(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-02-19
(45)【発行日】2024-02-28
(54)【発明の名称】物理吸着型フィルターの寿命判定方法および寿命判定装置
(51)【国際特許分類】
G01N 15/08 20060101AFI20240220BHJP
A61L 9/014 20060101ALI20240220BHJP
【FI】
G01N15/08 A
G01N15/08 D
A61L9/014
(21)【出願番号】P 2020092038
(22)【出願日】2020-05-27
【審査請求日】2023-03-03
(73)【特許権者】
【識別番号】000193047
【氏名又は名称】進和テック株式会社
(74)【代理人】
【識別番号】100123788
【氏名又は名称】宮崎 昭夫
(74)【代理人】
【識別番号】100127454
【氏名又は名称】緒方 雅昭
(72)【発明者】
【氏名】小森 陽介
(72)【発明者】
【氏名】梅田 知宙
【審査官】鴨志田 健太
(56)【参考文献】
【文献】特開平09-105711(JP,A)
【文献】特開2012-103119(JP,A)
【文献】特開2002-214116(JP,A)
【文献】特開2000-157826(JP,A)
【文献】特開2000-218158(JP,A)
【文献】特開平02-083016(JP,A)
【文献】実開昭57-088062(JP,U)
【文献】米国特許出願公開第2009/0165528(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 15/08
A61L 9/014
(57)【特許請求の範囲】
【請求項1】
物理吸着型フィルターに標準ガスを供給しつつ当該物理吸着型フィルターを通過したガスを採取し、採取したガスの中の特定の物質の濃度を測定して、前記標準ガスの中の前記物質の濃度と比較して捕集効率を算出する捕集効率算出ステップを含み、
未使用の物理吸着型フィルターに対して前記捕集効率
算出ステップを複数回行って、複数回算出した捕集効率と、前記標準ガスの当該物理吸着型フィルターへの累積供給時間との関係を示す破過曲線を作成しておき、
前記破過曲線を作成した後に、寿命判定の対象である物理吸着型フィルターに対して前記捕集効率
算出ステップを行い、算出した捕集効率と前記破過曲線とを対比して当該物理吸着型フィルターの寿命を判定することを特徴とする、物理吸着型フィルターの寿命判定方法。
【請求項2】
前記物理吸着型フィルターの寿命の判定は、当該物理吸着型フィルターが使用されている現場で実施可能であることを特徴とする、請求項1に記載の物理吸着型フィルターの寿命判定方法。
【請求項3】
前記物理吸着型フィルターの寿命の判定は、10分以下の時間で実施可能であることを特徴とする、請求項1または2に記載の物理吸着型フィルターの寿命判定方法。
【請求項4】
前記破過曲線を作成するための複数回の前記捕集効率算出ステップでは、前記未使用の物理吸着型フィルターに対して連続的に標準ガスを供給している間に、当該物理吸着型フィルターを通過したガスの採取と、採取したガスの中の前記物質の濃度の測定と、前記捕集効率の算出とを、間欠的に複数回行うことを特徴とする、請求項1から3のいずれか1項に記載の物理吸着型フィルターの寿命判定方法。
【請求項5】
前記寿命判定の対象である物理吸着型フィルターの寿命を判定する際には、測定した前記捕集効率が前記破過曲線の何処に位置するかによって寿命の残り時間を求めることを特徴とする、請求項1から4のいずれか1項に記載の物理吸着型フィルターの寿命判定方法。
【請求項6】
前記破過曲線に、前記寿命判定の対象である物理吸着型フィルターの使用可能な最低限の捕集効率の点P1をプロットしておき、
