面を参照して制限なく与えられる。
【図面の簡単な説明】
【0034】
【
図1】本発明の一実施形態に係る、溶接機器の断面平面図。
【
図3】本発明の一実施形態に係る、溶接装置の第一の部分の断面平面図。
【
図5】
図5Aは溶接装置からの電子ビームが水平に配向した状態の溶接装置の模式前面図、
図5Bは電子ビームが水平に対してわずかに上方傾斜した状態の溶接装置の模式前面図、
図5Cは電子ビームが水平に対してわずかに下方傾斜した状態の溶接装置の模式前面図。
【
図10】溶接装置のアームの前記部分の第二の斜視図。
【
図12】展開位置のビデオボアスコープを備えたアームの端部の断面平面図。
【
図14】電子ビームをセンタリングする方法を示した二つのグラフ。
【
図15A】二つの溶接対象部品間の界面に対する電子ビームの第一の投射を示した図。
【
図15B】二つの溶接対象部品間の界面に対する電子ビームの第二の投射を示した図。
【
図15C】二つの溶接対象部品間の界面に対する電子ビームの第三の投射を示した図。
【発明を実施するための形態】
【0035】
図1は、本発明の一実施形態に係る、溶接装置10が備わった溶接機器1を模式的に示している。溶接機器1は、溶接装置10及びフレーム3を囲む筐体2をさらに備える。溶接機器1は、工場に設置され、そのフレーム3により接地されていてもよい。
【0036】
溶接装置10は、電子ビーム溶接装置である。これは、電子ビームFEを溶接対象部品に投射して局所的に溶融可能であることを意味する。電子ビームは、溶接対象部品に投射される電子の流れである。溶接対象部品に対する電子の衝突によって失われるエネルギーにより、材料が加熱されて局所的に融ける。溶接装置のパワーは、金属部品(例えば、ニオブ、銅、アルミニウム、又はその他任意の種類の金属で構成された部品)の溶接に特に適している。溶接装置10は、二つの部品20A、20Bが有する中心開口部21への挿入によって、このような中心開口部を有する二つの部品の溶接に特に適している。二つの部品20A、20Bは、それぞれの界面23に形成される溶接ビード22によって相互に溶接される。界面23は、シール、言い換えると、二つの部品20A、20Bを分離する結合線を表す。この界面23は、それが円形である場合、二つの部品の内周に対応する。
【0037】
電子ビーム溶接では、電子ビームが真空中を伝搬する必要がある。したがって、筐体2は、溶接対象部品及び溶接装置の周りで密閉されていてもよく、その後、真空ポンプが筐体内に真空を形成するようになっていてもよい。筐体内で到達する負圧レベルの桁は、例えば10-2mBar~10-6mBarであってもよい。
【0038】
二つの部品20A、20Bは、如何なる種類であってもよい。二つの部品は、粒子加速器キャビティの構成を目的としたセル、半セル、又はセル要素のアセンブリであり得るのが好都合である。これらは、ニオブで構成されていてもよい。二つの半セルを溶接することにより、
図1に一例として模式的に示すようなセルが得られる。このようなセルは、粒子加速器が備えるキャビティを構成するように、連続して組み立てられていてもよい。
図1において、二つの半セル20A、20Bにより形成されたアセンブリの形状は、軸対称の楕円であり、セルの最大内周と同じ高さに溶接ビード22が設定される。一変形例として、これらの部品の形状は、異ならせることも可能であり、特に、単に管状とすることも可能である。
【0039】
別の変形例によれば、二つの溶接対象部品は、軸対称部品でなくてもよいし、少なくとも、二つの部品20A、20B間の界面23は、円を描いていなくてもよい。この場合、二つの溶接対象部品に衝突する前に電子ビームが進む距離は、溶接対象部品の配向に応じて可変となり得る。特に、半径が可変の部品は、電子ビームの動作パラメータを修正することにより溶接することも可能である。
【0040】
溶接装置10は特に、電子銃11、集束手段12、及びアーム13を備える。アームは特に、電子ビームを変換する変換手段14及び電子ビームを偏向させる偏向手段15を備える。
図2の溶接装置の模式図に見られるように、電子銃11、集束手段12、変換手段14、及び偏向手段15は、電子ビームFEの経路に沿って、この順に配置されている。
【0041】
電子銃11は、電子ビームFEを生成可能な手段である。特に、カソード111、アノード112、及び任意選択としてカソードとアノードとの間に置かれたウェーネルトシリンダ114を備えていてもよい。カソードは、電子を放出可能である。例えば、フィラメント又は中実若しくは中空放出部の形態であってもよい。例えば、高温の熱放射性又はガス状カソードから電子が抽出されるようになっていてもよい。ウェーネルトシリンダにより、カソードが放出する電子の量を調節可能である。特に、ウェーネルトシリンダとカソードとの間の電圧の差によって、電子の遮断及び電子ビームの放出の阻止、又は、カソードが放出する電子の流れの一部若しくは全部の通過が可能になる。アノードは、カソードとの間に印加される電圧Uによって、電子を引き寄せることができる。アノードとカソードとの間の電圧Uは、例えば数十キロボルトのオーダの値に達していてもよい。したがって、溶接機器は、配電網に接続可能な電力供給手段113を備える。アノード、ウェーネルトシリンダ、及びカソードは、第一の軸Zに沿って機械的に一直線となるように組み立てられていてもよい。これにより、電子銃11の出力において、軸Z周りの回転対称性が最適な電子ビームを得ることができる。溶接プロセスにおいて、電圧は、80kV以下、好ましくは60kV以下、或いは45kV以下であるのが好都合である。したがって、この溶接装置は、従来技術による他の電子ビーム溶接装置と比較して、相対的に低い電圧を必要とする。低い電圧の使用には、X線の生成が抑制されることで、この溶接機器1で作業するオペレータの保護機構を簡素化可能であること等、多くの利点がある。また、低い電圧であれば、電子ビームの偏向が容易となるため、溶接装置10を構成する要素の小型化、特に、変換手段14及び偏向手段15の小型化を考慮することができる。一変形例としては、例えば電子がプラズマから抽出されるプラズマカソード等、異なる方法で電子ビームを生成することも可能である。
