(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-02-19
(45)【発行日】2024-02-28
(54)【発明の名称】情報処理システム、情報処理方法、およびプログラム
(51)【国際特許分類】
G06Q 50/10 20120101AFI20240220BHJP
G06K 7/10 20060101ALI20240220BHJP
【FI】
G06Q50/10
G06K7/10 264
(21)【出願番号】P 2019212895
(22)【出願日】2019-11-26
【審査請求日】2022-10-14
(73)【特許権者】
【識別番号】504133110
【氏名又は名称】国立大学法人電気通信大学
(74)【代理人】
【識別番号】100121131
【氏名又は名称】西川 孝
(74)【代理人】
【識別番号】100082131
【氏名又は名称】稲本 義雄
(72)【発明者】
【氏名】沼尾 雅之
(72)【発明者】
【氏名】森 拓人
(72)【発明者】
【氏名】大嶋 政親
【審査官】牧 裕子
(56)【参考文献】
【文献】特開2007-156670(JP,A)
【文献】特開2015-046093(JP,A)
【文献】特開2004-133506(JP,A)
【文献】特開2018-055460(JP,A)
【文献】特開2012-058248(JP,A)
【文献】中国特許出願公開第106326906(CN,A)
(58)【調査した分野】(Int.Cl.,DB名)
G06Q 10/00 - 99/00
G06K 7/10
(57)【特許請求の範囲】
【請求項1】
受信信号強度の時系列データから特定種類の変化を抽出するためのアルゴリズムを特定するアルゴリズム特定情報が少なくとも書き込まれたタグコードが埋め込まれたタグと、
前記タグとの間で電波を用いた無線通信を行い、前記タグコードを取得するとともに、前記タグからから送信されてくる電波を受信した際の信号の強度を表す前記受信信号強度を測定するアンテナと、
前記アンテナから出力される前記タグごとの前記タグコードおよび前記受信信号強度に基づいて情報処理を行う情報処理装置と
を備え、
前記情報処理装置は、
前記タグコードの前記アルゴリズム特定情報により特定される前記アルゴリズム
のコードをデータベースから検索する検索部と、
その検索された前記アルゴリズムのコードを、前回の前記受信信号強度および今回の前記受信信号強度を入力として実行することによって前記特定種類の変化が抽出された場合に、その特定種類の変化に対応するイベントの発生を検出する
アルゴリズムコード実行部と
を有する
情報処理システム。
【請求項2】
前記情報処理装置は、前記アルゴリズムコード実行部においてイベントの発生が検出されたタイミングにおける前記受信信号強度の現在値の特徴に基づいて行動を認識する行動認識処理を実行する行動認識処理部をさらに有する
請求項1に記載の情報処理システム。
【請求項3】
前記アルゴリズムコード実行部は、少なくとも1つの前記タグによる前記受信信号強度の時系列データの変化から、前記イベントの発生を検出する
請求項1に記載の情報処理システム。
【請求項4】
前記アルゴリズムコード実行部は、2つ以上の前記タグによる前記受信信号強度の時系列データの相対的な変化から、前記イベントの発生を検出する
請求項1に記載の情報処理システム。
【請求項5】
前記タグコードには、前記行動認識処理部において認識される行動ごとに前記タグが分類されるグループを示すグループIDがさらに書き込まれており、
前記アルゴリズムコード実行部は、前記グループIDに従って分類される前記グループごとに前記イベントの発生を検出する
請求項2に記載の情報処理システム。
【請求項6】
第1の前記アルゴリズムは、複数の前記タグが同時に出現した場合に、前記イベントの発生を検出する
請求項1に記載の情報処理システム。
【請求項7】
第2の前記アルゴリズムは、複数の前記タグが同時に消失した場合に、前記イベントの発生を検出する
請求項1に記載の情報処理システム。
【請求項8】
第3の前記アルゴリズムは、複数の前記タグの一部が消失したのと同時に他の複数の前記タグが出現した場合に、前記イベントの発生を検出する
請求項1に記載の情報処理システム。
【請求項9】
第4の前記アルゴリズムは、複数の前記タグのうち、所定の重要タグが他のタグから分離した場合に、前記イベントの発生を検出する
請求項1に記載の情報処理システム。
【請求項10】
第5の前記アルゴリズムは、複数の前記タグのうち、所定の重要タグが他のタグに一致した場合に、前記イベントの発生を検出する
請求項1に記載の情報処理システム。
【請求項11】
第5の前記アルゴリズムは、複数の前記タグのうち、所定の重要タグが他のタグから分離した場合に、および、所定の重要タグが他のタグに一致した場合に、前記イベントの発生を検出する
請求項1に記載の情報処理システム。
【請求項12】
前記タグコードには、前記アルゴリズムのコードを実行する際に用いられる補助情報として、前記タグの相対関係の変化を抽出する際の基準となる閾値、および、前記イベントの検出に前記受信信号強度を使用するか否かを示すフラグがさらに書き込まれている
請求項1に記載の情報処理システム。
【請求項13】
受信信号強度の時系列データから特定種類の変化を抽出するためのアルゴリズムを特定するアルゴリズム特定情報が少なくとも書き込まれたタグコードが埋め込まれたタグと、
前記タグとの間で電波を用いた無線通信を行い、前記タグコードを取得するとともに、前記タグからから送信されてくる電波を受信した際の信号の強度を表す前記受信信号強度を測定するアンテナと、
前記アンテナから出力される前記タグごとの前記タグコードおよび前記受信信号強度に基づいて情報処理を行う情報処理装置と
を備える情報処理システムが、
前記タグコードの前記アルゴリズム特定情報により特定される前記アルゴリズム
のコードをデータベースから検索することと、
その検索された前記アルゴリズムのコードを、前回の前記受信信号強度および今回の前記受信信号強度を入力として実行することによって前記特定種類の変化が抽出された場合に、その特定種類の変化に対応するイベントの発生を検出すること
と
を含む情報処理方法。
【請求項14】
受信信号強度の時系列データから特定種類の変化を抽出するためのアルゴリズムを特定するアルゴリズム特定情報が少なくとも書き込まれたタグコードが埋め込まれたタグと、
前記タグとの間で電波を用いた無線通信を行い、前記タグコードを取得するとともに、前記タグからから送信されてくる電波を受信した際の信号の強度を表す前記受信信号強度を測定するアンテナと、
前記アンテナから出力される前記タグごとの前記タグコードおよび前記受信信号強度に基づいて情報処理を行う情報処理装置と
を備える情報処理システムのコンピュータに、
前記タグコードの前記アルゴリズム特定情報により特定される前記アルゴリズム
のコードをデータベースから検索することと、
その検索された前記アルゴリズムのコードを、前回の前記受信信号強度および今回の前記受信信号強度を入力として実行することによって前記特定種類の変化が抽出された場合に、その特定種類の変化に対応するイベントの発生を検出すること
と
を含む情報処理を実行させるためのプログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、情報処理システム、情報処理方法、およびプログラムに関し、特に、行動認識のための多様なイベントを高速かつ効率的に検出することができるようにした情報処理システム、情報処理方法、およびプログラムに関する。