前記寿命判定の対象である物理吸着型フィルターの、測定した前記捕集効率に対応する点P2を調べ、前記破過曲線上において、前記標準ガスの供給開始から前記点P1までの時間間隔t1に対する、前記標準ガスの供給開始から前記点P2までの時間間隔t2の割合に基づいて、寿命の残り時間を求めることを特徴とする、請求項5に記載の物理吸着型フィルターの寿命判定方法。
【請求項7】
前記寿命判定の対象である物理吸着型フィルターの実際の累積使用時間Aと、有効寿命の残りの時間Bとの関係は、B=A×(t1-t2)/t
2であることを特徴とする、請求項6に記載の物理吸着型フィルターの寿命判定方法。
【請求項8】
前記物理吸着型フィルターは脱臭用ハニカムフィルターであり、濃度を測定する前記物質は臭気物質であることを特徴とする、請求項1から7のいずれか1項に記載の物理吸着型フィルターの寿命判定方法。
【請求項9】
物理吸着型フィルターの上流側に接続されている、標準ガスを収容した標準ガス供給手段と、当該物理吸着型フィルターを通過したガスを採取するガス採取手段と、採取したガスの中の特定の物質の濃度を測定して、前記標準ガスの中の前記物質の濃度と比較して捕集効率を算出する制御手段と、を有し、
前記制御手段は、未使用の物理吸着型フィルターに対して前記標準ガス供給手段から前記標準ガスを連続的に供給させている間に、当該物理吸着型フィルターを通過したガスの採取と、採取したガスの中の特定の物質の濃度の測定と、前記捕集効率の算出とを、間欠的に複数回行って、複数回算出した捕集効率と、前記標準ガスの当該物理吸着型フィルターへの累積供給時間との関係を示す破過曲線を作成するとともに、
前記破過曲線を作成した後に、寿命判定の対象である物理吸着型フィルターに対して前記標準ガス供給手段から前記標準ガスを供給させて、当該物理吸着型フィルターを通過したガスの採取と、採取したガスの中の特定の物質の濃度の測定と、前記捕集効率の算出とを行なって、算出した捕集効率と前記破過曲線とを対比して当該物理吸着型フィルターの寿命を判定することを特徴とする、物理吸着型フィルターの寿命判定装置。
【請求項10】
互いに向かい合う1対の押さえ板と、前記押さえ板の互いに向かい合う面にそれぞれ設けられている弾性材層と、前記弾性材層および前記押さえ板を貫通する貫通孔と、を有し、1対の前記弾性材層および前記押さえ板は互いに接近したり離れたりするように移動可能である治具をさらに備え、
一方の前記弾性材層および前記押さえ板は前記物理吸着型フィルターの上流側に配置され、前記弾性材層および前記押さえ板の前記貫通孔は前記標準ガス供給手段に接続されており、
他方の前記弾性材層および前記押さえ板は前記物理吸着型フィルターの下流側に配置され、前記弾性材層および前記押さえ板の前記貫通孔は前記ガス採取手段に接続されていることを特徴とする、請求項9に記載の物理吸着型フィルターの寿命判定装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は物理吸着型フィルターの寿命判定方法および寿命判定装置に関する。
【背景技術】
【0002】
従来、レストランを含む飲食店または給食センター等の厨房や、パン、にんにく加工品、魚肉加工品等の食品を製造または加工する工場等からの排気中の調理臭を低減するために、物理吸着型フィルターが用いられている。物理吸着型フィルターの一例は、特許文献1に記載されているような脱臭用ハニカムフィルターである。脱臭用ハニカムフィルターは、空気の流れ方向に沿って延びる多数の細孔を有し、空気中の臭気物質(例えばアセトアルデヒド、トリメチルアミン、酢酸、アミン類、アンモニアなどの化合物)を物理的に吸着し、臭気物質が除去された空気を通過させる。さらに、脱臭用ハニカムフィルターは、吸着した臭気物質を触媒によって分解して臭気の拡散を抑制する。脱臭用ハニカムフィルターは、臭気物質を吸着すると徐々に脱臭能力が低下する。脱臭能力が低下した脱臭用ハニカムフィルターを使用し続けると、悪臭を除去できずに下流側に拡散させてしまい、悪臭防止法の規制基準を維持できなくなるおそれがある。従って、脱臭能力が低下した脱臭用ハニカムフィルターは交換する必要がある。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
