(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-02-16
(45)【発行日】2024-02-27
(54)【発明の名称】動的な物理アップリンク共有チャネルスキップがある場合のアップリンク制御情報多重化
(51)【国際特許分類】
H04W 72/1268 20230101AFI20240219BHJP
H04W 72/0457 20230101ALI20240219BHJP
H04W 72/21 20230101ALI20240219BHJP
H04W 72/23 20230101ALI20240219BHJP
H04L 27/26 20060101ALI20240219BHJP
【FI】
H04W72/1268
H04W72/0457 110
H04W72/21
H04W72/23
H04L27/26 113
(21)【出願番号】P 2022516353
(86)(22)【出願日】2019-12-12
(86)【国際出願番号】 US2019066051
(87)【国際公開番号】W WO2021054991
(87)【国際公開日】2021-03-25
【審査請求日】2022-11-25
(32)【優先日】2019-09-17
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2019-12-10
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】507364838
【氏名又は名称】クアルコム,インコーポレイテッド
(74)【代理人】
【識別番号】100108453
【氏名又は名称】村山 靖彦
(74)【代理人】
【識別番号】100163522
【氏名又は名称】黒田 晋平
(72)【発明者】
【氏名】バオ・ヴィン・グエン
(72)【発明者】
【氏名】シェイレッシュ・マヘシュワリ
(72)【発明者】
【氏名】リンハイ・ヘ
(72)【発明者】
【氏名】アミール・アミンザデ・ゴハリ
(72)【発明者】
【氏名】プラナイ・スディープ・ルンタ
(72)【発明者】
【氏名】ヴィシャール・ダルミア
(72)【発明者】
【氏名】デネシュ・クマール・デヴィネニ
(72)【発明者】
【氏名】クリシュナ・チャイタンヤ・ムッケラ
【審査官】新井 寛
(56)【参考文献】
【文献】特表2013-537727(JP,A)
【文献】国際公開第2019/092856(WO,A1)
【文献】特表2019-525609(JP,A)
【文献】特表2013-526231(JP,A)
【文献】特開2011-188468(JP,A)
【文献】米国特許出願公開第2015/0223235(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H04B 7/24 - 7/26
H04W 4/00 - 99/00
H04L 27/26
3GPP TSG RAN WG1-4
SA WG1-4
CT WG1、4
(57)【特許請求の範囲】
【請求項1】
ユーザ機器(UE)によるワイヤレス通信のための方法であって、
複数の物理アップリンク共有チャネル(PUSCH)上の送信のためのアップリンク許可を受信するステップであって、前記複数のPUSCHが、異なるコンポーネントキャリア(CC)上に位置する、ステップと、
アップリンク制御情報(UCI)がスロットにおいて送信され得る、前記複数のPUSCHのうちの1つまたは複数のPUSCHを識別するステップと、
前記複数のPUSCHのうちの残りのPUSCHにPUSCHデータを割り当てる前に、前記UCIが送信され得る前記1つまたは複数の識別されたPUSCHに、PUSCHデータを割り当てるステップと、
前記割り当てられたPUSCH上で前記スロットにおいて前記UCIおよび前記PUSCHデータを送信するステップと
を含む方法。
【請求項2】
前記方法が、
前記PUSCHデータが前記スロットにおいて送信されることになると決定するステップをさらに含み、前記決定するステップが、前記UCIが送られ得る、前記複数のPUSCHのうちの前記1つまたは複数のPUSCHを識別する前記ステップの前に、および前記PUSCHデータを割り当てる前記ステップの前に実行さ
れ、
前記PUSCHデータが前記スロットにおいて送信されることになると決定する前記ステップが、物理(PHY)レイヤにおいて、媒体アクセス制御(MAC)レイヤから、前記PUSCHデータに対応する指示を受信するステップを含み、
前記指示が、
前記PHYレイヤから前記MACレイヤへのクエリに応答して、
周期的に、
新しいデータが前記MACレイヤにおいて受信されるとき、または
それらの組合せで
受信される、請求項1に記載の方法。
【請求項3】
前記割り当てられたPUSCH上で前記スロットにおいて前記UCIおよび前記PUSCHデータを送信する前記ステップが、前記PUSCHデータの周りで前記UCIをレートマッチングするステップを含む、請求項1に記載の方法。
【請求項4】
媒体アクセス制御(MAC)レイヤトランスポートブロック(TB)を生成し、並行して、前記UCIおよびPUSCHデータの物理(PHY)レイヤ多重化を実行するステップ
をさらに含む、請求項1に記載の方法。
【請求項5】
前記UCIが送信され得る、前記複数のPUSCHのうちの前記1つまたは複数のPUSCHを識別する前記ステップが、1つまたは複数の事前構成されたルールに少なくとも部分的に基づく、請求項1に記載の方法。
【請求項6】
前記UCIが送信され得る、前記複数のPUSCHのうちの前記1つまたは複数のPUSCHを識別する前記ステップが、物理アップリンク制御チャネル(PUCCH)の構成に少なくとも部分的に基づく、請求項1に記載の方法。
【請求項7】
前記複数のPUSCHのうちの少なくとも1つの空のPUSCHの送信をスキップするステップをさらに含む、請求項1に記載の方法。
【請求項8】
ユーザ機器(UE)によるワイヤレス通信のための方法であって、
スロットにおける複数の物理アップリンク共有チャネル(PUSCH)上の送信のためのアップリンク許可を受信するステップであって、前記複数のPUSCHが、異なるコンポーネントキャリア(CC)上に位置する、ステップと、
PUSCHデータが前記スロットにおいて送信されることになるか否かを決定するステップと、
前記複数のPUSCHのうちのPUSCHに前記PUSCHデータを割り当てる前に、前記PUSCHデータが前記スロットにおいて送信されることになるか否かの前記決定に基づいて、1つまたは複数の物理アップリンク制御チャネル(PUCCH)上、あるいは前記複数のPUSCHのうちの1つまたは複数のPUSCH上で、前記スロットにおいてアップリンク制御情報(UCI)を送信するように決定するステップと、
前記決定された1つまたは複数のPUCCH上、あるいは前記決定された1つまたは複数のPUSCH上で、前記スロットにおいて前記UCIを送信するステップと
を含む方法。
【請求項9】
前記PUSCHデータが前記スロットにおいて送信されることになるか否かを決定する前記ステップが、物理(PHY)レイヤにおいて、媒体アクセス制御(MAC)レイヤから、前記PUSCHデータに対応する指示を受信するステップを含み、
前記指示が、
前記PHYレイヤから前記MACレイヤへのクエリに応答して、
周期的に、新しいデータが前記MACレイヤにおいて受信されるとき、または
それらの組合せで
受信される、請求項
8に記載の方法。
【請求項10】
前記1つまたは複数のPUCCH上、あるいは前記1つまたは複数のPUSCH上で、前記スロットにおいて前記UCIを送信するように決定する前記ステップが、前記1つまたは複数のPUSCHが空であるとき、前記1つまたは複数のPUCCH上で前記スロットにおいて前記UCIを送信するように決定するステップを含む、請求項
8に記載の方法。
【請求項11】
前記1つまたは複数のPUCCH上、あるいは前記1つまたは複数のPUSCH上で、前記スロットにおいて前記UCIを送信するように決定する前記ステップが、前記PUSCHデータが前記スロットにおいて送信されることになるとき、前記1つまたは複数のPUSCH上で前記スロットにおいて前記UCIを送信するように決定するステップを含む、請求項
8に記載の方法。
【請求項12】
ワイヤレス通信のための装置であって、
複数の物理アップリンク共有チャネル(PUSCH)上の送信のためのアップリンク許可を受信するための手段であって、前記複数のPUSCHが、異なるコンポーネントキャリア(CC)上に位置する、手段と、
アップリンク制御情報(UCI)がスロットにおいて送信され得る、前記複数のPUSCHのうちの1つまたは複数のPUSCHを識別するための手段と、
前記複数のPUSCHのうちの残りのPUSCHにPUSCHデータを割り当てる前に、前記UCIが送信され得る前記1つまたは複数の識別されたPUSCHに、PUSCHデータを割り当てるための手段と、
前記割り当てられたPUSCH上で前記スロットにおいて前記UCIおよび前記PUSCHデータを送信するための手段と
を備える装置。
【請求項13】
ワイヤレス通信のための装置であって、
スロットにおける複数の物理アップリンク共有チャネル(PUSCH)上の送信のためのアップリンク許可を受信するための手段であって、前記複数のPUSCHが、異なるコンポーネントキャリア(CC)上に位置する、手段と、
PUSCHデータが前記スロットにおいて送信されることになるか否かを決定するための手段と、
前記複数のPUSCHのうちのPUSCHに前記PUSCHデータを割り当てる前に、前記PUSCHデータが前記スロットにおいて送信されることになるか否かの前記決定に基づいて、1つまたは複数の物理アップリンク制御チャネル(PUCCH)上、あるいは前記複数のPUSCHのうちの1つまたは複数のPUSCH上で、前記スロットにおいてアップリンク制御情報(UCI)を送信するように決定するための手段と、
前記決定された1つまたは複数のPUCCH上、あるいは前記決定された1つまたは複数のPUSCH上で、前記スロットにおいて前記UCIを送信するための手段と
を備える装置。
【請求項14】
コンピュータ上で実行されたときに、請求項1から7のうちのいずれか一項に記載の方法を実行するための命令を備えるコンピュータプログラム。
【請求項15】
コンピュータ上で実行されたときに、請求項8から11のうちのいずれか一項に記載の方法を実行するための命令を備えるコンピュータプログラム。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本出願は、その両方が本出願の譲受人に譲渡され、以下に完全に記載されるかのように、およびすべての適用可能な目的のために、その全体が参照により本明細書に明確に組み込まれている、2019年9月17日に出願された米国仮特許出願第62/901,619号の利益および優先権を主張する、2019年12月10日に出願された米国出願第16/709,326号の優先権を主張する。
【0002】
本開示の態様は、ワイヤレス通信に関し、より詳細には、アップリンク制御情報を送るための技法に関する。
【背景技術】
【0003】
ワイヤレス通信システムは、電話、ビデオ、データ、メッセージング、ブロードキャストなど、様々な電気通信サービスを提供するために広く展開されている。これらのワイヤレス通信システムは、利用可能なシステムリソース(たとえば、帯域幅、送信電力など)を共有することによって、複数のユーザとの通信をサポートすることが可能な多元接続技術を採用し得る。そのような多元接続システムの例には、いくつかの例を挙げれば、第3世代パートナーシッププロジェクト(3GPP)ロングタームエボリューション(LTE)システム、LTEアドバンスト(LTE-A)システム、符号分割多元接続(CDMA)システム、時分割多元接続(TDMA)システム、周波数分割多元接続(FDMA)システム、直交周波数分割多元接続(OFDMA)システム、シングルキャリア周波数分割多元接続(SC-FDMA)システム、および時分割同期符号分割多元接続(TD-SCDMA)システムがある。
【0004】
これらの多元接続技術は、異なるワイヤレスデバイスが都市、国家、地域、さらには地球規模で通信することを可能にする共通プロトコルを提供するために、様々な電気通信規格において採用されている。ニューラジオ(たとえば、5G NR)は、新興の電気通信規格の一例である。NRは、3GPPによって公表されたLTEモバイル規格の拡張のセットである。NRは、スペクトル効率を改善すること、コストを下げること、サービスを改善すること、新たなスペクトルを利用すること、ならびにダウンリンク(DL)上およびアップリンク(UL)上でサイクリックプレフィックス(CP)とともにOFDMAを使用する他のオープン規格とよりよく統合することによって、モバイルブロードバンドインターネットアクセスをよりよくサポートするように設計されている。これらの目的のために、NRは、ビームフォーミング、多入力多出力(MIMO)アンテナ技術、およびキャリアアグリゲーションをサポートする。
【0005】
しかしながら、モバイルブロードバンドアクセスに対する需要が増大し続けるにつれて、NR技術およびLTE技術におけるさらなる改善が必要である。好ましくは、これらの改善は、他の多元接続技術、およびこれらの技術を採用する電気通信規格に適用可能であるべきである。
【発明の概要】
【課題を解決するための手段】
【0006】
