IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ネクサス・フォトニクス・インコーポレイテッドの特許一覧

特許7440567誘電体導波路に対する光結合を改善したGAAS集積能動デバイス
<>
  • 特許-誘電体導波路に対する光結合を改善したGAAS集積能動デバイス 図1
  • 特許-誘電体導波路に対する光結合を改善したGAAS集積能動デバイス 図2a
  • 特許-誘電体導波路に対する光結合を改善したGAAS集積能動デバイス 図2b
  • 特許-誘電体導波路に対する光結合を改善したGAAS集積能動デバイス 図3
  • 特許-誘電体導波路に対する光結合を改善したGAAS集積能動デバイス 図4
  • 特許-誘電体導波路に対する光結合を改善したGAAS集積能動デバイス 図5
  • 特許-誘電体導波路に対する光結合を改善したGAAS集積能動デバイス 図6a
  • 特許-誘電体導波路に対する光結合を改善したGAAS集積能動デバイス 図6b
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-02-19
(45)【発行日】2024-02-28
(54)【発明の名称】誘電体導波路に対する光結合を改善したGAAS集積能動デバイス
(51)【国際特許分類】
   G02B 6/122 20060101AFI20240220BHJP
   G02B 6/12 20060101ALI20240220BHJP
   H01S 5/34 20060101ALI20240220BHJP
【FI】
G02B6/122 311
G02B6/12 301
H01S5/34
【請求項の数】 17
【外国語出願】
(21)【出願番号】P 2022080933
(22)【出願日】2022-05-17
(65)【公開番号】P2023121105
(43)【公開日】2023-08-30
【審査請求日】2022-06-22
(31)【優先権主張番号】17/675,328
(32)【優先日】2022-02-18
(33)【優先権主張国・地域又は機関】US
【前置審査】
(73)【特許権者】
【識別番号】522194599
【氏名又は名称】ネクサス・フォトニクス・インコーポレイテッド
(74)【代理人】
【識別番号】100108453
【弁理士】
【氏名又は名称】村山 靖彦
(74)【代理人】
【識別番号】100110364
【弁理士】
【氏名又は名称】実広 信哉
(74)【代理人】
【識別番号】100133400
【弁理士】
【氏名又は名称】阿部 達彦
(72)【発明者】
【氏名】チョン・ジャン
(72)【発明者】
【氏名】ミン・トラン
(72)【発明者】
【氏名】ティン・コムリェノヴィッチ
(72)【発明者】
【氏名】ヒョン・ダイ・パク
【審査官】堀部 修平
(56)【参考文献】
【文献】米国特許出願公開第2020/0284979(US,A1)
【文献】特開平07-074341(JP,A)
【文献】特表2021-501462(JP,A)
【文献】特表2004-523113(JP,A)
【文献】特開2000-244064(JP,A)
【文献】特開2009-053268(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G02B 6/12-6/14
(57)【特許請求の範囲】
【請求項1】
デバイスであって、
共通基板上に製造された第1の要素、第2の要素、及び、第3の要素を備え、
前記第1の要素は、第1の光学モードを支援する少なくとも3つの下位層を備える能動導波路構造部を備え、前記第2の要素は、第2の光学モードを支援する受動導波路構造部を備え、前記第1の要素に対して少なくとも部分的にバットカップリングされた前記第3の要素は、2つ以上の中間光学モードを支援する中間導波路構造部を備え、
前記能動導波路構造部内の第1の下位層が、n型接触層を備え、前記能動導波路構造部内の第2の下位層が、p型接触層を備え、前記能動導波路構造部内の第3の下位層が、能動領域を備え、
前記能動導波路構造部の前記下位層の前記n型接触層が、前記能動導波路構造部の前記能動領域と前記第2の要素の前記受動導波路構造部との間にあり、
前記第2の要素及び前記第3の要素の少なくとも一方の中のテーパ導波路構造部が、前記第2の光学モードと前記中間光学モードのうちの1つとの間における効率的な断熱変換を促進し、
断熱変換が、すべての前記中間光学モードと前記第1の光学モードとの間において行われず、
前記第1の要素、前記第2の要素、及び前記第3の要素の相互アラインメントが、前記第1の要素、前記第2の要素、及び前記第3の要素を製造する処理ステップの最中に形成される層同士の間の正確なアラインメントを容易にするリソグラフィアラインメントマークを使用して規定され
前記n型接触層は、n接触金属に接続され、
前記n接触金属は、前記能動領域から側方にオフセットされる、デバイス。
【請求項2】
前記第2の要素は、前記第3の要素の下方表面の下層として位置し前記下方表面と直接接触状態にある平坦状頂部表面を備える、請求項1に記載のデバイス。
【請求項3】
前記第1の要素と前記第3の要素との間の境界部が、前記第1の要素と前記第3の要素との間における反射を最低限に抑えるように最適化された角度にて角度をつけられる、請求項1に記載のデバイス。
【請求項4】
前記n型接触層及び前記p型接触層は、高ドープGaAs層を備える、請求項1に記載のデバイス。
【請求項5】
前記能動領域は量子井戸を備える、請求項1に記載のデバイス。
【請求項6】
前記能動領域は量子ドットを備える、請求項1に記載のデバイス。
【請求項7】
前記能動領域はpin接合部を備える、請求項1に記載のデバイス。
【請求項8】
前記第2の要素は、1.8~2.5の間の屈折率及び20nm~2000nmの間の厚さを有する、請求項1に記載のデバイス。
【請求項9】
前記第3の要素は、1.55~2.2の間の屈折率を有し、
前記第3の要素の前記屈折率は、前記第2の要素の前記屈折率よりも低い、請求項1に記載のデバイス。
【請求項10】
前記第1の要素内の前記能動導波路構造部は、第1の光学モードを支援する少なくとも5つの下位層を備え、
前記能動導波路構造部内の第4の下位層が、n型クラッド層を備え、前記能動導波路構造部内の第5の下位層が、p型クラッド層を備える、請求項1に記載のデバイス。
【請求項11】
前記n型クラッド層及び前記p型クラッド層は、5%~60%の間のAl濃度を有するAlGaAs層を備える、請求項10に記載のデバイス。
【請求項12】
前記能動導波路構造部内の第6の下位層が、エッチング停止層を備える、請求項10に記載のデバイス。
【請求項13】
前記第1の要素は、光学モード閉込め部を備える、請求項10に記載のデバイス。
【請求項14】
デバイスであって、
共通基板上に製造された第1の要素、第2の要素、及び、第3の要素を備え、
前記第1の要素は、第1の光学モードを支援する少なくとも3つの下位層を備える能動導波路構造部を備え、前記第2の要素は、第2の光学モードを支援する受動導波路構造部を備え、前記第1の要素に対して少なくとも部分的にバットカップリングされた前記第3の要素は、2つ以上の中間光学モードを支援する中間導波路構造部を備え、