【0042】
集束手段12は、
図3において明瞭に確認できる。これは、電子銃11からの電子ビームを第一の軸Zに沿って集束可能である。より詳細に、集束手段は、上流で発散した電子ビームを下流で収束する電子ビームへと変換可能であると同時に、ビームの回転対称性を維持する。集束手段は特に、第一の軸Z周りに配置されたコイル121を備えていてもよい。コイルは、ソレノイド、言い換えると、電流が流れ得る一組の巻回である。コイル121は、軸Zを回転軸とする環状の磁心を備えていてもよい。コイルに電流が流れると、磁界が発生する。コイルの内側では、コイルの軸すなわち軸Zと実質的に平行に磁力線が配向していてもよい。ローレンツ力の作用によって、コイルにより生成された磁界は、電子の軌道を変化させる力を電子に与える。このように、コイル121により生成された磁界は、集束手段の下流の焦点PFへと電子ビームを集束可能である。この焦点PFは特に、
図2に示している。焦点は、軸Z上に位置決めされている。焦点からコイル121までの距離は、特に電圧U及びコイル121を流れる電流によって決まる。このように、焦点PFは、変換手段14の上流、変換手段14の下流、又は任意の中間位置において調整され、位置決めされていてもよい。
【0043】
電子銃11及び集束手段12は(以下に提示する偏位手段17と併せて)、フレーム3と一体のハウジング4(言い換えると、ケーシング)において一体的にグループ化されていてもよい。このハウジング4は、軸Zと実質的に垂直で、アーム13が延びる始点となる基準面5を含む。
【0044】
アーム13は、基準面5から第一の軸Zと平行に延びている。したがって、ハウジング4に固定された第一の端部131と、第二の自由端132とを含む。慣例により、「後」は第一の端部側を示し、「前」は第二の端部側を示す。アーム13は、内部を電子ビームが伝搬する管状部19を備える。管状部19は、溶接装置を二つの部分に分ける。アーム13の外側で
図3に示す第一の部分には特に、電子銃11及び集束手段12を含む。アーム13に組み込まれた
図4に示す第二の部分には特に、変換手段14及び偏向手段15を含む。
【0045】
アーム13の全体形状は、円筒である。この円筒は、(
図1のD1により示される)直径が80mm以下、特に70mm以下、好ましくは55mm以下であってもよい。
【0046】
第一の軸Z、第二の軸X、及び第三の軸Yによって形成される直交基準フレームを定義することができる。したがって、軸X、Y、及びZは、相互に垂直である。軸Xは、溶接装置の出力において電子が投射される方向に沿う軸に対応する。したがって、電子ビームは、90°偏向する。この偏向は、以下に詳述する偏向手段15によって実行される。慣例により、本明細書においては、用語「上流(upstream)」及び「下流(downstream)」を電子の伝搬方向に沿って定義しており、電子が上流から下流まで伝搬する。
【0047】
基準面5と偏向手段15により偏向された電子ビームの方向に沿う軸Xとの間の距離として、軸Zに沿ったアームの機能的長さL1を定義することができる。機能的長さL1は、200mm以上、特に400mm以上、好ましくは600mm以上、或いは700mm以上であってもよい。アーム13は、二つの軸対称部品20A、20Bにより形成されたアセンブリへの挿入によって、二つの部品20A、20B間の界面で内周に沿う溶接ビード22を生成することが意図される。
【0048】
溶接機器の配向は、軸Xが水平又は実質的に水平な軸となるように選定されるようになっていてもよい。ただし、
図5A、5B、及び5Cに示すように、溶接機器は、溶接装置とフレーム3との間で軸Z周りに回転する回転接続部を備え得るのが好都合である。この回転接続部により、電子ビームが溶接装置から出る方向に沿う軸Xを水平に対してある程度傾斜可能となる。したがって、電子ビームが溶接装置から放出される方向に沿う軸Xは、水平軸を表す軸Hに対して、(
図5Aに示すような)ゼロの角度、(
図5Bに示すような)正の角度、或いは(
図5Cに示すような)負の角度をなしていてもよい。このように、溶融材料に対する重力の作用によって、溶接ビードの外観又は品質を改善することができる。これにより、溶接ビードの表面の盛り上がり形成を防止又は最小化するための付加的な調整が可能となる。
【0049】
軸Zは、水平であってもよいし、垂直であってもよい。軸Zを水平方向に位置決めすると、溶接機器1の垂直方向の嵩張りを抑えることができるが、これは、アーム13が非常に長い場合又は特に長い一組の軸対称部品を溶接しようとする場合に特に有用である。
【0050】
電子ビームFEを変換する変換手段14は、第一の軸Zと垂直な平面において電子ビームの密度分布を変換(言い換えると、「修正」又は「変更」)することができる。特に、変換手段14は、第二の軸X及び第三の軸Yに沿って電子ビームの密度分布を変換することができる。変換手段14により、ビームの密度分布を必要に応じて修正可能である。ビームは、高強度であってもよいし、拡散して低エネルギー密度となってもよい。ビームの各部が軸X及び/又は軸Yに沿う異なる角度の偏向を受けることにより、電子ビームの密度が上昇するようになっていてもよいし、低下するようになっていてもよい。このため、電子ビームのある部分が収束し、電子ビームの別の部分が発散するようになっていてもよい。
【0051】
一変形例として、変換手段14は、これら二つの軸の一方X又はYのみ、或いは、必ずしも軸X又は軸Yではない軸Zと垂直な任意の軸に沿って、電子ビームの密度分布を変換することも可能である。変換手段14は、ビームの全体的な軌跡を偏向させることなく、その密度分布を修正するようにしてもよい。このため、変換手段14の下流及び上流において、ビーム全体が軸Zに対して平行に配向したままとなる。変換手段14は、電子ビームの一部を遮断することで大きく加熱され得る単純なマスクではない。電子ビーム全体のパワーは、変換手段の上流及び下流で実質的に同じである。
