(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-02-20
(45)【発行日】2024-02-29
(54)【発明の名称】取り外し可能なヌル化サブアセンブリを使用した、RFビームをヌル化するためのヌル化信号のトリガ生成
(51)【国際特許分類】
H04B 7/06 20060101AFI20240221BHJP
H01Q 21/06 20060101ALI20240221BHJP
H01Q 3/26 20060101ALI20240221BHJP
【FI】
H04B7/06 950
H01Q21/06
H01Q3/26 C
(21)【出願番号】P 2022560006
(86)(22)【出願日】2021-03-19
(86)【国際出願番号】 US2021023244
(87)【国際公開番号】W WO2021242370
(87)【国際公開日】2021-12-02
【審査請求日】2022-11-18
(32)【優先日】2020-04-02
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】501440684
【氏名又は名称】ソフトバンク株式会社
(74)【代理人】
【識別番号】110000877
【氏名又は名称】弁理士法人RYUKA国際特許事務所
(72)【発明者】
【氏名】アナント、シャラス
(72)【発明者】
【氏名】ベルージ、サイラス
(72)【発明者】
【氏名】ネビン、モリス
【審査官】吉江 一明
(56)【参考文献】
【文献】特開平09-307335(JP,A)
【文献】米国特許出願公開第2018/0083671(US,A1)
【文献】米国特許出願公開第2008/0258993(US,A1)
【文献】三浦 龍 R. Miura, et al,成層圏無線プラットフォームを用いた固定業務と他の業務との31/28GHz帯における周波数共用,電子情報通信学会2001年総合大会講演論文集 通信1,2001年03月07日,p.712
(58)【調査した分野】(Int.Cl.,DB名)
H04B 7/06
H01Q 21/06
H01Q 3/26
(57)【特許請求の範囲】
【請求項1】
高高度プラットフォーム(HAP)用の通信装置であって、
無線周波数(RF)信号を生成するように構成された送信機と、
前記RF信号に基づきRFビームを生成するように構成された主アンテナシステムであって、
第1の複数のアンテナ素子と
前記送信機と通信する入力部と、複数の出力部とを含む第1の電力分配器と
前記送信機から前記RF信号を受信するよう構成された第1のコンタクト
、第2のコンタクト
、及び前記RF信号を前記第1の電力分配器に供給するよう構成された第3のコンタクトを含むヌル化起動スイッチと
を有する主アンテナシステムと、
前記主アンテナシステムのインタフェースに対して取り付け可能であり、かつ、前記主アンテナシステムの前記インタフェースから取り外し可能な
、前記ヌル化起動スイッチと通信するヌル化サブアセンブリであって、前記ヌル化起動スイッチが制御されて、前記ヌル化サブアセンブリの入力部に前記RF信号が供給されたときにヌル化信号を生成することによって、前記主アンテナシステムにより生成される前記RFビームを修正するように構成された、ヌル化サブアセンブリと
を備え、
前記ヌル化サブアセンブリは、
入力部および複数の出力部を含み、前記RF信号を前記第2のコンタクトから供給されるように構成された第2の電力分配器と
複数の移相器と
複数のヌル化アンテナ素子と
を有し、
前記送信機が、前記ヌル化起動スイッチの前記第1のコンタクトと通信し、
前記ヌル化起動スイッチが閉じられ、それにより前記第1のコンタクトが前記第2のコンタクトに接続されたとき、前記第2の電力分配器の前記入力部に前記RF信号が提供され、前記第2の電力分配器の各出力部が、ヌル化アンテナ素子と直列に接続された移相器を含むそれぞれの処理チェーンに、前記RF信号を供給し、
前記ヌル化起動スイッチが閉じられ、それにより前記第1のコンタクトが前記第3のコンタクトに接続されたとき、前記第1の電力分配器の前記入力部に前記RF信号が提供され、前記第1の電力分配器の各出力部が、前記第1の複数のアンテナ素子に、前記RF信号を供給する、通信装置。
【請求項2】
前記第2の電力分配器は、前記第1の電力分配器と、前記第2の電力分配器との電力比を、動的に調整する、請求項1に記載の通信装置。
【請求項3】
前記インタフェースが、有線または無線のインタフェースである、請求項