本開示のシステム、方法、およびデバイスは各々、いくつかの態様を有し、それらのうちの単一の態様が単独でその望ましい属性を担うとは限らない。以下の特許請求の範囲によって表される本開示の範囲を限定することなく、いくつかの特徴についてここで簡潔に説明する。この説明を考察した後、詳細には「発明を実施するための形態」と題するセクションを読んだ後、本開示の特徴が、動的な物理アップリンク共有チャネル(PUSCH)スキップが構成されるときのPUSCHにおけるアップリンク制御情報(UCI)多重化のための改善された処理をどのように提供するかが理解されよう。
【0007】
いくつかの態様は、ユーザ機器(UE)によるワイヤレス通信のための方法を提供する。方法は、概して、複数のPUSCH上の送信のためのアップリンク許可を受信するステップであって、複数のPUSCHが、異なるコンポーネントキャリア(CC)上に位置する、ステップを含む。方法は、概して、UCIがスロットにおいて送信され得る、複数のPUSCHのうちの1つまたは複数のPUSCHを識別するステップを含む。方法は、概して、複数のPUSCHのうちの残りのPUSCHにPUSCHデータを割り当てる前に、UCIが送信され得る1つまたは複数の識別されたPUSCHに、PUSCHデータを割り当てるステップと、割り当てられたPUSCH上でスロットにおいてUCIおよびPUSCHデータを送信するステップとを含む。
【0008】
いくつかの態様は、UEによるワイヤレス通信のための方法を提供する。方法は、概して、スロットにおける複数のPUSCH上の送信のためのアップリンク許可を受信するステップであって、複数のPUSCHが、異なるCC上に位置する、ステップを含む。方法は、概して、PUSCHデータがスロットにおいて送信されることになるか否かを決定するステップを含む。方法は、概して、複数のPUSCHのうちのPUSCHにPUSCHデータを割り当てる前に、PUSCHデータがスロットにおいて送信されることになるか否かの決定に基づいて、1つまたは複数のPUCCH上、あるいは複数のPUSCHのうちの1つまたは複数のPUSCH上で、スロットにおいてUCIを送信するように決定するステップを含む。方法は、概して、決定された1つまたは複数のPUCCH上、あるいは決定された1つまたは複数のPUSCH上で、スロットにおいてUCIを送信するステップを含む。
【0009】
いくつかの態様は、ワイヤレス通信のための装置を提供する。装置は、概して、複数のPUSCH上の送信のためのアップリンク許可を受信するための手段であって、複数のPUSCHが、異なるCC上に位置する、手段を含む。装置は、概して、UCIがスロットにおいて送信され得る、複数のPUSCHのうちの1つまたは複数のPUSCHを識別するための手段を含む。装置は、概して、複数のPUSCHのうちの残りのPUSCHにPUSCHデータを割り当てる前に、UCIが送信され得る1つまたは複数の識別されたPUSCHに、PUSCHデータを割り当てるための手段と、割り当てられたPUSCH上でスロットにおいてUCIおよびPUSCHデータを送信するための手段とを含む。
【0010】
いくつかの態様は、ワイヤレス通信のための装置を提供する。装置は、概して、スロットにおける複数のPUSCH上の送信のためのアップリンク許可を受信するための手段であって、複数のPUSCHが、異なるCC上に位置する、手段を含む。装置は、概して、PUSCHデータがスロットにおいて送信されることになるか否かを決定するための手段を含む。装置は、概して、複数のPUSCHのうちのPUSCHにPUSCHデータを割り当てる前に、PUSCHデータがスロットにおいて送信されることになるか否かの決定に基づいて、1つまたは複数のPUCCH上、あるいは複数のPUSCHのうちの1つまたは複数のPUSCH上で、スロットにおいてUCIを送信するように決定するための手段を含む。装置は、概して、決定された1つまたは複数のPUCCH上、あるいは決定された1つまたは複数のPUSCH上で、スロットにおいてUCIを送信するための手段を含む。
【0011】
いくつかの態様は、ワイヤレス通信のための装置を提供する。装置は、概して、メモリと、メモリに結合された少なくとも1つのプロセッサとを含む。少なくとも1つのプロセッサは、概して、複数のPUSCH上の送信のためのアップリンク許可を受信することであって、複数のPUSCHが、異なるCC上に位置する、ことを行うように構成される。少なくとも1つのプロセッサは、概して、UCIがスロットにおいて送信され得る、複数のPUSCHのうちの1つまたは複数のPUSCHを識別するように構成される。少なくとも1つのプロセッサは、概して、複数のPUSCHのうちの残りのPUSCHにPUSCHデータを割り当てる前に、UCIが送信され得る1つまたは複数の識別されたPUSCHに、PUSCHデータを割り当てること、ならびに、割り当てられたPUSCH上でスロットにおいてUCIおよびPUSCHデータを送信することを行うように構成される。
【0012】
いくつかの態様は、ワイヤレス通信のための装置を提供する。装置は、概して、メモリと、メモリに結合された少なくとも1つのプロセッサとを含む。少なくとも1つのプロセッサは、概して、スロットにおける複数のPUSCH上の送信のためのアップリンク許可を受信することであって、複数のPUSCHが、異なるCC上に位置する、ことを行うように構成される。少なくとも1つのプロセッサは、概して、PUSCHデータがスロットにおいて送信されることになるか否かを決定するように構成される。少なくとも1つのプロセッサは、概して、複数のPUSCHのうちのPUSCHにPUSCHデータを割り当てる前に、PUSCHデータがスロットにおいて送信されることになるか否かの決定に基づいて、1つまたは複数のPUCCH上、あるいは複数のPUSCHのうちの1つまたは複数のPUSCH上で、スロットにおいてUCIを送信するように決定するように構成される。少なくとも1つのプロセッサは、概して、決定された1つまたは複数のPUCCH上、あるいは決定された1つまたは複数のPUSCH上で、スロットにおいてUCIを送信するように構成される。
【0013】
いくつかの態様は、ワイヤレス通信のためのコンピュータ実行可能コードをその上に記憶する、コンピュータ可読媒体を提供する。コンピュータ可読媒体は、概して、複数のPUSCH上の送信のためのアップリンク許可を受信するためのコードであって、複数のPUSCHが、異なるCC上に位置する、コードを含む。コンピュータ可読媒体は、概して、UCIがスロットにおいて送信され得る、複数のPUSCHのうちの1つまたは複数のPUSCHを識別するためのコードを含む。コンピュータ可読媒体は、概して、複数のPUSCHのうちの残りのPUSCHにPUSCHデータを割り当てる前に、UCIが送信され得る1つまたは複数の識別されたPUSCHに、PUSCHデータを割り当てるためのコードと、割り当てられたPUSCH上でスロットにおいてUCIおよびPUSCHデータを送信するためのコードとを含む。
【0014】
いくつかの態様は、ワイヤレス通信のためのコンピュータ実行可能コードをその上に記憶する、コンピュータ可読媒体を提供する。コンピュータ可読媒体は、概して、スロットにおける複数のPUSCH上の送信のためのアップリンク許可を受信するためのコードであって、複数のPUSCHが、異なるCC上に位置する、コードを含む。コンピュータ可読媒体は、概して、PUSCHデータがスロットにおいて送信されることになるか否かを決定するためのコードを含む。コンピュータ可読媒体は、概して、複数のPUSCHのうちのPUSCHにPUSCHデータを割り当てる前に、PUSCHデータがスロットにおいて送信されることになるか否かの決定に基づいて、1つまたは複数のPUCCH上、あるいは複数のPUSCHのうちの1つまたは複数のPUSCH上で、スロットにおいてUCIを送信するように決定するためのコードを含む。コンピュータ可読媒体は、概して、決定された1つまたは複数のPUCCH上、あるいは決定された1つまたは複数のPUSCH上で、スロットにおいてUCIを送信するためのコードを含む。
【0015】
上記の目的および関係する目的の達成のために、1つまたは複数の態様は、以下で十分に説明し、特に特許請求の範囲で指摘する特徴を備える。以下の説明および添付の図面は、1つまたは複数の態様のいくつかの例示的な特徴を詳細に記載する。しかしながら、これらの特徴は、様々な態様の原理が採用され得る様々な方法のほんのいくつかを示すものである。
【0016】
本開示の上述の特徴が詳細に理解され得るように、それらのうちの一部が図面に示される態様を参照することによって、上記で簡潔に要約された、より具体的な説明が得られてよい。しかしながら、本説明は他の等しく効果的な態様に通じ得るので、添付の図面が、本開示のいくつかの典型的な態様のみを示し、したがって、本開示の範囲を限定するものと見なされるべきではないことに留意されたい。
【図面の簡単な説明】
【0017】
【
図1】本開示のいくつかの態様による、例示的な電気通信システムを概念的に示すブロック図である。
【
図2】本開示のいくつかの態様による、例示的な基地局(BS)およびユーザ機器(UE)の設計を概念的に示すブロック図である。
【
図3A】物理アップリンク共有チャネル(PUSCH)スキップがある場合の、物理アップリンク制御チャネル(PUCCH)への例示的なアップリンク制御情報(UCI)フォールバックを示すコールフロー図である。
【
図3B】スロットにおいて構成された例示的な重複するPUSCHおよびPUCCHを示すブロック図である。
【
図3C】
図3AにおけるPUSCHスキップがある場合のPUCCHへの例示的なUCIフォールバックを示す、より詳細なコールフロー図である。
【
図3D】スロットにおける、PUSCHにおいて多重化された例示的なUCIと、別のPUSCHに割り当てられたデータとを示すブロック図である。
【
図3E】スロットにおけるPUCCHへの例示的なUCIフォールバックを示すブロック図である。
【
図3F】スロットにおけるPUCCHへの例示的なUCIフォールバックと、PUSCHスキップとを示すブロック図である。
【
図4】本開示のいくつかの態様による、UEによるワイヤレス通信のための例示的な動作を示すフロー図である。
【
図5】本開示のいくつかの態様による、UEによるワイヤレス通信のための例示的な動作を示すフロー図である。
【
図6A】本開示の態様による、PUSCHスキップがある場合のPUCCH上の例示的なUCI送信を示すコールフロー図である。
【
図6B】本開示の態様による、PUSCHスキップがある場合のPUCCH上の例示的なUCI送信を示す、より詳細なコールフロー図である。
【
図6C】本開示の態様による、スロットにおいてPUSCHに割り当てられたデータがないとき、PUCCHにおいて送信される例示的なUCIを示すブロック図である。
【
図6D】本開示の1つまたは複数の態様による、スロットにおいてPUSCHに割り当てられたデータがないとき、PUCCHにおいて送信される例示的なUCIと、PUSCHスキップとを示すブロック図である。
【
図7A】本開示の態様による、PUSCHスキップがある場合のPUSCH上の例示的なUCI多重化を示すコールフロー図である。
【
図7B】本開示の態様による、PUSCHスキップがある場合のPUSCH上の例示的なUCI多重化を示す、より詳細なコールフロー図である。
【
図7C】本開示の態様による、それにおいてUCIが多重化されるスロットに割り当てられた例示的なデータを示すブロック図である。
【
図7D】本開示の1つまたは複数の態様による、それにおいてUCIが多重化されるスロットに割り当てられた例示的なデータと、PUSCHスキップとを示すブロック図である。
【
図8】本開示の態様による、本明細書で開示する技法のための動作を実行するように構成された様々な構成要素を含み得る通信デバイスを示す図である。
【発明を実施するための形態】
【0018】
理解を容易にするために、可能な場合、図に共通する同一の要素を指定するために同一の参照番号が使用されている。特定の具陳なしに、一態様において開示する要素が他の態様において有利に利用され得ることが企図される。
【0019】
本開示の態様は、動的な物理アップリンク共有チャネル(PUSCH)スキップが構成されるときのPUSCHにおけるアップリンク制御情報(UCI)多重化を処理するための装置、方法、処理システム、およびコンピュータ可読媒体を提供する。
【0020】
いくつかのシステム(たとえば、ニューラジオまたは5G NRシステム)では、ユーザ機器(UE)は、アップリンク制御情報(UCI)を送信するように構成され、アップリンク制御情報(UCI)は、スケジューリング要求(SR)、ハイブリッド自動再送要求(HARQ)フィードバック(たとえば、肯定応答/否定応答またはHARQ-ACK情報)、および/またはチャネル状態情報(CSI)フィードバックなどを含み得る。UEはまた、PUSCH上のデータ送信のためにも構成される。UEは、異なるコンポーネントキャリア(CC)上の複数のPUSCHとともに構成され得る。場合によっては、UEは、同じスロット内など、重複する時間期間において、データおよびUCIを送るようにスケジュールされ得る。UEは、物理アップリンク制御チャネル(PUCCH)において、UCIを送信し得る。しかしながら、場合によっては、UEは、UCIおよびPUSCHが時間的に重複しているとき、(たとえば、PUCCH上ではなく)PUSCHにおいて、UCIを送信し得る。たとえば、UEは、PUSCHが所与の時間にスケジュールされると決定し、UEがその時間に送るためのUCIを有するとき、UEは、PUSCHにおいて(たとえば、アップリンクデータとともに)UCIを多重化するように構成される。
【0021】