脱臭用ハニカムフィルターを交換する適切なタイミングを知るために、脱臭用ハニカムフィルターの寿命の判定が行われている。一般的には、臭気源である厨房や工場が稼働している時に、脱臭用ハニカムフィルターの上流側(1次側)と下流側(2次側)とにおいてサンプルとなる空気を採取して、テストラボ等に運び、三点比較式臭袋法によって臭気濃度の低減率(脱臭効率、捕集効率ともいう)を算出して指標とする。しかし、発生する臭気の原臭濃度は一定ではなく、脱臭用ハニカムフィルターが設置されている環境(例えば天気や気温)や、調理される献立(オーダー)等によって大きく変動する。従って、臭気測定結果から脱臭能力の変化を正確に評価することは困難である。例えば、一時的に原臭濃度が上昇すると、脱臭用ハニカムフィルターの下流側(2次側)の臭気濃度も上昇する。さらに、原臭濃度に応じて脱臭効率自体も変化する。そのため、臭気測定結果はあくまでも脱臭ハニカムフィルターの脱臭能力を間接的に示すデータに過ぎず、脱臭能力を直接的に示す指標とは言えない。また、三点比較式臭袋法による臭気の測定は、人間の嗅覚に依存するものであり、臭気判定士の資格を有する専門家でないと実施できない。従って、一般的な飲食店や工場や企業では実施できないことが多く、専門の分析機関に依頼する必要があり、例えば2週間程度の時間と測定回数に比例した高いコストを要するという問題がある。
【0005】
そこで、本発明の目的は、前述した問題点を解決し、操作が簡単で短時間で実施できて精度が高い、物理吸着型フィルターの寿命判定方法および寿命判定装置を提供することにある。
【課題を解決するための手段】
【0006】
本発明の物理吸着型フィルターの寿命判定方法は、物理吸着型フィルターに標準ガスを供給しつつ当該物理吸着型フィルターを通過したガスを採取し、採取したガスの中の特定の物質の濃度を測定して、標準ガスの中の物質の濃度と比較して捕集効率を算出する捕集効率算出ステップを含み、未使用の物理吸着型フィルターに対して捕集効率算出ステップを複数回行って、複数回算出した捕集効率と、標準ガスの当該物理吸着型フィルターへの累積供給時間との関係を示す破過曲線を作成しておき、破過曲線を作成した後に、寿命判定の対象である物理吸着型フィルターに対して捕集効率算出ステップを行い、算出した捕集効率と破過曲線とを対比して当該物理吸着型フィルターの寿命を判定することを特徴とする。
【0007】
本発明の物理吸着型フィルターの寿命判定装置は、物理吸着型フィルターの上流側に接続されている、標準ガスを収容した標準ガス供給手段と、当該物理吸着型フィルターを通過したガスを採取するガス採取手段と、採取したガスの中の特定の物質の濃度を測定して、標準ガスの中の物質の濃度と比較して捕集効率を算出する制御手段と、を有し、制御手段は、未使用の物理吸着型フィルターに対して標準ガス供給手段から標準ガスを連続的に供給させている間に、当該物理吸着型フィルターを通過したガスの採取と、採取したガスの中の特定の物質の濃度の測定と、捕集効率の算出とを、間欠的に複数回行って、複数回算出した捕集効率と、標準ガスの当該物理吸着型フィルターへの累積供給時間との関係を示す破過曲線を作成するとともに、破過曲線を作成した後に、寿命判定の対象である物理吸着型フィルターに対して標準ガス供給手段から標準ガスを供給させて、当該物理吸着型フィルターを通過したガスの採取と、採取したガスの中の特定の物質の濃度の測定と、捕集効率の算出とを行なって、算出した捕集効率と破過曲線とを対比して当該物理吸着型フィルターの寿命を判定することを特徴とする。
【発明の効果】
【0008】
