IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングの特許一覧

<>
  • 特許-ガスタービンエンジン用のシュラウド 図1
  • 特許-ガスタービンエンジン用のシュラウド 図2
  • 特許-ガスタービンエンジン用のシュラウド 図3
  • 特許-ガスタービンエンジン用のシュラウド 図4
  • 特許-ガスタービンエンジン用のシュラウド 図5
  • 特許-ガスタービンエンジン用のシュラウド 図6
  • 特許-ガスタービンエンジン用のシュラウド 図7
  • 特許-ガスタービンエンジン用のシュラウド 図8
  • 特許-ガスタービンエンジン用のシュラウド 図9
  • 特許-ガスタービンエンジン用のシュラウド 図10
  • 特許-ガスタービンエンジン用のシュラウド 図11
  • 特許-ガスタービンエンジン用のシュラウド 図12
  • 特許-ガスタービンエンジン用のシュラウド 図13
  • 特許-ガスタービンエンジン用のシュラウド 図14
  • 特許-ガスタービンエンジン用のシュラウド 図15
  • 特許-ガスタービンエンジン用のシュラウド 図16
  • 特許-ガスタービンエンジン用のシュラウド 図17
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-02-20
(45)【発行日】2024-02-29
(54)【発明の名称】ガスタービンエンジン用のシュラウド
(51)【国際特許分類】
   F01D 9/04 20060101AFI20240221BHJP
   F02C 7/18 20060101ALI20240221BHJP
【FI】
F01D9/04
F02C7/18 E
【請求項の数】 14
(21)【出願番号】P 2020564636
(86)(22)【出願日】2019-05-22
(65)【公表番号】
(43)【公表日】2021-09-24
(86)【国際出願番号】 US2019033473
(87)【国際公開番号】W WO2019231786
(87)【国際公開日】2019-12-05
【審査請求日】2022-05-16
(31)【優先権主張番号】15/995,085
(32)【優先日】2018-05-31
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】515322297
【氏名又は名称】ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツング
【氏名又は名称原語表記】General Electric Technology GmbH
【住所又は居所原語表記】Brown Boveri Strasse 8, 5400 Baden, Switzerland
(74)【代理人】
【識別番号】100105588
【弁理士】
【氏名又は名称】小倉 博
(72)【発明者】
【氏名】ヴァン タッセル、ブラッド ウィルソン
(72)【発明者】
【氏名】ウェイバー、ジョセフ アンソニー
(72)【発明者】
【氏名】レウィス、ブライアン デイビッド
(72)【発明者】
【氏名】ペッカー、トラヴィス ジェイ.
【審査官】高吉 統久
(56)【参考文献】
【文献】米国特許出願公開第2018/0119570(US,A1)
【文献】特開2002-309906(JP,A)
【文献】特開2000-145480(JP,A)
【文献】特開平07-189602(JP,A)
【文献】米国特許出願公開第2016/0061113(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
F01D 9/04
F01D 11/00
F02C 7/18
F02C 7/28
(57)【特許請求の範囲】
【請求項1】
ガスタービンエンジン(10)のタービン(18)であって、当該タービン(18)、中心軸(22)を備えていて、前記中心軸(22)、前記中心軸(22)に平行に延びる軸方向(30)、前記中心軸(22)に垂直に延びる半径方向(31)、及び前記中心軸(22)の周りに延びる円周方向(32)を画定しており当該タービン(18)、内側シュラウドセグメント(35)を有する静止シュラウドリングを備えており、前記内側シュラウドセグメント(35)
床(74)から半径方向に突出する周囲のレール(72、73)によって画定される外方空洞(71)を備える外方面(52)であって、前記レールが、前縁(44)及び後縁(46)の少なくとも1つに沿って隣接して延びる軸方向レール(73)を備えており、前記軸方向レール(73)が、トラス構造(151)を備えていて、前記トラス構造(151)が、三角形形状(155)を形成する繰り返し配置の部材(153)を含む、外方面(52)と、
記内側シュラウドセグメント(35)の内部を通して冷却剤を受け入れて送るように構成される冷却構成
を備えており、前記冷却構成
第1のクロスフローチャネル(60)が隣り合う第2のクロスフローチャネル(60)と並んで延びる一対の向流クロスフローチャネル(60)と、
隣り合う供給及び出口チャネル(81、82)を備える供給及び出口チャネル構成(121)であって、前記供給チャネル(81)、前記冷却構成を通る前記冷却剤の流れの方向に対して、第1の接続部で前記第1のクロスフローチャネル(60)の上流端(61)に接続し、前記出口チャネル(82)、前記冷却構成を通る前記冷却剤の前記流れの方向に対して、第2の接続部で前記第2のクロスフローチャネル(60)の下流端(62)に接続する供給及び出口チャネル構成(121)と
を備えており
前記供給チャネル(81)、前記内側シュラウドセグメント(35)の外面と流体連通している入口(91)から前記第1の接続部に延び、前記出口チャネル(82)、前記第2の接続部から前記内側シュラウドセグメント(35)の前記外面と流体連通している出口(92)に延び、前記供給チャネル(81)、前記半径方向(31)に前記出口チャネル(82)をアンダーカットするセクション(123)を備える、タービン(18)。
【請求項2】
前記内側シュラウドセグメント(35)向した第1及び第2の円周方向縁部(48、50)と、前記外方面(52)と対向した内方面(54)とを備えており前記内側シュラウドセグメント(35)が、
前記前縁(44)及び前記後縁(6)、互いに対向し、前記軸方向(30)に主にオフセットされ、それらの間の前記オフセットが前記内側シュラウドセグメント(35)の幅を画定し、
前記第1及び前記第2の円周方向縁部(48、50)、前記円周方向(32)に主にオフセットされ、それらの間の前記オフセットが前記内側シュラウドセグメント(35)の長さを画定し、かつ
前記内方面(54)及び前記外方面(52、前記半径方向(31)に主にオフセットされ、それらの間の前記オフセットが前記内側シュラウドセグメント(35)の高さを画定する
ように配向している、請求項1に記載のタービン(18)。
【請求項3】
記レール(72、73)、前記第1の円周方向縁部(48)に沿って隣接して延びる円周方向レール(72)を備えており
前記入口(91)、前記外方空洞(71)と流体連通するように前記内側シュラウドセグメント(35)の前記外方面(52)を通して形成され、
前記出口(92)、前記内側シュラウドセグメント(35)の前記第1の円周方向縁部(48)を通して形成される、請求項2に記載のタービン(18)。
【請求項4】
前記入口(91)、前記外方空洞(71)に面する前記円周方向レール(72)の内側(75)を通して形成され、
前記入口(91)及び前記出口(92)の各々、前記床(74)の半径方向レベルに対して半径方向に上昇した位置を備える、請求項3に記載のタービン(18)。
【請求項5】
外方視点、前記供給及び出口チャネル構成(121)の直接外方の位置からの内方方向図であり、
前記入口(91)から前記第1の接続部まで、前記供給チャネル(81)、連続する第1及び第2のセクション(123)を備えており
前記供給チャネル(81)の前記第1のセクション、前記床(74)の前記半径方向レベルにほぼ等しい半径方向位置まで内方方向に傾斜する線形セクションであり、
前記外方視点から、前記第1のセクション、実質的に線形であり、前記円周方向(32)とほぼ整列し、
前記外方視点から、前記第2のセクション(123)、約180°の湾曲を備えており
前記外方視点から、前記出口チャネル(82)、前記第2の接続部と前記出口(92)との間の実質的に線形の経路を維持する、請求項に記載のタービン(18)。
【請求項6】
前記第2の接続部から前記出口(92)まで、前記出口チャネル(82)、連続する第1及び第2のセクション(125)を備え
前記出口チャネル(82)の前記第1のセクション(125)、前記床(74)の内方にある第1の位置から前記第1の円周方向レール(72)の半径方向中間点の外方にある第2の位置に外方方向に傾斜し、