【0052】
電子ビームの密度分布は、軸Zと垂直な平面におけるビームの断面の形状のみならず、この形状における電子の分布を示す。例えば、変換手段14は、円形断面且つ当該円形断面を通過する電子の分布が均一な電子ビームFEを、卵形又は細長断面且つ当該卵形又は細長断面を通過する電子の分布が均一な電子ビームへと修正するようにしてもよい。別の例によれば、変換手段14は、円形断面且つ当該円形断面を通過する電子の分布が均一な電子ビームFEを、同じく円形断面ではあるものの、電子の分布が均一ではない(例えば、断面の第一の半分を通過する電子の割合が、第一の半分と相補的な第二の半分を通過する電子よりも多い)電子ビームへと修正するようにしてもよい。変換手段は、電子ビームを構成する電子の配向、電子ビームの断面の形状、及びこの断面内の電子の分布を同時に修正するようにしてもよい。
【0053】
変換手段14は、少なくとも二つのコイル、好ましくは少なくとも四つのコイル、特に少なくとも六つのコイル、或いは任意の偶数個のコイルを備える。コイルは、軸Zと実質的に垂直な磁気軸を含み、軸Zの周りに一様に分布することによって、交互のN磁極及びS磁極を生成する。様々なコイルの磁気軸は、軸Zと垂直な一つの同じ平面に含まれるのが好都合である。したがって、変換手段は、所与の数の複数対のコイルを備える。一つの同一対の二つのコイルは、軸Zと垂直な軸に沿って、相互に対向して位置決めされる。したがって、一つの同一対の二つのコイルは、軸Zに沿って一方が他方の背後に位置決めされることはない。
【0054】
図6に示す実施形態によれば、変換手段14は、四重極であり、全体として90°の回転対称に配置された四つの同じコイル141A、141B、141C、141Dを備える。二つのコイル141A及び141Cの磁気軸は、一つの同一軸AM1に沿って一致する。同様に、二つのコイル141B及び141Dの磁気軸は、軸AM1と垂直な一つの同一軸AM2に沿って一致する。コイル141A、141B、141C、及び141Dには、同じ電流が連続して流れる。したがって、これら四つのコイルは、当該四つのコイルにおいて電流を連続的に搬送する単一の電線を備える。各コイルの巻回方向は、電流が電線を流れた場合に交互のN及びS極性を生成するように規定される。(コイル141A及び141Cにより得られる)二つのN磁極が相互に対向し、同様に、(コイル141B及び141Dにより得られる)二つのS磁極が相互に対向する。各コイル141A、141B、141C、141Dは、少なくとも局所的に円弧又は双曲線の形状を有し得る磁心142をさらに備える。磁心は、各コイルの内側に配置された本体(例えば、円筒形状又はプロファイル形状)と、変換手段の内側へと配向した頭部とを備える。四つの磁心の各頭部の頂点を通過するように内接円CIを描くことができる。内接円CIの半径に対する磁心の頭部の曲率半径の比は、1以上~1.3以下であり得るのが好都合である。磁心は、四つのコイル141A、141B、141C、141Dにより生成された磁力線143をガイド可能である。
図6には、磁力線143も示している。これらは、磁心の頭部と垂直に入射する曲線の形態である。磁力線は、N極の磁心の二つの頭部を始点として、S極の磁心の二つの頭部に向かう。軸AM1又は軸AM2は、軸X又は軸Yと平行であってもよいし、或いは
図6に示すように、軸X及び軸Yと実質的に45°に等しい角度をなしていてもよいことに留意するものとする。一変形例として、二つの軸AM1及びAM2は、垂直でなくてもよい。
【0055】
四重極を用いることにより、二つの別個の軸に沿って電子ビームの密度分布を変換可能となる。一変形例として、変換手段が二つの極しか含まない場合でも依然として、軸Zと垂直な軸に沿って密度分布を変換可能である。別の変形例によれば、変換手段は、軸が軸Zと平行な単一のコイルにより形成することも可能であって、電子ビームがこの単一コイルの中心を通過する。したがって、この単一コイルは、第二の集束手段として機能することになる。これにより、この第二の集束手段は、(集束手段12と異なり)アームの内側に収容されることになる。また、このような単一コイルであっても、電子ビームの密度分布を変換可能となる。
【0056】
偏向手段15は、特に
図7に示しており、
図8~
図11においても一部確認できる。偏向手段の上流の軸Zと平行な配向から、偏向手段の下流の軸Xと平行な配向へと電子ビームFEを偏向可能である。したがって、電子ビームは、偏向手段の上流側と下流側との間において、実質的に90°に等しい偏向を受ける。提示の実施形態によれば、偏向手段は、磁気軸が軸Yと実質的に平行な単一のコイル151を備える。したがって、このコイルは、電流が流れた場合に、少なくとも局所的に軸Yと平行に配向した磁界を生成可能である。このように、偏向手段は、二重極として分類することも可能である。コイル151は、軸Xの背後において、軸Zに沿う電子ビームの軌道の延長線上のアーム13の自由端131で実質的に位置決めされている。言い換えると、コイル151は、軸Zの延長線上において、軸Xを含む軸Zと垂直な平面により規定される半空間(アーム13の自由端132を含む)に位置決めされている。したがって、電子ビームはコイル151を通過しない。コイル151を流れる電流は、90°に等しい偏向角又は実質的に等しい偏向角を生成するように、電圧Uに基づいて調整されるようになっていてもよい。電子ビームの90°偏向によって、溶接対象面と垂直な方向に電子ビームを配向可能となる。ビームの垂直入射によって、衝突表面積を可能な限り最小限に抑えることが可能となる。ただし、コイル151を流れる電流の制御によって、90°の角度前後に偏向角を変化させることができる。これにより、二つの溶接対象部品間の界面23の両側で電子ビームの振動を生成可能である。このような振動は、溶接プールの撹拌及び溶融部の均質化のほか、可能な限り滑らかな溶接ビードの表面状態の取得に有用となり得る場合がある。