本発明によると、操作が簡単で短時間で実施できて精度が高い、物理吸着型フィルターの寿命判定方法および寿命判定装置が提供される。
【図面の簡単な説明】
【0009】
【
図1】本発明の寿命判定方法の対象である物理吸着型フィルターの一例である脱臭用ハニカムフィルターの斜視図である
【
図2】
図1に示す脱臭用ハニカムフィルターの設置状態を示す斜視図である。
【
図3】本発明の脱臭用ハニカムフィルターの寿命判定方法において作成した破過曲線の一例を示すグラフである。
【
図4】
図1に示す脱臭用ハニカムフィルターの寿命判定装置を模式的に示す図である。
【
図5】本発明の脱臭用ハニカムフィルターの寿命判定方法に用いられる治具の一例を示す斜視図である。
【
図6】
図5に示す治具を用いた脱臭用ハニカムフィルターの寿命判定装置の一例を示す正面図である。
【発明を実施するための形態】
【0010】
以下、本発明の好適な実施形態について図面を参照して説明する。
図1に、本発明の寿命判定方法の対象である物理吸着型フィルターの一例である脱臭用ハニカムフィルター1が示されている。この脱臭用ハニカムフィルター1は、立方体または直方体状であり、脱臭すべき空気の流れ方向に沿って延びる多数の細孔1aを有している。図示しないが、この脱臭用ハニカムフィルター1に、触媒物質が担持または含有されている。例えば、
図2に示すように、臭気源である厨房や工場に設置された排気ダクト2の内部に、1つまたは複数の脱臭用ハニカムフィルター1が配置される。厨房や工場から排気ダクト2内に吸引した空気を、脱臭用ハニカムフィルター1を通過させた後に排出する。空気が脱臭用ハニカムフィルター1を通過する際に、脱臭用ハニカムフィルター1は空気中に含まれている臭気物質(例えばアセトアルデヒド、トリメチルアミン、酢酸、アミン類、アンモニアなど)を物理的に吸着する。そして、脱臭用ハニカムフィルター1に担持または含有された触媒物質が、吸着した臭気物質を分解する。こうして、脱臭用ハニカムフィルター1を通過して臭気物質が除去された空気が、排気ダクト2から外部に排出される。この脱臭用ハニカムフィルター1は、脱臭能力が低下したら交換する必要がある。この交換の適切なタイミングを把握するために、脱臭用ハニカムフィルター1の寿命の判定を行う必要がある。本実施形態の脱臭用ハニカムフィルター1の寿命判定方法について以下に説明する。
【0011】
本実施形態の脱臭用ハニカムフィルター1の寿命判定方法は、脱臭用ハニカムフィルター1等の物理吸着型フィルターに標準ガスを供給しつつ、その物理吸着型フィルターを通過したガスを採取し、採取したガスの中の特定の物質の濃度を測定して、標準ガスの中のその物質の濃度と比較して捕集効率を算出する捕集効率算出ステップを用いて行う。標準ガスは、特定の物質(例えば臭気物質)の混合割合が予め判っているガスである。まず、未使用の物理吸着型フィルターに対して捕集効率
算出ステップを複数回行って、複数回算出した捕集効率と、標準ガスの物理吸着型フィルターへの累積供給時間との関係を示す
図3に示すような破過曲線を作成する。破過曲線を作成するための複数回の捕集効率算出ステップでは、未使用の物理吸着型フィルターに対して連続的に標準ガスを供給している間に、物理吸着型フィルターを通過したガスの採取と、採取したガスの中の特定の物質の濃度の測定と、捕集効率の算出とを、間欠的に複数回行う。
【0012】
こうして破過曲線を作成した後に、寿命判定の対象である物理吸着型フィルターに対して捕集効率
算出ステップを行い、算出した捕集効率と破過曲線とを対比してその物理吸着型フィルターの寿命を判定する。このように物理吸着型フィルターの寿命を判定する際には、測定した捕集効率が破過曲線の何処に位置するかによって寿命の残り時間を求めることができる。一例としては、破過曲線に、寿命判定の対象である物理吸着型フィルターの使用可能な最低限の捕集効率(