前記出口チャネル(82)の前記第2のセクション、前記出口チャネル(82)が前記出口(92)に向かって延びるにつれて半径方向に平らになる、請求項5に記載のタービン(18)。
【請求項7】
前記第1のクロスフローチャネル(60)の前記上流端(61)、前記供給チャネル(81)の前記入口(91)と軸方向に重なり、
前記第1及び前記第2のクロスフローチャネル(60)の各々
15°未満の前記円周方向(32)の角度を形成する縦方向の位置合わせを含み、
前記内側シュラウドセグメント(35)の前記長さの少なくとも60%にわたって延びる、請求項5に記載のタービン(18)。
【請求項8】
前記内側シュラウドセグメント(35)の前記冷却構成、前記供給及び出口チャネル構成(121)のそれぞれの少なくとも5つに接続する前記一対の向流クロスフローチャネル(60)の少なくとも5つを備えており
前記一対の向流クロスフローチャネル(60)の前記少なくとも5つ、互いに平行に配置される、請求項7に記載のタービン(18)。
【請求項9】
前記外方視点から、約180°の前記湾曲を行う際、前記供給チャネル(81)の前記第2のセクション(123)、前記供給チャネル(81)の前記第2のセクション(123)のセクションが前記出口チャネル(82)のセクションと軸方向及び円周方向に重なる一方、前記内方方向にそこから半径方向にオフセットされるように、前記出口チャネル(82)に向かって弓形であり、
前記外方面(52)、前記第2の円周方向縁部(50)に沿って隣接して延びる円周方向レール(72)を備えており
前記冷却構成の前記供給及び出口チャネル構成(121)、第1の供給及び出口チャネル構成(121)と指定され、前記冷却構成、第2の供給及び出口チャネル構成(121)を備えており
前記第1の供給及び出口チャネル構成(121)、前記一対の向流クロスフローチャネル(60)の第1の端部に接続し、前記第2の供給及び出口チャネル構成(121)、前記一対の向流クロスフローチャネル(60)の第2の端部に接続し、前記第2の供給及び出口チャネル構成(121)
前記第2の供給及び出口チャネル構成(121)の前記供給チャネル(81)が前記第2のクロスフローチャネル(60)の上流端(61)に接続し、
前記第2の供給及び出口チャネル構成(121)の前記出口チャネル(82)が前記第2のクロスフローチャネル(60)の下流端(62)に接続する
ように転置され、
前記第2の供給及び出口チャネル構成(121)の前記供給チャネル(81)の前記入口(91)、前記第2の円周方向縁部(50)の前記円周方向レール(72)の前記内側(75)を通して形成され、
前記第2の供給及び出口チャネル構成(121)の前記出口チャネル(82)の前記出口(92)、前記第2の円周方向縁部(50)を通して形成される、請求項5に記載のタービン(18)。
【請求項10】
前記外方視点から、約180°の前記湾曲を行う際、前記供給チャネル(81)の前記第2のセクション(123)、前記供給チャネル(81)の前記第2のセクション(123)のセクションが前記出口チャネル(82)のセクションと軸方向及び円周方向に重なる一方、前記内方方向にそこから半径方向にオフセットされるように、前記出口チャネル(82)に向かって弓形であり、
前記静止シュラウドリング、外側シュラウドセグメント(36)が前記内側シュラウドセグメント(35)の外方に形成されるシュラウドセグメントを備えており、前記シュラウドリング、ロータブレード(33)の列の周りに形成され、
前記内側シュラウドセグメント(35)の前記内方面(54)当該タービン(18)を通して画定された高温ガス経路(38)に向けられ、
前記内側シュラウドセグメント(35)の前記外方面(52)、前記外側シュラウドセグメント(36)に向けられ、
前記外側シュラウドセグメント(36)、前記内側シュラウドセグメント(35)の前記外方空洞(71)と流体連通する冷却剤供給チャネル(39)を備える、請求項5に記載のタービン(18)。
【請求項11】
前記外方視点から、約180°の前記湾曲を行う際、前記供給チャネル(81)の前記第2のセクション(123)、前記供給チャネル(81)の前記第2のセクション(123)のセクションが前記出口チャネル(82)のセクションと軸方向及び円周方向に重なる一方、前記内方方向にそこから半径方向にオフセットされるように、前記出口チャネル(82)に向かって弓形であり、
前記第1及び第2のクロスフローチャネル(60)の各々
5°未満の前記円周方向(32)の角度を形成する縦方向の位置合わせを含み、
前記内側シュラウドセグメント(35)の前記長さの少なくとも75%にわたって延びる、請求項5に記載のタービン(18)。
【請求項12】
前記円周方向レール(72)の前記内側(75)、交互の山部及び谷部(131、133)を有する波形構成(130)を含み、前記交互の山部及び谷部(131、133)、第1の山部(131)、続いて第1の谷部(133)、続いて第2の山部(131)を備えており
前記山部及び前記谷部(131、133)の各々、前記円周方向(32)に延び、前記円周方向レール(72)の前記内側(75)の輪郭に沿って前記外方方向に傾斜し、前記出口チャネル(82)の前記第1のセクション(125)、第1の山部(131)内に形成され、
前記供給チャネル(81)の前記入口(91)、前記第1の谷部(133)内に配置される、請求項4に記載のタービン(18)。
【請求項13】
記三角形形状(155)、前記軸方向レール(73)の外方縁部と前記軸方向レール(73)の内方縁部との間に延び、前記三角形形状(155)の内部中空である、請求項に記載のタービン(18)。
【請求項14】
前記繰り返し配置の部材(153)の傾斜部材、前記軸方向レール(73)の前記外方縁部と前記内方縁部との間で傾斜し、
前記傾斜部材と前記軸方向レール(73)の前記外方縁部及び前記内方縁部との間になされる第1の角度(157)及び第2の角度(157)、それぞれ、60°以下である、請求項に記載のタービン(18)。
【発明の詳細な説明】
【技術分野】
【0001】
本明細書に開示される主題は、ガスタービンエンジンのタービン内の高温ガス経路構成要素に関し、より具体的には、限定はしないが、タービンロータブレードの周りに形成された静止シュラウドの内部構造および冷却構成に関する。
【背景技術】
【0002】
ガスタービンエンジンは、ブレードの列が軸方向に階段状に積み重ねられた圧縮機セクションおよびタービンセクションを含む。各段は、典型的には、円周方向に間隔をおいて配置される固定されたステータブレードの列と、中心タービン軸またはシャフトの周りを回転するロータブレードの列とを含む。動作中、一般に、圧縮機ロータブレードは、シャフトの周りで回転され、ステータブレードと協働して空気の流れを圧縮する。このようにして供給された圧縮空気は、その後、燃焼器内で使用されて供給された燃料を燃焼する。しばしば作動流体と呼ばれる、燃焼により生じた高温膨張燃焼ガスの流れは、その後、エンジンのタービンセクションを通って膨張する。タービン内では、作動流体がステータブレードによってロータブレードに向け直され、回転力を与える。静止シュラウドをロータブレードの周りに構築し、高温ガス経路の境界を画定することができる。ロータブレードは、ロータブレードの回転がシャフトを回転させるように中心シャフトに接続され、このようにして、燃料のエネルギーは回転シャフトの機械的エネルギーに変換され、例えば、圧縮機のロータブレードを回転させるために使用することができ、これによって燃焼のために必要な圧縮空気の供給が生じるだけでなく、発電機のコイルを回転させて電力を生成することができる。動作中、高温、作動流体の速度、およびエンジンの回転速度のために、高温ガス経路内の構成要素の多くは、極度の機械的負荷および熱的負荷によって大きな応力を受けるようになる。
【0003】
発電および航空機を含むような多くの産業用途は今なおガスタービンエンジンに大きく依存しており、このため、より効率的なエンジンの設計が継続的な目標となっている。機械の性能、効率、または費用対効果が少しずつでも向上すれば、この技術を中心に進化している競争の激しい市場において意味がある。ガスタービンの効率を改善するためのいくつかの既知の戦略が存在するが(例えば、エンジンのサイズ、燃焼温度、または回転速度の増加)、その各々は、一般に、すでに大きな応力を受けている高温ガス経路構成要素にさらなる負担をかけてしまう。その結果、そのような応力を軽減するための、あるいは応力によく耐えることができるようにそのような構成要素の耐久性を強化するための、装置、方法、またはシステムの改善が一般になお必要とされている。例えば、高温ガス経路の極度の温度は、ロータブレードの列の周りに形成された静止シュラウドに応力を加え、これにより劣化が引き起こされ、構成要素の耐用年数を短縮する。冷却剤効率およびシーリング効率を最適化すると同時に、構築に費用対効果があり、耐久性があり、かつ用途に柔軟に対応する新規のシュラウド設計が必要とされている。
【先行技術文献】
【特許文献】
【0004】
