IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社村田製作所の特許一覧

<>
  • 特許-キャパシタ 図1
  • 特許-キャパシタ 図2
  • 特許-キャパシタ 図3
  • 特許-キャパシタ 図4
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-02-19
(45)【発行日】2024-02-28
(54)【発明の名称】キャパシタ
(51)【国際特許分類】
   H01G 4/33 20060101AFI20240220BHJP
   H01G 4/30 20060101ALI20240220BHJP
   H01G 4/224 20060101ALI20240220BHJP
【FI】
H01G4/33 102
H01G4/30 541
H01G4/224
【請求項の数】 5
(21)【出願番号】P 2019090619
(22)【出願日】2019-05-13
(65)【公開番号】P2020188091
(43)【公開日】2020-11-19
【審査請求日】2022-03-09
(73)【特許権者】
【識別番号】000006231
【氏名又は名称】株式会社村田製作所
(74)【代理人】
【識別番号】100145403
【弁理士】
【氏名又は名称】山尾 憲人
(74)【代理人】
【識別番号】100132252
【弁理士】
【氏名又は名称】吉田 環
(72)【発明者】
【氏名】原田 真臣
(72)【発明者】
【氏名】香川 武史
(72)【発明者】
【氏名】松原 弘
【審査官】田中 晃洋
(56)【参考文献】
【文献】特開2004-146632(JP,A)
【文献】特開2015-216246(JP,A)
【文献】国際公開第2019/021827(WO,A1)
【文献】特開平11-054706(JP,A)
【文献】国際公開第2018/212119(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01G 4/33
H01G 4/30
H01G 4/224
(57)【特許請求の範囲】
【請求項1】
基板と、
前記基板上に設けられた下部電極と、
前記下部電極上に設けられた誘電体膜と、
前記誘電体膜上に設けられた上部電極と、
前記下部電極に接続された第1端子電極と、
前記上部電極に接続された第2端子電極と
を有し、前記下部電極と誘電体膜と上部電極がキャパシタ構造を構成するキャパシタであって、
さらに、前記下部電極の端面の近傍に全周にわたってシールド金属を有し、
前記上部電極は、前記下部電極の上面方向にのみ存在し、
前記シールド金属の断面形状は、略三角形である、
ことを特徴とする、キャパシタ。
【請求項2】
前記シールド金属は、前記下部電極の端面の周囲に設けられている、請求項1に記載のキャパシタ。
【請求項3】
前記シールド金属は、磁性体金属により形成されている、請求項1または2に記載のキャパシタ。
【請求項4】
前記下部電極は、逆テーパー形状を有する、請求項1~3のいずれか1項に記載のキャパシタ。
【請求項5】
前記下部電極と前記シールド金属の材料は、同じ材料である、請求項1~4のいずれか1項に記載のキャパシタ。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、キャパシタに関する。
【背景技術】
【0002】
半導体集積回路に用いられる代表的なキャパシタ素子として、例えばMIM(Metal Insulator Metal)キャパシタがよく知られている。MIMキャパシタは、絶縁体を下部電極と上部電極とで挟んだ平行平板型の構造を有するキャパシタである。
【0003】