前記能動導波路構造部内の第1の下位層が、n型接触層を備え、前記能動導波路構造部内の第2の下位層が、p型接触層を備え、前記能動導波路構造部内の第3の下位層が、能動領域を備え、
前記能動導波路構造部の前記下位層の前記n型接触層が、前記能動導波路構造部の前記能動領域と前記第2の要素の前記受動導波路構造部との間にあり、
前記第3の要素は、前記第2の要素のためのクラッドを形成し、
前記第2の要素内のテーパ導波路構造部が、前記第2の光学モードと前記中間光学モードのうちの1つとの間における効率的な断熱変換を促進し、
断熱変換が、すべての前記中間光学モードと前記第1の光学モードとの間において行われず、
前記第1の要素、前記第2の要素、及び前記第3の要素の相互アラインメントが、前記第1の要素、前記第2の要素、及び前記第3の要素を製造する処理ステップの最中に形成される層同士の間の正確なアラインメントを容易にするリソグラフィアラインメントマークを使用して規定され
前記n型接触層は、n接触金属に接続され、
前記n接触金属は、前記能動領域から側方にオフセットされる、デバイス。
【請求項15】
前記第2の要素は、前記第3の要素の下方表面の下層として位置し前記下方表面と直接接触状態にある平坦状頂部表面を備える、請求項14に記載のデバイス。
【請求項16】
前記第1の要素と前記第3の要素との間の境界部が、前記第1の要素と前記第3の要素との間における反射を最低限に抑えるように最適化された角度にて角度をつけられる、請求項14に記載のデバイス。
【請求項17】
前記角度をつけられた境界部上に堆積された反射防止コーティング層
をさらに備える、請求項16に記載のデバイス。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本願は、米国特許第10,859,764号として発行された、2020年5月19日出願の米国特許出願第16878563号に関する。
【0002】
本発明は、半導体処理に関する。より詳細には、本発明のいくつかの実施形態は、光結合される異種材料を使用して光集積回路を実現するための方法及びシステムに関する。
【背景技術】
【0003】
光集積回路(PICまたはIOC)は、複数のフォトニック機能を集積したデバイスであり、そのため電子集積回路と類似したものである。これら2つの主な相違点は、光集積回路は光搬送波に乗せられた情報信号に対する機能を実現する点である。光集積回路に関して最も工業的に使用される材料プラットフォームは、リン化インジウム(InP)である。リン化インジウムは、様々な光学的な能動機能及び受動機能を同一チップ上に集積することを可能にする。多くの現行のPICは、InPプラットフォームにおいて実現されているが、シリコン材料のいくつかのより優れた特徴及びより優れた可処理性を理由に、PICの実現に関してはInPよりもむしろシリコンを使用した膨大な研究が過去10年においてなされおり、これらのシリコン材料のいくつかのより優れた特徴及びより優れた可処理性は、電子集積回路に対して既になされた投資に対してレバレッジ効果をもたらす。
【0004】
PICに関してシリコンを使用する最大の欠点は、シリコンが、電気励起されるソースを提供することを困難にする間接バンドギャップ材料である点である。この問題は、一般的には別個のプロセスで異種材料から作製された2つ以上のチップを備えるPICをアセンブルすることによって解決される。かかるアプローチは、非常に精密なアラインメントを必要とするため困難であり、パッケージングコストを上昇させ、スケーリング限度をもたらす。このバンドギャップの問題を解決するためのもう1つのアプローチは、2つの異種材料を結合しこれらを共に処理することにより、異種材料によるより大型のピースまたは完全ウェーハの結合の最中における精密なアラインメントの必要性を排除し、大量生産を可能にすることである。本開示では、「ハイブリッド」という用語は、それぞれ別個に処理されたパーツの正確なアセンブルを含む最初のアプローチを説明するために用いられ、「不均質(heterogeneous)」という用語は、2つの材料を結合し、次いで結合された成果物を処理することにより導波路及び他の当該構成要素を画定する後者のアプローチを説明するために用いられる。
【0005】
異種材料間において光信号を伝達するために、不均質アプローチは、テーパを使用する。このテーパの寸法は、異種材料の実効モード屈折率が合致し、効率的な電力伝達が得られるまで漸減する。一般的に、シリコン及びInPの場合などのように材料同士が類似の屈折率を有する場合には、このアプローチは良好に機能する。例えばSiN及びGaAs間などにおけるように実効屈折率の差異がより大きい場合には、テーパ先端部寸法に関する要件は、効率的な電力伝達を制限するほど法外なものとなる。具体的には、(ナノメートルオーダの)きわめて小さなテーパ先端部幅が、良好な結合を実現するために必要となり得る。かかる寸法の実現は難しく、法外なコストがかかり得る。
【0006】
InPベースPIC及びシリコンベースPICは、多くの現行のニーズに対応しているが、いくつかの限界を有しており、中でもとりわけ、動作波長範囲が材料吸収による損失上昇によって限定される点と、PICが対応可能な最大光学強度及びその結果として光学出力についての制限が存在する点とを有する。これらの限界に対処するために、例えばSiN、TiO、Ta、AlN、またはその他などの代替的な導波路材料が考慮されてきた。一般的に、かかる誘電体導波路は、より短い波長にてより良好な高出力ハンドリング及び透明性を実現するより高いバンドギャップエネルギーを有するが、一般的に、かかる材料は、屈折率がより低い。例えば、約5eVのバンドギャップを有するSiNは約2の屈折率を有し、AlNは約6eVのバンドギャップ及び約2の屈折率を有し、約8.9eVのバンドギャップを有するSiOは約1.44の屈折率を有する。ちなみに、GaAsの屈折率は>3である。これにより、テーパアプローチは困難なものとなる。
【0007】
代替的なハイブリッドアプローチは、既に上述した欠点を有し、すなわち精密なアラインメントの必要性と、それに対応したパッケージングの複雑化及びスケーリング限界とを有する。
【0008】
上記で論じた問題に対する近年のアプローチは、上記で参照した米国特許第10,859,764(B2)号に提示されたものであり、モードコンバータとの組合せにおいてバットカップリングを利用して、極小のテーパ幅を必要とせずに不均質プロセスの利用を可能にするものであった。
【発明の概要】
【課題を解決するための手段】
【0009】
本発明は、このようにバットカップリングを利用する、かつ、例えばレーザなどの能動デバイスを備えるPICに関する。特に、以降で説明する実施形態は、高性能レーザ、増幅器、変換器、及び光検出器の作製に必要な能動材料の基礎構造の設計詳細と共に考慮される。
【図面の簡単な説明】
【0010】
図1】軸方向断面において示した本発明の一実施形態によるデバイスを示す図である。
図2a図1の一実施形態に対応するデバイスの3つの異なる軸方向位置における断面端面図である。
図2b図1の一実施形態に対応するデバイスの第4の軸方向位置における断面端面図である。
図3】本発明のいくつかの実施形態によるデバイスの断面上面図である。
図4】本発明のいくつかの実施形態によるデバイスの断面上面図である。