【0057】
偏向手段15は、コイル151の内側に配置された磁心152と、磁心152に連結された第一の金属板153と、磁心に連結された第二の金属板154とを備える。二つの板153、154は、二つの側極158を介して磁心152に接続されている。これらの側極158は、磁心152及び板153、154の両者と接触している。コイル151により生成された磁力線157を特に
図7に示すが、これは、磁心152、第一の側極158、第一の板153、空隙EF、第二の板154、及び第二の側極158を連続して通過する。第一の板153及び第二の板154は、電子ビームFEすなわち軸Zの両側に対称配置されている。これらはいずれも、軸X及びZと平行な平面において延び、電子ビームが通過する空隙EFによって離隔されている。これらは、軸Zに沿ってコイル151の前方に位置決めされている。二つの板153、154は、
図4、
図9、及び
図11に見られる湾曲四分円形状を有する。より正確に、これらの板は、リングの一部の形状を有していてもよいが、一変形例においては、異なる形状を有することも可能である。二つの板153、154はそれぞれ、入口面155及び出口面156を有する。入口面は、二つの板153、154のうち、入射電子ビームに対向する面である。出口面は、二つの板153、164のうち、偏向手段15を出る電子ビームに対向する面である。入口面及び出口面は、二つの板153、154の厚さで規定されていてもよい。二つの板の入口面155は、軸Xと角度A1をなす。角度A1は、好ましくは15°以上~40°以下、より好ましくは25°以上~35°以下、或いは28°以上~33°以下であってもよい。二つの板の出口面156は、軸Zと角度A2をなす。角度A2は、好ましくは0°以上~15°以下、より好ましくは5°以上~12°以下であってもよい。角度A1及びA2の値は、偏向手段15が実行する電子ビームの偏向の品質において重要な役割を果たす。これらの角度A1及びA2の値により、電子ビームFEの実質的に90°の偏向を得ることが可能であると同時に、その密度分布の修正が最小限に抑えられる。このような角度A1及びA2の値により、一方において二つの板153、154の十分に大きな活性表面と、他方において二つの板153、154のエッジ効果と関連する磁界の十分に制御された集束効果との良
好な妥協を得ることが可能となる。入口面155及び出口面は、電子ビームを一定の均質な磁界に受け入れるのに十分な大きさの寸法を有する。板153、154は、偏向手段による偏向に際して電子ビームがたどる曲率に沿って位置決めされている。これらの板153、154により、コイル151により生成された磁界を電子ビームの軌跡に沿ってガイドし、集中させることが可能となる。この偏向手段15の構成によれば、コイル151により生成された磁界が効果的に、電子ビームの偏向に有用なエリアに集中する。
【0058】
図示しない一変形実施形態によれば、それぞれが側方から二つの板153、154に結合された二つの別個のコイルによって、単一のコイル151を置き換えることも可能である。ただし、このような実施形態では、磁界が漏れる可能性もある。
【0059】
また、
図8~
図12を参照して、溶接装置は、溶接対象部品に対する電子ビームFEの衝突の部位を観察するビデオボアスコープ16すなわちカメラを備える。ビデオボアスコープ16によって特に、溶接ビードの外観を検査することが可能となる。これは、筐体2の外側に位置決めされた観察画面に接続されていてもよい。ビデオボアスコープは、実質的に軸Zと平行な軸に沿って、すなわち、電子FEの偏向手段15への到達前の流れと平行に、アーム13の内側で延びている。これは、軸Xと平行な方向に沿った像の取り込みを可能とする光学セル161と、考え得る最良の照明状態で溶接を観察するための照明手段162とを備える。
【0060】
ビデオボアスコープは、軸Zと平行な後退、言い換えると、伸縮が可能である。ビデオボアスコープは、後退位置にある場合、偏向手段の二つの板153、154の背後の位置を占有する。この位置は特に、
図4に示している。その後、ビデオボアスコープは、軸Zに沿う偏向手段15の投影によって規定される容積の内側に位置付けられる。具体的に、軸Xに沿う偏向手段15のサイズは、この同じ軸に沿ってアーム13に取り付けられたその他の要素14、18、31、32、33のサイズよりも大きい。特に、コイル151は、二つの板153、154と併せて、アーム13の最も嵩張る要素であり、これによって直径D1の値が規定される。ビデオボアスコープは、二つの板153、154の背後における要素14、18、31、32、33に沿った位置決めによって、直径の増大なくアーム13に組み込まれる。なお、
図4において、アーム13に沿って設定される電子ビームFEが沿う軸は、アームの円筒状エンベロープの回転軸Z1に対して、値D2だけオフセットしている。この構成によって、アームの小径D1を維持することが可能となる。したがって、アーム13は、内径が小さな軸対称部品に挿入可能である。ビデオボアスコープが後退位置にある場合は、溶接プロセスにおいて放出された金属粒子のビデオボアスコープへの到達が防止される。ビデオボアスコープが展開位置にある場合は、溶接装置から電子ビームを放出可能な開口部と光学セル161が一致する。この開口部を可能な限り小さくすることによって、溶接プロセスにより放出された金属汚染が磁極にもビデオボアスコープにも到達しなくなる。
【0061】
一変形例として、ビデオボアスコープは、後退不可能であってもよく、この場合は、相互に溶接される部品であって、光学セル161の視野に入るように移動することも可能である。ただし、この変形例では、溶接中にビデオボアスコープを保護するカバー又はシャトルが必要となる。別の変形例によれば、ビデオボアスコープは、アームの前端に位置決めすることも可能である。直径がアームの直径よりもわずかに大きな開口部を有するセルの溶接に溶接機器が用いられる場合は、電子ビームの稼働に際して、この開口部或いはその先での位置決めによって、ビデオボアスコープを保護することも可能である。この構成においては、特定の可動式カバーによってビデオボアスコープを保護する必要がなくなる。