【背景技術】
【0002】
近年、RFID(Radio Frequency Identifier)タグを利用して、例えば、いわゆるスマートハウスに住んでいる居住者の行動を認識することが試みられている。具体的には、多種で複数のセンサを連携させた高密度のセンサネットの環境(いわゆる、DENSE SENSING環境)において、居住者や、家電、家具、食器などに多数のRFIDタグを装着させ、RFIDリーダが、それらのRFIDタグと通信することで、居住者の転倒や、椅子への着席、ドアの開閉などの行動を認識する。このような行動認識を行うためには、多様なイベントを高速かつ効率的に検出することが必要となる。
【0003】
例えば、特許文献1には、複数のRFIDタグと、複数のRFIDタグからの電波を受信するRFIDリーダを用いて、複数のRFIDタグのうち移動しているRFIDタグを識別する識別方法が開示されている。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
ところで、従来の行動認識では、RFIDリーダは、RFIDタグからRFIDタグコードを読み取ると、そのRFIDタグを製造している製造業者のサーバにアクセスしてRFIDタグの属性を取得し、その属性からイベントの発生を検出する手法が用いられていた。しかしながら、このような手法では、多様なイベントを高速かつ効率的に検出することは困難であった。
【0006】
本開示は、このような状況に鑑みてなされたものであり、行動認識のための多様なイベントを高速かつ効率的に検出することができるようにするものである。また、本開示によれば、上述と同時に、RFIDライタを用いてタグにタグコードを書き込むことで、システムの構成を変更することなく、容易に新しいイベントを定義することができる。
【課題を解決するための手段】
【0007】
本開示の第1の側面の情報処理システムは、受信信号強度の時系列データから特定種類の変化を抽出するためのアルゴリズムを特定するアルゴリズム特定情報が少なくとも書き込まれたタグコードが埋め込まれたタグと、前記タグとの間で電波を用いた無線通信を行い、前記タグコードを取得するとともに、前記タグからから送信されてくる電波を受信した際の信号の強度を表す前記受信信号強度を測定するアンテナと、前記アンテナから出力される前記タグごとの前記タグコードおよび前記受信信号強度に基づいて情報処理を行う情報処理装置とを備え、前記情報処理装置は、前記タグコードの前記アルゴリズム特定情報により特定される前記アルゴリズムのコードをデータベースから検索する検索部と、その検索された前記アルゴリズムのコードを、前回の前記受信信号強度および今回の前記受信信号強度を入力として実行することによって前記特定種類の変化が抽出された場合に、その特定種類の変化に対応するイベントの発生を検出するアルゴリズムコード実行部とを有する。
【0008】
本開示の第1の側面の情報処理方法またはプログラムは、情報処理システムが、受信信号強度の時系列データから特定種類の変化を抽出するためのアルゴリズムを特定するアルゴリズム特定情報が少なくとも書き込まれたタグコードが埋め込まれたタグと、前記タグとの間で電波を用いた無線通信を行い、前記タグコードを取得するとともに、前記タグからから送信されてくる電波を受信した際の信号の強度を表す前記受信信号強度を測定するアンテナと、前記アンテナから出力される前記タグごとの前記タグコードおよび前記受信信号強度に基づいて情報処理を行う情報処理装置とを備える情報処理システムが、前記タグコードの前記アルゴリズム特定情報により特定される前記アルゴリズムのコードをデータベースから検索することと、その検索された前記アルゴリズムのコードを、前回の前記受信信号強度および今回の前記受信信号強度を入力として実行することによって前記特定種類の変化が抽出された場合に、その特定種類の変化に対応するイベントの発生を検出することとを含む。
【0009】
本開示の第1の側面においては、情報処理システムは、受信信号強度の時系列データから特定種類の変化を抽出するためのアルゴリズムを特定するアルゴリズム特定情報が少なくとも書き込まれたタグコードが埋め込まれたタグと、タグとの間で電波を用いた無線通信を行い、タグコードを取得するとともに、タグからから送信されてくる電波を受信した際の信号の強度を表す受信信号強度を測定するアンテナと、アンテナから出力されるタグごとのタグコードおよび受信信号強度に基づいて情報処理を行う情報処理装置とを備える。そして、タグコードのアルゴリズム特定情報により特定されるアルゴリズムのコードがデータベースから検索され、その検索されたアルゴリズムのコードを、前回の受信信号強度および今回の受信信号強度を入力として実行することによって特定種類の変化が抽出された場合に、その特定種類の変化に対応するイベントの発生が検出される。
【発明の効果】
【0012】
本開示の一側面によれば、行動認識のための多様なイベントを高速かつ効率的に検出することができる。
【0013】
なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
【図面の簡単な説明】
【0014】
【
図1】本技術を適用した行動認識システムの一実施の形態の構成例を示す図である。
【
図2】受信信号強度の時系列データの第1の例を示す図である。
【
図3】受信信号強度の時系列データの第2の例を示す図である。
【
図6】行動認識のためのイベント検出ごとのRFIDタグコードの具体例を説明する図である。
【
図7】RFIDリーダの構成例を示すブロック図である。
【
図8】行動認識のためのイベント検出処理を説明するフローチャートである。
【
図9】アルゴリズムコード実行処理を説明するフローチャートである。
【
図10】本技術を適用したコンピュータの一実施の形態の構成例を示すブロック図である。
【発明を実施するための形態】
【0015】
以下、本技術を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。
【0016】
<行動認識システムの構成例>
図1は、本技術を適用した行動認識システムの一実施の形態の構成例を示す図である。
【0017】
図1に示すように、行動認識システム11は、複数のRFIDタグ12、複数のRFIDアンテナ13、およびRFIDリーダ14を備えて構成されている。例えば、行動認識システム11は、居住者21が椅子22に座ったり、居住者21がドア23を開閉したりするような様々な行動を認識する。
【0018】
例えば、
図1に示す構成例において、行動認識システム11では、7つのRFIDタグ12-1乃至12-7が用いられている。RFIDタグ12-1は、居住者21の肩に取り付けられており、RFIDタグ12-2は、居住者21の背中に取り付けられている。RFIDタグ12-3は、居住者21が着用するオムツの外部に取り付けられており、RFIDタグ12-4は、居住者21が着用するオムツの内部に取り付けられている。RFIDタグ12-5は、椅子22の座面に取り付けられており、RFIDタグ12-6は、椅子22の背面に取り付けられている。RFIDタグ12-7は、ドア23に取り付けられている。なお、以下適宜、RFIDタグ12-1乃至12-7を区別する必要がない場合、単にRFIDタグ12と称する。
【0019】
また、