図5】本発明のいくつかの実施形態によるデバイスの断面上面図である。
図6a図5の実施形態に対応するデバイスの3つの異なる軸方向位置における断面端面図である。
図6b図5の実施形態に対応するデバイスの第4の軸方向位置における断面端面図である。
【発明を実施するための形態】
【0011】
本明細書においては、光結合がモード変換及びバットカップリングスキームの利用により改善される、ウェーハボンディング及び異種材料の堆積を利用して光集積回路を実現するための方法及びシステムの実施形態が説明される。
【0012】
以下の詳細な説明においては、その一部を構成する添付の図面が参照される。すべての図面にわたり、同様の数字は同様のパーツを示し、これらの図面において、本開示の対象を実施し得る実施形態は例として示される。本開示の範囲から逸脱することなく、他の実施形態が利用されてもよく、構造または論理の変更が行われてもよい点を理解されたい。したがって、以下の詳細な説明は、限定的な意味で理解されるべきではなく、実施形態の範囲は、添付の特許請求の範囲及びその均等物により定義される。
【0013】
本説明は、例えば頂部/底部、中/外、及び上/下などの視野ベースの記述を利用する場合がある。かかる記述は、説明を容易にするために使用されるにすぎず、本明細書において説明される実施形態の用途をいかなる特定の配向にも限定するように意図されるものではない。本説明は、「一実施形態において」または「いくつかの実施形態において」という表現を使用する場合があるが、これらの表現はそれぞれ、同一のまたは異なる実施形態のうちの1つまたは複数を示し得る。さらに、本開示の実施形態に関して使用されるような「備える」、「含む」、「有する」等の用語は、同義語である。
【0014】
本開示において、「A及び/またはB」という表現は、(A)、(B)、または(A及びB)を意味する。本開示において、「A、B、及び/またはC」という表現は、(A)、(B)、(C)、(A及びB)、(A及びC)、(B及びC)、または(A、B、及びC)を意味する。
【0015】
「~と結合された」という用語及びその派生用語が、本明細書において使用される場合がある。「結合された」は、次の1つまたは複数を意味し得る。「結合された」は、2つ以上の要素が直接的な物理的接触、電気的接触、または光学的接触の状態にあることを意味し得る。しかし、「結合された」は、2つ以上の要素が相互に間接的に接触するが、しかし依然として相互に協働または相互作用することをさらに意味し得るものであり、1つまたは複数の他の要素が、相互に結合されると表現される要素間において結合または連結されることを意味し得る。「直接的に結合された」という用語は、2つ以上の要素がそれらの表面の少なくとも一部において直接的に接触状態にあることを意味する。本明細書において、「バットカップリングされた」という用語は、「端部間」結合または軸方向結合を意味するその通常の意味において使用され、当該要素間における軸方向オフセットは、最小限またはゼロである。この軸方向オフセットは、例えば、要素106、206、及び306に関連して以降で説明されるように、それらの要素間に何らかの種類の薄い中間層が形成される場合にはゼロよりも若干大きくてもよい。2つの導波路構造体または導波路要素の軸は、バットカップリングされるものと厳密に説明できるためには同じ直線上にある必要は必ずしもない点を留意されたい。換言すれば、要素間の境界面は、それぞれの軸に対して垂直である必要はない。以降で論じる図4の実施形態は、かかる可能性の例である。
【0016】
本明細書において、「能動デバイス」及び/または「能動領域」という用語が使用される場合がある。能動的と呼ばれるデバイスまたはデバイスの領域は、発光、増幅、変調、及び/または検出を行うことが可能である。我々は、「能動デバイス」及び「能動領域」をそれらのいずれか一方及び/または両方を互換的に意味するものとして使用する。これは、「受動デバイス」及び/または「受動領域」が意味するところのものとは対照的であり、これらの「受動デバイス」及び/または「受動領域」の主な機能は、光を閉じ込め誘導する、ならびに/または分割、結合、フィルタリング、及び/もしくは受動デバイスに一般的に付随する他の機能を実現することである。一部の受動デバイスは、例えば熱的効果または変調をもたらし得る同様のものを利用して実現される位相調整などの、能動デバイス機能と重複する機能を実現し得る。この場合の相違点は性能にあり、能動デバイスは、より高い効率、より低い電力消費、より広い帯域幅、及び/または他の利点を一般的にもたらす。材料組成またはデバイス構造のみに基づき、「能動」と「受動」との間に絶対的な違いが生じると見なすべきではない。例えば、シリコンデバイスは、特定の変調条件または低波長放射の検出条件の下では能動的であるが、ほとんどの他の状況では受動的であると見なすことができる。
【0017】
図1は、異種材料間の効率的な結合のためにバットカップリング及びモード変換を利用する光集積デバイス100の概略断面図である。この例示の断面は、例えばSi、InP、GaAs、石英、サファイア、ガラス、GaN、シリコン・オン・インシュレータ、または当技術で既知の他の材料などの、半導体処理及び誘電体処理に適した任意の基板であることが可能な基板105を含む。図示する実施形態では、第2の材料の層104は、当分野において既知の技術を利用することにより基板105の頂部表面に対して堆積、成長、転写、結合、または他の方法で装着される。層104の主な目的は、材料102(以降において説明される)に対して光学クラッドを与えることであり、必要に応じてそれにより光導波路が形成される。光導波路は、2つの低屈折率層間に高屈折率コアを配置することにより光波を閉じ込めることによって通常は実現される。いくつかの実施形態では、層104は省かれ、基板105自体がクラッドとしての役割を果たす。
【0018】
層102は、当分野で既知の技術を利用することにより、層104が存在する場合には層104の頂部に対して、及び/または基板105の頂部に対して堆積、成長、転写、結合、または他の方法で装着される。層102の屈折率は、層104が存在する場合には層104の屈折率よりも高く、または層104が存在しない場合には、層102の屈折率は、基板105の屈折率よりも高い。一実施形態では、層102の材料は、SiN、TiO2、Ta2O5、SiO2、LiNbO3、及びAlNのうちの1つまたは複数を含むが、それらに限定されない。いくつかの実施形態では、他の通常の誘電体材料が、層102に対して使用され得る。他の実施形態では、半導体材料が、層102に対して使用され得る。いくつかの実施形態では、層102の屈折率は、1.8~2.5の間である。層104及び層102のいずれかまたは両方が、当技術において一般的であるようにパターニング、エッチング、または再堆積可能である。
【0019】