1または2に記載の通信装置。
【請求項4】
前記インタフェースが、有線のハーネスコネクタである、請求項
1または2に記載の通信装置。
【請求項5】
前記ヌル化起動スイッチのポジションが、高高度プラットフォームの位置、地上の陸上位置の知識、国境の知識、またはサービス領域の知識のうちの1つまたは複数に基づき制御される、請求項
1から
4のいずれか一項に記載の通信装置。
【請求項6】
すべてのHAP伝送の合計からの、国境をまたぐ超過してはならない総電力束密度に関して、またはすべてのHAP伝送の前記合計から陸上タワーに向かう総電力束密度に関して、制限が確立される、請求項1から
5のいずれか一項に記載の通信装置。
【発明の詳細な説明】
【背景技術】
【0001】
[関連出願の相互参照]
本願は、2020年4月2日出願の米国出願第16/838,062号の利益を主張し、その開示全体を参照により本明細書に組み込む。
【0002】
高高度プラットフォーム(HAP)におけるアンテナシステム、例えば気球は、地上の広いエリアにカバレッジを提供することができる。HAPが人口の少ない領域の上を飛行するとき、干渉はほとんど問題にならない。しかし、状況によっては、HAPは国境の近くまたは陸上(terrestrial)通信タワーの近くを飛行することがある。これらの状況においては干渉に遭遇する可能性が高く、HAPのカバレッジおよび容量が低減する可能性が高い。
【発明の概要】
【0003】
取り外し可能なヌル化サブアセンブリを含むアンテナシステムが、HAPに提供されてよい。取り外し可能なノッチ素子サブアセンブリは、ヌル化起動スイッチを使用することにより個々に起動および停止することができる複数のノッチアンテナ素子を含んでよい。取り外し可能なヌル化サブアセンブリは、特定のミッションに向けてHAPを打ち上げる前に、主アンテナシステムのインタフェースに/から容易に取り付けおよび取り外しされるように(または他の方法で係合または係合解除されるように)構成されてよい。
【0004】
特に、取り外し可能なヌル化サブアセンブリは、HAPの主アンテナシステムのアンテナパターンフットプリント(すなわち、ビームフォーミング信号)を修正するように構成された、1つまたは複数のヌル化アンテナ素子を含んでよい。主アンテナシステムを使用することにより提供される地上のアンテナパターンフットプリントは、ヌル化アンテナ素子のうちの1つまたは複数が起動もしくは停止されたときに、修正されてよい。例えば、アンテナパターンフットプリントの少なくとも一部分は、ノッチ素子が起動したときサイズ縮小され、ヌル化アンテナ素子が停止したときに拡大されるか、またはその元のフットプリントに戻されてよい。
【0005】
気球による通信システムは、4つのセクタを有していてよく、各セクタは概して、特定の地理的方向に150km(またはより多くもしくはより少なく)拡張する未修正ビームパターンを有していてよい。ロングタームエボリューション(LTE)フットプリントは、半径100kmに限定されることがあるが、スプラッタ(余分なエネルギー)は、150kmまで拡張することがある。ノッチサブアセンブリ(ヌル化素子)の起動により、このビームパターンが縮小し、その結果、特定の地理的方向に80km(またはより多くもしくはより少なく)しか拡張しない修正されたビームパターンが得られてよい。一態様において、HAP用の通信装置は、RF信号を生成するように構成された送信機と、RF信号に基づきRFビームを生成するように構成された主アンテナシステムであって、第1の複数のアンテナ素子、第1の電力分配器、ならびに少なくとも第1のコンタクトおよび第2のコンタクトを含むヌル化起動スイッチを含む主アンテナシステムと、ヌル化起動スイッチと通信する取り外し可能なヌル化サブアセンブリとを備える。前記ヌル化起動スイッチが制御されて、前記取り外し可能なヌル化サブアセンブリの入力部に前記RF信号が供給されたときに、取り外し可能なヌル化サブアセンブリはヌル化信号を生成することによって、前記主アンテナシステムにより生成される前記RFビームを修正するように構成されていてよい。前記第1の電力分配器は、前記送信機と通信する入力部と、複数の出力部とを有してよい。第1の電力分配器の入力部は、送信機からRF信号を受信してよく、第1の電力分配器の複数の出力部は、主アンテナシステムのそれぞれのアンテナ素子に結合されている。取り外し可能なヌル化サブアセンブリは、入力部および複数の出力部を有する第2の電力分配器と、複数の移相器と、複数のヌル化アンテナ素子とを含んでよい。