図1に示す構成例において、行動認識システム11では、4つのRFIDアンテナ13-1乃至13-4が設置されている。RFIDアンテナ13-1は、天井に設置されており、RFIDアンテナ13-2乃至13-4は、それぞれ異なる3方向の壁面に設置されている。なお、以下適宜、RFIDアンテナ13-1乃至13-4を区別する必要がない場合、単にRFIDアンテナ13と称する。
【0020】
RFIDタグ12には、それぞれを個別に識別するためのID(Identification)を含む各種のデータが書き込まれたRFIDタグコード(
図4参照)が埋め込まれている。そして、RFIDタグ12は、RFIDアンテナ13との間で電波を用いた近距離の無線通信を行うことによって、RFIDタグコードを送信する。
【0021】
RFIDアンテナ13は、個々のRFIDタグ12との間で電波を用いた近距離の無線通信を行い、所定の測定間隔に従って、それぞれのRFIDタグ12から送信されてくるRFIDタグコードを取得する。このとき、RFIDアンテナ13は、RFIDタグ12から送信されてくる電波を受信した際の信号の強度を表す受信信号強度(RSSI:Received Signal Strength Indicator)を測定する。そして、RFIDアンテナ13は、RFIDタグ12ごとのRFIDタグコードおよび受信信号強度を、所定の測定間隔で順次、RFIDリーダ14に供給する。なお、以下適宜、RFIDアンテナ13からRFIDリーダ14に供給されるRFIDタグコードおよび受信信号強度を、RFIDデータとも称する。
【0022】
RFIDリーダ14は、RFIDアンテナ13から供給されるRFIDデータを用いて、居住者21の行動を認識するのに必要な情報処理を実行する。例えば、RFIDリーダ14は、RFIDタグコードにより識別されるRFIDタグ12ごとの受信信号強度の時系列データを参照し、その時系列データから特定種類の変化が抽出されると、イベントが発生したことを検出する。そして、RFIDリーダ14は、イベントの発生を検出したタイミングにおける受信信号強度に基づいて、居住者21の行動を認識する。なお、RFIDリーダ14が、RFIDタグ12にRFIDタグコードを書き込むライタとしての機能を備えていてもよい。
【0023】
<イベント検出の検出例>
ここで、
図2および
図3を参照して、RFIDリーダ14によるイベント検出について説明する。
【0024】
図2には、居住者21の背中に取り付けられているRFIDタグ12-2のRFIDタグコードを、RFIDアンテナ13-1乃至13-4が取得した際の受信信号強度の時系列データの一例が示されている。例えば、受信信号強度の時系列データは、RFIDタグ12-2の方向の変化を表している。そして、居住者21が立っているとき、天井に設置されているRFIDアンテナ13-1における受信信号強度は、壁面に設置されているRFIDアンテナ13-2乃至13-4における受信信号強度よりも低い値を示している。
【0025】
そして、
図2に示す白抜きの矢印の時点において、RFIDアンテナ13-1における受信信号強度の時系列データが他の受信信号強度の時系列データとクロスするように変化すると、RFIDリーダ14は、このような時系列データの変化を抽出し、イベントが発生したことを検出する。例えば、RFIDリーダ14は、RFIDアンテナ13-1乃至13-4からRFIDデータが供給されるたびに、今回の受信信号強度と前回の受信信号強度との差分値を求め、その差分値に基づいて時系列データの変化を抽出することができる。
【0026】
さらに、RFIDリーダ14は、イベントの発生が検出されたタイミングにおいて取得された受信信号強度(以下、時系列データの現在値と称する)の特徴ベクトルに基づいて、居住者21の行動を認識する。例えば、
図2に示す例は、RFIDアンテナ13-2乃至13-4により取得される3つの時系列データ(壁面)の現在値のうち、2つの時系列データの現在値よりも、RFIDアンテナ13-1により取得される時系列データ(天井)の現在値が高いという特徴となっている。従って、RFIDリーダ14は、このような特徴を示す特徴ベクトルから、例えば、居住者21が転倒したことを、居住者21の行動として認識することができる。
【0027】
図3には、居住者21が着用するオムツの外部および内部それぞれに取り付けられているRFIDタグ12-3およびRFIDタグ12-4のRFIDタグコードの受信信号強度の時系列データの一例が示されている。例えば、受信信号強度は、水分によって低下することが知られており、オムツの内部が濡れていないとき、RFIDタグ12-3およびRFIDタグ12-4それぞれの受信信号強度は、同程度の値を示すことになる。
【0028】
従って、
図3に示すように、RFIDタグ12-3により取得される時系列データ(out)と、RFIDタグ12-4により取得される時系列データ(in)とが同様に変化している場合には、居住者21の姿勢変化によって受信信号強度が変化していると認識することができる。一方で、
図3において白抜きの矢印で示すように、RFIDタグ12-3により取得される時系列データ(out)と、RFIDタグ12-4により取得される時系列データ(in)との差が大きくなるような変化が抽出されると、RFIDリーダ14は、イベントが発生したことを検出する。
【0029】
そして、RFIDリーダ14は、時系列データ(out)と比較して時系列データ(oin)が大きく低下したという特徴を示す特徴ベクトルに基づいて、例えば、オムツが濡れたことを、居住者21の行動として認識することができる。即ち、RFIDリーダ14は、時系列データ(out)および時系列データ(in)の差を比較することによって、例えば、居住者21の姿勢変化が、オムツ濡れとして誤検出されることを回避することができる。
【0030】
このように、RFIDリーダ14は、受信信号強度の時系列データの特定種類の変化を抽出することによって、その特定種類の変化に対応するイベントの発生を検出し、そのタイミングにおける現在値の特徴ベクトルに基づいて、居住者21の行動を認識することができる。例えば、RFIDリーダ14は、居住者21の行動を認識することで、住居者が転倒したことを異常検知として、住居者が寝返りまたは起床したことを変化検知として、図示しない後段の情報処理装置に出力することができる。
【0031】
ここで、受信信号強度の時系列データの現在値に基づいた行動認識は、どの時点における受信信号強度の時系列データからでも行動認識を行うことができる一方で、全ての受信信号強度の時系列データに対する処理を行う必要がある。これに対し、受信信号強度の時系列データの変化を抽出することに基づいたイベント検出は、定常的な時系列データを破棄することが可能であるため効率的な処理を行うことができる一方で、長期的な変化を見失う可能性も排除できない。
【0032】
そこで、RFIDリーダ14は、受信信号強度の時系列データの変化を抽出することに基づいたイベント検出と、受信信号強度の時系列データの現在値に基づいた行動認識とを組み合わせた処理を行うことで、より効率的な処理で行動認識を行うことができる。なお、受信信号強度の時系列データを現在値だけでなく、イベントの発生を検出した時点の前後における一定範囲の受信信号強度の時系列データを用いて行動認識を行うことで、行動の開始時点および終了時点を認識するようにしてもよい。
【0033】
ところで、行動認識システム11は、
図2に示したように受信信号強度の時系列データがクロスするような変化を抽出したり、