例えば、特許文献1には、下地電極上に誘電体膜および上部電極層を順次積層した積層体と、これらを覆う保護層と、該下地電極および上部電極層からそれぞれ引き出された端子電極とを有する薄膜キャパシタが開示されている。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2015-216246号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
上記した特許文献1に記載のようなキャパシタは、キャパシタ構造の横方向に金属がないので、外部からの電磁場の侵入がある場合に電極に渦電流が発生するなどして、充放電時の電流経路が乱される。その結果、電流経路が長くなり、キャパシタのQ値が低下する。特に、最も面積が大きな下部電極において、外部電磁場の影響が大きくなる。
【0006】
従って、本開示は、外部からの電磁場の影響を受けにくい、キャパシタを提供することを目的とする。
【課題を解決するための手段】
【0007】
本開示は以下の態様を含む。
[1] 基板と、
前記基板上に設けられた下部電極と、
前記下部電極上に設けられた誘電体膜と、
前記誘電体膜上に設けられた上部電極と、
前記下部電極に接続された第1端子電極と、
前記上部電極に接続された第2端子電極と
を有し、前記下部電極と誘電体膜と上部電極がキャパシタ構造を構成するキャパシタであって、
さらに、前記下部電極の端面の近傍にシールド金属を有することを特徴とする、キャパシタ。
[2] 前記シールド金属は、前記下部電極の端面の周囲に設けられている、上記[1]に記載のキャパシタ。
[3] 前記シールド金属は、磁性体金属により形成されている、上記[1]または[2]に記載のキャパシタ。
[4] 前記下部電極は、逆テーパー形状を有する、上記[1]~[3]のいずれか1つに記載のキャパシタ。
[5] 前記下部電極と前記シールド金属の材料は、同じ材料である、上記[1]~[4]のいずれか1つに記載のキャパシタ。
[6] 前記シールド金属の断面形状は、略三角形である、上記[1]~[5]のいずれか1つに記載のキャパシタ。
【発明の効果】
【0008】
本開示によれば、外部からの電磁場の影響を受けにくいキャパシタを提供することができる。
【図面の簡単な説明】
【0009】
図1図1(a)は、本開示の第1実施形態であるキャパシタ1aの断面図であり、図1(b)は、平面図である。
図2図2(a)~(h)は、本開示の第1実施形態であるキャパシタ1aの製造方法を説明するための断面図である。
図3図3は、本開示の第1実施形態であるキャパシタ1bの断面図である。
図4図4(a)~(h)は、本開示の第2実施形態であるキャパシタ1bの製造方法を説明するための断面図である。
【発明を実施するための形態】
【0010】
以下、本開示のキャパシタについて、図面を参照しながら詳細に説明する。但し、本開示のキャパシタおよび各構成要素の形状および配置等は、図示する例に限定されない。
【0011】
(第1実施形態)
第1実施形態のキャパシタ1aの断面図を図1(a)に、平面図を図1(b)に示す。
【0012】
図1(a)および図1(b)に示されるように、本実施形態のキャパシタ1aは、概略的には、基板2と、該基板2上に設けられた絶縁膜3と、該絶縁膜3上に設けられた下部電極4と、該下部電極4上に設けられた誘電体膜5と、該誘電体膜5上に設けられた上部電極6と、該誘電体膜5および該上部電極6上に設けられた保護層8と、該保護層8上に設けられた第1端子電極11aおよび第2端子電極11bと、上記下部電極4の周囲に設けられたシールド金属7を有する。かかるキャパシタ1aは、保護層8および誘電体膜5を貫通する貫通口15a、および保護層8を貫通する貫通口15bを有している。第1端子電極11aは、上記貫通口15aを通り、下部電極4に接続されている。第2端子電極11bは、上記貫通口15bを通り、上部電極6に接続されている。キャパシタ1aにおいて、下部電極4と誘電体膜5と上部電極6とは、この順に積層され、MIMキャパシタ構造を構成しており、下部電極4と上部電極6の間に電圧を印加することにより、誘電体膜5に電荷を蓄積することができる。本開示のキャパシタは、下部電極4の周囲にシールド金属7が存在するので、外部からの電磁場の影響により下部電極4に流れる電流が乱され、Q値が低下することを抑制することができる。