取り外し可能なヌル化サブアセンブリは、インタフェースを介して、ヌル化起動スイッチと通信してよい。インタフェースは、有線または無線のインタフェースであってよい。インタフェースは、有線のハーネスコネクタであってよい。取り外し可能なヌル化サブアセンブリは、ヌル化起動スイッチの第2のコンタクトと通信してよい。送信機は、ヌル化起動スイッチの第1のコンタクトと通信してよい。ヌル化起動スイッチが閉じられ、それにより第1のコンタクトが第2のコンタクトに接続されたとき、第2の電力分配器の入力部にRF信号が提供されてよい。前記第2の電力分配器の各出力部は、ヌル化アンテナ素子と直列に接続された移相器を含むそれぞれの処理チェーンに、前記RF信号を供給してよい。ヌル化起動スイッチのポジションは、高高度プラットフォームの位置、地上の陸上位置の知識、国境の知識、またはサービス領域の知識のうちの1つまたは複数に基づき制御される。すべてのHAP伝送の合計からの、国境をまたぐ超過してはならない総電力束密度に関して、またはすべてのHAP伝送の合計から陸上タワーに向かう総電力束密度に関して、制限が確立されてよい。
【0006】
別の態様において、HAPのためにRFビームをヌル化するための方法が提供される。この方法は、送信機によりRF信号を生成する段階と、主アンテナシステムによりRFビームを生成する段階と、ビームフォーミング信号を修正すべきかどうかを指示する結果を、1つまたは複数のプロセッサによって決定する段階と、結果がビームフォーミング信号を修正するよう指示している場合、主アンテナシステムにより生成されるビームフォーミング信号を修正するためのヌル化信号を、RF信号に基づき、取り外し可能なヌル化サブアセンブリによって生成する段階とを備える。
【図面の簡単な説明】
【0007】
【
図1】本技術の態様による、例示的なシステムの機能図である。
【0008】
【
図2】本技術の態様による、気球構成を示す図である。
【0009】
【
図3】本技術の態様による、例示的なペイロード構成を示す図である。
【0010】
【
図4A】本技術の態様による、取り外し可能なヌル化サブアセンブリと、ヌル化起動スイッチを含む主アンテナシステムとを有する通信システムを示す図である。
【
図4B】本技術の態様による、取り外し可能なヌル化サブアセンブリと、ヌル化起動スイッチを含む主アンテナシステムとを有する通信システムを示す図である。
【
図4C】本技術の態様による、取り外し可能なヌル化サブアセンブリと、ヌル化起動スイッチを含む主アンテナシステムとを有する通信システムを示す図である。
【
図4D】本技術の態様による、取り外し可能なヌル化サブアセンブリと、ヌル化起動スイッチを含む主アンテナシステムとを有する通信システムを示す図である。
【
図4E】本技術の態様による、取り外し可能なヌル化サブアセンブリと、ヌル化起動スイッチを含む主アンテナシステムとを有する通信システムを示す図である。
【0011】
【
図5】本技術の態様による、横方向推進力を有する気球プラットフォームの例を示す図である。
【0012】
【
図6】本技術の態様による、方法のフロー図である。
【発明を実施するための形態】
【0013】
(例示的ネットワーク)
図1は、上で説明した気球または他の高高度プラットフォームの集団を使用することができる例示的なシステム100を示している。この例は、本開示の範囲または本明細書に記載の機能の有用性を限定するものとみなされるべきではない。システム100は、気球ネットワークとみなされてよい。この例において、気球ネットワーク100は、気球102A~Fならびに地上基地局106および112など、複数のデバイスを含む。気球ネットワーク100は、以下でより詳細に説明する電気通信サービスをサポートする様々なデバイス(図示せず)、またはネットワークに参加してよい他のシステムなど、複数の付加的なデバイスも含んでよい。
【0014】
システム100内のデバイスは、互いに通信するように構成されている。例として、気球は、気球内通信を容易にするために通信リンク104および/または114を含んでよい。例として、リンク114は、無線周波数(RF)信号(例えば、ミリ波伝送)を利用してよく、その一方でリンク104は、自由空間光伝送を利用してよい。代替的に、すべてのリンクが、RF、光、またはRF伝送と光伝送の両方を利用するハイブリッドであってよい。このように、気球102A~Fは、データ通信のためのメッシュネットワークとして集合的に機能してよい。気球の少なくともいくつかは、リンク108を介して地上基地局106と通信し、リンク110を介して地上基地局112と通信するように構成されてよく、これらのリンクはRFリンクおよび/または光リンクであってよい。