図3に示したように、受信信号強度の時系列データの差が大きくなるような変化を抽出したりすることで、イベントの発生を検出する。そこで、行動認識システム11は、このような時系列データの特定種類の変化を抽出してイベントの発生を検出するため検出アルゴリズムが、個々のRFIDタグ12のRFIDタグコードに書き込まれている。
【0034】
<RFIDタグコードの一例>
図4および
図5を参照して、RFIDタグコードおよびLEHCコードの一例について説明する。
【0035】
図4には、例えば、96ビットで構成されたRFIDタグ12のRFIDタグコードの一例が示されている。
【0036】
図示するように、RFIDタグコードには、エンコードメソッド、ロジックコード、グループID、MBIT、およびグループ内シリアルが書き込まれており、エンコードメソッドとロジックコードとの間には、その他の利用で用いられるビット列が配置される。
【0037】
エンコード方式には、本発明で提案される方式であることを識別する識別コード(LEHC:LOCAL Event Handling CODING)が書き込まれる。
【0038】
ロジックコードには、イベント検出に用いられる検出アルゴリズムを特定する特定情報(
図4に示すLOGIC METHOD)や、検出アルゴリズムにより用いられる補助情報(
図4に示すK,KおよびUSE RSSI)が書き込まれる。
【0039】
グループIDには、認識される行動ごとにRFIDタグ12が分類されるグループを識別するIDが書き込まれる。
【0040】
MBITは、重要タグであるRFIDタグ12(以下、重要タグ12aと称する)であるか、重要タグ12a以外のRFIDタグ12(以下、参照タグ12bと称する)であるかを示す1ビットの重要タグフラグである。例えば、重要タグ12aのMBITには1が書き込まれ、参照タグ12bのMBITには0が書き込まれる。
【0041】
グループ内シリアルは、グループIDにより分類されるグループ内で、個々のRFIDタグ12に付与されるシリアル番号が書き込まれる。
【0042】
例えば、エンコードメソッド、ロジックコード、およびグループIDは、RFIDタグ12が分類されるグループごとに共通となる。また、グループID、MBIT、およびグループ内シリアルは、従来のRFIDタグコードにおけるシリアル番号に対応する。
【0043】
ロジックメソッドには、イベント検出に用いられる検出アルゴリズムを特定する特定情報が書き込まれる。本実施の形態では、例えば、6種類の検出アルゴリズム(EMERGE,DROP,CROSS,DIVIDE,MERGE,MERGE|DIVIDE)が定義されている。
【0044】
検出アルゴリズムEMERGEは、複数のRFIDタグ12が同時に出現したという変化を抽出するアルゴリズムであり、検出アルゴリズムDROPは、複数のRFIDタグ12が同時に消失したという変化を抽出するアルゴリズムである。検出アルゴリズムCROSSは、複数のRFIDタグ12の一部が消失したのと同時に他の複数のRFIDタグ12が出現したという変化を抽出するアルゴリズムである。検出アルゴリズムDIVIDEは、重要タグ12aが他のRFIDタグ12から分離したという変化を抽出するアルゴリズムであり、検出アルゴリズムMERGEは、重要タグ12aが他のRFIDタグ12に一致したという変化を抽出するアルゴリズムである。検出アルゴリズムMERGE|DIVIDEは、重要タグ12aが他のRFIDタグ12から分離したという変化と、重要タグ12aが他のRFIDタグ12に一致したという変化との両方を抽出するアルゴリズムである。
【0045】
閾値KおよびK’は、検出アルゴリズムに従ってRFIDタグ12の相対関係の変化を抽出する際の判定の基準となる閾値が書き込まれる。例えば、同一のグループに分類されるN個のRFIDタグ12のうち、閾値K以上の個数のRFIDタグ12が出現または消失すると、その出現または消失に応じた変化が抽出される。または、閾値K’以上の個数の重要タグ12aと、閾値K以上の他のRFIDタグ12が出現または消失すると、その出現または消失に応じた変化が抽出される。
【0046】
RSSI使用フラグには、イベント検出に受信信号強度を使用するか否かを示すフラグ(1:使用する、0:使用しない)が書き込まれる。
【0047】
図5には、LEHCコードの一例として、RFIDタグ12の96ビットのカラム配置と、それぞれのカラムに必要なビット数が示されている。
【0048】
例えば、エンコードメソッドは8ビットで構成され、その他の利用で30ビットが用意されており、ロジックメソッドは8ビットで構成される。また、閾値KおよびK’は10ビット(それぞれ5ビットずつ)で構成され、RSSI使用フラグは1ビットで構成され、グループIDは23ビットで構成され、MBITは1ビットで構成され、グループ内シリアルは15ビットで構成される。
【0049】
そして、上述の
図3を参照して説明したようなオムツの用途では、ロジックメソッドとして検出アルゴリズムDIVIDE(00 001 000)が書き込まれ、閾値KおよびK’には2および1(00010 00001)が書き込まれる。そして、オムツの内部用のRFIDタグ12のMBITには1が書き込まれ、オムツの外部用のRFIDタグ12のMBITには0が書き込まれる。また、椅子22の用途では、座面および背面それぞれ同様に、ロジックメソッドとして検出アルゴリズムDROP(00 000 010)が書き込まれ、閾値KおよびK’には2および0(00010 00000)が書き込まれ、MBITには0が書き込まれる。なお、
図5において同じハッチングが付されているカラムは、ビットが同じであることを表している。
【0050】
このようなRFIDタグコードが、RFIDライタを用いてRFIDタグ12に書き込まれる。これにより、行動認識システム11では、例えば、ロジックコードを書き換えて検出アルゴリズムを変更するだけで、容易に新しいイベントを定義することができる。
【0051】
ここで、上述した
図3に示した受信信号強度の時系列データを参照して、検出アルゴリズムMERGE|DIVIDEについて説明する。
【0052】
例えば、検出アルゴリズムMERGE|DIVIDEでは、閾値K’の重要タグ12aと、閾値K’および閾値Kの差分値の絶対値(|K-K’|)の参照タグ12bの間の受信信号強度の変化を抽出する。例えば、閾値K’の重要タグ12aの受信信号強度の平均値RSSIK’を計算するとともに、閾値K’および閾値Kの差分値の絶対値(|K-K’|)の参照タグ12bの受信信号強度の平均値RSSIKを計算し、それらの平均値の差分値の絶対値DIFF(=| RSSIK’-RSSIK |)を求める。
【0053】
そして、現在値の差分値の絶対値DIFF(T)と、現在値の1つ前の差分値の絶対値DIFF(T-1)の差の絶対値を算出し、その閾値と近接を判定する閾値TH1および分離を判定する閾値TH2とを比較する。例えば、差分値の絶対値DIFF(T-1)が閾値TH1未満で、かつ、差分値の絶対値DIFF(T)が閾値TH2より大きい場合には、重要タグ12aが他のRFIDタグ12から分離したという変化(即ち、DIFF(T-1)<TH1かつDIFF(T)>TH2:DIVIDE)を抽出する。一方、差分値の絶対値DIFF(T-1)が閾値TH2より大きく、かつ、差分値の絶対値DIFF(T)が閾値TH1未満である場合には、重要タグ12aが他のRFIDタグ12に一致したという変化(即ち、DIFF(T-1)>TH2かつDIFF(T)<TH1:MERGE)を抽出する。
【0054】
図6を参照して、例えば、
図1に示したような状況における行動認識のためのイベント検出ごとに、RFIDタグコードの具体例について説明する。