【0013】
上記のようなキャパシタ1aは、例えば以下のようにして製造される。
【0014】
まず、基板2を準備する。
【0015】
上記基板2は、特に限定されないが、好ましくは、シリコン基板またはガリウム砒素基板等の半導体基板、ガラスまたはアルミナ等の絶縁性基板であり得る。
【0016】
上記基板2の長辺の長さは、好ましくは200μm以上600μm以下、より好ましくは300μm以上500μm以下であり、短辺の長さは、好ましくは100μm以上300μm以下、より好ましくは150μm以上250μm以下である。
【0017】
上記基板2の厚さは、特に限定されないが、好ましくは50μm以上300μm以下、より好ましくは80μm以上200μm以下である。基板の厚さを50μm以上にすることにより、基板の機械的強度を高くすることができ、キャパシタの製造において、バックグラインドまたはダイシング時に、基板に割れまたは欠けが生じにくくなる。基板の厚さを300μm以下とすることにより、キャパシタの縦、横の長さよりも薄くすることが可能になり、キャパシタの実装時のハンドリングが容易になる。
【0018】
次に、上記基板2上に基板全体に絶縁膜3を形成する(図2(a))。
【0019】
本実施形態において、上記絶縁膜3は、上記基板2上に基板全体を覆うように設けられている。
【0020】
上記絶縁膜3の形成は、例えば、スパッタリング、PVD(物理蒸着)法、CVD(化学的気相堆積)法などで行うことができる。
【0021】
上記絶縁膜3の厚さは、基板2と絶縁膜の上に形成される層が絶縁できる限り特に限定されず、例えば、0.05μm以上、好ましくは0.10μm以上である。また、絶縁膜3の厚さは、キャパシタ1aの低背化の観点から、好ましくは10μm以下、より好ましくは1.0μm以下、さらに好ましくは0.50μm以下である。
【0022】
上記絶縁膜3を構成する材料は、特に限定されないが、好ましくは、SiO、Si、Al、HfO、Ta、ZrO等が挙げられ、SiO、SiまたはAlがより好ましい。
【0023】
次に、上記絶縁膜3上に、下部電極4のパターンを形成する(図2(a))。
【0024】
本実施形態において、上記下部電極4は、上記絶縁膜3上に、絶縁膜3の外縁部以外の領域に設けられている。換言すれば、平面視した場合に、下部電極4は、基板2および絶縁膜3が占める領域内に設けられている。下部電極を絶縁膜および基板の端まで形成しないことにより、キャパシタ1aの端面に下部電極4が露出し、他の部品などとショートすることを防止することができる。
【0025】
上記下部電極4のパターン形成の方法は、例えばリフトオフ法、めっき法、フォトリソグラフィー、エッチング等により行うことができる。例えば、パターニング形成は、セミアディティブ工法を使用する。セミアディティブ工法では、スパッタリングまたは無電解めっきによりシード層を成膜し、フォトリソグラフィー技術によりシード層の一部を開口するレジストパターンを形成し、無電解めっきにより開口部に下部電極材料を形成し、レジストを剥離し、最後に下部電極が形成されていない部位のシード層を除去する。
【0026】
上記下部電極4の厚さは、特に限定されないが、0.5μm以上10μm以下が好ましく、1μm以上6μm以下がさらに好ましい。下部電極の厚さを0.5μm以上にすることにより、電極の抵抗を低減することができ、キャパシタの高周波特性への影響を抑制することができる。下部電極の厚さを10μm以下とすることにより、電極の応力による素子の機械的強度の低下を抑制することができ、キャパシタの変形を抑制することができる。
【0027】