【0015】
1つの状況において、所与の気球102は、光リンク104を介して光信号を送信するように構成されてよい。ここで、所与の気球102は、1つまたは複数の高出力発光ダイオード(LED)を使用して、光信号を送信してよい。代替的に、一部またはすべての気球102が、光リンク104を介した自由空間光通信のためのレーザシステムを含んでよい。他のタイプの自由空間通信が可能である。さらに、光リンク104を介して別の気球から光信号を受信するために、気球は1つまたは複数の光受信機を含んでよい。
【0016】
気球は、それぞれの通信リンクを介して地上基地局と通信するために、様々なRFエアインタフェースプロトコルのうちの1つまたは複数も利用してよい。例えば、一部またはすべての気球102A~Fは、数ある可能性の中でも特に、IEEE802.11(IEEE802.11の任意の改訂版を含む)に記載の様々なプロトコル、セルラプロトコル、例えばGSM(登録商標)、CDMA、UMTS、EV-DO、WiMAX(登録商標)、および/もしくはLTE、5G、ならびに/または長距離通信用に開発された1つもしくは複数の専用プロトコルを使用して、RFリンク108を介して地上基地局106および112と通信するように構成されてよい。LTE通信を使用する1つの例において、基地局は、進化型ノードB(eNodeB)基地局であってよい。別の例において、それらはベーストランシーバステーション(BTS)基地局であってよい。これらの例は限定ではない。
【0017】
いくつかの例において、リンクは、HAPと地上との間での通信に求められるリンク容量を提供しないことがある。例えば、地上ゲートウェイからバックホールリンクを提供するには、容量の増大が望ましいことがある。したがって、例示的なネットワークは、ネットワークの様々な気球と地上基地局との間で大容量の空中-地上リンクを提供することが可能な気球も含んでよい。例えば、気球ネットワーク100において、気球102Fは、局112と直接通信するように構成されていてよい。
【0018】
ネットワーク100内の他の気球と同様に、気球102Fは、リンク104を介して1つまたは複数の他の気球と通信(例えばRF通信または光通信)するように動作可能であってよい。また気球102Fは、光リンク110を介して地上基地局112と自由空間光通信を行うようにも構成されてよい。したがって光リンク110は、気球ネットワーク100と地上基地局112との間の(RFリンク108に比べて)大容量のリンクとして機能してよい。気球102Fはさらに、地上基地局106とRF通信するように動作可能であってよい。他の事例において、気球102Fは、気球と地上との通信に光リンクのみを使用してよい。
【0019】
気球102Fは、自由空間光通信システムの代わりに、またはそれに加えて、気球と地上との通信のために特別な高帯域幅RF通信システムを備えていてよい。高帯域幅RF通信システムは、超広帯域増幅システムの形態を取ってよく、この超広帯域増幅システムは、光リンク104のうちの1つと実質的に同じ容量をRFリンクに提供してよい。
【0020】
さらなる例において、一部またはすべての気球102A~Fは、地上通信リンクに加えて、またはその代替として、宇宙にある衛星および/または他のタイプのHAP(例えば、ドローン、飛行機、飛行船など)との通信リンクを確立するように構成されてよい。いくつかの実施形態において、気球は、光リンクまたはRFリンクを介して、衛星または高高度プラットフォームと通信してよい。しかし、他のタイプの通信構成が可能である。
【0021】
上述したように、気球102A~Fは、メッシュネットワークとして集合的に機能してよい。より具体的には、気球102A~Fは、自由空間光リンクまたはRFリンクを使用して互いに通信できることから、気球は、自由空間の光メッシュネットワークまたはRFメッシュネットワークとして集合的に機能してよい。メッシュネットワーク構成において、各気球は、メッシュネットワークのノードとして機能してよく、ノードは、それ宛てのデータを受信し、データを他の気球にルーティングするように動作可能である。したがって、データは、送信元の気球と宛先の気球との間のリンクの適切なシーケンスを決定することにより、送信元の気球から宛先の気球にルーティングされてよい。