層102の屈折率よりも低い屈折率を有する層108が、層102の上層として位置し、層101及び層103の下層として位置し(以降においてさらに詳細に説明される)、層102のパターニングされた表面を平坦化する役割を果たす。いくつかの実施形態では、層108の頂部表面の平面性は、化学機械研磨(CMP)もしくは他のエッチング、化学研磨方法、及び/または機械研磨方法により実現される。他の実施形態では、この平面性は、例えば層108の材料がスピンオンガラス、ポリマー、フォトレジスト、または他の適切な材料である場合には、層108が堆積される方法に固有の特性によって実現される。平坦化は、層102の頂部上に所望の典型的には非常に小さな厚さの層が残されるように(図1に示すように)、または層102の頂部表面の高さを上回るすべての材料を除去する(図示せず)ように、制御され得る。この場合に、層108は、層102の頂部上に残され、標的厚さは、10nm~数百nmの範囲内であり、実際の厚さは、平坦化プロセスの典型的なウェーハ面内不均一性を含む。いくつかの実施形態では、スピンオン材料が、平坦化のために使用され、次いでエッチバックされ、その結果として典型的なCMPプロセスに比べて改善されたウェーハ面内均一性が得られる。上記のいずれの場合においても、結果的に得られる層102の頂部表面(スピンオン材料が存在しない場合)または結果的に得られる層108の頂部表面(スピンオン材料が存在する場合)は平坦表面となる。
【0020】
層101は、対応する(108、102)頂部表面の少なくとも一部の頂部上に結合される。前記結合は、直接分子結合であることが可能であり、または例えば当技術において知られているような金属層もしくはポリマーフィルムなどの追加材料を使用して結合を促進することが可能である。層101は、能動領域と一般的に呼ばれるものを構成し、図4を補助としてさらに詳細に説明されることとなるようなGaAsならびにGaAsベース3元材料及びGaAsベース4元材料を含むがこれらに限定されない材料から作製され得る。一実施形態では、層101は、当技術において能動デバイスに関して知られているような、光及び電気の閉込め部と電気接触子との両方を実現する層からなる多層である。さらに別の実施形態では、層101は、電気及び/または光の閉込め部ならびに1つまたは複数の電気接触子を実現するために下層102、108、104、及び/または105を使用する。
【0021】
いくつかの実施形態では、層101は、発光及び光学利得を生じさせるように効率的に電気的に励起され得る。本発明により、層101及び層102の中に形成された導波路同士の間における効率的な光結合が可能となる。前記材料102は、例えば広帯域透明性、高強度ハンドリング、温度、ひずみ、もしくは他の調整作用による位相シフト、結合、分割、フィルタリング、及び/または当技術において知られているような他のものなどの追加の機能性を実現し得る。
【0022】
効率的な結合は、層103によって促進され、層106が存在する場合にはさらに層106によって促進される。オプションの層106は、層101と層103との間の境界部にて反射防止コーティングまたは高反射コーティングのいずれかとしての役割を主に果たす。層103は、中間導波路としての役割を果たし、この中間導波路は、いくつかの実施形態では、層101がコアを形成する導波路により支援される光学モードのプロファイル(破線150により図示)を受領し、この受領したプロファイルをモードプロファイル151として効率的にキャプチャし、モードプロファイル152へと徐々に伝達し、最終的にはモードプロファイル153へと伝達する。次いで、モードプロファイル153は、層102がコアを形成する導波路に対して効率的に結合される。他の実施形態では、移動方向が反転されてもよく、層103は、層102がコアを形成する導波路により支援された光学モードを効率的にキャプチャし、このモードプロファイルを層101がコアを形成する導波路により支援されたモードのプロファイルへと徐々に伝達する。
【0023】
層103の屈折率は、モードプロファイル150の効率的な結合を促進するように、ならびに層102及び/または103に形成されるテーパ構造部を活用することによりモードを、モードプロファイル153を有するモードへと効率的に変形するように、工学設計され得る。いくつかの実施形態では、層103の屈折率は、1.55~1.8の間である。いくつかの実施形態では、層103は、SiNOなどの誘電層である。さらに他の実施形態では、層103は、ポリマーであることが可能である。さらに他の実施形態では、層103は、適切な屈折率を有する任意の他の材料であることが可能である。
【0024】
層103の厚さは、最適化パラメータであり、いくつかの実施形態では400nm~2000nmの間である。本発明以前においては、すなわち中間層103が存在しない場合には、テーパ先端部幅に関する要件が、上述したように問題となる。しかし、中間層103を使用することにより、テーパ先端部の幅に関する厳しい要件が大幅に軽減され、それにより非常に高い屈折率を有する材料(例えば層101中のGaAsなど)と低い屈折率を有する材料(例えば層102中のSiNなど)との間における効率的な伝達が可能となる。
【0025】
層101及び102のそれぞれの中の導波路により支援される光学モード間の相違は、モードプロファイルの観察によって明確であってもまたは明確でなくてもよいが、100%未満のモードオーバーラップ(中間層103がない場合)により、結果として著しい光学損失がもたらされる。いくつかの場合では、最高で1dBの損失が許容可能となるが、それを上回る損失は許容不能となると見なされ得る。他の場合では、3dBの損失レベルが基準として選択され得る。層103の機能は、不完全なモードオーバーラップに起因する光学損失を、所与用途において許容レベルと判定されるレベル未満に抑制することである。
【0026】
層103及び/または層102において実現される導波路のための上方クラッド層107は、周囲空気であることが可能であり(クラッド材料が実際には堆積されないことを意味する)、または図1に示すように、ポリマー、SiO2、SiNx、SiNOx等を含むがこれに限定されない、任意の他の意図的に堆積された適切な材料であることが可能である。いくつかの実施形態では、同一の材料が、層107及び層108に対して使用される。いくつかの実施形態では(図示せず)、層107のクラッド機能は、複数の堆積部により実現可能であり、例えばある材料は、層102中に形成されたコアにより誘導されるモード153にクラッドを与え、別の材料は、層103中に形成されたコアにより誘導されるモード151にクラッドを与える。いずれの場合においても、クラッド材料の屈折率は、モード誘導のためのコアを形成する材料の屈折率よりも低い。さらに他の実施形態では(図5に示す)、層103は、設計によってより低い屈折率にされることにより、層102及びモード153に対してクラッド機能を提供することが可能である。これらの実施形態は、図5を参照として以降においてさらに論じられる。
【0027】
層109は、層101の一部の頂部上に堆積された接触金属である。層101は、少なくとも3つの下位層から構成され、これについては図2aの説明において以降で詳細に論じる。1つまたは複数のリソグラフィアラインメントマーク(この断面図には図示しないが、例えば以降で説明する図3の320及び図4の420などを参照)が、様々な処理ステップの最中に形成されたこれらの層間の正確なアラインメントを促進するために存在する。
【0028】
いくつかの実施形態では、層108が存在せず、層101がパターン層102の頂部上に接合され、層103がパターン層102の頂部上に堆積される。かかる実施形態では、平坦化ステップは存在しない。