【0062】
溶接の観察にビデオボアスコープを使用することが望まれる場合は、
図12に見られるように、第一の板153と第二の板154との間でビデオボアスコープが前方に展開される。その後、ビデオボアスコープに損傷を与えることのないように、電子ビームが遮断される。ビデオボアスコープによって、電子ビームと同じ入射、すなわち、溶接ビードに垂直な入射により、溶接対象部品を移動させる必要なく溶接ビード22を観察することが可能となる。ビデオボアスコープの前方及び後方の平行移動は、溶接装置に対する手動の介入の必要性ひいては筐体2に形成された真空の中断なく、例えばアクチュエータを用いて自動的に得られるようになっていてもよい。特に、ビデオボアスコープの平行移動が停止要素により制限されることによって、ビデオボアスコープの再現可能な位置決めひいては溶接界面上のビームの正確な調整を保証し得る。
【0063】
溶接装置は、電子ビームをセンタリングするセンタリング手段をさらに備える。センタリング手段によって特に、偏向手段の二つの板153、154で電子ビームをセンタリングすることが可能となる。このため、センタリング手段は、電子ビームを偏位させる偏位手段17と、電子ビームの位置を検出する検出手段18とを備える。偏位手段17が集束手段12のすぐ下流に位置決めされる一方、検出手段18は、変換手段14の上流に位置決めされている。偏位手段と検出手段18との間には、電子ビームが入射する管状部19があり、
図1において明瞭に確認できる。
【0064】
偏位手段17は、軸Zに対して(例えば、1°又は2°のオーダの)小さな角度で、(例えば、0.01°のオーダで)非常に正確に電子ビームを偏位させることにより、集束手段からの(例えば、600mmのオーダの)大きな距離で、(例えば、直径10mmの)小径の通過孔を電子ビームが通過できるようにし得る。提示の実施形態によれば、電子ビームは、軸X及び軸Yに沿って偏位を受けるようになっていてもよい。このため、偏位手段は、軸Zの周りに同心配置された二つのコイル171、172を備える。これら二つのコイル171、172は特に、
図3において確認できる。第一のコイル171が軸Xに沿って電子ビームを偏位させるように構成され、第二のコイル172が軸Yに沿って電子ビームを偏位させるように構成されている。第一のコイル171は、軸Yと平行な磁界を生成するように配置されており、第二のコイル172は、軸Xと平行な磁界を生成するように配置されている。代替として、これら二つのコイルは、異なる配置も可能である。特に、軸Xと平行な磁界を生成するように第一のコイル171を配置し、軸Yと平行な磁界を生成するように第二のコイル172を配置することも可能である。第一のコイル171を流れる電流を制御することにより、電子ビームの偏位が軸Xに沿って調整され、第二のコイル172を流れる電流を制御することにより、電子ビームの偏位が軸Yに沿って調整される。
【0065】
図13に示す検出手段18は、電子ビームが通過するチャネルすなわち軸Zの周りの正方形の四辺上に配置された四つの電極181、182、183、184を備える。四つの電極は、相互に実質的に同じであってもよい。これらは、直角の回転対称に位置決めされている。第一の電極181及び第二の電極182は、軸Yに対向するとともに平行な縁部を備える。同様に、第三の電極183及び第四の電極184は、軸Xに対向するとともに平行な縁部を備える。電極の四つの縁部の配置は、正方形状から逸脱して、例えばむしろ長方形状に従うと同時に、依然として本発明の境界内に維持することも可能であることに留意するものとする。各電極は、電子ビームとの接触を検出可能である。特に、各電極は、電気的接続部によって、電子制御ユニット185に接続されていてもよい。電子ビームの電子が電極のうちの一つに衝突すると、電子制御ユニット185によって信号が検出される。また、この電子制御ユニット185は、偏位手段17にも接続されており、以下に詳述する電子ビームの調整又はセンタリングを行う方法を実行するようにしてもよい。電極181、182、183、184は、実質的に台形状で、電子ビームが最大パワーであっても過大な熱を発生することなく、電子ビームとの接触に耐えるのに十分な中実であってもよい。電極の質量によって、温度上昇を極力抑えることができるため、これらの電極を保護することが可能となる。台形状によって、アーム13の円筒状エンベロープの境界内で利用可能な最大容積を使用することが可能となる。台形状の大きな底辺は、アームの円筒状エンベロープに一致する湾曲形状でも有し得るため都合が良い。四つの電極は、溶接プロセスにおいて、接地されていてもよい。
【0066】
一変形例として、偏位手段17は、簡素化によって、軸Zと垂直な単一の軸に沿ってのみ、電子ビームを偏位し得るようにすることも可能である。そして、検出手段は、電子ビームの偏位を検出するように配置された二つの電極のみを備えることも可能である。このことから当然、軸Zと垂直な軸(例えば、軸X又は軸Y)に沿って位置を調整することも可能となる。
【0067】
別の変形実施形態によれば、偏位手段17は、電子銃11及び集束手段12により形成されたアセンブリの有利な電動アーティキュレーションによって置き換えることも可能である。これにより、偏位手段17による電子ビームの偏位が回避される。したがって、偏位に起因する電子ビームの収差又は歪みが回避される。したがって、このようなセットアップにより、電子ビームの精度をさらに向上可能となるが、センタリング手順は遅くなる。このアーティキュレーションは、軸X及び/又は軸Yに沿って摺動する接続部が取り付けられたターンテーブルの形態も可能である。このようなターンテーブルによれば、軸X及び/又は軸Yと平行に、電子ビームを平行移動可能となる。
【0068】