【文献】欧州特許出願公開第1249592A2号明細書
【発明の概要】
【0005】
本出願は、内側シュラウドセグメントを有する静止シュラウドリングを含むガスタービンエンジンのタービンを説明する。内側シュラウドセグメントは、チャネルが内側シュラウドセグメントの内部を通して冷却剤を受け入れて送るように構成される冷却構成を含むことができる。冷却構成は、第1のクロスフローチャネルが隣り合う第2のクロスフローチャネルと並んで延びる一対の向流クロスフローチャネルと、隣り合う供給および出口チャネルを備える供給および出口チャネル構成とを含み得る。供給チャネルは、第1の接続部で第1のクロスフローチャネルの上流端に接続することができ、出口チャネルは、第2の接続部で第2のクロスフローチャネルの下流端に接続することができる。供給チャネルは、内側シュラウドセグメントの外面を通して形成された入口から第1の接続部まで内側半径方向に延びることができる。出口チャネルは、第2の接続部から内側シュラウドセグメントの外面を通して形成された出口まで外側半径方向に延びることができる。供給チャネルは、出口チャネルをアンダーカットするセクションを含み得る。
【0006】
本開示のこれらのおよび他の特徴は、以下の添付の図面と併せて、本開示の例示的な実施形態についての以下のより詳細な説明を慎重に検討することによって、より完全に理解され認識されよう。
【図面の簡単な説明】
【0007】
図1】本開示のシュラウドを使用することができるガスタービンエンジンのブロック図である。
図2】ロータブレードおよび静止シュラウドを有する高温ガス経路の側面図である。
図3】本開示による、隣り合う内側シュラウドセグメントの側面断面図である。
図4】本開示による、内側シュラウドセグメントの斜視図である。
図5】本開示による、例示的なクロスフローチャネルを示す内側シュラウドセグメントの断面図である。
図6】本開示による、例示的なクロスフローチャネルの概略上面図である。
図7】本開示による、複数のクロスフローチャネルの例示的な配置を有する内側シュラウドセグメントの透明斜視図である。
図8】本開示の実施形態による、例示的なトラフが外方空洞の床に形成されている内側シュラウドセグメントの斜視図である。
図9】本開示の実施形態による、クロスフローチャネル間に形成された例示的なトラフの上面図である。
図10図9の視線10-10に沿った断面図である。
図11】本開示による、例示的な供給および出口チャネル構成の透明外側半径方向図である。
図12】本開示による、例示的な供給および出口チャネル構成の透明内側半径方向図である。
図13】本開示の例示的な供給および出口チャネル構成による、供給チャネルに沿って取られた断面を有する斜視透明図である。
図14】本開示の例示的な供給および出口チャネル構成による、出口チャネルに沿って取られた断面を有する斜視透明図である。
図15】本開示の例示的な供給および出口チャネル構成による、出口および入口チャネルにわたって取られた断面を有する斜視図である。
図16】本開示の例示的な構成による、前縁または後縁レールの構造構成の透明図である。
図17】本開示の例示的な構成による、前縁または後縁レールの構造構成の透明図である。
【発明を実施するための形態】
【0008】
本開示は、高温ガス経路に沿って配置された、タービンの構成要素、具体的には、内側シュラウドセグメントを構成および冷却するためのシステムおよび方法に関する。見られるように、本発明の内側シュラウドセグメントは、特定のチャネルが内側シュラウドセグメントの内部内に形成される内部冷却構成(または「冷却構成」)を含む。
【0009】
本明細書で使用される場合、「下流」および「上流」は、チャネルまたは通路を通る流体の流れ方向を示す用語である。したがって、例えば、タービンを通る作動流体の流れに関して、「下流」という用語は、流れの方向に概ね対応する方向を指し、「上流」という用語は、概ね流れの方向と反対の方向を指す。「半径方向の」または「半径方向」という用語は、中心線または軸線に垂直な移動または位置を指す。これに関連して、軸線に関して異なる半径方向位置に存在する構成要素を説明する必要がある場合がある。本明細書で使用される場合、第1の構成要素の半径方向位置が第2の構成要素の半径方向位置よりも軸線から遠くにある場合、第1の構成要素は、第2の構成要素と比較して「上にある」または「隆起している」または「上昇している」ものとして説明することができる。あるいは、第1の構成要素が第2の構成要素よりも軸線から遠くに存在する場合、本明細書では、第1の構成要素は第2の構成要素の「半径方向外側」または「外方」にあると述べることができる。一方、第1の構成要素が第2の構成要素よりも軸線の近くに存在する場合、本明細書では、第1の構成要素は第2の構成要素の「半径方向内側」または「内方」にあると述べることができる。「軸方向」という用語は、軸線に平行な移動または位置を指す。最後に、「円周方向」という用語は、軸線周りの移動または位置を指す。以下に提供されるように、そのような用語は、タービンエンジンまたはタービンの中心軸に関して画定された軸方向30、半径方向31、および円周方向32に対して使用され得る。
【0010】
図面を参照すると、図1は、ガスタービンシステムまたはエンジン(または「ガスタービン」)10のブロック図である。以下でさらに説明するように、ガスタービン10は、高温ガス経路構成要素の応力態様を低減し、エンジンの全体的な効率を改善する冷却チャネルを有するシュラウドセグメントを含み得る。ガスタービン10は、天然ガスおよび/または水素富化合成ガスなどの液体燃料またはガス燃料を使用することができる。図示するように、燃料ノズル12が燃料供給14を取り入れ、燃料を空気、酸素、酸素富化空気、酸素還元空気、またはそれらの任意の組み合わせなどの酸化剤と混合する。燃料と空気が混合されると、燃料ノズル12は、最適な燃焼、排出量、燃料消費、および動力出力に適した比率で、燃料-空気混合物を燃焼器16に分配する。
【0011】
ガスタービン10は、1つまたは複数の燃焼器16の内部に位置する1つまたは複数の燃料ノズル12を含むことができる。燃料-空気混合物は、燃焼器16内の燃焼室において燃焼することで、高温の加圧された排気ガスを生成する。燃焼器16は、排気ガス(例えば、高温加圧ガス)をトランジションピースを通して静止ステータブレードと回転ロータブレードの交互の列に送り、これにより、タービンケーシング内のタービンセクションまたはタービン18の回転が生じる。排気ガスはタービン18を通って膨張し、排気出口20に向かって流れる。排気ガスがタービン18を通過するとき、ガスはロータブレードにシャフト22を回転させる。シャフト22は、タービン18を圧縮機24に動作可能に接続する。シャフト22は、そのタービン18および圧縮機24を含む、ガスタービン10の中心軸を画定する。シャフト22はまた、負荷28、例えば、発電プラント内の発電機などの車両または静止負荷に接続される。シャフト22によって画定された中心軸に対して、中心軸に沿った移動を表す軸方向30が画定され、中心軸に向かうまたは中心軸から離れる移動を表す半径方向31が画定され、中心軸の周りの移動を表す円周方向32が画定される。圧縮機24はまた、シャフト22に結合されたブレードを含む。シャフト22が回転すると、圧縮機24内のブレードも回転し、それによって空気が吸気口26を介して圧縮機24を通って移動する際に取り込まれた空気を圧縮し、燃料ノズル12および/または燃焼器16に送る。
【0012】
圧縮機24からの圧縮空気の一部は、燃焼器16を通過せずにタービン18に迂回させ、ロータ上のロータブレード、ディスク、およびスペーサと共に、ステータ上のシュラウドおよびノズルなどの高温ガス経路構成要素に対する冷却剤として利用することができる。タービン18は、そのような冷却剤を循環させて動作中の温度を制御するための冷却通路を含む内部冷却構成(または「冷却構成」)を有する1つまたは複数のシュラウドセグメント(例えば、内側シュラウドセグメント)を含み得る。見られるように、本開示の冷却構成は、内側シュラウドセグメント内で使用することができ、冷却剤効率をより改善するだけでなく、構造および構築性に関連する他の利益を達成する。このようにして、本開示の冷却構成は、応力態様を低減し、構成要素の耐用年数を延長させ、構成要素のコストおよび保守コストを削減し、かつエンジン効率を改善し得る。
【0013】