図3に示す例では約58%)の点P1をプロットしておく。そして、寿命判定の対象である物理吸着型フィルターの、測定した捕集効率に対応する点P2を調べる。破過曲線上において、標準ガスの供給開始から点P1までの時間間隔t1が、その物理吸着型フィルターの有効寿命である。一方、標準ガスの供給開始から点P2までの時間間隔t2が、その物理吸着型フィルターの使用による性能低下の程度に相当する。そこで、この標準ガスの供給開始から点P1までの時間間隔t1に対する、標準ガスの供給開始から点P2までの時間間隔t2の割合に基づいて、寿命の残り時間を求める。
【0013】
この物理吸着型フィルターの寿命判定方法について、より詳細に説明する。前述したように、寿命判定の基準となる破過曲線を作成するために、除去対象とする物質(例えば臭気物質)の濃度が判明している基準ガスを、未使用の脱臭用ハニカムフィルター1の上流側(1次側)から所定の風量(所定の面速)で供給する。そして、脱臭用ハニカムフィルター1を通過したガスを下流側(2次側)において採取して、採取したガス中の臭気物質の濃度を測定する。一例としては、
図4に模式的に示す寿命判定装置を用いる。具体的には、標準ガスを収容した標準ガス供給手段、例えばバッグ3を脱臭用ハニカムフィルター1の上流側(1次側)に配置する。必要に応じて、バッグ3の上流側に、バッグ3に標準ガスを供給するボンベ6を配置してもよい。そして、脱臭用ハニカムフィルター1の下流側(2次側)にポンプ4を介してサンプリングバッグ(ガス採取手段)5を配置する。制御手段15がポンプ4を作動させることによりバッグ3内の標準ガスを吸引して脱臭用ハニカムフィルター1を通過させる。そして、脱臭用ハニカムフィルター1を通過したガスをサンプリングバッグ5に採取(収集)する。こうして脱臭用ハニカムフィルター1の下流側(2次側)においてサンプリングバッグ5に採取したガス中の臭気物質の濃度を測定して、予め判明している基準ガスの臭気物質の濃度と比較して、捕集効率を求める。基準ガスの供給を継続して行い、その間に脱臭用ハニカムフィルター1の下流側(2次側)におけるガスの採取および臭気物質の捕集効率の算出を連続的または間欠的に行う。そして、基準ガスを供給している累積供給時間と臭気物質の捕集効率との関係をグラフに表して、
図3に示すような破過曲線を作成する。この破過曲線が、本実施形態の脱臭用ハニカムフィルター1の寿命判定方法の基準になる。なお、脱臭用ハニカムフィルター1を有効に使用するために必要な最低限の捕集効率(寿命ライン)を予め設定しておく。基準ガス中の臭気物質の濃度が低いと破過曲線の作成に膨大な時間を要するため、基準ガスには非常に高濃度の臭気物質を含有させておく。基準ガス中の臭気物質の濃度は、実際に脱臭用ハニカムフィルター1を設置する環境の空気中の臭気物質の濃度に比べてはるかに高い。
【0014】
前述したように未使用の脱臭用ハニカムフィルター1を用いて破過曲線を作成した上で、寿命判定の対象とする脱臭用ハニカムフィルター1の上流側(1次側)から基準ガスを所定の風量で供給する。そして、脱臭用ハニカムフィルター1の下流側(2次側)においてガスを採取して、臭気物質の捕集効率を算出する。この作業は、破過曲線を作成するための工程と実質的に同様であり、前述した捕集効率算出ステップを用いて行い、未使用の脱臭用ハニカムフィルター1から、実際に寿命を判定すべき脱臭用ハニカムフィルター1に変わるだけである。ただし、ボンベ6が不要であればボンベ6を省略してもよい。脱臭用ハニカムフィルター1の下流側(2次側)で採取したガスから算出した捕集効率を、予め作成した破過曲線および寿命ラインと比較する。仮に、算出した捕集効率が寿命ライン以下である場合には、脱臭用ハニカムフィルター1の有効寿命に既に到達していると判断して、その脱臭用ハニカムフィルター1の使用を止めて交換することが必要であると判定する。