いくつかのシステム(たとえば、ニューラジオまたは5G NRシステム)では、UEは、(たとえば、UEが、PUSCHのスケジュールされた時間において、PUSCH上で送るためのアップリンクデータを有していないとき、動的に)いかなる割り当てられたデータも有していないPUSCHの送信をスキップするように構成され得る。本明細書で使用するPUSCHスキップは、UEがいくつかのPUSCH上でドロップすること、または送信しないことを指すことがある(たとえば、いくつかのPUSCHは、アップリンク送信のためのUEへのアップリンク許可を介して割り当てられたPUSCHを含み得る)。PUSCHスキップは、構成されたスキップルールに基づき得る。いくつかのシナリオでは、UEは、UEがPUSCHにおいてUCIを多重化するように決めるとき、PUSCHがスキップされるようになることを知らないことがある。そのようなシナリオでは、UEは、PUCCH上でUCIを送信することにフォールバックし得る。これによって、たとえば、UCIを送信するための時間および電力消費が増すことによって、効率が低下することがある。
【0022】
本開示の態様は、PUSCHスキップが構成されるとき、PUSCH上でUCIを多重化するための解決策を提供する。たとえば、態様は、UEが、PUSCHにおいてUCIを多重化する前に、送信するためのアップリンクデータがあるか否かをチェックすることを提供する。したがって、いくつかの態様によれば、アップリンクデータがないとき、UEは、PUCCH上にUCIを置くことができる。このようにして、UEは、PUSCH上でUCIを準備し、次いで、UEがPUSCHをスキップするように決定するとき、PUCCH上でUCIを送ることにフォールバックすることを回避する。また、アップリンクデータがあるとき、UEは、他のPUSCHにデータを割り当てる前に、UCIが多重化され得るPUSCHにデータを割り当てることができる。このようにして、UEは、データを伴うPUSCHがスキップされないようになるので、UCIがスロットにおいてPUSCH上で多重化され得ることを保証することができる。いくつかの例では、多重化されたUCIは、PUSCHをパンクチャし得る(たとえば、PUSCHデータがレートマッチングされる)。いくつかの例では、送信されることになるUCIビットの数が、UCIビットのしきい値数を下回るなど、少量のUCIデータ(たとえば、2ビット以下のUCI)のためのものであるとき(たとえば、そのときのみ)、UCIがPUSCHにパンクチャされ得る。より大量のUCIデータ(たとえば、しきい値を上回る)の場合、次いで、PUSCHをレートマッチングすることによって、UCIが多重化され得る。たとえば、パンクチャリングまたはレートマッチングは、ワイヤレス規格において(たとえば、IEEEワイヤレス規格において)定義されているように実行され得る。UCIビットをPUSCH上に多重化することによって、PUSCHの有効コードレートが高くなり得る。場合によっては(たとえば、ポーラコーディングが送信のために使用されるとき)、多数のUCIビットを(たとえば、それらをパンクチャするのではなく)レートマッチングすることは、(たとえば、パンクチャリングと比較して)PUSCHのためのより低い有効コードレートを生じることがある。
【0023】
したがって、1つまたは複数の態様では、UEは、スロットにおける複数のPUSCH上の送信のためのアップリンク許可を受信する。PUSCHは、異なるコンポーネントキャリア(CC)上に位置する。UEは、UCIがスロットにおいて送信され得るPUSCHを識別する。次いで、UEは、残りのPUSCHにPUSCHデータを割り当てる前に、それらの識別されたPUSCHにPUSCHデータを割り当てる。UEは、割り当てられたPUSCH上でスロットにおいてUCIおよびPUSCHデータを送信する。
【0024】
1つまたは複数の態様では、UEは、スロットにおける複数のPUSCHのためのアップリンク許可を受信し得る。複数のPUSCHは、異なるCC上に位置する。UEは、PUSCHデータがスロットにおいて送信されることになるか否かを決定することができる。PUSCHデータがあるか否かに基づいて、UEは、PUSCHのうちのいずれかにPUSCHデータを割り当てる前に、PUCCH上またはPUSCH上で、スロットにおいてUCIを送信するように決定することができる。UEは、決定されたPUCCHまたはPUSCH上で、スロットにおいてUCIを送信する。
【0025】
以下の説明は、動的なPUSCHスキップが通信システムにおいて構成されるときのPUSCHにおけるUCI多重化の例を提供するものであり、特許請求の範囲に記載された範囲、適用可能性、または例を限定するものではない。本開示の範囲から逸脱することなく、説明する要素の機能および構成に変更が加えられることがある。様々な例は、適宜に、様々な手順または構成要素を省略、置換、または追加することがある。たとえば、説明する方法は、説明する順序とは異なる順序で実行されることがあり、様々なステップが追加、省略、または組み合わせられることがある。また、いくつかの例に関して説明する特徴が、いくつかの他の例では組み合わせられることがある。たとえば、本明細書に記載する任意の数の態様を使用して、装置が実装されてよく、または方法が実践されてよい。さらに、本開示の範囲は、本明細書に記載する本開示の様々な態様に加えて、またはそうした態様以外に、他の構造、機能、または構造および機能を使用して実践されるような装置または方法をカバーするものとする。本明細書で開示する本開示のいずれの態様も、特許請求の範囲の1つまたは複数の要素によって具現され得ることを理解されたい。「例示的」という語は、「例、事例、または例示の働きをすること」を意味するために本明細書で使用される。本明細書で「例示的」として説明するいかなる態様も、必ずしも他の態様よりも好ましいまたは有利であると解釈されるべきではない。
【0026】
一般に、任意の数のワイヤレスネットワークが、所与の地理的エリアの中で展開され得る。各ワイヤレスネットワークは、特定の無線アクセス技術(RAT)をサポートし得、1つまたは複数の周波数上で動作し得る。RATは、無線技術、エアインターフェースなどと呼ばれることもある。周波数は、キャリア、サブキャリア、周波数チャネル、トーン、サブバンドなどと呼ばれることもある。各周波数は、異なるRATのワイヤレスネットワーク間の干渉を回避するために、所与の地理的エリアにおいて単一のRATをサポートし得る。場合によっては、5G NR RATネットワークが展開されることがある。
【0027】
図1は、本開示の態様が実行され得る例示的なワイヤレス通信ネットワーク100を示す。たとえば、ワイヤレス通信ネットワーク100は、NRシステム(たとえば、5G NRネットワーク)であり得る。
【0028】
図1に示されているように、ワイヤレス通信ネットワーク100は、いくつかの基地局(BS)110a~110z(各々はまた、本明細書で個々にBS110または総称してBS110と呼ばれる)、および他のネットワークエンティティを含み得る。BS110は、特定の地理的エリアに通信カバレージを提供することがあり、特定の地理的エリアは、「セル」と呼ばれることがあり、固定であり得るか、またはモバイルBS110のロケーションに従って移動し得る。いくつかの例では、BS110は、任意の好適なトランスポートネットワークを使用して、様々なタイプのバックホールインターフェース(たとえば、直接物理接続、ワイヤレス接続、仮想ネットワークなど)を通して、ワイヤレス通信ネットワーク100において互いに、および/または1つもしくは複数の他のBSもしくはネットワークノード(図示せず)に相互接続され得る。
図1に示された例では、BS110a、110b、および110cは、それぞれ、マクロセル102a、102b、および102cのためのマクロBSであり得る。BS110xは、ピコセル102xのためのピコBSであり得る。BS110yおよび110zは、それぞれ、フェムトセル102yおよび102zのためのフェムトBSであり得る。BSは、1つまたは複数のセルをサポートし得る。BS110は、ワイヤレス通信ネットワーク100内でユーザ機器(UE)120a~120y(各々はまた、本明細書で個々にUE120または総称してUE120と呼ばれる)と通信する。UE120(たとえば、120x、120yなど)は、ワイヤレス通信ネットワーク100全体にわたって分散されてよく、各UE120は、固定またはモバイルであり得る。
【0029】
いくつかの態様によれば、UE120は、UCI多重化およびPUSCHスキップのために構成され得る。
図1に示されているように、UE120aは、UCI多重化マネージャ122を含む。UCI多重化マネージャ122は、本開示の態様による、PUSCHスキップがある場合のUCI多重化のために構成され得る。いくつかの例では、UCI多重化マネージャ122は、複数のPUSCH上の送信のためのアップリンク許可を受信し得、複数のPUSCHは、異なるCC上に位置し得る。UCI多重化マネージャ122は、UCIがスロットにおいて送信され得る、複数のPUSCHのうちの1つまたは複数のPUSCHをさらに識別し得る。追加として、UCI多重化マネージャ122はまた、複数のPUSCHのうちの残りのPUSCHにPUSCHデータを割り当てる前に、UCIが送信され得る1つまたは複数の識別されたPUSCHに、PUSCHデータを割り当て得る。UCI多重化マネージャ122は、割り当てられたPUSCH上でスロットにおいてUCIおよびPUSCHデータをさらに送信することができる。いくつかの例では、UCI多重化マネージャ122は、スロットにおける複数のPUSCH上の送信のためのアップリンク許可を受信し得る。複数のPUSCHは、異なるCC上に位置する。UCI多重化マネージャ122は、PUSCHデータがスロットにおいて送信されることになるか否かを決定し得る。UCI多重化マネージャ122は、複数のPUSCHのうちのPUSCHにPUSCHデータを割り当てる前に、PUSCHデータがスロットにおいて送信されることになるか否かの決定に基づいて、1つまたは複数のPUCCH上、あるいは複数のPUSCHのうちの1つまたは複数のPUSCH上で、スロットにおいてUCIを送信するように決定し得る。UCI多重化マネージャ122は、決定された1つまたは複数のPUCCH上、あるいは決定された1つまたは複数のPUSCH上で、スロットにおいてUCIを送信し得る。
【0030】
ワイヤレス通信ネットワーク100はまた、中継局(たとえば、中継局110r)を含んでもよく、中継局は、リレーなどとも呼ばれ、データおよび/または他の情報の送信を上流局(たとえば、BS110aまたはUE120r)から受信し、データおよび/または他の情報の送信を下流局(たとえば、UE120またはBS110)に送るか、あるいはデバイス間の通信を容易にするために、UE120の間の送信を中継する。
【0031】
ネットワークコントローラ130は、BS110のセットに結合され、これらのBS110のための協調および制御を行い得る。ネットワークコントローラ130は、バックホールを介してBS110と通信し得る。BS110はまた、ワイヤレスバックホールまたはワイヤラインバックホールを介して互いに(たとえば、直接または間接的に)通信し得る。
【0032】
図2は、本開示の態様を実装するために使用され得る、(たとえば、
図1のワイヤレス通信ネットワーク100における)BS110aおよびUE120aの例示的な構成要素を示す。
【0033】
BS110aにおいて、送信プロセッサ220は、データソース212からデータを受信し、コントローラ/プロセッサ240から制御情報を受信し得る。制御情報は、物理ブロードキャストチャネル(PBCH)、物理制御フォーマットインジケータチャネル(PCFICH)、物理ハイブリッドARQインジケータチャネル(PHICH)、物理ダウンリンク制御チャネル(PDCCH)、グループ共通PDCCH(GC PDCCH)などのためのものであり得る。データは、物理ダウンリンク共有チャネル(PDSCH)などのためのものであり得る。プロセッサ220は、データおよび制御情報を処理(たとえば、符号化およびシンボルマッピング)して、それぞれ、データシンボルおよび制御シンボルを取得し得る。送信プロセッサ220はまた、プライマリ同期信号(PSS)、セカンダリ同期信号(SSS)、およびセル固有基準信号(CRS)に関してなど、基準シンボルを生成してもよい。送信(TX)多入力多出力(MIMO)プロセッサ230は、適用可能な場合、データシンボル、制御シンボル、および/または基準シンボルに対する空間処理(たとえば、プリコーディング)を実行することができ、変調器(MOD)232a~232tに出力シンボルストリームを提供することができる。各変調器232は、(たとえば、OFDM用などに)それぞれの出力シンボルストリームを処理して出力サンプルストリームを取得し得る。各変調器は、出力サンプルストリームをさらに処理(たとえば、アナログ変換、増幅、フィルタ処理、およびアップコンバート)して、ダウンリンク信号を取得し得る。変調器232a~232tからのダウンリンク信号は、それぞれ、アンテナ234a~234tを介して送信されてもよい。
【0034】