【0029】
破線A、B、C、及びDは、端面図200Dを示す図2aと、端面図200A、200B、及び200Cを示す図2bとを補助としてさらに詳細に説明される本発明のいくつかの実施形態によるデバイスの断面端面図に対応する。
【0030】
図2aは、図1において(及び図3図4において)Dと印をつけられた特徴位置に対応する断面図200Dを示し、図2bは、図1において(及び図3図4において)A、B、及びCと印をつけられた3つの特徴位置に対応する3つの断面図200A、200B、及び200Cを示す。機能層201~209は(明確に別様に規定されない限り)、図1に関連して説明されるような機能層101~109と、図3に関連して説明されるような機能層301~309と、図4に関連して説明されるような機能層401~409とに対応する。
【0031】
断面200Dは、能動層201(図1図3図4の101、301、及び401に対応する)を備える領域を貫通する一例の切断面である。層201は、能動デバイスを実現するために必要な機能性を実現する複数の下位層を備える。図示する実施形態では、層201は、結合のために平坦化された表面を提供する層208の頂部上に位置する。別の実施形態では(図示せず)、層201は、以前には存在した平坦化層208が層202の頂部から完全に除去されて、層202の頂部上に位置する。さらに別の実施形態では(図示せず)、層201は、平坦化層が以前に存在することのなかった層202の頂部上に位置する。さらに別の実施形態では(図示せず)、層201は、層204の頂部上に位置する(層202が完全に除去される場合)、及び/または層205の頂部上に位置する(層202及び204が完全に除去される場合)。
【0032】
層201は、高性能能動デバイスを助長するために光及び電気の閉込め部を画定する役割を果たす。垂直方向における光閉込め部(図2に示すような)は、材料組成が異なる屈折率に対応することにより形成され、水平方向における光閉込め部は、層201の屈折率よりも低い屈折率を有するクラッド(207)を実現するための少なくとも1つのエッチング工程により形成される。クラッド207は、複数の材料を含み、これらの材料の中のいくつかは、エッチングされる表面に対してパッシベーション機能を与えることによりレーザ性能の改善をもたらし得る。電気閉込め部は、適切な材料組成により、及びエッチングまたは注入された電流チャネルを作製することにより形成される。
【0033】
一実施形態では、能動層201は、5つの異なる機能層201-1、201-2、201-3、201-4、及び201-5を備える。
【0034】
201-1は、高N+ドープGaAs層を備えるn型接触層を形成する。いくつかの実施形態では、ドーピングは、>1e18である。いくつかの実施形態では、層201-1は、結合を促進するための及び/またはずれを防止するための超格子層を備える。超格子の一例は、GaAs層及びAlGaAs層の組合せ、InGaP層及びInAlP層の組合せ、または他の適切な組合せが可能である。この層の厚さは、典型的には50nm~200nmの間であるが、いくつかの実施形態ではさらに大きいものが可能である。n型金属及び電気パッドに接続するためのバイア(層210a及び210b)は、光学モード250(側方閉込め部が少なくとも1つのエッチング工程により画定された)から側方にオフセットされて、n型接触金属に起因する非常に低いまたは無視し得るレベルの光学損失をもたらす。
【0035】
層201-2は、n側クラッドを形成し、典型的にはAlGaAs層として実現される。このAl含有量は、固定される、段階的に変化する、または徐々に変化することが可能であり、動作波長に左右される。n接触金属(210a及び210b)が側方にオフセットされることにより、厚さは、金属損失により決定されず、モード形状、能動領域閉込め、及び層203への結合を促進するための最適化パラメータとなる。いくつかの実施形態では、層201-2の厚さは、100nm~1000nmの間である。また、層201-2は、例えばInGaPまたはその他などの1つまたは複数のエッチング停止層を備えることが可能である。いくつかの実施形態では、このエッチング停止層の厚さは、5nm~80nmの間である。下位層201-2が、固定濃度にてドーピングされるか、または一様ではなく層201-3との境界部における最低濃度から層201-1との境界部における5e17~4e18の間の高ドーピングレベルまで上昇する濃度でドーピングされる。
【0036】
層201-3は、一実施形態では、量子井戸と、量子障壁と、量子井戸/量子障壁構造体の少なくとも一方の側部上に位置する個別の閉込めヘテロ構造(SCH)層とを備える能動領域である。いくつかの実施形態では、量子ドットが量子井戸の代わりに使用される。他の実施形態では、量子井戸内部に埋設された量子ドットが使用される。さらに別の実施形態では、バルクp(i)n接合部が、例えば光検出機能またはバルク相/強度変調機能などを実現するために能動領域内に画定される。SCH層は、傾斜的または非傾斜的であることが可能である。いくつかの実施形態では、SCH層は、一定のドーピングまたは濃度変化ドーピングによりAlGaAs材料として実現される。傾斜ドーピングの場合には、量子井戸/量子ドット/pn接合部からの距離が大きくなるにつれて、ドーピングが徐々に上昇する。
【0037】
層201-4は、典型的にはAlGaAs層として実現されるp側クラッドである。このAl含有量は、固定される、段階的に変化する、または徐々に変化することが可能であり、動作波長に左右される。層201-4の厚さ及びAl含有量は、この層中における吸収損失効果と上方の接触層における吸収損失との両方を低下させるように最適化されるパラメータである。いくつかの実施形態では、層201-4の厚さは、100nm~2000nmの間である。また、層201-4は、例えばInGaPまたはその他などの1つまたは複数のエッチング停止層を備えることが可能である。いくつかの実施形態では、このエッチング停止層の厚さは、5nm~80nmの間である。層が、固定レベルにてドーピングされるか、または一様ではなく層201-5との境界部における最高濃度から層201-3との境界部における低ドーピングレベルまで低下する濃度でドーピングされる。
【0038】
層201-5は、p型接触層である。いくつかの実施形態では、高p+ドープGaAs層がp型接触のために使用される。いくつかの実施形態では、ドーピングレベルは>1e18である。
【0039】
いくつかの実施形態では、層201-1~201-5のすべてが存在するわけではないが、最低限として能動領域(201-3)、n型接触領域(201-1)、及びp型接触領域(201-5)が存在する。いくつかの実施形態では、追加のエッチング停止層が、より良好なプロセス制御を促進するために導入される。
【0040】