それに対し、算出した捕集効率が寿命ラインより高い場合には、脱臭用ハニカムフィルター1の有効寿命に到達していないと判断して、その脱臭用ハニカムフィルター1は使用継続可能であり、まだ交換不要であると判定する。さらに、算出した捕集効率が破過曲線上の何処に位置するかを確認する。破過曲線は、未使用の脱臭用ハニカムフィルター1の使用開始から寿命ラインに到達する点P1までの捕集効率の低下状況を示している。従って、算出した捕集効率が、破過曲線上で使用開始から寿命ラインに到達する点P1に至るまでの何処に位置するかによって、寿命判定の対象である脱臭用ハニカムフィルター1の性能低下の程度を知ることができるとともに、今後使用可能な残りの有効寿命を推定することができる。この時、グラフの縦軸である捕集効率のみに応じて、寿命判定の対象である脱臭用ハニカムフィルター1に対応する破過曲線上の点P2の位置を決める。点P2の位置を設定する上で、グラフの横軸である時間は考慮しない。例えば、算出した捕集効率が、破過曲線上における使用開始点と点P1との間の点P2に位置し、時間を表す横軸において点P2が使用開始から寿命ラインに到達する点P1まで範囲のちょうど中間に位置する場合には、脱臭用ハニカムフィルター1は有効寿命の半分を経過したと判断する。従って、その脱臭用ハニカムフィルター1は、それまでの実際の累積使用時間と同じ時間だけ引き続き使用可能であると判定する。仮に脱臭用ハニカムフィルター1の累積使用時間が3年間であるとしたら、今後3年間使用した後に交換すればよいと言える。
【0015】
また、時間を表す横軸において点P2が使用開始から寿命ラインに到達する点P1までの範囲の1/3の位置にある場合には、脱臭用ハニカムフィルター1は有効寿命の1/3を経過したと判断する。従って、その脱臭用ハニカムフィルター1は、それまでの累積使用時間の2倍の時間だけ引き続き使用可能であると判定する。仮に、脱臭用ハニカムフィルター1の累積使用時間が3年間であるとしたら、今後6年間使用した後に交換すればよいと言える。
【0016】
図3には、累積使用時間がそれぞれ7年間、10年間、13年間である脱臭用ハニカムフィルター1の捕集効率を示している。これらの脱臭用ハニカムフィルター1はいずれも寿命ラインを下回っているため、直ちに交換する必要があると判定される。
【0017】
このような寿命判定方法に基づいて、脱臭用ハニカムフィルター1の実際の累積使用時間Aと、有効寿命の残りの時間Bは、以下の関係式で表すことができる。
B=A×(t1-t2)/t2
この関係式に基づいて寿命を判定することが可能である。時間t1およびt2の数値は、破過曲線作成のための捕集効率測定時の実際の時間であってもよいが、時間t1を1として表した数値であってもよい。なお、時間t2の値は、算出した捕集効率に基づいてグラフ上で求めた値であり、寿命判定の対象である脱臭用ハニカムフィルター1の実際の累積使用時間ではない。
【0018】
従来の寿命判定方法では、寿命判定の対象である脱臭用ハニカムフィルター1が、既に有効寿命を過ぎており交換が必要であるか否かを判定することのみが可能であった。これに加えて、本実施形態では、破過曲線を用いることによって有効寿命の残りの時間を知ることができる。従って、脱臭用ハニカムフィルター1を交換すべきタイミングを事前に知り、脱臭用ハニカムフィルター1の交換予定を予め設定することができる。交換のタイミングが遅れてしまうことが抑制できる。
【0019】