UE120aにおいて、アンテナ252a~252rは、BS110aからダウンリンク信号を受信してもよく、受信信号を、それぞれトランシーバ内の復調器(DEMOD)254a~254rに提供してもよい。各復調器254は、それぞれの受信信号を調整(たとえば、フィルタ処理、増幅、ダウンコンバート、およびデジタル化)し、入力サンプルを取得することができる。各復調器は、入力サンプルを(たとえば、OFDMなどのために)さらに処理して、受信シンボルを取得し得る。MIMO検出器256は、すべての復調器254a~254rから受信シンボルを取得し、適用可能な場合、受信シンボルに対してMIMO検出を実行し、検出されたシンボルを提供することができる。受信プロセッサ258は、検出されたシンボルを処理(たとえば、復調、デインターリーブ、および復号)し、UE120aのための復号されたデータをデータシンク260に提供し、復号された制御情報をコントローラ/プロセッサ280に提供することができる。
【0035】
アップリンク上では、UE120aにおいて、送信プロセッサ264が、データソース262からの(たとえば、物理アップリンク共有チャネル(PUSCH)のための)データと、コントローラ/プロセッサ280からの(たとえば、物理アップリンク制御チャネル(PUCCH)のための)制御情報とを受信し、処理することができる。送信プロセッサ264はまた、基準信号のための(たとえば、サウンディング基準信号(SRS)のための)基準シンボルを生成することができる。送信プロセッサ264からのシンボルは、適用可能な場合、TX MIMOプロセッサ266によってプリコーディングされ、(たとえば、SC-FDM用などに)トランシーバ内の変調器254a~254rによってさらに処理され、BS110aに送信され得る。BS110aにおいて、UE120aからのアップリンク信号は、アンテナ234によって受信され、復調器232によって処理され、適用可能な場合、MIMO検出器236によって検出され、受信プロセッサ238によってさらに処理されて、UE120aによって送られた復号されたデータおよび制御情報を取得することができる。受信プロセッサ238は、復号されたデータをデータシンク239に提供し、復号された制御情報をコントローラ/プロセッサ240に提供し得る。
【0036】
メモリ242および282は、それぞれBS110aおよびUE120aに関するデータおよびプログラムコードを記憶することができる。スケジューラ244は、ダウンリンクおよび/またはアップリンク上でのデータ送信のためにUEをスケジュールし得る。
【0037】
UE120aにおけるコントローラ/プロセッサ280ならびに/または他のプロセッサおよびモジュールは、本明細書で説明する技法のためのプロセスを実行し得るか、またはそうしたプロセスの実行を指示し得る。たとえば、
図2に示されているように、UE120aのコントローラ/プロセッサ280は、本明細書で説明する態様による、PUSCHスキップが構成されるときのPUSCH処理におけるUCI多重化のために構成され得る、UCI多重化マネージャ281を有する。コントローラ/プロセッサ280において示されているが、UE120aの他の構成要素が、本明細書で説明する動作を実行するために使用され得る。
【0038】
上記で説明したように、UEは、UCI多重化およびPUSCHスキップのために構成され得、このことは、UEがPUSCHにおいてUCIを送るように決定し、次いで、PUSCHがいかなる割り当てられたデータも有していないために、PUSCHがスキップされる場合、問題になり得る。
図3Aは、PUSCHスキップがある場合のPUCCHへの例示的なUCIフォールバックを示す、コールフロー300Aである。
図3Cは、PUSCHスキップがある場合のPUCCHへの例示的なUCIフォールバックを示す、より詳細なコールフロー300Cである。
【0039】
図3Aに示されているように、306において、UE302は、スロットにおいてPUSCHをスケジュールする、サービングgNB304からのアップリンク許可を(たとえば、PDCCHにおいて)受信する。異なるPUSCHは、スロットにおいて異なるCC上でスケジュールされ得る。例示的な例では、UE302は(たとえば、306において)、
図3Bに示されているように、所与のスロット301において、8つのPUSCH(PUSCH1、PUSCH2、...、PUSCH8)と、少なくとも1つのPUCCHとともにスケジュールされる。
図3Bに示されているように、PUSCH1~8は、スロット301において、CC0~CC7などの異なるCC上で構成される。
【0040】
308において、UE302は、スロットにおいてUCI(たとえば、HARQ-ACK、SR、および/またはCSI)を送るように、サービングgNB304によって構成/スケジュールされる。
図3Aでは、(308における)UCI構成/スケジューリングが、(306における)PUSCHをスケジュールするアップリンク許可の後で示されているが、1つまたは複数の例では、UCIは、PUSCHをスケジュールするアップリンク許可の前またはそれと同時に構成/スケジュールされ得る。いくつかの例では、UCIは、動的にスケジュールされ得る。いくつかの例では、UE302は、UCIを送るためのタイムライン、トリガ、または周期を用いて構成され得る。
【0041】
310において、UE302は、(たとえば、PUSCHとPUCCHの両方がスロットにおいてスケジュールされるとき)スロットにおいてスケジュールされたPUSCHのうちの1つまたは複数において、UCIを多重化するように決定する。たとえば、UE302は、どのPUSCHにおいてUCIが送信され得るかを決定するために、その多重化論理を動作させることができる。UE302は、UCIがPUSCHにおいて送信され得るか否かを決定するためのルールを用いて構成され得る。いくつかの例では、UCI多重化ルールは、3GPP技術規格(たとえば、38.213 v15.4.0、セクション9.3は、PUSCH上でUCIを送信するための様々なルールを規定する)に従って、UE302においてハードコーディングされる。いくつかの例では、UCIとともに多重化され得るPUSCHが構成され得る。
図3Cに示されているように、310におけるUCI多重化は、UE302のPHYレイヤ305において行われ得る。例示的な例では、UCI多重化ルールに基づいて、UE302は(310において)、
図3Dに示されているように、PUSCH2上でUCIを多重化するように決定する。
【0042】
312において、UE302は、スケジュールされたPUSCHのうちの1つまたは複数に、データ(たとえば、上位の媒体アクセス制御(MAC)プロトコルデータユニット(PDU))を割り当てる。
図3Cに示されているように、312におけるデータ割当ては、UE302のMACレイヤ303において行われ得る。例示的な例では、UE302は(たとえば、MACレイヤにおいて)、送るための少量のデータのみを有し、UE302は(312において)、
図3Dに示されているように、そのデータとともにPUSCH1を構築し、残りのPUSCH2~8を満たすためのデータを有していない。
【0043】
一例では、UE302は、(たとえば、無線リソース制御(RRC)シグナリングを介して)PUSCHスキップのために構成され得る。314において、UE302は、スロットにおける送信のために割り当てられたPUSCHデータを有していない、スロットにおけるPUSCHをスキップする(たとえば、ドロップするか、または送信しない)ように決定する。たとえば、UE302は、パディングのみを伴うか、またはUCIのみを伴うPUSCHを送信しないように構成され得るが、そのPUSCH上で送信されることになるPUSCHデータがあるときのみ、PUSCHを送信するように構成され得る。しかしながら、PUSCHスキップは、UCI多重化が決定されるとき、PUSCHデータ割当ておよび/またはスキップがUEに知られていない場合、UCI送信を複雑にし得る。たとえば、
図3Aに示されているように、UE302が(たとえば、PHYレイヤにおいて)、(310において)PUSCH上でUCIを多重化するように決定し、UE302が(たとえば、MACレイヤにおいて)、(312において)PUSCHにいかなるデータも割り当てず、したがって、(314において)そのPUSCHをスキップするように決定するとき、次いで、UE302は(たとえば、PHYレイヤにおいて)、PUCCH上でUCIを送信することにフォールバックしなければならない。したがって、316において、UE302は、スロットにおいて(いかなるデータも伴わないPUSCHをスキップして)割り当てられたデータを伴うPUSCHを送信し、318において、UEは、スロットにおいてPUCCH309上でUCIを送信する。
図3Cに示されているように、314におけるスキップは、PHYレイヤ305が310においてUCI多重化決定を行った後、PHYレイヤ305において行われ得る。
図3A~
図3Eにおける例示的な例では、UE302は、PUSCH1を送信することができるが、構成されたPUSCHスキップに従って、PUSCH2~8をドロップし、UE302は(314において)、PUCCH上でUCIを送信することにフォールバックする。この場合、PUCCHとPUSCHの両方が(316および318において)、
図3Eに示されているように、スロットにおいて送信され、残りのPUSCH307が、
図3Fに示されているように、ドロップ(スキップ)される。
【0044】
したがって、(たとえば、PUSCHとPUCCHの両方が送信されるので)追加のPUCCH/PUSCHリソースが使用されることがあり、(たとえば、PUCCHを準備するためにフォールバックするために)追加の遅延があることがあり、それによって、次に追加の電力消費を招くことがある。
【0045】
PUSCHスキップがある場合の例示的なUCI多重化
いくつかの例では、物理アップリンク共有チャネル(PUSCH)スキップ、およびPUSCH上のアップリンク制御情報(UCI)の多重化の前に、物理(PHY)レイヤは、媒体アクセス制御(MAC)レイヤをチェックして、MACレイヤが送信するため(たとえば、スケジュールするため、PUSCHに割り当てるため)のデータを有するか否かを決定し得る。いくつかの例では、PHYレイヤは、MACレイヤにクエリ(たとえば、または直接関数呼出し)を送り、MACレイヤは、MACレイヤデータがあるか否かを示す応答を送る。たとえば、UEがスキップ論理を開始するとき(たとえば、UEがPUSCH/PUCCHが重複すると決定し、構成されたスキップルールに基づいて、どのPUSCHをスキップするべきかを決定するとき)の時間において、またはそれより前に、および多重化決定が行われるときの時間において、またはそれより前に、PHYレイヤは、MACレイヤにクエリを送り得る。一例では、スロットにおけるPUSCH/PUCCH重複は、UEによって受信されたスケジューリング情報に基づいて決定され得る(PUSCHおよび/またはPUCCHがバンドリング/反復を用いて構成される場合、このことは、PUSCHおよび/またはPUCCHがスロットにおいてスケジュールされるか否かを決定する際に考慮に入れられ得る)。いくつかの例では、追加または代替として、MACレイヤは、いつMACレイヤがデータを有するかを、PHYレイヤに伝えることができる。たとえば、MACレイヤは、MACレイヤがデータを有するか否かを、PHYレイヤに周期的に通知し得、かつ/またはMACレイヤは、新しいデータがMACレイヤに到着するときはいつでもUEに通知し得る。
【0046】
図6A~
図6Dに関して以下でより詳細に説明するように、MACレイヤデータが空である(たとえば、MACレイヤが、送信する/割り当てるためのPUSCHデータを有していない)場合、すべてのPUSCHがスキップされるようになり、UCIがPUCCHによって送信されるようになる。したがって、UEは、最初にPUSCH上でUCIを多重化するように試みること、および次いで、後でPUCCHにフォールバックすることを行わないことがある。
図7A~
図7Dに関して以下でより詳細に説明するように、MACレイヤデータが空ではない(たとえば、MACレイヤが、送信する/PUSCHに割り当てるためのPUSCHデータを有している)場合、PHYレイヤは、最初に、UCIを多重化することができるPUSCH上で、次いで1つまたは複数の残りのPUSCH上で、データ(たとえば、MACプロトコルデータユニット(PDU))を置く(たとえば、割り当てる/送信する)ように、MACレイヤに要求し得る。たとえば、スケジュールされた複数のPUSCHがあり得る。PUSCHは、データを割り当てるために順序付けられる。MACレイヤは、(たとえば、UCI多重化ルールに基づいて)最初に、UCIを多重化することができるPUSCHにデータを割り当てるために、PHYレイヤからの要求に基づいて、PUSCHを順序付けることができる。いくつかの例では、PHYレイヤは、上位レイヤ(たとえば、MAC)に、スロットのために構築されることになるPUSCHの順序付きリストを送ることができる。MACレイヤは、リストの順序でPUSCHを構築し(たとえば、PUSCHにMACレイヤトランスポートブロック(TB)などのデータを割り当て)得る。PHYレイヤがリストを送るとき、PHYレイヤは、UCIを多重化することができるPUSCHがリストにおいて最初に順序付けられる、リストを順序付けし得る。いくつかの例では、PHYレイヤは、PUSCHのリストと、どのPUSCHが最初に構築されるべきであるかの指示とを送ることができる。したがって、UE PHYレイヤにおけるUCI多重化決定は、(たとえば、多重化ルールに加えて)送られることになるMACレイヤデータがあるか否かを考慮に入れ得る。
【0047】