図2bでは、断面200Aは、層402に対する光結合(光信号流が図1図3、及び図4において右から左へと行われるものと前提する)が完了した後の、図1(ならびに以降で説明されることとなる図3及び図4)に示すようなデバイスの一番左側の位置における一実施形態を示す。断面200Bは、層203中に主として位置するモードから層202中に主として位置するモードへのモード遷移が促進される一実施形態を示す。この遷移は、層202及び203の少なくとも一方において実現されるテーパにより促進される。断面200Cは、断面200Dで誘導を実現する構造部から層203がバットカップリングされた後にモードが層203中に主として位置する一実施形態を示す。層201、202、及び203の中に形成される導波路の典型的な高さ及び幅は、サブミクロン(わずか20nm)から数ミクロンまでの範囲に及び得るが、特定の材料システム及び実装形態に大幅に左右される。効率的な結合を促進するために最適な寸法(幅、高さ、側壁部角度等)は、例えば市販のシミュレーションツールまたは同様のものなどを利用して容易に計算することが可能である。いくつかの実施形態では、層202の厚さ(図2における垂直方向寸法)は、20nm~400nmの間であるが、さらに他の実施形態では400nm~2000nmの間である。
【0041】
いくつかの実施形態では、少なくとも2つのエッチング工程が利用される(図2aに示すように)。1つのエッチング工程は、光学モード閉込め部を画定し、別のエッチング工程は、金属堆積用のn型接触領域を開口する。いくつかの実施形態では、単一のエッチング工程が、光学モード閉込め部を画定し、金属堆積用のn型接触領域を開口するために使用される。他の実施形態では、3つ以上のエッチング工程が、光閉込め部、側壁部再結合、能動領域ポンプ効率、及びn型接触領域アクセスの追加的な制御を行うために使用される。エッチング工程は、時間調節される及び/または制御の改善のためにエッチング停止層を使用することが可能である。
【0042】
いくつかの実施形態では、層202、204、205、及び/または208中に画定されるパターンが、層201の中に主として位置する光学モードへそのモードのエバネッセントテールを経由して周波数選択フィードバックを提供することが可能である。かかる周波数選択フィードバックは、単一周波数レーザ(例えば分布帰還型レーザまたはその他など)を画定するために利用され得る。
【0043】
図3は、異種材料間における効率的な結合のためにバットカップリング及びモード変換を利用する光集積デバイス300の上面図を提供する。破線A、B、C、及びDは、図2a及び図2bならびにより具体的には端面図200A、200B、200C、及び200Dを補助としてさらに詳細に上述された本発明のいくつかの実施形態によるデバイスの断面端面図に対応する。
【0044】
能動層301により支援される光学モードは、オプションの被覆層306を通り、層302に対する効率的な結合のためにモードを変換する役割を果たす層303へと誘導される。層306は、高反射機能を実現することが可能であり、または反射防止コーティングとして機能するように設計された場合には反射軽減を促進することが可能である。層301及び層302により支援されるモード間の結合を促進するために、層302の寸法は、図の一番左側に図示される層302の幅に比べて比較的小さい先端部311の幅によって示されるように、層301に向かってテーパ縮小される。テーパ寸法に関する要件は、層303の存在により最大で数百ナノメートルまで大幅に緩和されると推定されている。例えば、百ナノメートル超の先端部幅の場合に層301と層302との間の屈折率の差異が1を上回る場合でも、層301と層302との間において70%超の結合効率が実現され得る。対照的に、層303が存在しない場合には、層301が、その層のモードが層302へと直接的に結合され得るようにテーパ状になされなければならず、層301のテーパ先端部(図示せず)の寸法は、同様の結合効率の場合に百ナノメートルをはるかに下回らなければならない。別の実施形態では、テーパが、層302ではなく層303に形成される(図示せず)。さらに別の実施形態では、テーパが、高効率結合のために層302及び層303の両方に形成され得る。いくつかの実施形態では、層302及び層303の前記テーパは、多段テーパであり、すなわちより高効率の結合を促進するために2つ以上のエッチング深さが利用される。
【0045】
いくつかの実施形態では(図示せず)、テーパ先端部は、層306に対して物理的に接触することが可能であり、層306が存在しない場合には層301に対して物理的に接触することが可能である。さらに別の実施形態では(図示せず)、テーパ先端部において層302が突如として終焉せず、より効率的な結合を促進するために幅が変化し続ける。
【0046】
層309は、層301の頂部上に堆積された接触金属であり、図2aに示すような図1の実施形態に関連して上述した層101の頂部上の接触金属109に対応する。
【0047】
1つまたは複数のリソグラフィアラインメントマーク320(簡略化のために1つのみが図示される)が、様々なプロセスステップ同士の間における正確なアラインメントのために使用される。
【0048】
図4は、異種材料間の境界部が伝達及び後方反射の両方を制御するために角度をつけられた、本発明の一実施形態による光集積デバイス400の上面図を示す。能動層401により支援された光学モードは、オプションの被覆層406を経由して、層402に対する効率的な結合のためにモードを変換する役割を果たす層403へ誘導される。層406は、高反射機能を実現することが可能であり、または反射防止コーティングとして機能するように設計された場合には反射軽減を促進することが可能である。層401及び層402により支援されるモード間の結合を促進するために、層402の寸法は、図の一番左側に図示される層402の幅に比べて比較的小さい先端部411の幅によって示されるように、層401に向かってテーパ縮小される。テーパ寸法に関する要件は、層403の存在により最大で数百ナノメートルまで大幅に緩和されると推定されている。例えば、百ナノメートル超の先端部幅の場合に層401と層402との間の屈折率の差異が1を上回る場合でも、層401と層402との間において70%超の結合効率が実現され得る。対照的に、層403が存在しない場合には、層401が、その層のモードが層402へと直接的に結合され得るようにテーパ状になされなければならず、層401のテーパ先端部(図示せず)の寸法は、同様の結合効率の場合に百
ナノメートルをはるかに下回らなければならない。別の実施形態では、テーパが、層402ではなく層403に形成される(図示せず)。さらに別の実施形態では、テーパが、高効率結合のために層402及び層403の両方に形成され得る。いくつかの実施形態では、層402及び層403の前記テーパは、多段テーパであり、すなわちより高効率の結合を促進するために2つ以上のエッチング深さが利用される。
【0049】
さらに、この実施形態では、層401、406、及び/または403の間の境界部のうちの1つまたは複数が、対応する後方反射を軽減するように角度をつけられる。
【0050】
角度420は、構造部401内部における波伝搬方向の接線とファセット(層406及び/または層406が存在しない場合には層403に向かう境界部)との間の角度を規定する。角度420は、層401により支援されるモードが層406及び/または層403に向かう境界部に到達する場合に、このモードの後方反射を制御するために主に利用される。一実施形態では、この角度は0°に実質的に等しい。さらに別の実施形態では、この角度は、1°~45°の間である。さらに別の実施形態では、この角度は8°に実質的に等しい。さらに別の実施形態では、この角度は12°に実質的に等しい。