【0022】
気球が互いにおよび/または地上に対して移動するにつれ、ネットワークトポロジは変わることがある。したがって、ネットワークのトポロジが変わるにつれ、気球ネットワーク100は、メッシュプロトコルを適用してネットワークの状態を更新してよい。また、気球ネットワーク100は、所望のネットワークトポロジを提供しやすくするために、風力および高度制御または横方向推進力を使用して、ステーションキープ機能を実装してよい。例えば、ステーションキープは、一部もしくはすべての気球102A~Fが、ネットワーク内の1つもしくは複数の他の気球に対して特定のポジション(場合により、地上基地局もしくはサービスエリアに対して特定のポジション)を維持すること、および/またはそのポジションに移動することを含んでよい。この工程の一部として、各気球はステーションキープ機能を実装して、所望のトポロジ内でその所望のポジショニングを決定してよく、必要に応じて所望の位置への移動のしかた、および/または所望のポジションの維持のしかたを決定してよい。例えば、気球は、対象領域の上でステーションキープするときに、気流に乗ったことに応答して移動してもよいし、または円形もしくは他のパターンで移動してもよい。
【0023】
所望のトポロジは、特定の実装形態に応じて、および気球が継続的に移動するか否かに応じて異なってよい。いくつかの事例において、気球は、ステーションキープを実装して実質的に一様なトポロジを提供してよく、ここで気球は、気球ネットワーク100において隣接する気球からそれ自体を実質的に同じ距離(または一定の距離範囲内)にポジショニングするように機能する。代替的に、気球ネットワーク100は、一様でないトポロジを有してよく、ここで気球は、様々な理由から特定のエリア内でより多くまたはより少なく密に分配される。例として、より高い帯域幅の需要を満たしやすくするために、気球は、需要の大きいエリア(例えば都市エリア)の上ではより多く密に集まり、需要の小さいエリアの上(例えば広大な水域上)ではより少なく密に集まっていてよい。加えて、例示的な気球ネットワークのトポロジは、ネットワークの所望のトポロジの変化に応じて複数の気球がそれぞれのポジショニングを調整できるように適合可能であってよい。
【0024】
気球以外に、ドローンがルートを自律的に飛行し、空中写真用のカメラを積載し、ある場所から別の場所へ物品を輸送してよい。「無人航空機(UAV)」および「飛行ロボット」という用語は、多くの場合ドローンの同義語として使用される。応用の範囲は広く、工業プラントおよび農地の空中監視、ならびに災害時の初期対応者のサポートを含む。一部の応用例については、単体のドローンではなくドローンのチームが利用されるならば有益である。複数のドローンは、所与のエリアをより迅速に網羅することができ、または異なる視点から同時に写真を撮ることができる。
【0025】
図1の気球は、成層圏に展開される高高度気球であってよい。例として、高高度気球ネットワークでは、気球が強風に晒されることや民間航空機の飛行に干渉することを制限するために、気球は概して成層圏高度、例えば、50,000フィート(15,240m)から70,000フィート(21,336m)の間で、またはより多いもしくはより少ない間で動作するように構成されてよい。様々な気球の位置に風が不均斉に影響を及ぼすことがある成層圏において、気球が確実なメッシュネットワークを提供するために、気球は、それぞれの高度を調整することにより互いに対して緯度方向および/または経度方向に移動するように構成されてよく、それにより風がそれぞれの気球を、それぞれの所望の位置に運ぶ。また、気球の進行路に影響を及ぼすように、横方向推進力が利用されてよい。
【0026】
例示的な構成において、高高度気球プラットフォームは、様々な他の構成要素とともに、エンベロープおよびペイロードを含む。
図2は、高高度気球200の一例であり、これは、示してある
図1の任意の気球を表してよく、この例示的な気球200は、エンベロープ202と、ペイロード204と、これらの間の結合部材(例えば、ダウンコネクト(down connect))206とを含む。少なくとも1つのゴアパネルがエンベロープを形成しており、このエンベロープは、その中に加圧された浮揚気体を維持するように構成されている。例えば、気球はスーパープレッシャ気球であってよい。頂部プレート208は、エンベロープの上側区分に沿って配置されてよく、その一方で基部プレート210は、頂部プレートと反対のエンベロープの下側区分に沿って配置されてよい。この例において、結合部材206は、ペイロード204を基部プレート210に接続している。