PUCCHへのUCIフォールバックを回避することによって、および/またはPUSCH上のUCIの多重化を保証することによって、UEは、リソースおよび電力を節約することができる。UEは、データがあるか否かを知っているので、PHYは、アップリンクPUSCHスキップが決定される前に、PUSCH上でUCIを多重化するか否かを決定することができる。この場合、UEは、データPDU、たとえば、MACレイヤTBを構築し、データPDUの形成と並行して、PHYレイヤデータ/UCI多重化を実行することもできる。したがって、アップリンクPHYタイムラインが改善され得る。さらに、UCIを多重化することができるPUSCHにデータを割り当てることによって、1つまたは複数の例では、小さいMAC PDUがあるときでも、(たとえば、2kバイトよりも多い許可サイズをもつ)UCIを搬送する、複数のPUSCHが、(重複するPUCCHを伴う)スロットにおいて送信され得る。
【0048】
図4は、本開示のいくつかの態様による、ワイヤレス通信のための例示的な動作400を示すフロー図である。動作400は、たとえば、UE(たとえば、ワイヤレス通信ネットワーク100内のUE120aなど)によって実行され得る。動作400は、1つまたは複数のプロセッサ(たとえば、
図2のコントローラ/プロセッサ280)上で実行され動作されるソフトウェア構成要素として実装され得る。さらに、動作400におけるUEによる信号の送信および受信は、たとえば、1つまたは複数のアンテナ(たとえば、
図2のアンテナ252)によって可能にされ得る。いくつかの態様では、UEによる信号の送信および/または受信は、信号を取得および/または出力する1つまたは複数のプロセッサ(たとえば、コントローラ/プロセッサ280)のバスインターフェースを介して実装され得る。
【0049】
動作400は、405において、複数のPUSCH上の送信のためのアップリンク許可を受信することによって開始し得、複数のPUSCHが、異なるコンポーネントキャリア(CC)上に位置する。
【0050】
410において、UEは、UCIがスロットにおいて送信され得る、複数のPUSCHのうちの1つまたは複数のPUSCHを識別する。いくつかの例では、UEは、1つまたは複数の事前構成されたルールに少なくとも部分的に基づいて、UCIが送信され得る1つまたは複数のPUSCHを識別する。いくつかの例では、UEは、PUCCHの構成に少なくとも部分的に基づいて、UCIが送信され得る1つまたは複数のPUSCHを識別する。たとえば、PUCCHは、CCのためにUCIをスケジュールし得、UEは、CCのためにスケジュールされたPUSCHを、UCIを多重化することができるPUSCHとして決定し得る。
【0051】
415において、UEは、複数のPUSCHのうちの残りのPUSCHにPUSCHデータを割り当てる前に、UCIが送信され得る1つまたは複数の識別されたPUSCHに、PUSCHデータを割り当てる。いくつかの態様によれば、UEは、PUSCHデータがスロットにおいて送信されることになると決定する。たとえば、UEは、UCIが送られ得る、複数のPUSCHのうちの1つまたは複数のPUSCHを識別する前に、およびPUSCHデータを割り当てる前に、PUSCHデータがスロットにおいて送信されることになると決定する。いくつかの例では、UEは、PHYレイヤにおいて、MACレイヤから、PUSCHデータに対応する指示を受信する。いくつかの例では、UEは、PHYレイヤからMACレイヤへのクエリに応答して、PUSCHデータに対応する指示を受信する。いくつかの例では、UEは、PHYレイヤにおいて、MACレイヤから、PUSCHデータに対応する指示を周期的に受信する。いくつかの例では、UEは、新しいデータがMACレイヤにおいて受信されるとき、PHYレイヤにおいて、MACレイヤから、PUSCHデータに対応する指示を受信する。いくつかの例では、UEは、クエリに応答して、周期的に、および/または新しいデータがMACレイヤにおいて受信されるときの何らかの組合せにおいて、PUSCHデータに対応する指示を受信する。
【0052】
420において、UEは、割り当てられたPUSCH上でスロットにおいてUCIおよびPUSCHデータを送信する。いくつかの例では、UEは、PUSCHデータの周りでUCIをレートマッチングする。いくつかの例では、UEは、MACレイヤTBを生成し、並行して、UCIおよびPUSCHデータのPHYレイヤ多重化を実行する。いくつかの例では、UEは、PUSCHのセットのうちの少なくとも1つの空のPUSCHの送信をスキップする。
【0053】
図5は、本開示のいくつかの態様による、ワイヤレス通信のための例示的な動作500を示すフロー図である。動作500は、たとえば、UE(たとえば、ワイヤレス通信ネットワーク100内のUE120aなど)によって実行され得る。動作500は、1つまたは複数のプロセッサ(たとえば、
図2のコントローラ/プロセッサ280)上で実行され動作されるソフトウェア構成要素として実装され得る。さらに、動作500におけるUEによる信号の送信および受信は、たとえば、1つまたは複数のアンテナ(たとえば、
図2のアンテナ252)によって可能にされ得る。いくつかの態様では、UEによる信号の送信および/または受信は、信号を取得および/または出力する1つまたは複数のプロセッサ(たとえば、コントローラ/プロセッサ280)のバスインターフェースを介して実装され得る。
【0054】
動作500は、505において、スロットにおける複数のPUSCH上の送信のためのアップリンク許可を受信することによって開始し得、複数のPUSCHが、異なるCC上に位置する。
【0055】
510において、UEは、PUSCHデータがスロットにおいて送信されることになるか否かを決定する。いくつかの例では、UEは、PHYレイヤからMACレイヤへのクエリに応答して、PHYレイヤにおいて、MACレイヤから、指示を受信する。いくつかの例では、UEは、PHYレイヤにおいて、MACレイヤから、指示を周期的に受信する。いくつかの例では、UEは、新しいデータがMACレイヤにおいて受信されるとき、PHYレイヤにおいて、MACレイヤから、指示を受信する。いくつかの態様によれば、UEは、1つまたは複数のPUSCHが空であるとき(たとえば、スロットにおけるPUSCHにおいて送信されることになるデータがないとき)、1つまたは複数のPUCCH上でスロットにおいてUCIを送信するように決定する。いくつかの態様によれば、UEは、PUSCHデータがスロットにおいて送信されることになるとき、1つまたは複数のPUSCH上でスロットにおいてUCIを送信するように決定する。
【0056】
515において、UEは、複数のPUSCHのうちのPUSCHにPUSCHデータ(たとえば、任意のPUSCHデータ)を割り当てる前に、PUSCHデータがスロットにおいて送信されることになるか否かの決定に基づいて、1つまたは複数のPUCCH上、あるいは複数のPUSCHのうちの1つまたは複数のPUSCH上で、スロットにおいてUCIを送信するように決定する。
【0057】
いくつかの態様によれば、UEは、UCIが送信され得る、複数のPUSCHのうちの1つまたは複数のPUSCHを識別し、UEは、残りのPUSCHにPUSCHデータを割り当てる前に、UCIが送信され得るそれらのPUSCHにPUSCHデータを割り当てる。いくつかの例では、UEは、PHYレイヤによって、残りのPUSCH上でPUSCHデータを割り当てる前に、UCIが送られ得るPUSCH上でPUSCHデータを割り当てるように、MACレイヤに要求する。いくつかの例では、UEは、PHYレイヤによって、MACレイヤに、PUSCHのセットを構築するための順序付きリストを提供する。UCIが送信され得る、識別されたPUSCHは、順序付きリストにおいて、残りのPUSCHの前に順序付けられ得る。いくつかの例では、UEは、1つまたは複数の事前構成されたルールに少なくとも部分的に基づいて、UCIが送信され得るPUSCHを識別する。いくつかの例では、UEは、PUCCHの構成に少なくとも部分的に基づいて、UCIが送信され得るPUSCHを識別する。
【0058】
520において、UEは、決定された1つまたは複数のPUCCH上、あるいは決定された1つまたは複数のPUSCH上で、スロットにおいてUCIを送信する。いくつかの例では、UEは、1つまたは複数のPUCCHと1つまたは複数のPUSCHの両方の上で、スロットにおいてUCIを送る。いくつかの例では、UEは、PUSCHデータの周りでUCIをレートマッチングする。いくつかの例では、UEは、MACレイヤTBを生成し、並行して、UCIおよびPUSCHデータのPHYレイヤ多重化を実行する。いくつかの例では、UEは、少なくとも1つの空のPUSCHの送信をスキップする。
【0059】
上述のように、UEは、持続時間において(たとえば、スロットにおいてなど、送信時間間隔において)送信するためのデータ(たとえば、MACレイヤデータ)があるか否かを決定するために、チェック(たとえば、PHYレイヤチェック)を実行することができる。したがって、送信されることになるデータがない(たとえば、MACレイヤデータがないか、またはMACレイヤバッファが空である)場合、(たとえば、構成されたPUSCHスキップルールに従って)PUSCHのすべてがスキップされ得る。この場合、UEは、スロットにおいてPUCCH上でUCIを送るように決め得る。
図6Aは、本開示の1つまたは複数の態様による、PUSCHスキップがある場合のPUCCH上の例示的なUCI送信を示すコールフロー600Aである。
図6Bは、PUSCHスキップがある場合のPUCCH上の例示的なUCI送信を示す、より詳細なコールフロー600Bである。
【0060】
図6Aに示されているように、606において、UE602は、スロット(たとえば、または他の時間間隔)においてPUSCHをスケジュールする、サービングBS604(たとえば、gNB)からのアップリンク許可を(たとえば、PDCCHにおいて)受信する。PUSCHは、たとえば、
図3Bにおけるスロット301において示されたように、スロットにおいて異なるCC上でスケジュールされ得る。
【0061】
608において、UE602は、スロットにおいてUCI(たとえば、HARQ-ACK、SR、および/またはCSI)を送るように、サービングBS604によって構成/スケジュールされる。
図6Aでは、(608における)UCI構成/スケジューリングが、(606における)PUSCHをスケジュールするアップリンク許可の後で示されているが、UCIは、PUSCHをスケジュールするアップリンク許可の前またはそれと同時に構成/スケジュールされ得る。いくつかの例では、UCIは、動的にスケジュールされ得る。いくつかの例では、UE602は、UCIを送るためのタイムライン、トリガ、または周期を用いて構成され得る。
【0062】
610において、UEは、MACレイヤデータについてチェックする。たとえば、
図6Bに示されているように、PHYレイヤ605は、MACレイヤ603にクエリを行い得る。MACレイヤ603は、周期的に、またはクエリに応答して、MACレイヤ603がデータを有するか否かの指示を、PHYレイヤ605に送り得る。したがって、
図3A~
図3Eに示されたUCI多重化と比較して、UE602がPUSCH上でUCIを多重化するか否かを決定する前に、UE602は、送信されることになるデータがあるか否かを知り得る。この場合、
図6Aに示されているように、UE602が、送信されることになるデータがないと決定する場合、612において、UE602は、PUCCH上にUCIを置くこと、および(たとえば、構成されたPUSCHスキップルールに基づいて)空のPUSCHをスキップすることを行うように決定し得る。たとえば、(たとえば、スロットにおいてそれらに割り当てられたPUSCHデータを有していない)空のPUSCHに対して、UE602は、スロットにおいてそれらの空のPUSCHをスキップする(たとえば、ドロップするか、または送信しない)ように決定し得る。
【0063】
614において、UE602は、サービングBS604へ、PUCCHにおいてUCIを送信する。したがって、
図6A~
図6Dにおける図示の例では、UE602は、PUSCH上でUCIを送信するための準備をした後、PUCCH上でUCIを送信することへの(たとえば、PHYレイヤにおける)フォールバックを回避し、それによって、(たとえば、PUCCHを準備するためにフォールバックするために)追加の遅延を招くことを回避し、次に電力消費を節約し得る。
【0064】
図3A~
図3Eに関して上記で説明した例示的な例を再び参照すると、UE602は、たとえば、
図3Bにおいて示されたように、所与のスロットにおいて、8つのPUSCH(PUSCH1、PUSCH2、...、PUSCH8)とともに(たとえば、606において)スケジュールされ得る。しかしながら、UE602は、(たとえば、610における)MACレイヤチェックに基づいて、スロット301において送信されることになるデータがないと決定し、
図6Cに示されているように、PUCCH上にUCIを置くように決め得る。MACレイヤがいかなるデータも有していないので、UE602は、
図6Dに示されているように、構成されたPUSCHスキップに従って、残りのPUSCH607(たとえば、PUSCH1~8)をドロップするが、UE602は(たとえば、612において)、PUCCH上にUCIをすでに置いたので、UE602は、PUCCH上でUCIを送信することにフォールバックする必要がない。
【0065】
図7Aは、本開示の態様による、PUSCHスキップがある場合のPUSCH上の例示的なUCI多重化を示すコールフロー700Aの図である。