また、従来の寿命判定方法では、人間の嗅覚に依存する方法(例えば三点比較式臭袋法)による臭気の測定を行っていたので、臭気判定士でないと実施できず、専門の分析機関に依頼するために長時間を必要とするとともに高コストであった。しかし、本実施形態では、人間の感覚に依存しない方法(例えばガス検知管法等)で特定の物質の濃度を測定することによって寿命の判定が可能である。専門の分析機関に依頼する必要がないため、処理の短時間化および低コスト化が可能である。この脱臭用ハニカムフィルター(物理吸着型フィルター)1の寿命の判定は、例えば10分以下の時間で実施可能であり、しかも、脱臭用ハニカムフィルター1をテストラボ等に運ぶ必要はなく、その脱臭用ハニカムフィルター1が実際に使用されている現場で実施可能である。また、本実施形態では、寿命判定の対象である脱臭用ハニカムフィルター1が設置された環境下でサンプルとなる空気を採取するのではなく、その脱臭用ハニカムフィルター1に標準ガスを供給して脱臭用ハニカムフィルター1を通過したガスを採取して濃度測定を行う。従って、脱臭用ハニカムフィルター1が設置されている環境(例えば天気や気温)や調理される献立(オーダー)等の影響を受けることはなく、原臭濃度の変化やそれに伴う脱臭効率の変化の影響もなく、高精度の寿命判定が可能である。
【0020】
以上説明した脱臭用ハニカムフィルター1の寿命判定方法の具体的な実施例について説明する。本実施例では、脱臭用ハニカムフィルター1の破過曲線の作成のためのデータ取得を行った。
図4に示すように、所定の濃度(例えば10~20ppm)のアンモニアを含む標準ガスを収容したボンベ6とボンベ6に接続された大容量のバッグ(例えばテドラー(登録商標)バッグ)3とを、未使用の脱臭用ハニカムフィルター1の上流側(1次側)に配置した。一方、ポンプ4を脱臭用ハニカムフィルター1の下流側(2次側)に配置した。そして、ポンプ4を作動させて、脱臭用ハニカムフィルター1を介して標準ガスを吸引し、吸引したガスを一定時間おきにサンプリングバッグ(臭袋)5に回収して、ガス検知管法(例えば北川式検知管105SDを用いる方法)でアンモニアの濃度を検出した。なお、一定時間毎のガス回収時以外は、ポンプ4の下流側はサンプリングバッグ5に接続させず開放しておく。測定開始と同時に、バッグ3の2つのコック(図示せず)を開き、ボンベ6側と脱臭用ハニカムフィルター1側の両方向に対して開放した状態にする。それにより、脱臭用ハニカムフィルター1には所定の風量で標準ガスが供給され続ける。なお、この方法では、常に大気圧での測定が可能であり圧力の補正等を必要としないという特徴がある。このようにして複数回の濃度検出を行って、それらの測定結果に基づいて捕集効率を求め、
図3に示すような破過曲線を作成した。この時に用いられる脱臭用ハニカムフィルター1は、実際に寿命判定の対象になる脱臭用ハニカムフィルター1の新品の状態であることが好ましいが、同一種類(同一型番)の製品であれば別ロットで製造された製品であってもよい。
【0021】
図3に示すような破過曲線を作成した後に、破過曲線作成のためのデータ作成時と同じ装置(
図4参照)と同じ標準ガスを用いて、脱臭用ハニカムフィルター1の寿命の判定を行う。寿命判定の対象である脱臭用ハニカムフィルター1は、通常は数ヶ月または数年以上にわたって使用されたものである。この寿命判定の対象である脱臭用ハニカムフィルター1を、
図4に示す寿命判定装置にセットする。ただし、ボンベ6が不要であれば、
図4に示す寿命判定装置からボンベ6を省略してもよい。そして、ポンプ4を作動させて、破過曲線作成のためのデータ作成時と同じ標準ガスを、脱臭用ハニカムフィルター1を通過させてサンプリングバッグ5に収集する。サンプリングバッグ5に収集したガス中のアンモニアの濃度を、ガス検知管法等によって検出する。検出したアンモニアの濃度を、標準ガス中のアンモニアの濃度と比較して捕集効率を求める。こうして求めた捕集効率が、
図3に示す破過曲線上の何処に位置するかを調べる。そして、寿命判定の対象である脱臭用ハニカムフィルター1に対応する破過曲線上の点P2を求めて、前述した関係式B
=A×(t1-t2)/t
2に基づいて、有効寿命の残りの時間を求める。
【0022】