【0027】
エンベロープ202は、様々な形状および形態を取ってよい。例えば、エンベロープ202は、ポリエチレン、マイラー、FEP、ゴム、ラテックス、もしくは他の薄膜材料などの材料、または内側もしくは外側に繊維補強材が埋め込まれたこれらの材料の複合積層体から作られてよい。求められる強度特性、気体バリア特性、RF特性、および熱特性を付与するために、他の材料もしくはそれらの組み合わせ、または他の積層構造も利用されてよい。さらに、エンベロープ202の形状およびサイズは、特定の実装形態に応じて異なってよい。さらにエンベロープ202は、空気、ヘリウム、および/または水素など、異なるタイプの気体で充填されてよい。他のタイプの気体およびそれらの組み合わせも可能である。形状は、球体および「かぼちゃ」のような典型的な気球の形状を含んでもよいし、または対称型の、形状揚力(shaped lift)を提供する、もしくは形状が変更可能な空気力学的形状を含んでもよい。揚力は、揚力気体(例えばヘリウム、水素)、導電性表面の静電帯電、空気力学的揚力(翼形状)、空中移動デバイス(プロペラ、羽ばたき翼、静電推進など)、または揚力技術の任意のハイブリッドの組み合わせから得ることができる。
(例示的なシステム)
【0028】
図3に示す一例によれば、気球プラットフォームのペイロード300は、1つまたは複数のプロセッサ304と、メモリ306の形態のオンボードデータ記憶部とを有する制御システム302を備えている。メモリ306は、プロセッサ304によりアクセス可能な情報を記憶しており、この情報は、プロセッサによって実行可能な命令を含んでいる。メモリ306は、プロセッサによって検索、操作、または記憶することができるデータも含んでいる。メモリは、プロセッサによりアクセス可能な情報を記憶することが可能な任意の非一時的なタイプのもの、例えばハードドライブ、メモリカード(例えば、サムドライブもしくはSDカード)、ROM、RAM、ならびに他のタイプの書き込み可能なメモリおよび読み取り専用のメモリとすることができる。命令は、プロセッサによって直接実行される命令の任意のセット、例えば機械コードであってもよいし、またはプロセッサによって間接的に実行される命令の任意のセット、例えばスクリプトであってもよい。これに関して、「命令」、「アプリケーション」、「段階」、および「プログラム」という用語は、本明細書において区別なく使用することができる。命令は、プロセッサによって直接処理されるようにオブジェクトコードフォーマットで記憶されてもよいし、またはオンデマンドで解釈されるか予めコンパイルされるスクリプトもしくは独立したソースコードモジュールの集まりを含む任意の他のコンピューティングデバイス言語で記憶されてもよい。データは、命令に応じて、1つまたは複数のプロセッサ304によって検索、記憶、もしくは修正されてよい。
【0029】
1つまたは複数のプロセッサ304は、市販のCPUなど、従来型の任意のプロセッサを含んでよい。代替的に、各プロセッサは、ASIC、コントローラ、または他のハードウェアベースのプロセッサなど、専用の構成要素であってもよい。
図3は、プロセッサ304、メモリ306、および制御システム302の他の要素を同じブロック内にあるものとして機能的に図示しているが、実際のところ、システムは複数のプロセッサ、コンピュータ、コンピューティングデバイス、および/またはメモリを含むことができ、これらは同じ物理的筐体に格納されてもよいし、されなくてもよい。例えばメモリは、制御システム302の筐体とは異なる筐体に位置するハードドライブまたは他の記憶媒体であってよい。したがって、プロセッサ、コンピュータ、コンピューティングデバイス、またはメモリに言及することは、平行して動作してもしなくてもよい複数のプロセッサ、複数のコンピュータ、複数のコンピューティングデバイス、または複数のメモリの集合体に言及することを含むと理解される。
【0030】
ペイロード300は、多数の異なる機能を提供するための、様々な他のタイプの機器およびシステムも含んでよい。例えば示してあるように、ペイロード300は、1つまたは複数の通信システム308を含んでよく、この通信システムは、上で考察したようにRFリンクおよび/または光リンクを介して信号を送信してよい。単なる例として、通信システム308は、LTEまたは他の電気通信サービスを提供してよい。通信システム308は、1つまたは複数の送信機および受信機(またはトランシーバ)、ならびに1つまたは複数のアンテナを有するアンテナシステムなどの通信構成要素を含んでよい。