【0055】
居住者21の転倒を検知する行動認識のためのイベント検出には、検出アルゴリズムCROSSを使用することが設定される。また、閾値Kには2が設定され、閾値K’には2が設定され、RSSI使用フラグは受信信号強度を使用することが設定される。そして、グループIDとして、居住者21ごとにRFIDタグ12を分類するIDが付与され、グループ内シリアルとして、居住者21の胸および背中に取り付けられるRFIDタグ12それぞれにシリアル番号が付与される。
【0056】
居住者21のオムツ濡れを検知する行動認識のためのイベント検出には、検出アルゴリズムDIVIDEを使用することが設定される。また、閾値Kには2が設定され、閾値K’には1が設定され、RSSI使用フラグは受信信号強度を使用することが設定される。そして、グループIDとして、オムツごとにRFIDタグ12を分類するIDが付与され、グループ内シリアルとして、オムツの内部および外部に取り付けられるRFIDタグ12それぞれにシリアル番号が付与される。
【0057】
椅子22の使用を検知する行動認識のためのイベント検出には、検出アルゴリズムDROPを使用することが設定される。また、閾値Kには2が設定され、閾値K’には0が設定され、RSSI使用フラグは受信信号強度を使用しないことが設定される。そして、グループIDとして、椅子22ごとにRFIDタグ12を分類するIDが付与され、グループ内シリアルとして、椅子22の座面および背面に取り付けられるRFIDタグ12それぞれにシリアル番号が付与される。
【0058】
ドア23の開閉を検知する行動認識のためのイベント検出には、検出アルゴリズムCROSSを使用することが設定される。また、閾値Kには1が設定され、閾値K’には1が設定され、RSSI使用フラグは受信信号強度を使用しないことが設定される。そして、グループIDとして、ドア23ごとにRFIDタグ12を分類するIDが付与され、グループ内シリアルとして、ドア23に1枚だけ取り付けられるRFIDタグ12にシリアル番号が付与される。
【0059】
以上のように、行動認識システム11では、RFIDタグ12に書き込まれるRFIDタグコードに、イベント検出に用いられる検出アルゴリズムを特定する特定情報とともに、検出アルゴリズムにより用いられる補助情報として閾値KおよびK’並びにRSSI使用フラグが書き込まれる。これにより、RFIDリーダ14は、行動認識のための多様なイベントを高速かつ効率的に検出することができる。さらに、このようなRFIDタグコードを、RFIDライタを用いてRFIDタグ12に書き込むことで、行動認識システム11の構成を変更することなく、容易に新しいイベントを定義することができる。
【0060】
<RFIDリーダの構成例>
図7は、RFIDリーダ14の構成例を示すブロック図である。
【0061】
図7に示すように、RFIDリーダ14は、データ取得部31、データソート部32、記憶部33、グループ処理部34、および行動認識処理部35を備えて構成される。また、グループ処理部34は、アルゴリズム抽出部41、補助情報抽出部42、アルゴリズムコードデータベース43、アルゴリズムコード検索部44、およびアルゴリズムコード実行部45を備えて構成される。
【0062】
データ取得部31は、RFIDアンテナ13から出力されるRFIDデータ、即ち、個々のRFIDタグ12のRFIDタグコードおよび受信信号強度を取得し、データソート部32に供給する。
【0063】
データソート部32は、データ取得部31から供給されたRFIDデータのグループIDを参照し、グループIDごとにRFIDデータを分類する。そして、データソート部32は、グループIDごとのRFIDデータをグループ処理部34に供給するとともに、記憶部33に記憶させる。
【0064】
記憶部33は、グループIDごとのRFIDデータを記憶し、グループ処理部34において処理対象となっているRFIDデータ(以下、今回のRFIDデータとも称する)より時系列として1つ前のRFIDデータ(以下、前回のRFIDデータとも称する)を、グループ処理部34に供給する。
【0065】
グループ処理部34は、グループIDにより分類されるグループごとの今回のRFIDデータおよび前回のRFIDデータを用いた処理を行って、グループIDごとの検出結果を行動認識処理部35に供給する。
【0066】
行動認識処理部35は、グループ処理部34からグループIDごとの検出結果が出力されたタイミングで、検出結果が出力されたグループに分類されるRFIDタグ12の受信信号強度の現在値を取得する。そして、行動認識処理部35は、受信信号強度の現在値の特徴ベクトルに基づき、そのグループのRFIDタグ12で検知(
図6参照)される居住者の行動を認識する行動認識処理を実行する。
【0067】
アルゴリズム抽出部41は、処理対象となっているグループに対して設定されているロジックメソッドを、RFIDタグコードのロジックコードから抽出してアルゴリズムコード検索部44に供給する。即ち、RFIDタグコードのロジックコードには、上述したような6種類の検出アルゴリズムを特定するロジックメソッド(EMERGE,DROP,CROSS,DIVIDE,MERGE,MERGE|DIVIDE)が書き込まれており、アルゴリズム抽出部41は、ロジックメソッドを抽出することで、それらの内の1種類の検出アルゴリズムを特定する。
【0068】
補助情報抽出部42は、処理対象となっているグループに対して設定されているロジックメソッドにおいて使用される補助情報として、閾値KおよびK’並びにRSSI使用フラグをRFIDタグコードのロジックコードから抽出して、アルゴリズムコード実行部45に供給する。
【0069】
アルゴリズムコードデータベース43には、RFIDリーダ14においてイベント検出に用いられる検出アルゴリズムのコードが登録されている。
【0070】
アルゴリズムコード検索部44は、アルゴリズム抽出部41から供給されるロジックメソッドに基づいてアルゴリズムコードデータベース43を検索する。そして、アルゴリズムコード検索部44は、処理対象となっているグループについてイベント検出に用いられる検出アルゴリズムのコードをアルゴリズムコードデータベース43から読み出して、アルゴリズムコード実行部45に供給する。
【0071】
アルゴリズムコード実行部45は、補助情報抽出部42から供給される閾値KおよびK’並びにRSSI使用フラグを用い、アルゴリズムコード検索部44から供給される検出アルゴリズムのコードを実行する。また、アルゴリズムコード実行部45は、記憶部33から読み出した前回のRFIDデータ、および、データソート部32から供給される今回のRFIDデータを入力として検出アルゴリズムのコードを実行する。そして、アルゴリズムコード実行部45は、検出アルゴリズムに応じた変化を抽出した場合、そのような変化を抽出したことを示すイベントの検出結果を、処理対象となっているグループごとに出力する。
【0072】
例えば、アルゴリズムコード実行部45は、検出アルゴリズムEMERGEを実行し、前回のRFIDデータおよび今回のRFIDデータから、複数のRFIDタグ12が同時に出現するような変化を抽出した場合、イベントが発生したことを検出する。そして、アルゴリズムコード実行部45は、複数のRFIDタグ12が同時に出現するような変化を抽出したことを示すイベントの検出結果EMERGEを出力する。なお、アルゴリズムコード実行部45は、このような変化が抽出されなかったとき、検出結果の出力は行わない。同様に、アルゴリズムコード実行部45は、その他の検出アルゴリズムについても、それぞれの検出アルゴリズムに応じた変化を抽出した場合、その変化があったことを示す検出結果を出力する。