この脱臭用ハニカムフィルター1の寿命判定方法においては、標準ガスが大気と混合することなく閉じた系の中で脱臭用ハニカムフィルター1を通過し、さらにこの閉じた系の中で、脱臭用ハニカムフィルター1以外の部分に吸着されないようにする必要がある。特に、ポンプ4内の流通路は取り外して洗浄できるものであることが好ましい。
【0023】
標準ガスは、脱臭用ハニカムフィルター1の実際の使用時に問題になる臭気物質を含むことが好ましいが、脱臭用ハニカムフィルター1で吸着可能な物質を含むガスであれば他のガスも使用可能である。ただし、管理濃度や許容濃度が定められているガスの場合には、誤ってガスが漏れた場合等の危険性を考慮する必要がある。従って、管理濃度以下および許容濃度以下であるガスを用いることが望ましい。さらに、一般的に市販されている検知管において、目盛上限を超えることなく、かつ薄すぎない濃度の物質を含んでいることが好ましい。例えば、低濃度のトルエン、アンモニア、ホルムアルデヒドなどを含むガスが好適に用いられる。
【0024】
図4に示すような寿命判定装置において、脱臭用ハニカムフィルター1の前後、すなわち脱臭用ハニカムフィルター1への標準ガスの供給部と、脱臭用ハニカムフィルターとポンプとの接続部とを構成するための治具の一例を
図5に示している。この治具7は、互いに向かい合う1対の押さえ板8を有し、押さえ板8の互いに向かい合う面には弾性材層9がそれぞれ設けられている。弾性材層9および押さえ板8には貫通孔10が形成されている。このように弾性材層9を有する押さえ板8が、取付部材11を介してスライダー12に取り付けられている。スライダー12は、長尺のレール13に摺動可能に取り付けられている。従って、スライダー12と取付部材11と弾性材層9と押さえ板8とが一体的に、レール13に沿って移動可能である。レール13に沿う移動によって、1対の弾性材層9および押さえ板8が互いに接近したり離れたりすることができる。
【0025】
図5に示す治具7を用いて、
図4に示すような寿命判定装置を構成した例を、
図6に示している。この装置では、1対の弾性材層9および押さえ板8をレール13に沿って移動させて脱臭用ハニカムフィルター1を挟みつけ、弾性材層9を脱臭用ハニカムフィルター1の両面にそれぞれ密着させる。押さえ板8の弾性材層9と反対側の面に接続管14を取り付け、弾性材層9および押さえ板8の貫通孔10に連通させる。脱臭用ハニカムフィルター1の上流側(1次側)に配置された弾性材層9および押さえ板8から突出する接続管14に、標準ガスが収容されたバッグ3を接続する。一方、脱臭用ハニカムフィルター1の下流側(2次側)に配置された弾性材層9および押さえ板8から突出する接続管14にポンプ4を接続し、ポンプ4に接続管14を介してサンプリングバッグ5を接続する。この装置を用いて、前述した寿命判定方法を実施する。
図5に示す治具7を用いると、弾性材層9を脱臭用ハニカムフィルター1の表面に密着させることにより、貫通孔10および接続管14以外に漏れないようにして、高精度かつ高効率の捕集効率測定が可能になる。
【0026】
本発明によると、各々の脱臭用ハニカムフィルター1の設置場所(厨房や工場等)や、寿命判定時の献立(オーダー)および天気等によって大きく変動する原臭濃度の影響を受けずに脱臭用ハニカムフィルター1の有効寿命の残り時間の判定を行うことができる。
【0027】
以上の説明では、脱臭用ハニカムフィルター1の寿命判定を例示しているが、それに限定されるわけではなく、物理吸着型フィルター全般の寿命判定に適用可能である。従って、捕集効率の測定対象は臭気物質に限られず、他の物質であってもよい。
【符号の説明】
【0028】
1 脱臭用ハニカムフィルター(物理吸着型フィルター)
1a 細孔
2 排気ダクト
3 バッグ(標準ガス供給手段)
4 ポンプ
5 サンプリングバッグ(ガス採取手段)
6 ボンベ(標準ガス供給手段)
7 治具
8 押さえ板
9 弾性材層
10 貫通孔
11 取付部材
12 スライダー
13 レール
14 接続管
15 制御手段