集束手段12、偏位手段17、検出手段18、変換手段14、及び偏向手段15は、相互に別個の手段である。これらは、電子ビームの経路に沿って、記載の順序で配置されている。これらの手段は、相互に機械的にセンタリングされている。すなわち、これら様々な要素又は手段の中心は、軸Zに一致して、一直線になっている。一変形例として、いくつかの位置を入れ替えることも可能である。例えば、偏位手段17を集束手段12の上流に位置決めすることも可能である。別の代替として、変換手段14を検出手段18の上流に位置決めすることも可能である。
【0069】
図4に示すように、溶接装置は、手段12、14、15、17、及び18間に置かれた様々な要素又は機器をさらに備えていてもよい。これらの要素又は機器のうち、溶接装置は、保護ダイヤフラム31を備える。保護ダイヤフラムは、十分良好にセンタリングされた場合に電子ビームの通過を可能とする中心開口部を有する中実リングである。例えば誤った操作による電子ビームの予想外の偏向に際して、電子ビームは、高エネルギーの衝突に耐えるように設計された保護ダイヤフラムの中実部に衝突する。これにより、溶接装置のより繊細な要素への電子ビームの衝突が防止される。保護ダイヤフラム31は、管状部19の直後、検出手段18の前方に位置決めされるのが好都合である。
【0070】
また、溶接装置は、変換手段14と偏向手段15との間に置かれた磁界遮断要素32を備える。磁界遮断要素も同じく、電子ビームが通過する中心開口部を有する中実リングの形態である。これらの要素32の寸法は、変換手段14を偏向手段15から磁気的に分離するように規定される。このため、変換手段のコイルにより生成された磁界は、偏向手段の動作に影響を及ぼさず、その逆もまた同様である。磁界遮断要素32は、パイプを備えた冷却システムによって冷却されるアルミニウム体33に囲まれている。任意選択として、このような磁界遮断要素は、溶接装置のその他任意の二つの手段間(例えば、集束手段12と偏位手段17との間)に位置付けることも可能であるし、溶接装置の簡素化のため使用しないことも可能である。
【0071】
溶接装置は、冷却システムによって冷却される熱シールドをさらに備える。この熱シールドは、偏向手段15のコイル151の前方に位置決めされる。このため、電子ビームの電子の一部が偏向手段による90°の偏向を受けなかった場合、この電子は、熱シールドの背後に位置決めされたコイル151に衝突する代わりに、熱シールドに衝突する。
【0072】
また、溶接装置は、保護カバー(図示せず)を備える。保護カバーは、溶接対象部品からの金属突起を収集するように位置決めされている。具体的には、電子ビームが衝突すると、溶接対象部品からの金属粒子が蒸発した後、溶接装置又は溶接対象部品の他の部分に付着する場合がある。したがって、保護カバーは、これらの突起が偏向手段15又は溶接対象部品を損傷させないように機能する。摩耗した保護カバーは、偏向手段を変更する必要なく、容易に交換可能である。保護カバーは、アームの円筒状プロファイルに組み込まれ、軸Xに沿って二つの板153、154と同一平面になるのが好都合である。このように保護カバーを組み込むことにより、アームの直径が増大しない。
【0073】
以下、本発明の一実施形態に係る、二つの軸対称部品を溶接する方法を説明する。
【0074】
まず、溶接機器において、二つの部品20A、20B間の界面23が電子ビームの出口に対向するように、これら二つの部品が位置決めされる。この界面23は、二つの溶接対象部品により形成されるアセンブリの内周に対応する。相互の溶接を目的とした二つの軸対称部品のアセンブリが溶接装置のアーム13の周りに挿入される。二つの溶接対象部品は、把持装置により保持されるようになっていてもよい。把持装置は、溶接プロセスにおいて二つの溶接対象部品のアセンブリを回転させる回転接続手段を備える。こうして得られるセットアップを
図15に模式的に示す。
【0075】
その後、筐体が閉じられ、筐体中に真空が形成される。溶接装置は、電源オンによって、電子ビームFEを得ることができる。この段階では、電子ビームが必ずしもセンタリングされていない。すなわち、電子ビームの中心は、変換手段14の中心を通過していなくてもよい。
【0076】
実際の溶接作業に先立って、電子ビームがセンタリングされるようになっていてもよい。この作業は、電子ビームの縁部の位置を決定することと、そこから電子ビームのオフセット値を数ステップで推論することとで構成される。
【0077】
第一のステップにおいては、軸Xに沿って振幅が増大する振動状態で電子ビームを偏位させるステップ(例えば、正弦波偏位)を得るように偏位手段17が制御される。このため、振幅が増大する正弦波電流が第一のコイル171を流れるようになっていてもよい。その後、電子ビームがその元の位置FE0の周りで、軸X及びZと平行な第一の平面において振動する。この第一の平面は、第一の電極181及び第二の電極182によって両側の境界が定められている。
【0078】
偏位の振幅が時間とともに増大することから、電子ビームは最終的に、二つの電極181、182の一方(例えば、第一の電極181)に接触する。第二のステップにおいては、電子制御手段185によって、電極181に対する電子ビームの接触が検出される。その後、偏位の振幅は、電子ビームが第一の電極181に接触した時点で達した値に設定される。
【0079】
第三のステップにおいては、軸Xに沿った電子ビームの正弦波偏位が継続する一方、偏位の振幅は一定に(すなわち、前ステップで設定された値に)維持されたままである。電子ビームは、常に第一の平面において振動する。そして、時間とともに増大する第一のオフセットが電子ビームに適用されることにより、電子ビームが接触した電極と反対の電極(すなわち、本例では第二の電極182)へと電子ビームが徐々にシフトする。
【0080】
電子ビームは、第二の電極182へと徐々にシフトするため、最終的には、第一の電極181への接触時と同じ振幅で第二の電極182に接触する。第四のステップにおいては、電子制御手段185によって、電極182に対する電子ビームの接触が検出される。その後、電子ビームに適用されたオフセットOF1の値が記録される。