上記下部電極4を構成する材料は、特に材料に限定されないが、好ましくは、Cu、Ag、Au、Al、Ni、Cr、もしくはTiまたはこれらの合金、あるいはこれらを含む導電体等が挙げられ、Cu、Ag、AuまたはAlがより好ましい。
【0028】
次に、上記下部電極4上に、下部誘電体膜5aを形成する(図2(b))。
【0029】
本実施形態において、上記下部誘電体膜5aは、上記下部電極4を覆うように基板上面全体に形成される。尚、下部誘電体膜5aは、後に形成される上部誘電体膜5bと共に誘電体膜5を構成する。誘電体膜5は、後の貫通口形成工程において、貫通口が形成される。下部電極を誘電体膜で覆うことにより、下部電極がキャパシタの端面に露出することを防止し、意図しない部材と電気的に接触することを防止することができる。
【0030】
上記下部誘電体膜5aの形成は、例えば、スパッタリング、PVD法、CVD法などで行うことができる。
【0031】
上記下部誘電体膜5aの厚さは、特に限定はないが、好ましくは20nm以上10μm以下、好ましくは50nm以上10μm以下、さらに好ましくは0.1μm以上3.0μm以下である。
【0032】
上記下部誘電体膜5aを構成する材料は、特に限定されないが、好ましくは、SiO、Si、Al、HfO、Ta、ZrO等の酸化物または窒化物が挙げられる。
【0033】
次に、上記下部電極4の周囲にシールド金属7を形成する。
【0034】
本実施形態における上記シールド金属7の形成は2工程を含み得る。最初に下部誘電体膜5a上の全体に金属層13を形成し(図2(c))、次いで、金属層13をエッチングなどにより処理することによりシールド金属7を形成することができる(図2(d))。
【0035】
上記金属層13の形成の方法は、例えば、上記下部電極4と同様であり、例えばリフトオフ法、めっき法、フォトリソグラフィー、エッチング等が上げられる。
【0036】
上記金属層13を構成する材料は、特に限定されないが、好ましくは、Ni、Co、Cu、Ag、Au、Al、Pt、Cr、もしくはTiやそれらの合金が挙げられる。
【0037】
上記金属層13の厚さは、特に限定されないが、0.5μm以上10μm以下が好ましく、1μm以上6μm以下がさらに好ましい。一の態様において、金属層13の厚さは、下部電極4の厚さの0.9倍以上1.1倍以下の範囲、好ましくは実質的に同じ厚さであることが好ましい。金属層13の厚さを下部電極4の厚さの0.9倍以上1.1倍以下の範囲とすることにより、形成されるシールド金属7の厚さを下部電極4に近い厚さとすることができ、効果的にシールド効果を得ることができる。
【0038】
上記金属層13を処理してシールド金属7を得る方法は、特に限定されないが、エッチング等が挙げられ、特にドライエッチングが好ましい。
【0039】
上記金属層13をドライエッチングすることにより、金属層13のうち、平坦な部分に形成された金属層が早く除去され、下部電極4の周囲の段差部分に形成された金属層13が残り、これがシールド金属7となる。
【0040】
上記シールド金属7の厚さは、特に限定されないが、0.5μm以上10μm以下が好ましく、1μm以上6μm以下がさらに好ましい。一の態様において、シールド金属7の厚さは、下部電極4の厚さの0.9倍以上1.1倍以下の範囲、好ましくは実質的に同じ厚さであることが好ましい。シールド金属7の厚さを下部電極4の厚さの0.9倍以上1.1倍以下の範囲とすることにより、効果的にシールド効果を得ることができる。
【0041】
尚、本実施形態において、シールド金属7は、下部電極4の側面(即ち、厚さ方向に沿った4つの面)に近接して下部電極4の周囲全体を囲むように設けられるが、本開示のキャパシタにおいて、シールド金属7は、下部電極4への外部の電磁場の影響を低減できるものであれば、その位置、形状、大きさなどは限定されない。
【0042】
例えば、シールド金属7は、下部電極4の1つの側面近傍のみ、あるいは2つの側面近傍のみに存在してもよい。また、シールド金属7は、下部電極4の各側面近傍の一部のみに存在してもよい。