図7Bは、PUSCHスキップがある場合のPUSCH上の例示的なUCI多重化を示す、より詳細なコールフロー700Bである。
【0066】
図7Aに示されているように、706~710において、UE702は、アップリンク許可を受信し、サービングBS704によって、UCIを送るように構成/スケジュールされ、MACレイヤデータについてチェックし、これらは、
図6Aに示された606~610において上記で説明したように行われ得る。この場合、
図7Aに示されているように、UE702が、送信されることになるデータがある(たとえば、MACレイヤデータ、またはバッファが空ではない)ことを発見する場合、712において、UE702は、スロットにおける他のPUSCH上にデータを置く前に、UCIを多重化することができる1つまたは複数のPUSCHにデータを置く(たとえば、割り当てる)ように決定する。たとえば、
図7Bに示されているように、PHYレイヤ705は、712aにおいて、UCIが多重化され得るPUSCHを識別し、712bにおいて、UCIが多重化され得る、識別されたPUSCH上に、次いで他のPUSCH上にMAC PDUを置くように、MACレイヤ703に要求し得る。このようにして、UE702は、UCIが多重化され得るそれらのPUSCHがスキップされないようになることを保証し、それによって、UE702がスロットにおいてPUSCH上でUCIを多重化することを保証する。714において、UE702(たとえば、PHYレイヤ705)は、割り当てられたデータを伴うPUSCH上でUCIを多重化する。いくつかの例では、714における多重化は、構成されたUCI多重化ルールに基づき得る。したがって、716において、UE702は、多重化されたUCIおよび割り当てられたデータを伴うPUSCHを含む、スロットにおいて割り当てられたデータを伴うPUSCHを送信し、UE702は、いかなるデータも割り当てられなかったいかなる他のPUSCHもドロップし得る。
【0067】
スロット301においてスケジュールされたPUSCH1~8と、PUSCH2上で多重化され得るUCIとを伴う、
図3A~
図3Eに関する上記の例示的な例を再び参照する。この場合、UE702は、
図7Cに示されているように、PUSCH2がデータを割り当てられるようになり、したがって、スキップされないようになり、多重化されたUCIとともに送信され得るように、PUSCH2が上位レイヤ(たとえば、MACレイヤ703)に最初に送られることを保証する。したがって、この例示的な例では、
図7Dに示されているように、PUSCH2がUCIとともに送信され、残りのPUSCH707(たとえば、PUSCH1および3~8)がスキップされ得、PUCCHがドロップされるので、PUSCH2のみがUCIおよびデータとともに送られるようになる。これは、PUSCHとPUCCHの両方がスロットにおいて送信される場合よりも効率的であり得る。
【0068】
したがって、PUCCHまたはPUSCH上でUCIを準備する前に、およびPUSCHにデータを割り当てる前に、データチェックを実行することによって、UEは、PUCCHへのフォールバックを回避することができ、UCIがPUSCH上で多重化され得ることを保証することによって、リソース使用の効率を改善し得る。これらは次に、電力を節約し、リソースを節約し、PHYレイヤPUSCHおよびUCI多重化処理、ならびにMAC TB形成を並行して可能にし、アップリンクPHYタイムラインを改善し得る。
【0069】
図8は、PUSCHスキップがある場合のUCI多重化のための
図4~
図7Dに示された動作など、本明細書で開示する技法のための動作を実行するように構成された(たとえば、ミーンズプラスファンクション構成要素に対応する)様々な構成要素を含み得る、通信デバイス800を示す。通信デバイス800は、トランシーバ808に結合された処理システム802を含む。トランシーバ808は、本明細書で説明するような様々な信号など、通信デバイス800のための信号を、アンテナ810を介して送信および受信するように構成される。処理システム802は、通信デバイス800によって受信される、および/または送信されることになる信号を処理することを含む、通信デバイス800用の処理機能を実行するように構成され得る。
【0070】
処理システム802は、バス806を介してコンピュータ可読媒体/メモリ812に結合されたプロセッサ804を含む。いくつかの態様では、コンピュータ可読媒体/メモリ812は、プロセッサ804によって実行されたとき、
図4~
図7Dのうちの少なくとも1つに示された動作、またはPUSCHスキップがある場合のUCI多重化のために本明細書で説明する様々な技法を実行するための他の動作を、プロセッサ804に実行させる命令(たとえば、コンピュータ実行可能コード)を記憶するように構成される。いくつかの態様では、コンピュータ可読媒体/メモリ812は、本開示の1つまたは複数の態様による、複数のPUSCH上の送信のためのアップリンク許可を受信することであって、複数のPUSCHが、異なるCC上に位置する、ことを行うためのコードなど、受信するためのコード814を記憶し、本開示の1つまたは複数の態様による、PUSCHデータがスロットにおいて送信されることになるか否かを決定するためのコード、および/あるいは本開示の1つまたは複数の態様による、複数のPUSCHのうちのPUSCHにPUSCHデータを割り当てる前に、PUSCHデータがスロットにおいて送信されることになるか否かの決定に基づいて、1つもしくは複数のPUCCH上、または複数のPUSCHのうちの1つもしくは複数のPUSCH上で、スロットにおいてUCIを送信するように決定するためのコードなど、決定するためのコード816を記憶し、本開示の1つまたは複数の態様による、スロットにおいて、UCIが送信され得る、複数のPUSCHのうちの1つまたは複数のPUSCHを識別するコードなど、識別するためのコード818を記憶し、本開示の1つまたは複数の態様による、複数のPUSCHのうちの残りのPUSCHにPUSCHデータを割り当てる前に、UCIが送信され得る1つまたは複数の識別されたPUSCHに、PUSCHデータを割り当てるためのコードなど、割り当てるためのコード820を記憶し、かつ/または、本開示の1つまたは複数の態様による、割り当てられたPUSCH上でスロットにおいてUCIおよびPUSCHデータを送信するためのコード、ならびに/あるいは本開示の1つまたは複数の態様による、決定された1つもしくは複数のPUCCH上、または決定された1つもしくは複数のPUSCH上で、スロットにおいてUCIを送信するためのコードなど、送信するためのコード822を記憶する。いくつかの態様では、プロセッサ804は、コンピュータ可読媒体/メモリ812内に記憶されたコードを実装するように構成された回路を有する。プロセッサ804は、本開示の1つまたは複数の態様による、受信するための回路824、決定するための回路826、識別するための回路828、割り当てるための回路830、および/または送信するための回路832を含む。回路824~832は、プロセッサ804がコンピュータ可読媒体/メモリ812内のコードを実行するとき、コード814~822によって提供された動作を実施することができる。
【0071】
本明細書で説明する技法は、NR(たとえば、5G NR以降のリリース)、3GPPロングタームエボリューション(LTE)、LTE-アドバンスト(LTE-A)、符号分割多元接続(CDMA)、時分割多元接続(TDMA)、周波数分割多元接続(FDMA)、直交周波数分割多元接続(OFDMA)、シングルキャリア周波数分割多元接続(SC-FDMA)、時分割同期符号分割多元接続(TD-SCDMA)、および他のネットワークなど、様々なワイヤレス通信技術のために使用され得る。「ネットワーク」および「システム」という用語は、しばしば互換的に使用される。CDMAネットワークは、ユニバーサル地上波無線アクセス(UTRA)、cdma2000などの無線技術を実装し得る。UTRAは、広帯域CDMA(WCDMA(登録商標))、およびCDMAの他の変形態を含む。cdma2000は、IS-2000規格、IS-95規格、およびIS-856規格をカバーする。TDMAネットワークは、モバイル通信用グローバルシステム(GSM)などの無線技術を実装し得る。OFDMAネットワークは、NR(たとえば、5G RA)、発展型UTRA(E-UTRA)、ウルトラモバイルブロードバンド(UMB)、IEEE802.11(Wi-Fi)、IEEE802.16(WiMAX)、IEEE802.20、Flash-OFDMAなどの無線技術を実装し得る。UTRAおよびE-UTRAは、ユニバーサルモバイルテレコミュニケーションシステム(UMTS)の一部である。LTEおよびLTE-Aは、E-UTRAを使用するUMTSのリリースである。UTRA、E-UTRA、UMTS、LTE、LTE-AおよびGSMは、「第3世代パートナーシッププロジェクト」(3GPP)と称する団体からの文書に記載されている。cdma2000およびUMBは、「第3世代パートナーシッププロジェクト2」(3GPP2)と称する団体からの文書に記載されている。NRは、開発中の新しいワイヤレス通信技術である。
【0072】
本明細書で説明する技法は、上述のワイヤレスネットワークおよび無線技術、ならびに他のワイヤレスネットワークおよび無線技術のために使用され得る。明快のために、本明細書では、3G、4G、および/または5Gワイヤレス技術に一般的に関連する用語を使用して、態様について説明する場合があるが、本開示の態様は、他の世代ベースの通信システムにおいて適用され得る。
【0073】
3GPPでは、「セル」という用語は、この用語が使用される文脈に応じて、ノードB(NB)のカバレージエリアおよび/またはこのカバレージエリアにサービスするNBサブシステムを指すことができる。NRシステムでは、「セル」およびBS、次世代ノードB(gNBまたはgノードB)、アクセスポイント(AP)、分散ユニット(DU)、キャリア、または送信受信ポイント(TRP)という用語は、互換的に使用され得る。BSは、マクロセル、ピコセル、フェムトセル、および/または他のタイプのセルに通信カバレージを提供し得る。マクロセルは、比較的大きい地理的エリア(たとえば、半径数キロメートル)をカバーし得、サービスに加入しているUEによる無制限アクセスを可能にし得る。ピコセルは、比較的小さい地理的エリアをカバーし得、サービスに加入しているUEによる無制限アクセスを可能にし得る。フェムトセルは、比較的小さい地理的エリア(たとえば、自宅)をカバーし得、フェムトセルとの関連付けを有するUE(たとえば、限定加入者グループ(CSG)におけるUE、自宅におけるユーザのためのUEなど)による制限付きアクセスを可能にし得る。マクロセルのためのBSは、マクロBSと呼ばれることがある。ピコセルのためのBSは、ピコBSと呼ばれることがある。フェムトセルのためのBSは、フェムトBSまたはホームBSと呼ばれることがある。
【0074】
UEは、移動局、端末、アクセス端末、加入者ユニット、局、顧客構内機器(CPE)、セルラーフォン、スマートフォン、携帯情報端末(PDA)、ワイヤレスモデム、ワイヤレス通信デバイス、ハンドヘルドデバイス、ラップトップコンピュータ、コードレスフォン、ワイヤレスローカルループ(WLL)局、タブレットコンピュータ、カメラ、ゲームデバイス、ネットブック、スマートブック、ウルトラブック、アプライアンス、医療デバイスもしくは医療機器、生体センサー/生体デバイス、スマートウォッチ、スマート衣料、スマートグラス、スマートリストバンド、スマートジュエリー(たとえば、スマートリング、スマートブレスレットなど)などのウェアラブルデバイス、エンターテインメントデバイス(たとえば、音楽デバイス、ビデオデバイス、衛星ラジオなど)、車両構成要素もしくは車両センサー、スマートメーター/スマートセンサー、産業製造機器、全地球測位システムデバイス、またはワイヤレス媒体もしくはワイヤード媒体を介して通信するように構成される任意の他の好適なデバイスと呼ばれることもある。いくつかのUEは、マシンタイプ通信(MTC)デバイスまたは発展型MTC(eMTC)デバイスと見なされてよい。MTC UEおよびeMTC UEは、たとえば、BS、別のデバイス(たとえば、リモートデバイス)、または何らかの他のエンティティと通信し得る、ロボット、ドローン、リモートデバイス、センサー、メーター、モニタ、ロケーションタグなどを含む。ワイヤレスノードは、たとえば、ワイヤード通信リンクまたはワイヤレス通信リンクを介して、ネットワーク(たとえば、インターネットもしくはセルラーネットワークなどのワイドエリアネットワーク)のための、またはネットワークへの接続性を提供し得る。いくつかのUEは、モノのインターネット(IoT)デバイスと見なされてよく、IoTデバイスは、狭帯域IoT(NB-IoT)デバイスであってよい。
【0075】