【0081】
第五のステップにおいては、電子ビームが実際にセンタリングされる。ビームの最初の位置FE0を起点として、先に記録されたオフセットOF1の値を2で割った値に対応するオフセットが適用される。これにより、二つの電極181及び182間で軸Xに沿ってセンタリングされた電子ビームが与えられる。
【0082】
また、
図14によって、センタリングプロセスを明瞭に確認可能となる。
図14の上側のグラフは、時間の関数としての軸Xに対する電子ビームFEの位置を示している。グラフの上下には、二つの電極181及び182を暗色の帯で模式的に示している。本例においては、電子ビームの最初の位置FE0が電極181へとわずかにシフトすることが観察される。曲線FEmoyは、正弦波偏位が適用された軸Xに対する電子ビームの平均位置を表す。OF1は、第四のステップにおいて記録されたオフセットの値を示す。X0は、二つの電極181及び182間でのセンタリングのために電子ビームに適用される軸Xに沿ったオフセットを示す。したがって、これによりX0=OF1/2が得られる。実際には、第一のコイル171に一定値の電流を流すことによって、このオフセットが得られるようになっていてもよい。
図14において、下側のグラフは、ビームが電極181と接触した後に電極182と接触した場合に、電子制御手段185によって検出された信号S1及びS2を示している。
【0083】
その後、同じ手法により、軸Yに対してビームをセンタリングすることにより、電子ビームが電極183及び184間で振動する。軸Yに沿う電子ビームのセンタリングは、特に偏位手段のコイル171、172の直角度が不足する場合に、先に実行された軸Xに沿うセンタリングに影響を及ぼす可能性がある。軸X及び軸Yに沿うセンタリングは、電子ビームを繰り返し連続してセンタリングするために、二度或いはそれ以上の回数だけ繰り返され得るのが好都合である。このセンタリングプロセスは、完全に自動であるため、溶接装置に対する手動の介入も筐体2に形成された真空の中断も必要としない。センタリングは、溶接ステップの最後に繰り返すことによって、ビームが中心から外れて偏位していなかったことを確認することも可能である。電子ビームをセンタリングする動作は、二つの溶接対象部品に対して電子ビームが損傷を与えたり跡を付けたりするリスクが生じないように、低パワーで実行されるようになっていてもよい。任意選択として、すぐ上に記載したセンタリングプロセスにおいて電子ビームが溶接対象部品に到達しないように、カバーを使用することも可能である。一変形例として、電子ビームの偏位の振幅は、正弦波形状ではなく、三角波形状、稜線形状、或いは対称パターンを生成するその他任意の交互形状で振動することも可能である。任意選択として、センタリングは、溶接対象部品の代わりに犠牲ターゲット(martyr target)を用いて実行することも可能である。制御された再現可能な状態ではあるが、電子ビームを意図的にシフトさせるため、意図的なオフセット又はオフセンタリングも適用可能であることに留意するものとする。
【0084】
電子ビームがセンタリングされたら、変換手段を校正することにより、溶接装置の出力において所定の密度分布を有する電子ビームを生成するステップが実行される。具体的には、様々な溶接ステップを実行するため、特定の密度分布が望ましいと考えられる。密度分布は、変換手段14によって調整可能であるが、集束手段12によっても調整可能である。これら二つの手段12、14の各コイルを流れる電流を調整することによって、ビームの密度分布を修正することが可能となる。変換手段の上流に焦点PFが位置付けられる場合、変換手段14に入射する電子ビームは発散しており、コイル141A、141B、141C、及び141Dを流れる電流の変動によって、電子ビームの密度分布の第一の幾何学的修正が行われる。変換手段の下流に焦点PFが位置付けられる場合、変換手段14に入射する電子ビームは収束しており、コイル141A、141B、141C、及び141Dを流れる電流の変動によって、電子ビームの密度分布の(第一の幾何学的修正と異なる)第二の幾何学的修正が行われる。したがって、コイル121を流れる電流並びにコイル141A、141B、141C、及び141Dを流れる電流によって、密度分布の変換の実行にオペレータが使用し得る二つの調整パラメータが構成される。得られる密度分布は、回転対称であってもよいし、程度の差こそあれ、界面23と平行又は垂直に細長くなっていてもよい。
【0085】
変換手段14の下流において、密度分布は、円形状であってもよく、また、軸Z又は軸Y或いは軸Xと垂直な任意の軸に沿って細長い卵形状であってもよい。ただし、変換手段14の出力において直接得られた電子ビームの密度分布に対して、偏向手段15が干渉する。具体的には、偏向手段による電子ビームの90°偏向によって、電子ビームの密度分布の修正が不可避的に生じる。したがって、溶接装置の出力において所定の密度分布が得られるように、偏向手段15によりもたらされる変形を変換手段14で見込む必要がある。
【0086】
図15A、
図15B、及び
図15Cは、二つの溶接対象部品に対する電子ビームの投射の様々な形態を示している。これらの図は、溶接装置10の試験の結果として得られたものである。特に、電子ビーム分析器を用いて得ることができる。
【0087】