【0051】
角度430は、構造部401の内部における波伝搬方向と層403により形成された導波路の角度との間の角度を規定する。前記角度は、層401及び403により支援されるモード間における結合効率のための最適化パラメータであり、角度420、及び/または層401及び403ならびにそれらのそれぞれのクラッドにおいて使用される材料の屈折率の選択に関連づけられる。一実施形態では、この角度は0°に実質的に等しい。さらに別の実施形態では、この角度は、1°~45°の間である。さらに別の実施形態では、この角度は、16°に実質的に等しい。さらに別の実施形態では、この角度は、20°に実質的に等しい。いずれの場合でも、最適な角度430は、角度420と層401及び403におけるモードの実効屈折率との所与の組合せについて電磁ソルバーを利用して算出され得る。
【0052】
構造部401の内部の波伝搬方向により規定される軸と層403、406、及び/または401に対する境界部における導波路403の中心との間の正確な垂直方向アラインメント(図4では上下方向)は、かかるオフセットがポジティブ(図4の上方)である、ネガティブ(図4の下方)である、及び/または実質的に0に等しい(オフセットが存在しない)ことが可能な、最適化パラメータである。かかる最適化は、角度420及び角度430の最適化と共に遷移の性能を最大化するために数値ソフトウェアで直接的に実施される。
【0053】
本発明以前においては、すなわち中間層103/303/403が存在しない場合には、層101/301/401と層102/302/402との間における直接伝達のためのテーパ先端部幅に関する要件が問題となる。しかし、バットカップリングされた中間層103/303/403の使用により、いくつかの実施形態においては境界部が層101/301/401に対して角度をつけられた場合でも、テーパ先端部幅に関する厳しい要件が大幅に緩和されて、屈折率の非常に高い材料(例えば層101/301/401におけるGaAsベース層など)と屈折率の低い材料(例えば層102/302/402におけるSiN、LiNbO3、または同様のものなど)との間における効率的な伝達が可能となる。層403は、誘電体、ポリマー、及び/または任意の他の適切な材料を含んでもよい。断熱変換は、バットカップリングされた境界部における要素101/301/401及び要素103/303/403により支援される光学モード間においては行われない。層103/303/403及び/または層102/302/402は、誘導された光波のルーティングを制御するためにベンド(図示せず)を備えることが可能である。1つまたは複数のリソグラフィアラインメントマーク320/420が、様々な処理ステップの最中に形成された層同士の間における正確なアラインメントを促進するために存在する。
【0054】
図5は、異種材料間の効率的な結合のためにバットカップリング及びモード変換を利用する光集積デバイス500の一実施形態の上面図を提供する。破線A、B、C、及びDは、端面図500A、500B、500C、及び500Dを補助としてさらに詳細に説明される本発明のいくつかの実施形態によるデバイスの断面端面図に対応する。
【0055】
能動層501により支援される光学モードは、オプションの被覆層506を通り、層502に対する効率的な結合のためにモードを変換する役割を果たす層503へと誘導される。層506は、高反射機能を実現することが可能であり、または反射防止コーティングとして機能するように設計された場合には反射軽減を促進することが可能である。層501及び層502により支援されるモード間の結合を促進するために、層502の寸法は、図の一番左側に図示される層502の幅に比べて比較的小さい先端部511の幅によって示されるように、層501に向かってテーパ縮小される。テーパ寸法に関する要件は、層503の存在により最大で数百ナノメートルまで大幅に緩和されると推定されている。例えば、百ナノメートル超の先端部幅の場合に層501と層502との間の屈折率の差異が1を上回る場合でも、層501と層502との間において70%超の結合効率が実現され得る。対照的に、層503が存在しない場合には、層501が、その層のモードが層502へと直接的に結合され得るようにテーパ状になされなければならず、層501のテーパ先端部(図示せず)の寸法は、同様の結合効率の場合に百ナノメートルをはるかに下回らなければならない。いくつかの実施形態では(図示せず)、テーパ先端部は、層506に対して物理的に接触することが可能であり、層506が存在しない場合には層501に対して物理的に接触することが可能である。さらに別の実施形態では(図示せず)、テーパ先端部において層502が突如として終焉せず、より効率的な結合を促進するために幅が変化し続ける。
【0056】
1つまたは複数のリソグラフィアラインメントマーク520(簡略化のために1つのみが図示される)が、様々なプロセスステップ同士の間における正確なアラインメントのために使用される。
【0057】
図5に示す実施形態では、図1の実施形態における層103及び102の状況とは対照的に(または図3及び図4のそれぞれの層303及び302または層403及び402の状況に対応して)、層503は、層502によりコアが形成される導波路内に主として位置する光学モードへと光学モードが遷移すると、層502の頂部から除去されない。この相違は、図6の端面図600A、600B、及び600Cを補助として容易に理解することができる。この実施形態では、この変更は、層503の屈折率が層502の屈折率よりも低くなるように材料が選択されて、それにより層503が層502のためのクラッドとしての役割を果たし得ることによって可能となる。この実施形態により、図1の層102の上の層103の場合におけるように(または図3及び図4のそれぞれの層302の上の層303及び層402の上の層403の場合におけるように)中間層が受動層の上方の領域から除去されなければならない場合に必要となるエッチング制御に関する要件が緩和されるため、光集積デバイスの製造が簡素化される。
【0058】
機能層501、502、503、506、及び509は(明確に別様に規定されない限り)、図3に関連して説明されるような機能層301、302、303、306、及び309と、以降で説明されることになる図6a及び図6bの層601、602、603、606、及び609とに対応する。
【0059】
図6aは、図5においてA、B、及びCと印をつけられた3つの特徴位置に対応する3つの断面図600A、600B、及び600Cを示し、図6bは、図5においてDと印をつけられた特徴位置に対応する断面図600Dを示す。機能層601~609は(明確に別様に規定されない限り)、図1に関連して説明されるような機能層101~109と、図3に関連して説明されるような機能層301~309と、図4に関連して説明されるような機能層401~409とに対応する。
【0060】