図3に示す一態様によれば、通信システム308は、送信(Tx)/受信(Rx)用RFサブアセンブリ405と、主アンテナシステム410と、取り外し可能なヌル化サブアセンブリ415とを含む。Tx/Rx用RFサブアセンブリ405は、
図4Aに示してあるように、1つまたは複数の受信機420と1つまたは複数の送信機425とを含んでよい。1つまたは複数のプロセッサ304は、1つまたは複数の受信機420および1つまたは複数の送信機425と通信する。主アンテナシステム410は、多数の地上ユーザにカバレッジを提供する異なるビームを有する複数のセクタを有していてよい。例えば、主アンテナシステム410は4つのセクタを有してよい。各セクタは、ペイロード300を積載した気球プラットフォームの直下の地点から、150キロメートルにまたはより多くもしくはより少なく到達することがある。いくつかの実装形態において、より多くのもしくはより少ないセクタが、主アンテナシステム410によって網羅されてよく、または付加的なセクタは、通信システム308上の付加的なアンテナシステムによって網羅されてよい。
【0031】
1つまたは複数のプロセッサ304は、通信システム308全体を制御してよい。代替的に、1つまたは複数の付加的なプロセッサが、Tx/Rx用RFサブアセンブリ405、主アンテナシステム410、および取り外し可能なヌル化サブアセンブリ415のうちの1つまたは複数に組み込まれて、通信システム308の様々な機能を制御してよい。
【0032】
図4Aに示してある主アンテナシステム410は、ヌル化起動スイッチ435を含んでよく、各ヌル化起動スイッチ435は、少なくとも3つのコンタクト437
1、437
2、および437
3と、電力分配器440と、複数のアンテナ素子445
1、445
2、445
3、および445
4とを有している。
図4Aは、ヌル化起動スイッチ435をヌル化バイパスモードで示しており、ここで1つまたは複数の送信機425によって生成されたRF信号465は、ヌル化起動スイッチ435がコンタクト437
1と437
3とを互いに接続したとき、電力分配器440の入力部へ進むことが許可され、電力分配器440は、複数のアンテナ素子445
1、445
2、445
3、および445
4のそれぞれにRF信号を出力する。取り外し可能なヌル化サブアセンブリ415は、有線または無線のインタフェースなどのインタフェース490を介して、主アンテナシステム410に取り付けられてよい。
【0033】
図4Bに示してあるように、ヌル化起動スイッチ435
1は、コンタクト437
1と437
2とを互いに接続し、それにより、1つまたは複数の送信機425によって生成されたRF信号465は、ヌル化サブアセンブリ415
1および415
2の入力部に進むことが許可される。
図4Bに示す取り外し可能なヌル化サブアセンブリ415
1は、セクタ1のポート1向けであり、電力分配器450
1と、移相器455
1および455
2と、ヌル化アンテナ素子460
1および460
2とを含んでよい。
図4Bに示す取り外し可能なヌル化サブアセンブリ415
2は、セクタ1のポート2向けであり、電力分配器450
2と、移相器455
3および455
4と、ヌル化アンテナ素子460
3および460
4とを含んでよい。1つまたは複数のプロセッサ304が、ヌル化起動スイッチ435
1を制御してコンタクト437
1と437
2とを互いに接続し、それによりRF信号465が、ヌル化サブアセンブリ415
1および415
2に進むことが許可されると、ヌル化サブアセンブリ415
1および415
2は、電力分配器450
1および450
2と、移相器455
1~455
4およびヌル化アンテナ素子460
1~460
4をそれぞれ含む複数の処理チェーンとをRF信号465が通って流れられるようにすることによって、起動される。一態様において、電力分配器440と450の電力比は、動的に調整されてよい。代替的に、電力分配器440と450との電力比は、設計上の選択事項として選択されてよい。他の実装形態においては、より多くのまたはより少ない処理チェーンがヌル化サブアセンブリ415に含まれてよく、これらの処理チェーンは、どのセクタをヌル化すべきかに基づき、それぞれの処理チェーンが個々に起動または停止されることが可能になるように構成されてよい。移相器455は、ヌル化アンテナ素子460によって出力されるヌル化信号を生成するようにアライメントされる。取り外し可能なヌル化サブアセンブリ415