【0073】
以上のようにRFIDリーダ14は構成されており、行動認識のためのイベント検出処理をグループごとに行って、イベントの検出結果が出力されたタイミングで、行動認識処理を実行することができる。
【0074】
<行動認識のためのイベント検出処理およびアルゴリズムコード実行処理の処理例>
図8に示すフローチャートを参照して、行動認識のためのイベント検出処理について説明する。
【0075】
例えば、行動認識システム11における行動認識が行われている間、所定の測定間隔ごとにイベント検出処理が行われ、ステップS11において、データ取得部31は、RFIDアンテナ13から出力されるRFIDデータを取得し、データソート部32に供給する。
【0076】
ステップS12において、データソート部32は、ステップS11でデータ取得部31から供給されたRFIDデータのグループIDを参照し、グループIDごとにRFIDデータを分類する。そして、データソート部32は、グループIDごとのRFIDデータをグループ処理部34に供給する。
【0077】
ステップS13において、データソート部32は、ステップS12で分類したグループIDごとのRFIDデータを記憶部33に記憶させる。このとき、記憶部33に記憶されている前回のグループIDごとのRFIDデータが、グループ処理部34によってロードされる。
【0078】
ステップS14において、グループ処理部34は、ステップS12でデータソート部32により分類された複数のグループのうち、処理対象とするグループのグループIDをセットする。例えば、グループ処理部34は、グループIDの番号順に、処理対象とするグループのグループIDをセットする。
【0079】
ステップS15において、グループ処理部34は、全てのグループIDを処理対象としたか否かを判定する。例えば、処理対象となっていないグループが残っている場合、グループ処理部34は、全てのグループIDを処理対象としていないと判定し、この場合、処理はステップS16に進む。
【0080】
ステップS16において、アルゴリズム抽出部41は、処理対象となっているグループに対して設定されているロジックメソッドを、RFIDタグコードのロジックコードから抽出してアルゴリズムコード検索部44に供給する。
【0081】
ステップS17において、補助情報抽出部42は、処理対象となっているグループに対して設定されているロジックメソッドにおいて使用される補助情報を、RFIDタグコードのロジックコードから抽出して、アルゴリズムコード実行部45に供給する。
【0082】
ステップS18において、アルゴリズムコード検索部44は、ステップS16でアルゴリズム抽出部41から供給されるロジックメソッドに基づいて、アルゴリズムコードデータベース43を検索する。そして、アルゴリズムコード検索部44は、そのロジックメソッドの検出アルゴリズムのコードをアルゴリズムコードデータベース43から読み出して、アルゴリズムコード実行部45に供給する。
【0083】
ステップS19において、アルゴリズムコード実行部45は、ステップS17で補助情報抽出部42から供給される補助情報を用い、前回のRFIDデータおよび今回のRFIDデータを入力として、ステップS18でアルゴリズムコード検索部44から供給される検出アルゴリズムのコードを実行するアルゴリズムコード実行処理を行う。なお、アルゴリズムコード実行処理については、
図9を参照して後述する。
【0084】
ステップS19の処理後、処理はステップS14に戻って、グループ処理部34は、まだ処理対象となっていないグループのグループIDをセットし、以下、同様の処理が繰り返して行われる。そして、全てのグループを処理対象としてステップS16乃至S19の処理が行われると、ステップS15において、全てのグループIDを処理対象としたと判定され、処理はステップS20に進む。
【0085】
ステップS20において、行動認識処理部35は、ステップS19のアルゴリズムコード実行処理でアルゴリズムコード実行部45からグループIDごとの検出結果が出力されたタイミングで、行動認識処理を実行する。即ち、行動認識処理部35は、検出結果が出力されたグループに分類されるRFIDタグ12の受信信号強度の現在値の特徴ベクトルに基づき、そのグループのRFIDタグ12で検知される居住者の行動を認識する。その後、行動認識のためのイベント検出処理は終了される。
【0086】
図9に示すフローチャートを参照して、
図8のステップS19で行われるアルゴリズムコード実行処理について説明する。
【0087】
ステップS31において、アルゴリズムコード実行部45は、
図8のステップS18でアルゴリズムコード検索部44から供給された検出アルゴリズムの種類が、検出アルゴリズムDROP、検出アルゴリズムCROSS、および、その他のいずれであるかを判定する。
【0088】
ステップS31において、アルゴリズムコード実行部45が、検出アルゴリズムの種類が検出アルゴリズムDROPであると判定した場合、処理はステップS32に進む。
【0089】
ステップS32において、アルゴリズムコード実行部45は、前回のデータグループ(即ち、処理対象のグループIDに含まれるRFIDデータのグループ)内に、閾値K以上の個数のRFIDタグ12があり、かつ、閾値K’以上の個数の重要タグ12aがあるか否かを判定する。
【0090】
ステップS32において、アルゴリズムコード実行部45が、前回のデータグループ内に、閾値K以上の個数のRFIDタグ12があり、かつ、閾値K’以上の個数の重要タグ12aがあると判定した場合、処理はステップS33に進む。
【0091】
ステップS33において、アルゴリズムコード実行部45は、今回のデータグループ内に、前回あった重要タグ12aが全てなくなり、かつ、RFIDタグ12の個数が閾値Kの半分以下であるか否かを判定する。
【0092】
ステップS33において、アルゴリズムコード実行部45は、今回のデータグループ内に、前回あった重要タグ12aが全てなくなり、かつ、RFIDタグ12の個数が閾値Kの半分以下であると判定した場合、処理はステップS34に進む。
【0093】
ステップS34において、アルゴリズムコード実行部45は、検出アルゴリズムDROPに従って、複数のRFIDタグ12が同時に消失したという変化が抽出されており、その変化があったことを示す検出結果DROPを出力し、その後、処理は終了される。
【0094】
なお、ステップS32において、アルゴリズムコード実行部45が、前回のデータグループ内に、閾値K以上の個数のRFIDタグ12がない、または、閾値K’以上の個数の重要タグ12aがないと判定した場合、検出結果DROPは出力されずに処理は終了される。同様に、ステップS33において、アルゴリズムコード実行部45が、今回のデータグループ内に、前回あった重要タグ12aが全てなくなっていない、または、RFIDタグ12の個数が閾値Kの半分以下でないと判定した場合、検出結果DROPは出力されずに処理は終了される。
【0095】
一方、ステップS31において、アルゴリズムコード実行部45が、検出アルゴリズムの種類が検出アルゴリズムCROSSであると判定した場合、処理はステップS35に進む。
【0096】
ステップS35において、アルゴリズムコード実行部45は、今回のデータグループと前回のデータグループとを合わせた中に、閾値K以上の個数のRFIDタグ12があり、かつ、閾値K’以上の個数の重要タグ12aがあるか否かを判定する。