図6aでは、断面600Aは、層602に対する光結合(光信号流が図5図500において右から左へと行われるものと前提する)が完了した後の、図5図500に示すデバイスの一番左側の切断面の断面図を示す。層602は、導波路のコアを形成し、層603、604、及び608は、クラッドとしての役割を果たす。断面600Bは、層603中に主として位置するモードから層602中に主として位置するモードへのモード遷移が促進される一実施形態を示す。この遷移は、層602で実現されるテーパにより促進される。断面600Cは、図1図3、及び図4に関連して説明されるように能動領域内での誘導を実現する構造部から層603がバットカップリングされた後にモードが層603に主として位置する一実施形態を示す。
【0061】
図6bでは、断面600Dは、能動層601(図2aの能動層201に対応する)を備える領域を貫通する一例の切断面を示す。機能層601~610bは(明確に別様に規定されない限り)、層207が主要クラッドとしての役割を果たす図2aとは対照的に層603が主要クラッドとしての役割を果たすという重要な相違点を伴いつつ、図2aに関連して説明されるような機能層201~210bに対応する。層607は、デバイスのいくつかの部分に存在するが、テーパ領域においてまたはその付近において層602のためのクラッドとしての役割を果たさない点に留意されたい。いくつかの実施形態では、表面パッシベーションを実現するために層603と層601との間に追加の薄層(図示せず)が存在する。概して、モード形状650はモード形状250とは若干異なる。なぜならば、これらの2つの場合において、層601とクラッドとの間の境界部における屈折率コントラストが異なるからである。
【0062】
本発明の実施形態は、多数の利点を提供する。この集積プラットフォームにより、複数の材料から作製された、及び典型的なSi導波路ベースPCIまたはInP導波路ベースPICと比べて高い光学出力のハンドリングが可能な、スケーリング可能なPIC製造が可能となる。
【0063】
以前のアプローチは、能動デバイスから受動デバイスへ光学モードを伝達するためにテーパ構造部を一般的に使用しており、化合物半導体領域の幅は、サブミクロンサイズまで断熱的にテーパ縮小される。しかし、テーパ先端部の所要幅は、屈折率の差異が上昇するにつれて、数十ナノメートルサイズへと急激に小さくなる。本発明は、結合される導波路のいずれかのテーパサイズに関する要件を緩和するためにバットカップリングスキームを展開し、これによりかかる構造部の製造が容易になる。
【0064】
他のアプローチは、受動導波路に対する事前製造された光学能動デバイスのダイアタッチメントに依拠するものであった。これは、典型的なダイボンダが実現可能な精度を一般的に上回る非常に厳格なアラインメント精度を必要とする。この点により、このプロセスのスループット及び光結合の性能が限定される。
【0065】
本発明は、誘電体導波路を有するキャリアウェーハ上への化合物半導体材料のブランケット片の典型的なウェーハボンディングと、当技術において知られているような続く半導体製造プロセスとからなるプロセスフローを利用する。これにより、典型的なフォトリソグラフィステップによる能動導波路と受動導波路との間の光学アラインメントの正確な規定が可能となり、それにより正確な物理アラインメントの必要性が解消される。前記フォトリソグラフィベースアラインメントにより、ウェーハスケール技術を利用したスケーラブル製造が可能となる。
【0066】
異種材料間における効率的な光学伝達は、現行の最新技術のツールでは解決及び製造が困難である幅狭テーパ先端部の必要性を解消するモード変換器(中間導波路)との組合せにおいてバットカップリングアプローチを利用することにより容易化される。
【0067】
能動層中のモードと受動層中のモードとの間における光結合は相互的であるため、例えば図1を例とした場合に、構造部は、領域101から領域102への光伝達を容易にするのみならず、さらに逆方向へのすなわち領域102から領域101への伝達を容易にするように構成され得る点を理解されたい。複数のかかる遷移が、それらの個数または配向における制限を伴うことなく、適切に構成されたPICにおいて実現され得る点を理解されたい。
【0068】
いくつかの実施形態では、能動領域は、間に誘電体を伴わずに基板に対して直接的に接触するため、より効率的な熱シンクのために基板を利用することが可能である。かかる実施形態では、能動領域は、能動領域中に光導波路を完全に画定し、上述のバットカップリングにより受動領域へと遷移する。
【0069】
いくつかの実施形態では、能動領域は、例えば分布帰還型(DFB)レーザまたは同様の構成要素などのためのレーザ空洞内部に形成された波長選択構成要素の作製などのために使用することが可能なハイブリッド導波路構造部を誘電層と共に形成する。
【0070】
本明細書において説明される光学デバイスの実施形態は、様々なコンピューティングデバイス/機器及び/または家庭用電子デバイス/機器、通信システム、センサ、ならびに感知システムを含むがこれらに限定されない、様々な他のデバイス及びシステムに組み込まれ得る。
【0071】
本開示は、例示の実施形態のごく少数の例を教示するものであり、本開示の読後に本発明の多数の変更が当業者に容易に考案され得る点を、さらに本発明の範囲は添付の特許請求の範囲により規定される点を理解されたい。
【符号の説明】
【0072】
100 光集積デバイス
101 機能層、要素、領域
102 材料、機能層、領域、パターン層
103 中間層、要素、機能層
104 機能層
105 基板
106 要素、機能層
107 上方クラッド層、機能層
108 機能層
109 機能層、接触金属
150 モードプロファイル
151 モードプロファイル、モード
152 モードプロファイル
153 モードプロファイル、モード
200A 断面
200B 断面
200C 断面
200D 断面
201 機能層、能動層
201-1 機能層、n型接触領域
201-2 機能層
201-3 機能層、能動領域
201-4 機能層
201-5 機能層、p型接触領域
202 機能層
203 機能層
204 機能層
205 機能層
206 要素
207 機能層、クラッド
208 機能層、平坦化層
209 機能層
210a 機能層、n接触金属
210b 機能層、n接触金属
250 光学モード、モード形状
300 光集積デバイス
301 能動層、機能層、要素
302 機能層
303 機能層、中間層、要素
306 被覆層、機能層、要素
309 機能層
311 先端部
320 リソグラフィアラインメントマーク
400 光集積デバイス
401 能動層、機能層、構造部、要素
402 機能層
403 機能層、導波路、中間層、要素
406 機能層、被覆層
409 機能層
411 先端部
420 角度、リソグラフィアラインメントマーク
430 角度
500 光集積デバイス
501 機能層、能動層
502 機能層
503 機能層
506 機能層、被覆層
509 機能層
511 先端部
520 リソグラフィアラインメントマーク
600A 断面
600B 断面
600C 断面
600D 断面
601 機能層、能動層
602 機能層
603 機能層
604 機能層
606 機能層
607 機能層
608 機能層
609 機能層
610a 機能層
610b 機能層
650 モード形状
図1
図2a
図2b
図3
図4
図5
図6a
図6b