図2は、ガスタービンエンジンのタービンセクション内に含まれる高温ガス経路38の例示的な軸方向セクションを示す。示すように、高温ガス経路38は、ロータブレードの列の一部であるロータブレード33を含み得、これは、静止タービンステータブレードの列(図示せず)の軸方向後方または下流に連続流関係で配置される。高温ガス経路38はまた、ロータブレード33の周りに半径方向外側または外方に円周方向に配置された静止シュラウドセグメント34を含み得る。図示のように、シュラウドセグメント34は、外側シュラウドセグメント36の半径方向内側または内方に存在する内側シュラウドセグメント35を含むことができる。複数のシュラウドセグメント34を円周方向に積み重ね、ロータブレードの列のすぐ外方に配置されたシュラウドリングを形成することができ、シュラウドセグメント34の各々は、1つまたは複数の外側シュラウドセグメント36に結合された1つまたは複数の内側シュラウドセグメント35を有する。内側および外側シュラウドセグメント35、36のアセンブリ間には、空洞37が形成され得る。例えば、内側シュラウドセグメント35は、溶接、ろう付け、締まりばめまたは機械的嵌合などの任意の従来のプロセスを介して外側シュラウドセグメント36に接続され、本明細書に記載の機能のために空洞37を形成およびシールすることができる。内側シュラウドセグメント35および外側シュラウドセグメント36はまた、単一の部品として形成されてもよい。動作中、加圧された冷却空気または冷却剤の供給は、外側シュラウドセグメント36を介して形成され得る、1つまたは複数の冷却剤供給チャネル39を介して空洞37に送達することができる。見られるように、次に、空洞37に供給された冷却剤は、内側シュラウドセグメント35の内部を通して形成された冷却通路またはチャネルに送られ得る。
【0014】
タービンセクション内のその一般的な構成および配向に関して、内側シュラウドセグメント35は、以下のように説明することができる。図2および図3に示されるように、内側シュラウドセグメント35は、上流または前縁44と、対向する下流または後縁46とを含む。内側シュラウドセグメント35は、第2の円周方向縁部50に対向する第1の円周方向縁部48を含み、第1および第2の円周方向縁部48、50は、前縁44と後縁46との間に延びる。さらに、内側シュラウドセグメント35は、前縁および後縁44、46と第1および第2の円周方向縁部48、50との間に延びる一対の対向した側方側または面52、54によって形成される。本明細書で使用される場合、対向した側方面52、54は、外方面52と、内方面54とを含む。外方面52は、外側シュラウドセグメント36および/または空洞37に向けられ、内方面54は、高温ガス経路38に向けられ、その境界を画定する。認識されるように、内方面54は、前縁および後縁44、46の間で実質的に平面であり、第1および第2の円周方向縁部48、50の間で漸進的な弧状の形状を有し得る。
【0015】
タービン18の中心軸の周りにあるように位置決めされた内側シュラウドセグメント35の形状および寸法が、タービン18の軸方向、半径方向、および円周方向30、31、32に対してさらに説明され得る。したがって、対向した前縁および後縁44、46は、軸方向30にオフセットされている。本明細書で使用される場合、軸方向30におけるこのオフセットの距離は、内側シュラウドセグメント35の幅寸法(または「幅」)として画定される。加えて、内側シュラウドセグメント35の対向した第1および第2の円周方向縁部48、50は、円周方向32にオフセットされている。本明細書で使用される場合、円周方向32におけるこのオフセットの距離は、内側シュラウドセグメント35の長さ寸法(または「長さ」)として画定される。最後に、内側シュラウドセグメント35の対向した内側面および外方面52、54は、半径方向31にオフセットされている。本明細書で使用される場合、半径方向31におけるこのオフセットの距離は、内側シュラウドセグメント35の高さ寸法(または「高さ」)として画定される。
【0016】
ここで図3を参照すると、例示的な高温ガス経路構成による、隣接する第1および第2の内側シュラウドセグメント35a、35bの断面側面図が提供されている。示されるように、隣接する内側シュラウドセグメント35a、35bは、第1の内側シュラウドセグメント35aの第1の円周方向縁部48と第2の内側シュラウドセグメント35bの第2の円周方向縁部50との間に形成された界面56に沿って互いに隣り合う。界面56の一部として、シール55が提供される。シール55は、対応するシーリング部材58を受け入れるために、隣り合う円周方向縁部48、50の各々内に形成されたスロット57を含む。いずれの場合も、スロット57は、それぞれの円周方向縁部48、50に沿って、それぞれの内側シュラウドセグメント35a、35bの前縁44から後縁46まで延びることができる。シーリング部材58は、スロット57内に位置決めされる。シーリング部材58はまた、内側シュラウドセグメント35a、35bの前縁44から後縁46まで延びることができる。内側シュラウドセグメント35a、35bが組み立てられて界面56を形成すると、スロット57が協調または整列し、界面56に跨るシールチャンバを形成することが認識されよう。シーリング部材58は、設置されると、界面56に跨り、それによって排気ガスが界面56を通って高温ガス経路38から漏れるまたは逃げるのを防止または限定するように、シールチャンバに対応して成形される。
【0017】
ここで図4を参照すると、本開示のいくつかの態様および特徴を含む例示的な内側シュラウドセグメント35が示されている。図4の内側シュラウドセグメント35は、図2および図3に関して上で紹介したものと同じ一般的な構成および構成要素を含むので、同様の参照番号を使用してラベル付けされている。以下でさらに説明するように、本発明の内側シュラウドセグメント35は、いくつかの他の新規の内部および外部の構成および特徴をさらに含み得る。例えば、本開示の内側シュラウドセグメント35は、冷却剤を受け入れて内部領域を通して送るための、特別に構成された冷却チャネルの1つまたは複数を有する冷却構成を含むことができる。さらに、本開示の内側シュラウドセグメント35は、1つまたは複数の特定の外部もしくは表面の構成もしくは特徴および/または内部もしくは構造の構成もしくは特徴を含み得、これらの各々は、構築性、耐久性構造および/または材料もしくは重量の低減に関連する利益を提供する。見られるように、外部および/または内部構成の態様は、内部冷却構成の態様によって、またはその態様の手段によって可能にされ得、そのような組み合わせは、構成要素の機能、性能、および/または構築性を強化することができる。したがって、代替の実施形態は、本明細書に記載の特徴または実施形態のいずれかを、本明細書に記載の他の特徴または実施形態のいずれかと組み合わせることを含む。しかし、明示的に限定されない限り、本明細書に提示されるいくつかの特徴および実施形態もまた、そのような組み合わせなしで別々に使用され得ると想定されるべきである。
【0018】
図4にさらに示されるように、内側シュラウドセグメント35は、外方空洞71を囲んで画定する外方面52に形成されたレールを含み得る。一般に、そのようなレール72、73は、内側シュラウドセグメント35の縁部に隣接して沿って延びるように形成された半径方向高さまたは山部が増加したエリアを表す。説明の目的のために、レールは、円周方向縁部48、50に隣接して延びる円周方向レール72、ならびに前縁および後縁44、46に隣接して延びる軸方向レール73と呼ばれ得る。レール72、73によって囲まれた内側シュラウドセグメント35の中心エリアは、外方空洞71の床74と呼ばれ得る。さらに、レール72、73の各々の内向きの側は、内側75と呼ばれ得る。認識されるように、外方空洞71は、図2に示すように、空洞37の一部を形成する。
【0019】
ここで図5図7を参照すると、1つまたは複数のクロスフロー冷却チャネル(または「クロスフローチャネル」)60を有する内側シュラウドセグメント35が、本開示の例示的な実施形態に従って導入される。便宜上、前の図ですでに識別されたものに対応する構成要素および要素は、同様の参照番号で識別されるが、本実施形態を理解するために必要な場合にのみ、特に説明する。以下の説明の多くは、単一の例示的なクロスフローチャネル60を参照してクロスフローチャネル60の特性を説明するが、本開示の冷却構成は、任意の数のそのようなクロスフローチャネル60、例えば、1つ、5つ、10個、20個などを含み得ることを認識されたい。図5は、例示的なクロスフローチャネル60の基本的な配向および位置を示す簡略化された断面図を提供する。図6は、特定の特性を説明するために使用される、例示的なクロスフローチャネル60の概略上面図を提供する。最後に、図7は、複数のクロスフローチャネル60を有する例示的な配置が示されている、内側シュラウドセグメント35の透明斜視図を提供する。
【0020】
図5および図6に示すように、本開示のクロスフローチャネル60は、第1の端部または上流端61と第2の端部または下流端62との間で縦方向に延びることができる。上流端61と下流端62との間において、クロスフローチャネル60は、説明の目的のために、クロスフローチャネル60を接続されたセクションに縦方向に分割する接合点65に従って説明され得、ここで、第1のセクションまたは上流セクション66は、第2のセクションまたは下流セクション67に接続する。上流セクション66は、上流端61と接合点65との間に延び、下流セクション67は、接合点65と下流端62との間に延びる。