【0097】
ステップS35において、アルゴリズムコード実行部45が、今回のデータグループと前回のデータグループとを合わせた中に、閾値K以上の個数のRFIDタグ12があり、かつ、閾値K’以上の個数の重要タグ12aがあると判定した場合、処理はステップS36に進む。
【0098】
ステップS36において、アルゴリズムコード実行部45は、今回のデータグループ内に、前回あった重要タグ12aが全てなくなり、かつ、前回なかった重要タグ12aが現れているか否かを判定する。
【0099】
ステップS36において、アルゴリズムコード実行部45が、今回のデータグループ内に、前回あった重要タグ12aが全てなくなり、かつ、前回なかった重要タグ12aが現れていると判定した場合、処理はステップS37に進む。
【0100】
ステップS37において、アルゴリズムコード実行部45は、検出アルゴリズムCROSSに従って、複数のRFIDタグ12の一部が消失したのと同時に他の複数のRFIDタグ12が出現したという変化が抽出されており、その変化があったことを示す検出結果CROSSを出力し、その後、処理は終了される。
【0101】
なお、ステップS35において、アルゴリズムコード実行部45が、今回のデータグループと前回のデータグループとを合わせた中に、閾値K以上の個数のRFIDタグ12がない、または、閾値K’以上の個数の重要タグ12aがないと判定した場合、検出結果CROSSは出力されずに処理は終了される。同様に、ステップS36において、アルゴリズムコード実行部45が、今回のデータグループ内に、前回あった重要タグ12aが全てなくなっていない、または、前回なかった重要タグ12aが現れていないと判定した場合、検出結果CROSSは出力されずに処理は終了される。
【0102】
一方、ステップS31において、アルゴリズムコード実行部45が、検出アルゴリズムの種類がその他(即ち、DROPおよびCROSS以外)であると判定した場合、処理はステップS38に進む。
【0103】
ステップS38において、アルゴリズムコード実行部45は、今回のデータグループ内に、閾値K以上の個数のRFIDタグ12があり、かつ、閾値K’以上の個数の重要タグ12aがあるか否かを判定する。
【0104】
ステップS38において、アルゴリズムコード実行部45が、今回のデータグループ内に、閾値K以上の個数のRFIDタグ12があり、かつ、閾値K’以上の個数の重要タグ12aがあると判定した場合、処理はステップS39に進む。
【0105】
ステップS39において、アルゴリズムコード実行部45は、
図8のステップS18でアルゴリズムコード検索部44から供給された検出アルゴリズムの種類が、検出アルゴリズムEMERGEであり、前回のデータグループ内には今回ある重要タグ12aはすべてなくなり、かつ、前回あったRFIDタグ12の個数が閾値Kの半分以下であるか否かを判定する。
【0106】
ステップS39において、アルゴリズムコード実行部45が、検出アルゴリズムの種類が検出アルゴリズムEMERGEであり、前回のデータグループ内には今回ある重要タグ12aはすべてなくなり、かつ、前回あったRFIDタグ12の個数が閾値Kの半分以下であると判定した場合、処理はステップS40に進む。
【0107】
ステップS40において、アルゴリズムコード実行部45は、検出アルゴリズムEMERGEに従って、複数のRFIDタグ12が同時に出現したという変化が抽出されており、その変化があったことを示す検出結果EMERGEを出力し、その後、処理は終了される。
【0108】
一方、ステップS39において、アルゴリズムコード実行部45が、検出アルゴリズムの種類が検出アルゴリズムEMERGEでない、前回のデータグループ内には今回ある重要タグ12aはすべてなくなっていない、または、前回あったRFIDタグ12の個数が閾値Kの半分以下でないと判定した場合、処理はステップS41に進む。
【0109】
ステップS41において、アルゴリズムコード実行部45は、受信信号強度に基づいて検出結果DIVIDEまたは検出結果MERGEを判定し、その判定に従った一方を出力した後、処理は終了される。
【0110】
なお、ステップS38において、アルゴリズムコード実行部45が、今回のデータグループ内に、閾値K以上の個数のRFIDタグ12がない、または、閾値K’以上の個数の重要タグ12aがないと判定した場合、いずれの検出結果も出力されずに処理は終了される。
【0111】
以上のように、RFIDリーダ14は、行動認識のためのイベント検出処理を行うことによって、検出アルゴリズムに応じた変化を抽出した場合、そのような変化を抽出したことを示すイベントの検出結果を、処理対象となっているグループごとに出力することができる。そして、RFIDリーダ14は、イベントの検出結果が出力されたタイミングで、処理対象となっているグループのRFIDタグ12の受信信号強度の現在値の特徴ベクトルに基づいて、居住者の行動を認識することができる。
【0112】
このように、RFIDリーダ14は、イベント検出に、受信信号強度の時系列データの変化を用い、行動認識に、受信信号強度の現在値を用いることで、効率的な処理を行うことができるとともに、どの時点においても行動認識を行うことができる。
【0113】
なお、上述したように、従来、RFIDタグを製造している製造業者のサーバにアクセスしてRFIDタグの属性を取得し、その属性からイベントの発生を検出する手法が用いられていた。これに対し、RFIDリーダ14は、RFIDタグ12のRFIDタグコードから読み出したロジックメソッドにより特定される検出アルゴリズムを用いることができ、例えば、サーバなどへの接続やデータベースの検索を行わずにローカルな環境で、行動認識のためのイベント検出を行うことができる。
【0114】
従って、例えば、100個以上のRFIDタグ12、かつ、10個以上のRFIDアンテナ13によって行動認識システム11が構成されているような環境であっても、RFIDリーダ14は、行動認識のための多様なイベントを高速かつ効率的に検出することができる。
【0115】
なお、例えば、屋内で発生するイベントの特徴としては、複数のオブジェクトが関わることになるが、局所的なイベントが多数となる。具体的には、オブジェクトの利用(人と道具が近接)や、人の接触(人と人が近接)、ドアの開閉(表と裏面の反転)、オムツ濡れ(外側と内側の差)などが屋内で発生するイベントである。従って、このようなイベントは、例えば、1つのRFIDアンテナ13または1つのRFIDリーダ14の範囲内で検出可能である。
【0116】
ところで、流通タグのように通過経路が決められている場合には必ず読み取りが可能であるのに対し、屋内を自由に動く居住者に取り付けられているRFIDタグ12が常に読み取られるようにするのは困難であり、1個のRFIDタグ12による絶対値のセンシングは困難であると想定される。これに対し、行動認識システム11は、複数のRFIDタグ12の相対変化を抽出することで、より確実にイベントの発生を検出することができる。また、RFIDリーダ14は、ローカルな環境でイベントを検出することができ、どこのローカルな環境でも同一に処理を実行することができる。また、RFIDリーダ14は、受信信号強度の時系列データに対するストリーム処理にも対応することができる。
【0117】
<コンピュータの構成例>