【0043】
次に、上記下部誘電体膜5aおよびシールド金属7上に上部誘電体膜5bを形成する(図2(e))。
【0044】
上記上部誘電体膜5bは、上記下部誘電体膜5aと共に、誘電体膜5を構成する。
【0045】
上記上部誘電体膜5bの形成は、例えば、スパッタリング、PVD法、CVD法などで行うことができる。
【0046】
上記上部誘電体膜5bの厚さは、特に限定はないが、好ましくは20nm以上10μm以下、好ましくは50nm以上10μm以下、さらに好ましくは0.1μm以上3.0μm以下である。
【0047】
上記上部誘電体膜5bを構成する材料は、特に限定されないが、好ましくは、SiO、Si、Al、HfO、Ta、ZrO等の酸化物または窒化物が挙げられ、好ましくは下部誘電体膜5aを構成する材料と同じである。
【0048】
上記下部誘電体膜5aおよび上記上部誘電体膜5bから成る誘電体膜5の厚さは、特に限定はないが、好ましくは50nm以上10μm以下、より好ましくは0.1μm以上3.0μm以下である。誘電体膜の厚さを50nm以上にすることにより、絶縁耐性を高めることができる。誘電体膜の厚さを10μm以下とすることにより、誘電体膜の応力による素子の機械的強度の低下を抑制することができ、キャパシタの変形を抑制することができる。
【0049】
次に、上記上部誘電体膜5b上に、上部電極6のパターンを形成する(図2(f))。かかる上部電極6は、上記下部電極4と誘電体膜5を介して少なくとも一部、好ましくは全部が対向するように設けられる。これにより、上部電極6-誘電体膜5-下部電極4のキャパシタ構造が得られる。
【0050】
上記上部電極6のパターン形成の方法は、例えば、上記下部電極4と同様であり、例えばリフトオフ法、めっき法、フォトリソグラフィー、エッチング等が上げられる。好ましくは、セミアディティブ工法を使用することができる。
【0051】
上記上部電極6の厚さは、特に限定されないが、下部電極4と同様の理由から、0.5μm以上10μm以下が好ましく、1μm以上6μm以下がさらに好ましい。また、上部電極6の厚さは、下部電極4の厚さよりも薄いことが好ましい。上部電極6の長さは下部電極4の長さより短いことが好ましい。下部電極4の厚さが薄い場合、等価直列抵抗(ESR)が大きくなるためである。
【0052】
上記上部電極6を構成する材料は、特に限定されないが、好ましくは、Cu、Ag、Au、Al、Ni、Cr、もしくはTiまたはこれらの合金、あるいはこれらを含む導電体等が挙げられ、Cu、Ag、AuまたはAlがより好ましい。
【0053】
次に、上記上部誘電体膜5bおよび上部電極6上に、保護層8のパターンを形成する(図2(g))。
【0054】
上記保護層8の形成は、例えば、スピンコート法などで行うことができる。また、上記保護層8のパターン形成の方法は、例えばフォトリソグラフィー、エッチング等により行うことができる。
【0055】
本実施形態において、上記保護層8のパターンを形成する際に、端子電極11a,11bが形成される貫通口15a,15bが形成される。即ち、貫通口15aの形成においては、誘電体膜5の一部も除去し、貫通口15aの内部に下部電極4を露出させる。
【0056】
上記保護層8の厚さは、特に限定されないが、好ましくは1μm以上20μm以下、より好ましくは3μm以上15μm以下である。保護層の厚さを1μm以上にすることにより、保護層8を挟んだ端子電極11a,11bと下部電極4の間の容量が、誘電体膜5を挟んだ下部電極4と上部電極6の間の容量と比較して小さくなり、保護層8を挟んだ容量の電圧変動や周波数特性がキャパシタ全体に及ぼす影響を小さくすることができる。保護層8の厚さを20μm以下にすることにより、低粘度の保護層材料を使用することが可能になり、厚さの制御が容易になり、キャパシタ容量にばらつきを抑制することができる。
【0057】
上記保護層8を構成する材料は、特に限定されないが、好ましくは、ポリイミド等の樹脂材料が挙げられる。