【0021】
図6および図7に示すように、本開示のクロスフローチャネル60は、可変の断面流れ面積、すなわち、上流端および下流端61、62の間で縦方向に変化する面積を有するように構成され得る。例示的な実施形態によれば、断面流れ面積は、上流セクション66の断面流れ面積が上流端61と接合点65との間で減少し(すなわち、上流セクション66が上流端61から接合点65に延びるにつれて)、下流セクション67の断面流れ面積が接合点65と下流端62との間で増加する(すなわち、下流セクション67が接合点65から下流端62に延びるにつれて)ように変化する。したがって、クロスフローチャネル60は、砂時計と同様の断面流れ面積を有し得る。すなわち、クロスフローチャネル60の断面流れ面積は、砂時計の「ネック」を表す接合点65へと狭くなり、その後そこから広がり得る。本明細書で使用される場合、接合点65またはネックは、クロスフローチャネル60が最小の断面流れ面積を含む場所である。
【0022】
上流セクション66を通る断面流れ面積の減少は、滑らかで漸進的な減少であり得る。下流セクション67を通る断面流れ面積の増加は、滑らかで漸進的な増加であり得る。クロスフローチャネル60の断面流れ面積が減少または増加する様式は、それぞれ、1つまたは複数の次元方向30、31、32におけるクロスフローチャネル60の狭小化または拡幅化を含み得る。例示的な実施形態によれば、図6に最も明確に示すように、上流セクション66の断面流れ面積の減少は、軸方向30における滑らかで漸進的な狭小化によって達成され、下流セクション67の断面流れ面積の増加は、軸方向30における滑らかで漸進的な拡幅化によって達成される。他の構成も可能であるが、例示的な実施形態によれば、上流セクション66の断面流れ面積が減少すると、接合点65での断面流れ面積は、上流端61での断面流れ面積の50%未満になる。同様に、下流セクション67の断面流れ面積が増加すると、接合点65での断面流れ面積は、下流端62での断面流れ面積の50%未満になり得る。他の例示的な実施形態によれば、上流セクション66の断面流れ面積が減少すると、接合点65での断面流れ面積は、上流端61での断面流れ面積の65%未満になり、下流セクション67の断面流れ面積が増加すると、接合点65での断面流れ面積は、下流端62での断面流れ面積の65%未満になる。
【0023】
他の構成も可能であるが、本開示のクロスフローチャネル60は、円周方向32に配向された実質的に線形の経路に沿って縦方向に延びることができる。すなわち、クロスフローチャネル60の長手方向軸は、タービンの円周方向32とほぼ整列するか、または平行である。したがって、例示的な実施形態によれば、クロスフローチャネル60は、内側シュラウドセグメント35内に配向され、ほぼ円周方向32に延び、例えば、クロスフローチャネル60と円周方向32との間に15°未満の角度を形成する。他の実施形態によれば、クロスフローチャネル60は、クロスフローチャネル60と円周方向32との間に形成される角度が5°未満になるように配向される。例示的な実施形態によれば、シュラウド冷却構成内のクロスフローチャネル60は、平行配置を有し、すなわち、互いに対して平行に配置され得る。さらに、図7に示すように、そのようなクロスフローチャネル60は、クロスフローチャネル60の隣接するチャネルが反対配向の流れ方向を有する、すなわち、冷却剤が反対方向に流れるように配向される交互の向流配置に従って構成されてもよい。
【0024】
クロスフローチャネル60は、内側シュラウドセグメント35の長さの大部分にわたって延びることができる。例えば、例示的な実施形態によれば、クロスフローチャネル60は、内側シュラウドセグメント35の長さの少なくとも60%にわたって延びる。他の実施形態によれば、クロスフローチャネル60は、内側シュラウドセグメント35の長さの少なくとも75%にわたって延びる。示すように配向されたクロスフローチャネル60の長さは、上流端61と下流端62との間の円周方向32における距離として画定される。クロスフローチャネル60の高さは、クロスフローチャネル60の内側半径方向床と外側半径方向天井との間の半径方向31における距離として画定される。図5に示すように、例示的な実施形態によれば、クロスフローチャネル60の高さは、上流端および下流端61、62の間で実質的に一定であり得る。前に述べたように、クロスフローチャネル60は、半径方向面54の近くに、その内側に配置することができる。好ましい実施形態によれば、図5に示すように、クロスフローチャネル60は、内方面54から実質的に一定の距離またはオフセットを維持し得る。図6に示すように、クロスフローチャネル60の幅は、本明細書では、クロスフローチャネル60の第1の側と第2の側との間の軸方向30における距離として画定される。例示的な実施形態によれば、上流セクション66の断面流れ面積の減少は、クロスフローチャネル60の幅の漸進的な先細りを介して達成される。同様に、下流セクション67の断面流れ面積の増加は、クロスフローチャネル60の幅の漸進的な拡大化または拡幅化を介して達成される。
【0025】
例示的な実施形態によれば、クロスフローチャネル60の上流端61は、第1の円周方向縁部48の近くに配置される。例えば、クロスフローチャネル60の上流端61は、第1の円周方向縁部48から、内側シュラウドセグメント35の長さの20%に等しい距離を超えて配置されない。同様に、クロスフローチャネル60の下流端62は、第2の円周方向縁部50の近くに配置することができる。例えば、クロスフローチャネル60の下流端62は、第2の円周方向縁部50から、内側シュラウドセグメント35の長さの20%に等しい距離を超えて配置され得ない。
【0026】
例示的な実施形態によれば、接合点65は、クロスフローチャネル60の中間部分の近くに位置する。例えば、例示的な実施形態によれば、接合点65は、クロスフローチャネル60の長さの35%~65%の範囲内に位置する。他の実施形態によれば、接合点65は、クロスフローチャネル60の長さの45%~55%の範囲内に位置する。接合点65はまた、クロスフローチャネル60の長さの中間点に位置し得る。
【0027】
例示的な実施形態によれば、図5に最も明確に示されているように、クロスフローチャネル60は、供給チャネル81を介して冷却剤を供給され得る。クロスフローチャネル60はまた、通過する冷却剤を排出するために出口チャネル82に接続することができる。以下でさらに説明するように、供給チャネル81は、内側シュラウドセグメント35の外面に形成された入口91とクロスフローチャネル60の上流端61との間に延びることができ、出口チャネル82は、クロスフローチャネル60の下流端62と内側シュラウドセグメント35の外面に形成された出口92との間に延びることができる。例えば、入口91は、内側シュラウドセグメント35の外方空洞71内に形成され、空洞37と流体連通していてもよい。より具体的には、入口91は、円周方向レール72の内側75に形成され得る。出口92は、第1または第2の円周方向縁部48、50に形成され得る。この配置を考慮すると、空洞37に供給される冷却剤は、入口91を介してクロスフローチャネル60によって取り込まれ得ることを認識されたい。次に、冷却剤は、内側シュラウドセグメント35の内方面54を冷却するために、供給チャネル81を介してクロスフローチャネル60に送られ、チャネルを通して循環させることができる。冷却剤がクロスフローチャネル60を通過すると、出口チャネル82によって出口92に送られ得、そこで内側シュラウドセグメント35から排出される。
【0028】
さらに図示するように、供給チャネル81は、円周方向レール72の一方のレール内に配置され得、対応する出口チャネル82は、対向する円周方向レール72内に配置される。以下でさらに説明するように、供給チャネル81は、入口91からクロスフローチャネル60の上流端61との接続部に向かって内方方向に傾斜し得る。その接続部は、内方面54の近くにあり得る。供給チャネル81は、円周方向32に対して約180°冷却剤の流れ方向を旋回させる湾曲経路を含むことができる。出口チャネル82は、クロスフローチャネル60の下流端62との接続部から出口92に向かって外方方向に傾斜し得る。
【0029】