図15Aに示すように、二つの軸対称部品間の界面と平行に密度が分布した電子ビームを生成するように校正ステップが規定されていてもよい。この形状は、実際の溶接作業の実行に特に適する。具体的には、過剰に高いエネルギー密度によって、材料の飛散を伴う溶接となり、完成部品の品質が損なわれる可能性もある。二つの溶接対象部品間の結合線に沿ってビームを拡散することにより、熱の影響を受けるエリアが大きくなることなく、エネルギー密度が抑えられ得る。その後、電子ビームは、二つの軸対称部品間の結合線の両側で金属(この場合は、ニオブ)を溶融可能である。このようにして得られる溶接ビードの幅は、非常に小さくなり得る。溶接は、キーホール効果を用いて実行される。これは、二つの溶接対象部品間の界面で材料が蒸発して所望の深さの孔が形成されるようにパワーが与えられることを意味する。その後、二つの溶接対象部品により形成されるアセンブリの回転によって、この孔(キーホール)が部品上で移動する(言い換えると、「引っ張られる」)。この孔では、二つの溶接対象部品を構成する材料が融けて、液槽を構成する。この槽は、電子ビームがこのエリアから遠ざかると固まる。このような理由から、この槽は、おおよそキーホールの形状を有する。溶接ビードの端部を形成するため、電子ビームのパワーの低減及び/又は集束の変更により、相互に溶接される二つの部品の表面まで孔が上昇して(すなわち、孔の深さを徐々に浅くして)、滑らかなビードを得ることが可能となる。
【0088】
電子ビームは、例えば2mm~3mm或いはそれ以上のオーダの深さまで金属を溶融可能である。溶接装置の考え得る第一の設定においては、二つの溶接対象部品の厚さ全体にわたって、金属を融かすことも可能である。溶接装置の別の設定においては、電子ビームが二つの溶接対象部品の厚さを貫通しない。したがって、二つの溶接対象部品の厚さ全体にわたって、金属が融けることはない。溶接対象部品を構成する材料に入るエネルギーの量を最小限に抑えることによって、溶融エリア若しくは熱の影響を受けるエリアのサイズ並びに残留応力を制限することが可能となる。これにより、溶接ビードの変形も最小限に抑えられる。二つの溶接対象部品間の界面の外側での(例えば、電子ビームの投射による)平滑化作業によって、その内側と外側との間の溶接ビード内の応力を後で相殺可能となり得る。
【0089】
二つの軸対称部品を相互に溶接するため、軸Zの周りで部品自体が回転する。このため、溶接機器は、例えばマンドレル等、溶接対象部品を把持する把持手段に接続されたモータを備え得るのが好都合である。溶接装置は、溶接中は静止したままである。二つの溶接対象部品により形成されるアセンブリの回転速度は、特に電子ビームのパワー及び溶接対象部品の性質に基づいて調整されるようになっていてもよい。
【0090】
焦点PFの位置は、程度の差こそあれ、偏位後の電子ビームの集束が遠くなるように調整され得ることに留意するものとする。これは特に、二つの溶接対象部品を溶接機器に対して移動させる必要なく、界面が軸Zを中心とする円ではないこれら二つの部品の溶接に有用と考えられる。
【0091】
また、
図15Bを参照して、二つの軸対称部品間に形成された界面と垂直に密度が分布した電子ビームを生成するように校正ステップが規定されていてもよい。このビーム形状は、二つの部品間に予め形成された溶接ビードの平滑化に特に都合が良い。
【0092】
また、
図15Cを参照して、円形の均一状態に密度が分布した電子ビームを生成するように校正ステップが規定されていてもよい。特に、単位面積当たりの極めて高いパワーを実現可能となる極集中電子ビームを得ることができる。例えば、アノードとカソードとの間の電圧Uを55kVに等しく、アノードからカソードに流れる電流を50mAに等しくすれば、本発明によって、最大4100W/mm2の電子ビームを得ることができる。例えば孔、材料の欠落、又は表面凹凸等の欠陥の補修等、部品の局所的処理の実行には、円形又は点状の密度分布が特に有用と考えられる。そして、材料の飛散を回避するため、電子ビームのパワーを落とすことが考えられる。一般的に、電子ビームの密度分布は、溶接ビードを生成する所望の効果に適応される。
【0093】
図16に示すように、アーム13の長さL1を大きくすることによって、操作数を抑えるとともに筐体に形成された真空の中断を回避しつつ、セルのアセンブリを相互に溶接することが考えられるようになる。このため、特定のツールによってセルが予め相互に位置決めされ、適所に保持されるようになっていてもよい。そして、溶接装置は、隣り合う二つのセル間の界面を連続して溶接するようにしてもよい。セルのアセンブリは、各溶接作業の間に軸Zに沿って平行移動することにより、セル間のすべての界面を溶接する。筐体の内側に収容された摺動キャリッジによって、セルのアセンブリを自動的に移動可能となるのが好都合である。溶接対象セルのアセンブリの一方側又は他方側からアーム13を挿入可能であることから、全長がアーム13の長さの二倍に達するセルのアセンブリを溶接可能となる。また、溶接ステーションには、セルのアセンブリの向かい合う二つの開口部に連続してアーム13を挿通するようにセルのアセンブリを180°枢動可能な回転装置が備わっていてもよい。一変形例として、溶接ステーションが回転装置を有していない場合は、筐体の真空を中断することにより、セルのアセンブリの180°枢動が手動で実行されるようになっていてもよい。これにより、すべてのキャビティを溶接するには、筐体に形成された真空を中断しさえすればよい。したがって、本発明に係る溶接機器の使用により、筐体の真空の過度な頻度での中断を回避することが可能となる。特に、各セル又はセルのサブアセンブリの溶接には、中断が不要である。
【0094】
アームの内側では偏位手段まで正確に電子ビームがガイドされることから、従来技術の溶接装置より長いアームも考えられる。このように長くすることによって、アーム13の周りに四つのセル或いは五つ以上のセルのほか、セルと関連付けられた管要素及び/又はフランジを位置決めすることが可能となり得る。これにより、組み立てプロセスが容易化される。また、このような長いアーム13によれば、組み立て済みの複数のセルのアセンブリによって形成されたキャビティの内側の任意の点まで電子ビームが到達可能となる。例えば、相互に組み立て済みの九つのセルのアセンブリの任意の点まで到達可能となる。これは特に、セルの組み立て後に検出された欠陥の補修に有用である。
【0095】
以上から、本発明によれば、最小限の操作数及び非常に高い溶接ビードの品質レベルで、長さ1200mm、1300mm、或いはそれ以上の長さのセルのアセンブリを溶接可能となる。