いくつかのワイヤレスネットワーク(たとえば、LTE)は、ダウンリンク上で直交周波数分割多重(OFDM)を利用し、アップリンク上でシングルキャリア周波数分割多重(SC-FDM)を利用する。OFDMおよびSC-FDMは、システム帯域幅を、一般にトーン、ビンなどとも呼ばれる複数(K個)の直交サブキャリアに区分する。各サブキャリアは、データで変調され得る。一般に、変調シンボルは、周波数領域においてOFDMを用いて送られ、時間領域においてSC-FDMを用いて送られる。隣接するサブキャリア間の間隔は固定であってよく、サブキャリアの総数(K)はシステム帯域幅に依存し得る。たとえば、サブキャリアの間隔は、15kHzであってよく、最小リソース割振り(「リソースブロック」(RB)と呼ばれる)は、12個のサブキャリア(すなわち、180kHz)であり得る。したがって、公称の高速フーリエ変換(FFT)サイズは、1.25、2.5、5、10、または20メガヘルツ(MHz)のシステム帯域幅に対して、それぞれ、128、256、512、1024、または2048に等しくてよい。システム帯域幅はまた、サブバンドに区分され得る。たとえば、サブバンドは、1.08MHz(たとえば、6個のRB)をカバーしてよく、1.25、2.5、5、10、または20MHzのシステム帯域幅に対して、それぞれ、1、2、4、8、または16個のサブバンドがあり得る。LTEでは、基本の送信時間間隔(TTI)またはパケット持続時間は、1msのサブフレームである。
【0076】
NRは、アップリンクおよびダウンリンク上でCPを用いてOFDMを利用し、TDDを使用する半二重動作に対するサポートを含み得る。NRでは、サブフレームは、やはり1msであるが、基本のTTIは、スロットと呼ばれる。サブフレームは、サブキャリア間隔に応じて可変数のスロット(たとえば、1、2、4、8、16、...個のスロット)を含む。NR RBは、12個の連続する周波数サブキャリアである。NRは、15KHzのベースサブキャリア間隔をサポートしてもよく、ベースサブキャリア間隔に対して、たとえば、30kHz、60kHz、120kHz、240kHzなどの他のサブキャリア間隔が定義され得る。シンボルおよびスロットの長さは、サブキャリア間隔に対応する。CP長さも、サブキャリア間隔に依存する。ビームフォーミングがサポートされ得、ビーム方向が動的に構成され得る。プリコーディングを伴うMIMO送信も、サポートされ得る。いくつかの例では、DLにおけるMIMO構成は、最大8つのストリームおよびUEごとに最大2つのストリームのマルチレイヤDL送信とともに、最大8つの送信アンテナをサポートし得る。いくつかの例では、UEごとに最大2つのストリームを用いるマルチレイヤ送信がサポートされ得る。複数のセルのアグリゲーションが、最大8つのサービングセルを用いてサポートされてもよい。
【0077】
いくつかの例では、エアインターフェースへのアクセスが、スケジュールされ得る。スケジューリングエンティティ(たとえば、BS)は、そのサービスエリア内またはセル内の一部または全部のデバイスおよび機器の間の通信用のリソースを割り振る。スケジューリングエンティティは、1つまたは複数の従属エンティティ用のリソースをスケジュールすること、割り当てること、再構成すること、および解放することを担当し得る。すなわち、スケジュールされた通信に対して、従属エンティティは、スケジューリングエンティティによって割り振られたリソースを利用する。基地局は、スケジューリングエンティティとして機能し得る唯一のエンティティではない。いくつかの例では、UEが、スケジューリングエンティティとして機能してよく、1つまたは複数の従属エンティティ(たとえば、1つまたは複数の他のUE)用のリソースをスケジュールしてよく、他のUEは、そのUEによってスケジュールされたリソースをワイヤレス通信のために利用してよい。いくつかの例では、UEは、ピアツーピア(P2P)ネットワークの中で、かつ/またはメッシュネットワークの中で、スケジューリングエンティティとして機能してよい。メッシュネットワーク例では、UEは、スケジューリングエンティティと通信することに加えて、互いに直接通信し得る。
【0078】
いくつかの例では、2つ以上の従属エンティティ(たとえば、UE)は、サイドリンク信号を使用して互いと通信してもよい。そのようなサイドリンク通信の現実世界の適用例は、公共安全、近接サービス、UEからネットワークへの中継、車両間(V2V)通信、あらゆるモノのインターネット(IoE)通信、IoT通信、ミッションクリティカルメッシュ、および/または様々な他の好適な適用例を含み得る。一般に、サイドリンク信号は、スケジューリングエンティティがスケジューリングおよび/または制御の目的で利用される場合があるにもかかわらず、スケジューリングエンティティ(たとえば、UEまたはBS)を通じて通信を中継することなく、ある従属エンティティ(たとえば、UE1)から別の従属エンティティ(たとえば、UE2)に通信される信号を指すことがある。いくつかの例では、サイドリンク信号は、(通常は無認可スペクトルを使用するワイヤレスローカルエリアネットワークとは異なり)認可スペクトルを使用して通信され得る。
【0079】
本明細書で開示する方法は、本方法を達成するための1つまたは複数の動作またはアクションを備える。方法の動作および/またはアクションは、特許請求の範囲から逸脱することなく互いに入れ替えられ得る。言い換えれば、動作またはアクションの特定の順序が指定されない限り、特定の動作および/またはアクションの順序および/または使用は、特許請求の範囲から逸脱することなく修正され得る。
【0080】
本明細書で使用する項目の列挙「のうちの少なくとも1つ」を指す句は、単一のメンバーを含むそれらの項目の任意の組合せを指す。一例として、「a、b、またはcのうちの少なくとも1つ」は、a、b、c、a-b、a-c、b-c、およびa-b-c、ならびに複数の同じ要素を有する任意の組合せ(たとえば、a-a、a-a-a、a-a-b、a-a-c、a-b-b、a-c-c、b-b、b-b-b、b-b-c、c-c、およびc-c-c、または、a、b、およびcの任意の他の順序)を包含するものとする。
【0081】
本明細書で使用する「決定すること」という用語は、多種多様なアクションを包含する。たとえば、「決定すること」は、算出すること、計算すること、処理すること、導出すること、調査すること、ルックアップすること(たとえば、テーブル、データベースまたは別のデータ構造においてルックアップすること)、確認することなどを含み得る。また、「決定すること」は、受信すること(たとえば、情報を受信すること)、アクセスすること(たとえば、メモリ内のデータにアクセスすること)などを含み得る。また、「決定すること」は、解決すること、選択すること、選出すること、確立することなどを含み得る。
【0082】
例示的な態様
第1の態様では、ユーザ機器(UE)によるワイヤレス通信のための方法は、複数の物理アップリンク共有チャネル(PUSCH)上の送信のためのアップリンク許可を受信することであって、複数のPUSCHが、異なるコンポーネントキャリア(CC)上に位置する、こと、アップリンク制御情報(UCI)がスロットにおいて送信され得る、複数のPUSCHのうちの1つまたは複数のPUSCHを識別すること、複数のPUSCHのうちの残りのPUSCHにPUSCHデータを割り当てる前に、UCIが送信され得る1つまたは複数の識別されたPUSCHに、PUSCHデータを割り当てること、ならびに、割り当てられたPUSCH上でスロットにおいてUCIおよびPUSCHデータを送信することを含む。これによって、UEは、UCIがPUSCH上で多重化され得ることを保証することが可能になり得、PUCCHにフォールバックすることを回避することができる。
【0083】
第2の態様では、単独で、または第1の態様と組み合わせて、UEが、PUSCHデータがスロットにおいて送信されることになると決定し、決定することが、UCIが送られ得る、複数のPUSCHのうちの1つまたは複数のPUSCHを識別することの前に、およびPUSCHデータを割り当てることの前に実行される。これによって、UEは、データがない場合、PUCCH上にUCIを置くように決定すること、またはデータがある場合、UCIを多重化することができるPUSCH上に、データが最初に置かれるように要求することが可能になり得る。
【0084】
第3の態様では、単独で、または第1の態様および第2の態様のうちの1つもしくは複数と組み合わせて、PUSCHデータがスロットにおいて送信されることになると決定することが、物理(PHY)レイヤにおいて、媒体アクセス制御(MAC)レイヤから、PUSCHデータに対応する指示を受信することを含み、指示が、PHYレイヤからMACレイヤへのクエリに応答して、周期的に、新しいデータがMACレイヤにおいて受信されるとき、またはそれらの組合せで受信される。これによって、UEは、スロットにおいて送信されることになるPUSCHがあるか否かの決定を行うことが可能になり得る。
【0085】
第4の態様では、単独で、または第1~第3の態様のうちの1つもしくは複数と組み合わせて、割り当てられたPUSCH上でスロットにおいてUCIおよびPUSCHデータを送信することが、PUSCHデータの周りでUCIをレートマッチングすることを含む。レートマッチングは、送信のためのより低い有効コードレートを生じ得る。
【0086】
第5の態様では、単独で、または第1~第4の態様のうちの1つもしくは複数と組み合わせて、UEが、MACレイヤトランスポートブロック(TB)を生成し、並行して、UCIおよびPUSCHデータのPHYレイヤ多重化を実行する。これによって、処理タイムラインが改善され得る。
【0087】
第6の態様では、単独で、または第1~第5の態様のうちの1つもしくは複数と組み合わせて、UCIが送信され得る、複数のPUSCHのうちの1つまたは複数のPUSCHを識別することが、1つまたは複数の事前構成されたルールに少なくとも部分的に基づく。これによって、UCIを多重化することができるPUSCHを決定するための機構を、UEに提供することができる。
【0088】
第7の態様では、単独で、または第1~第6の態様のうちの1つもしくは複数と組み合わせて、UCIが送信され得る、複数のPUSCHのうちの1つまたは複数のPUSCHを識別することが、物理アップリンク制御チャネル(PUCCH)の構成に少なくとも部分的に基づく。これによって、UCIを多重化することができるPUSCHを決定するための機構を、UEに提供することができる。
【0089】
第8の態様では、単独で、または第1~第7の態様のうちの1つもしくは複数と組み合わせて、UEが、PUSCHのセットのうちの少なくとも1つの空のPUSCHの送信をスキップする。これによって、UEは、そのPUSCHのためにスロットにおいて送信されることになるPUSCHデータがないとき、リソースを無駄にしないことによって、より効率的に送信することが可能になり得る。
【0090】
第9の態様では、UEによるワイヤレス通信のための方法は、スロットにおける複数のPUSCH上の送信のためのアップリンク許可を受信することであって、複数のPUSCHが、異なるCC上に位置する、こと、PUSCHデータがスロットにおいて送信されることになるか否かを決定すること、複数のPUSCHのうちのPUSCHにPUSCHデータを割り当てる前に、PUSCHデータがスロットにおいて送信されることになるか否かの決定に基づいて、1つまたは複数のPUCCH上、あるいは複数のPUSCHのうちの1つまたは複数のPUSCH上で、スロットにおいてUCIを送信するように決定すること、および、決定された1つまたは複数のPUCCH上、あるいは決定された1つまたは複数のPUSCH上で、スロットにおいてUCIを送信することを含む。
【0091】
第10の態様では、単独で、または第9の態様と組み合わせて、PUSCHデータがスロットにおいて送信されることになるか否かを決定することが、PHYレイヤにおいて、MACレイヤから、PUSCHデータに対応する指示を受信することを含み、指示が、PHYレイヤからMACレイヤへのクエリに応答して、周期的に、新しいデータがMACレイヤにおいて受信されるとき、またはそれらの組合せで受信される。
【0092】
第11の態様では、単独で、または第9もしくは第10の態様と組み合わせて、1つまたは複数のPUCCH上、あるいは1つまたは複数のPUSCH上で、スロットにおいてUCIを送信するように決定することが、1つまたは複数のPUSCHが空であるとき、1つまたは複数のPUCCH上でスロットにおいてUCIを送信するように決定することを含む。
【0093】
第12の態様では、単独で、または第9~第11の態様のうちの1つもしくは複数と組み合わせて、1つまたは複数のPUCCH上、あるいは1つまたは複数のPUSCH上で、スロットにおいてUCIを送信するように決定することが、PUSCHデータがスロットにおいて送信されることになるとき、1つまたは複数のPUSCH上でスロットにおいてUCIを送信するように決定することを含む。
【0094】
第13の態様では、単独で、または第9~第12の態様のうちの1つもしくは複数と組み合わせて、UEが、1つまたは複数のPUSCHを、UCIが送信され得る、複数のPUSCHのうちのPUSCHとして識別し、複数のPUSCHのうちの残りのPUSCHにPUSCHデータを割り当てる前に、UCIが送信され得る1つまたは複数のPUSCHに、PUSCHデータを割り当てる。
【0095】
第14の態様では、単独で、または第9~第13の態様のうちの1つもしくは複数と組み合わせて、UEが、PHYレイヤによって、複数のPUSCHのうちの残りのPUSCH上でPUSCHデータを割り当てる前に、UCIが送られ得る1つまたは複数のPUSCH上でPUSCHデータを割り当てるように、MACレイヤに要求するか、あるいは、PHYレイヤによって、MACレイヤに、PUSCHのセットを構築するための順序付きリストを提供し、識別された1つまたは複数のPUSCHが、順序付きリストにおいて、複数のPUSCHのうちの残りのPUSCHの前に順序付けられる。
【0096】