図7は、複数のクロスフローチャネル60を有する内側シュラウドセグメント35の例示的な実施形態を提供する。図示するように、そのようなクロスフローチャネル60は、交互の配置に従って反対に配向させることができ、これは、本明細書では、交互の向流配置と呼ばれる。したがって、第1のセットのクロスフローチャネル60は、冷却剤を第1の円周方向縁部48に形成された出口92に送るように配向させることができ、第1のセットのチャネルと載置が交互になっている第2のセットのクロスフローチャネル60は、冷却剤を第2の円周方向縁部50に形成された出口92に送る。したがって、この配置を考慮すると、第1のセットのクロスフローチャネル60は、第2の円周方向縁部50の円周方向レール72の内側75に形成された入口91を有し、第2のセットのクロスフローチャネル60は、第1の円周方向縁部48の円周方向レール72の内側75に形成された入口91を有する。このようにして、本発明の冷却構成は、冷却剤を内側シュラウドセグメント35の様々な内部領域に均一に提供し、実質的に使い果たされると、冷却剤を界面56内に放出し、内部で冷却およびシーリングの利益を提供することができる。クロスフローチャネル60の交互の平行配置は、出口92が円周方向縁部48、50にわたって等間隔に一定の間隔をおいて配置されることを可能にする。
【0030】
開示されたクロスフローチャネルは、従来の冷却構成よりも少ない冷却剤を使用して静止シュラウドなどの高温ガス構成要素を冷却し、その結果、冷却に関連するコストが削減され、エンジン効率が向上することが見出された。例えば、本開示のクロスフローチャネルは、内側シュラウドセグメント内、特に、内方面の近くの領域内でより均一な温度を維持する方式で、冷却剤の熱容量の使用を最大化する。クロスフローチャネルを通る冷却剤の質量流量が実質的に一定のままであるため、上流セクションを通る断面流れ面積が減少すると、冷却剤の速度が増加する。すなわち、冷却剤が上流端から接合点またはネックに移動するにつれて断面流れ面積が減少し、冷却剤の速度が増加する。ダクトフローの熱伝達係数(HTC)が流体速度に直接依存するため、冷却剤の速度の増加は、冷却剤がクロスフローチャネルの上流セクションを通過するとHTCを増加させる。もちろん、冷却剤が加熱されたダクトを通って移動すると、周囲の壁から熱を吸収して温度が上昇し、冷却剤の効果が低下する。しかし、本出願によれば、この温度の上昇/冷却剤の効果の減少は、冷却剤の速度の増加に起因する熱伝達係数の増加によってオフセットされる。このようにして、冷却剤は、クロスフローチャネルの上流セクションを通って移動するとき、比較的一定の熱伝達率を維持する。接合点またはネックは、クロスフローチャネルの長さに沿って位置決めされ得る。例えば、接合点は、クロスフローチャネルを通って移動する冷却剤が、吸収することが可能な実質的にすべての熱を吸収すると、断面流れ面積が広がり、それにより使用済み冷却剤が出口に向けて効率的に送られるように位置決めすることができる。好ましい実施形態によれば、内側シュラウドセグメントを通して均一な冷却を促進するために、冷却構成は、交互の向流配置を有し得、すなわち、隣り合うクロスフローチャネルは、反対の冷却剤の流れ方向を有する。この配置により、クロスフローチャネルの各下流セクションが隣り合うクロスフローチャネルの隣接して並んでいる上流セクションによって補償されるため、冷却の均一性が向上する。
【0031】
ここで図8図10を参照すると、代替の実施形態によれば、内側シュラウドセグメント35は、外方面52内、より具体的には、内側シュラウドセグメント35の外方空洞71の床74内に形成される細長い溝またはトラフ101を含み得る。各トラフ101は、内側シュラウドセグメント35の対向する円周方向レール72の近くに位置決めされた端部103の間で縦方向に延びることができる。この長さに沿って、各トラフ101は、可変の深さおよび幅を有することができる。本明細書で使用される場合、トラフ101の深さは、床74の周囲の表面とトラフ101内の最も低い点との間の半径方向31における距離として画定される。トラフ101の幅は、トラフ101の対向する側面107の間の軸方向30における距離として画定される。可変の深さおよび幅は、トラフ101が分割線105を介して画定される中心エリアまたは中央線に向かって延びるので、端部103でそれぞれ浅くかつ狭く、次にそれぞれ深くかつ広くなるようなトラフ101を含み得る。したがって、トラフ101は、端部103から分割線105に向かって内側に延びるにつれて、広がって深くなり得る。図示のように、分割線105は、最大の幅および深さを有するトラフ101の長さに沿った点を指定する基準場所とすることができる。
【0032】
端部103の各々からのトラフ101の拡幅化は、滑らかで漸進的であり得る。図9に示されるように、端部103の各々からのトラフ101の拡幅化は線形であり得、したがって、側面107の間に形成された角度106に従って記述可能である。他の構成も可能であるが、角度106は、5°~15°であり得る。好ましい実施形態によれば、図9に示すように、トラフ101の拡幅化は、トラフ101の各側面に形成される一対のクロスフローチャネル60の狭小化に対応し得る。上述のように、隣接するクロスフローチャネル60がそれぞれのネックまたは接合点65に向かって狭小化することにより、トラフ101が広がって深くなるためのスペースを利用可能にしながら、トラフ101と隣り合うクロスフローチャネル60との間の密接に並んだ関係を維持することもできる。トラフ101の各々の拡幅化および深化は、実質的に一定の距離がトラフ101の側面と、トラフ101と並んでいる一対のクロスフローチャネル60の側面との間で維持されるように構成され得る。さらに、トラフ101の分割線105は、隣接するクロスフローチャネル60の接合点65と円周方向に整列し得る。例示的な実施形態によれば、分割線105は、トラフ101の長さの35%~65%の範囲内に位置する。他の実施形態によれば、分割線105は、トラフ101の長さの45%~55%の範囲内に位置する。
【0033】
端部103の各々からのトラフ101の深化は、滑らかで漸進的であり得る。図8に示すように、トラフ101は、比較的浅い第1の角度108に従って、端部103の各々から深くなり得る。例えば、他の構成も可能であるが、第1の角度108は、5°~15°であり得る。図10に示すように、トラフ101は、一般に第1の角度108よりも急勾配である第2の角度109に従って、各側面107から深くなり得る。他の構成も可能であるが、第2の角度109(または「降下角度」)は、25°~45°であり得る。
【0034】
他の構成も可能であるが、本開示のトラフ101は、実質的に線形であり、円周方向32に配向され得る。すなわち、トラフ101の長手方向軸は、タービンの円周方向32とほぼ整列するか、または平行であり得る。したがって、例示的な実施形態によれば、トラフ101は、ほぼ円周方向32に延びるように内側シュラウドセグメント35内に配向され得、例えば、上述のクロスフローチャネル60の実施形態のいずれかに平行に配置され得る。トラフ101の各々は、トラフ101と並んでいる一対のクロスフローチャネル60の間に位置決めされ、平行に縦方向に延びることができる。トラフ101は、このようにして、内側シュラウドセグメント35の長さの大部分にわたって延びることができる。例えば、例示的な実施形態によれば、トラフ101は、内側シュラウドセグメント35の長さの50%を超えて延びる。他の実施形態によれば、トラフ101は、内側シュラウドセグメント35の長さの少なくとも65%にわたって延びる。図示のように、複数の平行なトラフ101を提供することが可能である。
【0035】
本明細書に記載のトラフの実施形態を含めることは、いくつかの利点を内側シュラウドセグメントに提供し得る。第一に、トラフは、内側シュラウドセグメントから材料を除去する方式を提供し、構成要素をより経済的に製造することを可能にするだけでなく、有利には、エンジンの総重量を低減する。第二に、記載のように構成されたトラフは、内側シュラウドセグメントの前縁と後縁との間に波形のトラス状の構造を互いに形成することができ、材料の除去が構造的堅牢性に悪影響を与えないように剛性を維持する。第三に、トラフは、内側シュラウドセグメントの外方面の表面積を増加させる。外方面はより低い温度に曝されるため、これは、動作中の構成要素全体の温度プロファイルに利益をもたらす。第四に、トラフがクロスフローチャネルの可変の形状に対応する様式は、クロスフローチャネルの近くに存在する外方面の表面積の増加をもたらし、これは、内部の冷却剤温度を低下させ、その有効性を強化する。
【0036】
ここで図11図15を参照すると、本開示の内部冷却構成のさらなる実施形態が提示されている。便宜上、前の図ですでに識別されたものに対応する構成要素および要素(特に図5図7のクロスフローチャネル60に関連するもの)は、同様の参照番号で識別されるが、本実施形態を理解するために必要な場合にのみ、特に説明する。見られるように、図11図15の実施形態は、主に供給チャネル81および出口チャネル82に関連する追加の特性および実施形態を含む。これらの特性については、次の両方に関連して説明する。1)上流セクションとして供給チャネル81、中間セクション(例えば、クロスフローチャネル60)、および下流セクションとして出口チャネル82を有する単一の冷却チャネル、および2)一対の隣接するクロスフローチャネル60など、隣接する向流冷却チャネルに取り付ける隣接する供給および出口チャネル81、82を含む供給および出口チャネル構成121。後者に関して、供給および出口チャネル構成121の説明は、改善された冷却性能、空間効率、および構造的堅牢性のために、隣り合う供給および出口チャネル81、82が互いに関連して構成される様式に焦点を合わせている。