【0058】
次に、第1端子電極11aおよび第2端子電極11b(以下、まとめて「端子電極11」ともいう)のパターンを形成する(図2(h))。
【0059】
本実施形態において、上記端子電極11a,11bは、上記貫通口15a,15bおよび貫通口の周囲の保護層8上に形成される。即ち、端子電極の外縁は、保護層8の上面に存在する。
【0060】
上記端子電極11a,11bの形成方法は、例えば、上記下部電極4と同様にリフトオフ法、めっき法、セミアディティブ工法を使用することができる。
【0061】
上記端子電極11a,11bを構成する材料は、特に限定されないが、好ましくはCu、Ni、Ag、Au、またはAlが挙げられる。
【0062】
好ましい態様において、端子電極は、Ni、Au等のめっき層を有していてもよく、好ましくは最表面にはAuめっき層を有する。
【0063】
好ましい態様において、上記端子電極11a,11bを構成する材料は、下部電極4および上部電極6の材料よりも抵抗率の低い材料であり、例えばCuまたはAlであり得る。
【0064】
以上のようにして第1実施形態に係るキャパシタ1aが製造される。
【0065】
得られたキャパシタ1a全体(基板2も含める)の厚さは、好ましくは10μm以上300μm以下、より好ましくは20μm以上200μm以下である。
【0066】
(第2実施形態)
第2実施形態のキャパシタ1bの断面図を図3に示す。
【0067】
図3に示されるように、第2実施形態のキャパシタ1bは、下部電極4が逆テーパー形状を有し、シールド金属7が該テーパーに沿って設けられており、これらの上に耐湿膜9が設けられていること以外は、上記第1実施形態のキャパシタ1aと同様の構成を有する。
【0068】
上記のようなキャパシタ1bは、例えば以下のようにして製造される。
【0069】
まず、上記第1実施形態と同様に、基板2を準備する。次いで、上記基板2上に基板全体に絶縁膜3を形成する(図4(a))。次に、上記絶縁膜3上に、下部電極4のパターンを形成する(図4(a))。
【0070】
上記下部電極4は、逆テーパー形状を有する。ここに逆テーパー形状とは、下部電極4の側面において、絶縁膜3(または基板2)から遠ざかるにつれて(即ち、図面上側に向かうにつれて)、外側に向かって傾いている形状をいう。
【0071】
上記逆テーパー形状の傾きは、下部電極4の底面(絶縁膜3と接する面)に対し、好ましくは30°以上85°以下、より好ましくは40°以上70°以下、さらに好ましくは45°以上60°以下であり得る。逆テーパー形状の傾きを上記の範囲とすることにより、テーパー下部の領域が広くなり、テーパー下部の領域にシールド電極を形成することが容易になり、また、より大きなシールドを形成しやすくなる。
【0072】
尚、下部電極4は、全体が逆テーパー形状(即ち、全ての側面が傾いている)であるが、本開示のキャパシタにおいて、下部電極4の逆テーパーは、必ずしも全側面に存在しなくてもよい。例えば、下部電極4の逆テーパーは、下部電極4の1つの側面のみ、あるいは2つの側面、例えば対向する2つの側面のみに存在してもよい。
【0073】
上記下部電極4のパターン形成の方法は、例えばリフトオフ法、めっき法、フォトリソグラフィー、エッチング等により行うことができる。
【0074】
次に、上記下部電極4上に、誘電体膜5を形成する(図4(b))。誘電体膜5の形成は、上記第1実施形態と同様に行うことができる。
【0075】
次に、上記誘電体膜5上に、金属層14を形成し(図4(c))、次いで、金属層14を処理することにより(図4(d))、上部電極6およびシールド金属7を形成することができる。
【0076】
上記金属層14の形成は、第1実施形態における上部電極6の形成と同様に行うことができる。
【0077】
上記金属層14の処理は、第1実施形態における金属層13の処理と同様に行うことができ、例えばドライエッチングを利用できる。