第15の態様では、単独で、または第9~第14の態様のうちの1つもしくは複数と組み合わせて、UCIが送信され得る1つまたは複数のPUSCHを識別することが、1つまたは複数の事前構成されたルールに少なくとも部分的に基づく。
【0097】
第16の態様では、単独で、または第9~第15の態様のうちの1つもしくは複数と組み合わせて、UCIが送信され得る1つまたは複数のPUSCHを識別することが、PUCCHの構成に少なくとも部分的に基づく。
【0098】
第17の態様では、単独で、または第9~第16の態様のうちの1つもしくは複数と組み合わせて、1つまたは複数のPUSCH上でスロットにおいてUCIを送信することが、PUSCHデータの周りでUCIをレートマッチングすることを含む。
【0099】
第18の態様では、単独で、または第9~第17の態様のうちの1つもしくは複数と組み合わせて、UEが、MACレイヤTBを生成し、並行して、UCIおよびPUSCHデータのPHYレイヤ多重化を実行する。
【0100】
第19の態様では、単独で、または第9~第18の態様のうちの1つもしくは複数と組み合わせて、UEが、複数のPUSCHのうちの少なくとも1つの空のPUSCHの送信をスキップする。
【0101】
前述の説明は、いかなる当業者も本明細書で説明する様々な態様を実践することが可能になるように提供される。これらの態様の様々な修正は、当業者に容易に明らかになり、本明細書で定義される一般原理は、他の態様に適用され得る。したがって、特許請求の範囲は、本明細書に示す態様に限定されるものではなく、特許請求の範囲の文言と一致する全範囲が与えられるべきであり、単数形の要素への言及は、そのように明記されていない限り、「唯一無二の」ではなく、むしろ「1つまたは複数の」を意味するものとする。別段に明記されていない限り、「いくつかの」という用語は1つまたは複数を指す。当業者に知られているか、または後で知られることになる、本開示全体にわたって説明する様々な態様の要素のすべての構造的および機能的等価物は、参照により本明細書に明確に組み込まれ、特許請求の範囲によって包含されるものとする。その上、本明細書で開示するものはいずれも、そのような開示が特許請求の範囲において明示的に記載されているかどうかにかかわらず、公に供されるものではない。クレーム要素は、要素が「ための手段」という句を使用して明確に記載されていない限り、米国特許法第112条(f)の規定の下で解釈されるべきではない。
【0102】
上記で説明した方法の様々な動作は、対応する機能を実行することが可能な任意の好適な手段によって実行され得る。手段は、限定はしないが、回路、特定用途向け集積回路(ASIC)、またはプロセッサを含む、様々なハードウェアおよび/またはソフトウェア構成要素および/またはモジュールを含み得る。一般に、図に示される動作がある場合、それらの動作は、同様の番号を付された対応する相対物のミーンズプラスファンクション構成要素を有し得る。
【0103】
本開示に関して説明する様々な例示的な論理ブロック、モジュールおよび回路は、汎用プロセッサ、デジタル信号プロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)もしくは他のプログラマブル論理デバイス(PLD)、個別ゲートもしくはトランジスタ論理、個別ハードウェア構成要素、または本明細書で説明する機能を実行するように設計されたそれらの任意の組合せを用いて実装または実行され得る。汎用プロセッサは、マイクロプロセッサであり得るが、代替として、プロセッサは、任意の市販のプロセッサ、コントローラ、マイクロコントローラまたは状態機械であり得る。プロセッサはまた、コンピューティングデバイスの組合せ、たとえば、DSPとマイクロプロセッサとの組合せ、複数のマイクロプロセッサ、DSPコアと連携した1つもしくは複数のマイクロプロセッサ、または任意の他のそのような構成として実装され得る。
【0104】
ハードウェアにおいて実装される場合、例示的なハードウェア構成は、ワイヤレスノード内の処理システムを備え得る。処理システムは、バスアーキテクチャを用いて実装され得る。バスは、処理システムの特定の適用例および全体的な設計制約に応じて、任意の数の相互接続バスおよびブリッジを含み得る。バスは、プロセッサ、機械可読媒体、およびバスインターフェースを含む様々な回路を互いにリンクさせ得る。バスインターフェースは、バスを介して、とりわけ、処理システムにネットワークアダプタを接続するために使用され得る。ネットワークアダプタは、PHYレイヤの信号処理機能を実装するために使用され得る。ユーザ端末(
図8参照)の場合、ユーザインターフェース(たとえば、キーパッド、ディスプレイ、マウス、ジョイスティックなど)もバスに接続され得る。バスは、タイミングソース、周辺機器、電圧調節器、電力管理回路などの様々な他の回路もリンクさせる場合があるが、これらの回路は当技術分野でよく知られており、したがって、これ以上は説明しない。プロセッサは、1つまたは複数の汎用プロセッサおよび/または専用プロセッサを用いて実装され得る。例には、マイクロプロセッサ、マイクロコントローラ、DSPプロセッサ、およびソフトウェアを実行することができる他の回路がある。当業者は、特定の適用例およびシステム全体に課せられた全体的な設計制約に応じて、処理システムについて説明した機能を最良に実装する方法を認識されよう。
【0105】
ソフトウェアにおいて実装される場合、機能は、1つまたは複数の命令またはコードとしてコンピュータ可読媒体上に記憶されるか、またはコンピュータ可読媒体を介して送信され得る。ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、または他の名称で呼ばれるかどうかにかかわらず、命令、データ、またはそれらの任意の組合せを意味するように広く解釈されるべきである。コンピュータ可読媒体は、ある場所から別の場所へのコンピュータプログラムの転送を容易にする任意の媒体を含む、コンピュータ記憶媒体と通信媒体の両方を含む。プロセッサは、バスを管理すること、および機械可読記憶媒体上に記憶されたソフトウェアモジュールの実行を含む一般的な処理を担当し得る。コンピュータ可読記憶媒体は、プロセッサが記憶媒体から情報を読み取ることができ、かつ記憶媒体に情報を書き込むことができるように、プロセッサに結合され得る。代替として、記憶媒体は、プロセッサと一体であり得る。例として、機械可読媒体は、伝送線路、データによって変調された搬送波、および/またはワイヤレスノードとは別個のその上に記憶された命令を有するコンピュータ可読記憶媒体を含んでよく、それらのすべてが、バスインターフェースを通じてプロセッサによってアクセスされ得る。代替的に、または追加として、機械可読媒体またはその任意の部分は、キャッシュおよび/または汎用レジスタファイルと同様にプロセッサに統合され得る。機械可読記憶媒体の例は、例として、RAM(ランダムアクセスメモリ)、フラッシュメモリ、ROM(読取り専用メモリ)、PROM(プログラマブル読取り専用メモリ)、EPROM(消去可能プログラマブル読取り専用メモリ)、EEPROM(電気的消去可能プログラマブル読取り専用メモリ)、レジスタ、磁気ディスク、光ディスク、ハードドライブ、もしくは任意の他の適切な記憶媒体、またはそれらの任意の組合せを含み得る。機械可読媒体は、コンピュータプログラム製品の中で具現され得る。
【0106】
ソフトウェアモジュールは、単一の命令または多くの命令を備え得、いくつかの異なるコードセグメントにわたって、異なるプログラム間で、また複数の記憶媒体にわたって、分散され得る。コンピュータ可読媒体は、いくつかのソフトウェアモジュールを備え得る。ソフトウェアモジュールは、プロセッサなどの装置によって実行されると、処理システムに様々な機能を実行させる命令を含む。ソフトウェアモジュールは、送信モジュールと受信モジュールとを含み得る。各ソフトウェアモジュールは、単一の記憶デバイス内に存在し、または複数の記憶デバイスにわたって分散され得る。例として、ソフトウェアモジュールは、トリガイベントが発生したとき、ハードドライブからRAMにロードされ得る。ソフトウェアモジュールの実行の間、プロセッサは、アクセス速度を高めるために、命令のうちのいくつかをキャッシュにロードし得る。1つまたは複数のキャッシュラインが、次いで、プロセッサによって実行されるように汎用レジスタファイルの中にロードされ得る。以下でソフトウェアモジュールの機能に言及するとき、そのソフトウェアモジュールからの命令を実行したとき、そのような機能がプロセッサによって実施されることが理解されよう。
【0107】
また、いかなる接続もコンピュータ可読媒体と適切に呼ばれる。たとえば、ソフトウェアが、同軸ケーブル、光ファイバーケーブル、ツイストペア、デジタル加入者回線(DSL)、または赤外線(IR)、無線、およびマイクロ波などのワイヤレス技術を使用して、ウェブサイト、サーバ、または他のリモートソースから送信される場合、同軸ケーブル、光ファイバーケーブル、ツイストペア、DSL、または赤外線、無線、およびマイクロ波などのワイヤレス技術は、媒体の定義に含まれる。本明細書で使用するディスク(disk)およびディスク(disc)は、コンパクトディスク(disc)(CD)、レーザーディスク(登録商標)(disc)、光ディスク(disc)、デジタル多用途ディスク(disc)(DVD)、フロッピーディスク(disk)、およびBlu-ray(登録商標)ディスク(disc)を含み、ディスク(disk)は、通常、データを磁気的に再生し、ディスク(disc)は、レーザーを用いてデータを光学的に再生する。したがって、いくつかの態様では、コンピュータ可読媒体は、非一時的コンピュータ可読媒体(たとえば、有形媒体)を備え得る。加えて、他の態様の場合、コンピュータ可読媒体は、一時的コンピュータ可読媒体(たとえば、信号)を備え得る。上記の組合せもまた、コンピュータ可読媒体の範囲内に含まれるべきである。
【0108】
したがって、いくつかの態様は、本明細書で提示した動作を実行するためのコンピュータプログラム製品を備え得る。たとえば、そのようなコンピュータプログラム製品は、本明細書で説明する動作を実行するように1つまたは複数のプロセッサによって実行可能である命令、たとえば、本明細書で説明し、
図4~
図7Dのうちの少なくとも1つにおいて示した動作を実行するための命令がその上に記憶された(および/または符号化された)コンピュータ可読媒体を備え得る。
【0109】
さらに、本明細書で説明する方法および技法を実行するためのモジュールおよび/または他の適切な手段は、適用可能な場合、ユーザ端末および/または基地局によってダウンロードおよび/または他の方法で取得され得ることを諒解されたい。たとえば、そのようなデバイスは、本明細書で説明する方法を実行するための手段の転送を容易にするためにサーバに結合され得る。代替的に、本明細書で説明する様々な方法は、ユーザ端末および/または基地局が記憶手段(たとえば、RAM、ROM、コンパクトディスク(CD)またはフロッピーディスクなどの物理記憶媒体など)をデバイスに結合または提供すると様々な方法を取得することができるように、記憶手段を介して提供され得る。その上、本明細書で説明した方法および技法をデバイスに提供するための任意の他の好適な技法が利用され得る。
【0110】
特許請求の範囲が、上記で示した厳密な構成および構成要素に限定されないことを理解されたい。特許請求の範囲から逸脱することなく、上記で説明した方法および装置の構成、動作、および詳細において、様々な修正、変更、および変形が加えられてよい。
【符号の説明】
【0111】
100 ワイヤレス通信ネットワーク
102a、102b、102c マクロセル
102x ピコセル
102y、102z フェムトセル
110 BS、モバイルBS
110a~110z 基地局(BS)
110a、110b、110c、110x、110y、110z BS
110r 中継局
120、120a、120r、120x、120y、302、602、702 UE
120a~120y ユーザ機器(UE)
122、281 UCI多重化マネージャ
130 ネットワークコントローラ
212、262 データソース
220 送信プロセッサ、プロセッサ
230 送信(TX)多入力多出力(MIMO)プロセッサ
232 変調器、復調器
232a~232t 変調器(MOD)、変調器
234、234a~234t、252、252a~252r アンテナ
236、256 MIMO検出器
238、258 受信プロセッサ
239、260 データシンク
240、280 コントローラ/プロセッサ
242、282 メモリ
244 スケジューラ
254 復調器
254a~254r 復調器(DEMOD)、復調器、変調器
264 送信プロセッサ
266 TX MIMOプロセッサ
301 スロット
303、603、703 MACレイヤ
304 サービングgNB
305、605、705 PHYレイヤ
307、607、707 残りのPUSCH
309 PUCCH
604、704 サービングBS
800 通信デバイス
802 処理システム
804 プロセッサ
806 バス
808 トランシーバ
810 アンテナ
812 コンピュータ可読媒体/メモリ
814 受信するためのコード、コード
816 決定するためのコード、コード
818 識別するためのコード、コード
820 割り当てるためのコード、コード
822 送信するためのコード、コード
824 受信するための回路、回路
826 決定するための回路、回路
828 識別するための回路、回路
830 割り当てるための回路、回路
832 送信するための回路、回路