【0037】
例えば、供給および出口チャネル構成121は、内側シュラウドセグメント35の縁部(図示するように、第1または第2の円周方向縁部48、50)の近くに配置され、一対の隣接する向流クロスフローチャネル60(「対の向流クロスフローチャネル60」とも呼ばれる)に/から冷却剤を供給/除去するように機能し得る。見られるように、供給および出口チャネル構成121の実施形態は、対の向流クロスフローチャネル60に対する冷却剤の送達および除去が可能な効率的な方式を提供すると同時に、強化された冷却性能も提供する。図11および図12は、本開示による、供給および出口チャネル構成121の透明な外側および内側の半径方向図をそれぞれ提示する。図13は、例示的な供給および出口チャネル構成121内の供給チャネル81の1つに沿って取られた断面を有する透明斜視図を示し、図14は、例示的な供給および出口チャネル構成121内の出口チャネル82の1つに沿って取られた断面を有する透明斜視図を示す。最後に、図15は、本開示による、供給チャネル81と出口チャネル82の両方を横切って取られた断面を有する斜視図を示す。
【0038】
例示的な実施形態によれば、各クロスフローチャネル60は、上流端61で供給チャネル81に接続し、下流端62で出口チャネル82に接続することができ、供給チャネル81および出口チャネル82は、本明細書に開示される実施形態の特性のいずれかを含み得る。例示的な動作によれば、このように構成された冷却チャネルは、一般に、以下のように機能し得る。冷却チャネルは、入口91を介して冷却剤を取り込み、次いで、その冷却剤を、供給チャネル81を介してクロスフローチャネル60に送達することができる。次に、冷却剤は、クロスフローチャネル60を通過し、それによって、内側シュラウドセグメント35の内方面54を冷却することができる。冷却剤がクロスフローチャネル60を通過すると、次に、出口チャネル82を介して出口92に送られ得、そこで内側シュラウドセグメント35から排出される。
【0039】
供給および出口チャネル構成121の実施形態に関して、特定の特性が、図示の構成を参照してここで提示されている。例えば、供給および出口チャネル構成121は、一対の隣接する向流クロスフローチャネル60に接続することができ、これは、すでに説明したように、内側シュラウドセグメント35にわたって並んで延びることができる。好ましい実施形態によれば、供給および出口チャネル構成121は、そのような一対の隣接する向流クロスフローチャネル60の各対向する端部に配置される。より一般的には、供給および出口チャネル構成121は、内側シュラウドセグメント35内で必要に応じて繰り返され得、したがってその一対の隣接する向流クロスフローチャネル60の各々と共に使用される。例示的な供給および出口チャネル構成121を説明する目的のために、一対の対応する隣接する向流クロスフローチャネル60は、供給チャネル81に接続する第1のクロスフローチャネル60と、出口チャネル82に接続する第2のクロスフローチャネル60とを含むものとして参照される。
【0040】
供給および出口チャネル構成121は、一般に、供給チャネル81と、隣接するまたは隣り合う出口チャネル82とを含む。両方とも、内側シュラウドセグメント35の縁部、例えば、第1および第2の円周方向縁部48、50の近くに配置することができる。供給チャネル81は、内側シュラウドセグメント35の外面に形成された入口91と、対のクロスフローチャネル60の第1のクロスフローチャネル60との接続部との間に延びることができる。好ましい実施形態によれば、入口91は、内側シュラウドセグメント35の外方面52を通して形成され得、それにより入口91は、内側シュラウドセグメント35の空洞37および/または外方空洞71と流体連通する。例えば、入口91は、第1の円周方向縁部48の円周方向レール72の内側75に形成されてもよい。別の例として、供給および出口チャネル構成121が内側シュラウドセグメント35の反対側で発生するとき、入口91は、第2の円周方向縁部50の円周方向レール72の内側75に形成され得る。出口チャネル82に関して、これは、対のクロスフローチャネルの第2のクロスフローチャネル60との接続部と、内側シュラウドセグメント35の外面に形成された出口92との間に延びることができる。例えば、出口92は、第1の円周方向縁部48に形成されてもよい。供給および出口チャネル構成121が内側シュラウドセグメント35の反対側で発生するとき、出口92は、第2の円周方向縁部50に形成され得る。
【0041】
例示的な実施形態によれば、供給および出口チャネル構成121の特定の構成属性が、ここで説明される。説明の目的のために、そのような実施形態における供給および出口チャネル81、82の形状は、主に2つの方式で説明される。これらの第1の方式では、外側半径方向または「外方視点(outboard perspective)」が参照される。本明細書で使用される場合、「外方視点」は、説明されている特徴の直接外方の位置から内方方向に見た図として意図されている。この視点は、供給チャネル81および出口チャネル82の経路が軸方向および円周方向30、32でどのように成形されているかを説明するのに有用である。構成を説明する第2の方式は、半径方向位置における相対的な変化を参照することである。
【0042】
それを念頭に置いて、好ましい実施形態によれば、供給チャネル81は、最初に、入口91で半径方向に上昇した初期の位置から床74またはクロスフローチャネル60(内方面54の近くであり得る)のおよその半径方向レベルまで内方方向に傾斜する。外方視点から、この第1の傾斜セクションは、実質的に線形であり、円周方向32と整列し得る。外方視点から、供給チャネル81は、供給チャネル81が第1のクロスフローチャネル60の上流端61と接続する前に、約180°冷却剤の流れを旋回させる湾曲またはループする第2のセクションを介して継続し得る。したがって、供給チャネル81内の初期の流れ方向が第1の円周方向縁部48に向けられている間、供給チャネル81と第1のクロスフローチャネル60との接続部において、流れ方向は円周方向に逆転され、その結果、ここで冷却剤の流れは、第2の円周方向縁部50に向けられる。外方視点から、この180°の旋回を行う際、供給チャネル81の湾曲は、出口チャネル82に向かって外側に弓形である。外方視点から、この第2のまたは弓形セクション123は、出口チャネル82のセクションをアンダーカットするように構成される。より具体的には、再び、外方視点から、供給チャネル81の弓形セクション123は、出口チャネル82のセクションと軸方向および円周方向に重なり、一方、そこから内方方向へと半径方向にオフセットされる。
【0043】
外方視点から、第1のクロスフローチャネル60の上流端61は、入口91と軸方向に重なるように位置決めされ、一方、そこから内方方向へと半径方向にオフセットされ得る。したがって、外方視点から、図12に最も明確に示すように、供給チャネル81は、その湾曲を逆転させて真っ直ぐになり入口91と軸方向に重なる位置で上流端61と接続する前に、ループし続ける(ほぼ一周する)ことができる。
【0044】
好ましい実施形態によれば、出口チャネル82の第1のセクションは、出口チャネル82とクロスフローチャネル60の下流端62との接続部から外方方向に傾斜し得る。より具体的には、図13に最も明確に示すように、出口チャネル82は、冷却剤を、内方面54に近い初期の半径方向位置から円周方向レール72の半径方向中間点の外方にある隆起した外方位置に運ぶ第1のまたは外方傾斜セクション125を含み得る。外方傾斜セクション125の後、次に、出口チャネル82の第2のセクションは、半径方向に平らになり、出口92に向かって延び得、第1の円周方向縁部48に配置することができる。認識されるように、外方傾斜セクション125は、供給チャネル81の弓形セクション123が出口チャネル82をアンダーカットするために必要な内側の半径方向空間を提供する。外方視点から、図11に最も明確に示すように、出口チャネル82は、下流端62と出口92との間の線形経路を維持することができる。この線形経路は、円周方向とほぼ整列し、かつ/または第2のクロスフローチャネル60によって画定された線形経路の継続を提供することができる。
【0045】