次に、上述した一連の処理(情報処理方法)は、ハードウェアにより行うこともできるし、ソフトウェアにより行うこともできる。一連の処理をソフトウェアによって行う場合には、そのソフトウェアを構成するプログラムが、汎用のコンピュータ等にインストールされる。
【0118】
図10は、上述した一連の処理を実行するプログラムがインストールされるコンピュータの一実施の形態の構成例を示すブロック図である。
【0119】
プログラムは、コンピュータに内蔵されている記録媒体としてのハードディスク105やROM103に予め記録しておくことができる。
【0120】
あるいはまた、プログラムは、ドライブ109によって駆動されるリムーバブル記録媒体111に格納(記録)しておくことができる。このようなリムーバブル記録媒体111は、いわゆるパッケージソフトウェアとして提供することができる。ここで、リムーバブル記録媒体111としては、例えば、フレキシブルディスク、CD-ROM(Compact Disc Read Only Memory),MO(Magneto Optical)ディスク,DVD(Digital Versatile Disc)、磁気ディスク、半導体メモリ等がある。
【0121】
なお、プログラムは、上述したようなリムーバブル記録媒体111からコンピュータにインストールする他、通信網や放送網を介して、コンピュータにダウンロードし、内蔵するハードディスク105にインストールすることができる。すなわち、プログラムは、例えば、ダウンロードサイトから、ディジタル衛星放送用の人工衛星を介して、コンピュータに無線で転送したり、LAN(Local Area Network)、インターネットといったネットワークを介して、コンピュータに有線で転送することができる。
【0122】
コンピュータは、CPU(Central Processing Unit)102を内蔵しており、CPU102には、バス101を介して、入出力インタフェース110が接続されている。
【0123】
CPU102は、入出力インタフェース110を介して、ユーザによって、入力部107が操作等されることにより指令が入力されると、それに従って、ROM(Read Only Memory)103に格納されているプログラムを実行する。あるいは、CPU102は、ハードディスク105に格納されたプログラムを、RAM(Random Access Memory)104にロードして実行する。
【0124】
これにより、CPU102は、上述したフローチャートにしたがった処理、あるいは上述したブロック図の構成により行われる処理を行う。そして、CPU102は、その処理結果を、必要に応じて、例えば、入出力インタフェース110を介して、出力部106から出力、あるいは、通信部108から送信、さらには、ハードディスク105に記録等させる。
【0125】
なお、入力部107は、キーボードや、マウス、マイク等で構成される。また、出力部106は、LCD(Liquid Crystal Display)やスピーカ等で構成される。
【0126】
ここで、本明細書において、コンピュータがプログラムに従って行う処理は、必ずしもフローチャートとして記載された順序に沿って時系列に行われる必要はない。すなわち、コンピュータがプログラムに従って行う処理は、並列的あるいは個別に実行される処理(例えば、並列処理あるいはオブジェクトによる処理)も含む。
【0127】
また、プログラムは、1のコンピュータ(プロセッサ)により処理されるものであっても良いし、複数のコンピュータによって分散処理されるものであっても良い。さらに、プログラムは、遠方のコンピュータに転送されて実行されるものであっても良い。
【0128】
さらに、本明細書において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、すべての構成要素が同一筐体中にあるか否かは問わない。したがって、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、及び、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムである。
【0129】
また、例えば、1つの装置(または処理部)として説明した構成を分割し、複数の装置(または処理部)として構成するようにしてもよい。逆に、以上において複数の装置(または処理部)として説明した構成をまとめて1つの装置(または処理部)として構成されるようにしてもよい。また、各装置(または各処理部)の構成に上述した以外の構成を付加するようにしてももちろんよい。さらに、システム全体としての構成や動作が実質的に同じであれば、ある装置(または処理部)の構成の一部を他の装置(または他の処理部)の構成に含めるようにしてもよい。
【0130】
また、例えば、本技術は、1つの機能を、ネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。
【0131】
また、例えば、上述したプログラムは、任意の装置において実行することができる。その場合、その装置が、必要な機能(機能ブロック等)を有し、必要な情報を得ることができるようにすればよい。
【0132】
また、例えば、上述のフローチャートで説明した各ステップは、1つの装置で実行する他、複数の装置で分担して実行することができる。さらに、1つのステップに複数の処理が含まれる場合には、その1つのステップに含まれる複数の処理は、1つの装置で実行する他、複数の装置で分担して実行することができる。換言するに、1つのステップに含まれる複数の処理を、複数のステップの処理として実行することもできる。逆に、複数のステップとして説明した処理を1つのステップとしてまとめて実行することもできる。
【0133】
なお、コンピュータが実行するプログラムは、プログラムを記述するステップの処理が、本明細書で説明する順序に沿って時系列に実行されるようにしても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで個別に実行されるようにしても良い。つまり、矛盾が生じない限り、各ステップの処理が上述した順序と異なる順序で実行されるようにしてもよい。さらに、このプログラムを記述するステップの処理が、他のプログラムの処理と並列に実行されるようにしても良いし、他のプログラムの処理と組み合わせて実行されるようにしても良い。
【0134】
なお、本明細書において複数説明した本技術は、矛盾が生じない限り、それぞれ独立に単体で実施することができる。もちろん、任意の複数の本技術を併用して実施することもできる。例えば、いずれかの実施の形態において説明した本技術の一部または全部を、他の実施の形態において説明した本技術の一部または全部と組み合わせて実施することもできる。また、上述した任意の本技術の一部または全部を、上述していない他の技術と併用して実施することもできる。
【0135】
なお、本実施の形態は、上述した実施の形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。また、本明細書に記載された効果はあくまで例示であって限定されるものではなく、他の効果があってもよい。
【符号の説明】
【0136】
11 行動認識システム, 12 RFIDタグ, 13 RFIDアンテナ, 14 RFIDリーダ, 31 データ取得部, 32 データソート部, 33 記憶部, 34 グループ処理部, 35 行動認識処理部, 41 アルゴリズム抽出部, 42 補助情報抽出部, 43 アルゴリズムコードデータベース, 44 アルゴリズムコード検索部, 45 アルゴリズムコード実行部