【0078】
上記の方法によれば、上部電極6とシールド金属7を同時に形成することができる。
【0079】
次に、上記誘電体膜5、上部電極6および金属シールド7上に、耐湿膜9を形成する(図4(e))。
【0080】
本実施形態において、上記耐湿膜9は、上記誘電体膜5、上部電極6および金属シールド7を覆うように設けられている。耐湿膜を設けることにより、水分による上部電極の腐食等を防止することができ、耐湿性が向上し、ひいては信頼性が向上する。
【0081】
上記耐湿膜9の形成は、例えば、スパッタリング、CVD法などで行うことができる。パターニングは、例えばフォトリソグラフィー、エッチング等により行うことができる。
【0082】
上記耐湿膜9の厚さは、特に限定されないが、好ましくは0.5μm以上10μm以下、より好ましくは1μm以上3μm以下である。耐湿膜9の厚さを0.5μm以上にすることにより、耐湿性をより確実に確保することができる。耐湿膜9の厚さを10μm以下にすることにより、膜応力による機械的強度が低下し、キャパシタが変形することを防止することができる。
【0083】
上記耐湿膜9構成する材料は、特に限定されないが、好ましくは、Si、SiOの耐湿性材料が挙げられる。
【0084】
次に、基板表面を処理し、端子電極11a,11bを下部電極4および上部電極6に接続するために、下部電極4および上部電極6を露出させる(図4(f))。
【0085】
かかる処理は、エッチング等により行うことができる。
【0086】
次に、第1実施形態と同様に、保護層8および端子電極11を形成する。
【0087】
以上のようにして第2実施形態に係るキャパシタ1bが製造される。
【0088】
以上、本開示のキャパシタについて説明したが、本開示のキャパシタは、種々の改変が可能である。
【0089】
例えば、一の態様において、第1実施形態のキャパシタ1aに、さらに第2実施形態のキャパシタ1bで設けたような耐湿膜を設けてもよい。具体的には、キャパシタ1aの誘電体膜5および上部電極6と保護層8の間に、耐湿膜を設けてもよい。
【0090】
別の態様において、上記保護層8上に、シード層を形成し、その後、端子電極を形成してもよい。
【0091】
端子電極形成前に、保護層上にシード層を形成することにより、端子電極の密着性を高めることができる。
【0092】
上記シード層の形成方法は、例えば、スパッタリング、無電解めっきなどで行うことができる。
【0093】
上記シード層の厚さは、特に限定されないが、好ましくは0.5μm以上10μm以下、より好ましくは1μm以上3μm以下である。シード層の厚さを0.5μm以上にすることにより、その後の端子電極の形成が容易になる。シード層の厚さを10μm以下にすることにより、シード層の応力による素子の機械的強度の低下を抑制することができ、キャパシタの変形を抑制することができる。
【0094】
上記シード層を構成する材料は、特に材料に限定されないが、好ましくは、Ti、Cuが挙げられる。
【0095】
また、最外層に第2の保護層を設けてもよい。キャパシタの最表面に、第2の保護層を設けることにより、端子電極の半田食われ、ダイシング時のチッピングを防止することができ、ひいては信頼性が向上する。ここに、「最外層」とは、端子電極11が露出している面の最も外側に設けられている層をいう。
【0096】
第2の保護層は、上記保護層8と同様の材料および方法で形成することができる。
【産業上の利用可能性】
【0097】
本開示のキャパシタは、実装性が高いことから、種々の電子機器に好適に用いられる。
【符号の説明】
【0098】
1a,1b…キャパシタ
2…基板
3…絶縁膜
4…下部電極
5…誘電体膜
5a…下部誘電体膜
5b…上部誘電体膜
6…上部電極
7…シールド金属
8…保護層
9…耐湿膜
11a…第1端子電極
11b…第2端子電極
13…金属層
14…金属層
15a,15b…貫通口
図1
図2
図3
図4