さらなる特徴として、円周方向レール72の内側75は、交互の山部131および谷部133を有する波形構成130を含み得、これは、見られるように、供給および出口チャネル構成121を有する供給および出口チャネル81、82の載置に対応するように構成され得る。一般に、山部131および谷部133は、円周方向に延び、円周方向レール72の内側75の輪郭に沿って外方方向に傾斜し得る。図15に最も明確に示すように、円周方向に延びる山部131は、出口チャネル82の外方傾斜セクション125の各々の周りに形成され得る。具体的には、各山部131は、出口チャネル82の1つの外方傾斜セクション125の形状に対応するように構成され得、一般に、このセクションの外側半径方向の半分を包み込む。隣り合う山部131の各々の間には、円周方向に延びる窪みまたは谷部133が形成され得、その中には供給チャネル81のための入口91が位置し得る。いくつかの図に示されるように、波形構成130は、供給および出口チャネル構成121の繰り返しに対応するように、円周方向レール72の各々に対して内側75に沿って繰り返され得る。説明の目的のために、波形構成130内では、「山部」部分は、外方方向に突き出る特徴であり、「谷部」部分は、内方方向に作られた切り取られた部分または窪みであることが認識されよう。
【0046】
波形構成130の利点には、構成要素の構造的堅牢性を維持しながら、余分な材料を除去することが挙げられる。さらに、波形構成130は、供給および出口チャネル構成121の態様を有効化または強化することに関連する利益を提供する。例えば、山部131は、出口チャネル82の外方傾斜セクション125がより急勾配な角度で円周方向に延びることを可能にし、これは、供給チャネル81が上述の様式で出口チャネル82の下でカールするための空間を外方傾斜セクション125の内方側に形成する。別の例として、谷部133は、より低い半径方向高さでの入口91の位置決めを可能にし、これはまた、供給チャネル81が所望の様式で出口チャネル82の下でカールすることを容易にする。さらに、入口91のより低い半径方向高さは、より短い長さの供給チャネル81をもたらし、これは、空気力学的損失を減少させる。
【0047】
ここで図16および図17を参照すると、例えば、前縁または後縁の軸方向レール73を支持するために内部で使用され得る構造構成が開示される。図16は、軸方向レール73の例示的な構造構成、すなわち、前縁または後縁44、46のいずれかに沿って形成されるレールの透明図であり、図17は、その構造構成の特定の態様の拡大図を提供する。例示的な実施形態によれば、構造構成は、構造的支持のために軸方向レール73の内部内に形成されるトラス状の配置または構造(または「トラス構造」)151を含み得る。図示のように、トラス構造151は、三角形形状を有する繰り返し配置の部材153を含み得、これは、材料の除去を可能にし、軸方向レール73から繰り返しの三角形の中空部分155を形成する。三角形形状は、軸方向レールの外方縁部と軸方向レールの内方縁部との間に延びることができる。部材153は、軸方向レール73の外方縁部と内方縁部との間で傾斜する傾斜部材を含み得る。傾斜部材がトラス構造151の各縁部となす角度157は、60°以下であり得る。好ましい実施形態によれば、傾斜部材がトラス構造151の各縁部となす角度157は、45°以下であり得る。
【0048】
軸方向レール73におけるトラス構造151は、許容可能な構造的剛性および支持も維持しながら、大部分の材料、すなわち、三角形の中空部分の除去を可能にし、その結果、重量およびコストを節約することが見出された。さらに、以下でさらに説明するように、トラス構造151は、鋳造に必要とされる最小の肉厚の制限なしに、必要な要件に従って付加製造プロセスによって効率的に製造され得るように構成される。
【0049】
高温ガス経路構成要素、例えば、内側シュラウドセグメントのための上述の表面および内部構成ならびに冷却チャネルの実施形態は、放電加工、掘削、鋳造、付加製造、それらの組み合わせ、または任意の他の技法を含む任意の従来の製造技法を介して、形成または構築することができる。これから説明するように、上記で開示された実施形態の特定の態様は、付加製造プロセスを介した迅速かつ費用対効果のある製造のための構築性における利点を提供するように特に構成される。
【0050】
例えば、選択的堆積付加製造などの特定の付加製造プロセスでは、材料は、構成要素の以前に形成された部分または堆積された部分に堆積され、自立様式で蓄積方向(実質的に垂直であり得る)に沿って構成要素を順次蓄積する。選択的堆積付加製造では、新たに堆積された材料が限られた範囲で支持材料からオーバハングするように材料を堆積させることができる。このような新たに堆積された材料は、典型的には垂直から測定される「オーバハング角度」だけオーバハングすると言われている。選択的堆積付加製造において自立構造を確実かつ正確に製造するために、オーバハング部分のオーバハング角度は、垂直軸から60°を超えてはならないことが見出された。構成要素の表面仕上げは、構成要素のオーバハング角度によって影響を及ぼされる可能性があり、したがって垂直軸から45°未満などのより小さなオーバハング角度が、一般に、より良い表面仕上げをもたらす。表面仕上げは、内側シュラウドセグメントなどの高温ガス構成要素の寿命に影響を及ぼす可能性があるため、これは重要な考慮事項である。具体的には、高温ガス経路の高い応力に耐える構成要素の場合、許容可能な表面仕上げ、したがって許容可能な構成要素寿命を実現するために、垂直軸からのより小さな角度が必要になり得る。
【0051】
本明細書に開示される内側シュラウドセグメント35の実施形態は、典型的な蓄積方向が約60°の最大オーバハング角度、または他の代替法によれば、約45°の最大オーバハング角度をもたらすように構成される。例えば、内側シュラウドセグメントの縦軸が垂直蓄積方向と整列していると仮定すると、第1および第2の角度108、109について本明細書で提供される範囲が与えられるトラフ101を構築するための予想オーバハング角度は、60°および/または45°未満の浅いオーバハング角度をもたらす。これは、内側シュラウドセグメントの幅軸が代わりに垂直蓄積方向との位置合わせのために選択された軸である場合にも当てはまる。別の例として、内側シュラウドセグメントの縦軸が垂直蓄積方向と整列していると仮定すると、角度157について本明細書で提供される範囲が与えられるトラス構造151の角度付き部材153を構築するための予想オーバハング角度は、60°未満および/または45°未満の浅いオーバハング角度をもたらす。
【0052】
当業者には認識されることとなるように、いくつかの例示的な実施形態に関して上述した多くの様々な特徴および構成は、本開示の他の可能な実施形態を形成するためにさらに選択的に適用することができる。簡潔にするため、および当業者の能力を考慮に入れて、可能な繰り返しの各々については詳細に提示または説明しないが、以下のまたはそれ以外のいくつかの請求項に包含されるすべての組み合わせおよび可能な実施形態は本出願の一部であることが意図されている。加えて、本発明のいくつかの例示的な実施形態の上記の説明から、当業者は、改良、変更、および変形を認識されよう。また当技術の範囲内のこのような改良、変更、および変形は、添付の特許請求の範囲に含まれることを意図している。さらに、前述の記載は本出願の記載された実施形態のみに関係しており、以下の特許請求の範囲およびその均等物によって定義される本出願の趣旨および範囲から逸脱することなく、本明細書において多くの変更および変形が可能であることは明らかである。
【符号の説明】
【0053】
10 ガスタービンエンジン
12 燃料ノズル
14 燃料供給
16 燃焼器
18 タービン
20 排気出口
22 シャフト/中心軸
24 圧縮機
26 吸気口
28 負荷
30 軸方向
31 半径方向
32 円周方向
33 ロータブレード
34 静止シュラウドセグメント
35 内側シュラウドセグメント
35a 第1の内側シュラウドセグメント
35b 第2の内側シュラウドセグメント
36 外側シュラウドセグメント
37 空洞
38 高温ガス経路
39 冷却剤供給チャネル
44 前縁
46 後縁
48 第1の円周方向縁部
50 第2の円周方向縁部
52 外方面
54 内方面
55 シール
56 界面
57 スロット
58 シーリング部材
60 クロスフローチャネル
61 上流端
62 下流端
65 接合点
66 上流セクション
67 下流セクション
71 外方空洞
72 円周方向レール
73 軸方向レール
74 床
75 内側
81 供給チャネル
82 出口チャネル
91 入口
92 出口
101 トラフ
103 端部
105 分割線
106 角度
107 側面
108 第1の角度
109 第2の角度
121 供給および出口チャネル構成
123 弓形セクション
125 外方傾斜セクション
130 波形構成
131 山部
133 谷部
151 トラス構造
153 繰り返し配置の部材
155 三角形の中空部分/三角形形状
157 角度
10-10 視線
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17