1は、RF信号465に基づき、主アンテナシステム410に供給するRF信号495
1を出力する。取り外し可能なヌル化サブアセンブリ415
2は、RF信号465に基づき、主アンテナシステム410に供給するRF信号495
2を出力する。こうして、主アンテナシステム410は、一方または両方のRF信号495
1および495
2に基づきビームを生成する。
【0034】
図4Cに示してあるように、ヌル化起動スイッチ435
2は、コンタクト437
1と437
2とを互いに接続し、それにより、1つまたは複数の送信機425によって生成されたRF信号465は、ヌル化サブアセンブリ415
3および415
4の入力部に進むことが許可される。
図4Cに示す取り外し可能なヌル化サブアセンブリ415
3は、セクタ2のポート1向けであり、電力分配器450
1と、移相器455
1および455
2と、ヌル化アンテナ素子460
1および460
2とを含んでよい。
図4Cに示す取り外し可能なヌル化サブアセンブリ415
4は、セクタ2のポート2向けであり、電力分配器450
2と、移相器455
3および455
4と、ヌル化アンテナ素子460
3および460
4とを含んでよい。1つまたは複数のプロセッサ304が、ヌル化起動スイッチ435
2を制御してコンタクト437
1と437
2とを互いに接続し、それによりRF信号465が、ヌル化サブアセンブリ415
3および415
4に進むことが許可されると、ヌル化サブアセンブリ415
3および415
4は、電力分配器450
1および450
2と、移相器455
1~455
4およびヌル化アンテナ素子460
1~460
4をそれぞれ含む複数の処理チェーンとをRF信号465が通って流れられるようにすることによって、起動される。取り外し可能なヌル化サブアセンブリ415
3は、RF信号465に基づき、主アンテナシステム410に供給するRF信号495
3を出力する。取り外し可能なヌル化サブアセンブリ415
4は、RF信号465に基づき、主アンテナシステム410に供給するRF信号495
4を出力する。こうして、主アンテナシステム410は、一方または両方のRF信号495
3および495
4に基づきビームを生成する。
【0035】
図4Dに示してあるように、ヌル化起動スイッチ435
3は、コンタクト437
1と437
2とを互いに接続し、それにより、1つまたは複数の送信機425によって生成されたRF信号465は、ヌル化サブアセンブリ415
5および415
6の入力部に進むことが許可される。
図4Dに示す取り外し可能なヌル化サブアセンブリ415
5は、セクタ3のポート1向けであり、電力分配器450
1と、移相器455
1および455
2と、ヌル化アンテナ素子460
1および460
2とを含んでよい。
図4Dに示す取り外し可能なヌル化サブアセンブリ415
6は、セクタ3のポート2向けであり、電力分配器450
2と、移相器455
3および455
4と、ヌル化アンテナ素子460
3および460
4とを含んでよい。1つまたは複数のプロセッサ304が、ヌル化起動スイッチ435
3を制御してコンタクト437
1と437
2とを互いに接続し、それによりRF信号465が、ヌル化サブアセンブリ415
5および415
6に進むことが許可されると、ヌル化サブアセンブリ415
5および415
6は、電力分配器450
1および450
2と、移相器455
1~455
4およびヌル化アンテナ素子460
1~460
4をそれぞれ含む複数の処理チェーンとをRF信号465が通って流れられるようにすることによって、起動される。取り外し可能なヌル化サブアセンブリ415
5は、RF信号465に基づき、主アンテナシステム410に供給するRF信号495
5を出力する。取り外し可能なヌル化サブアセンブリ415
6は、RF信号465に基づき、主アンテナシステム410に供給するRF信号495
6を出力する。こうして、主アンテナシステム410は、一方または両方のRF信号495
5および495
6に基づきビームを生成する。
【0036】
図4Eに示してあるように、ヌル化起動スイッチ435
4は、コンタクト437
1と437
2とを互いに接続し、それにより、1つまたは複数の送信機425によって生成されたRF信号465は、ヌル化サブアセンブリ415
7および415
8の入力部に進むことが許可される。
図4Eに示す取り外し可能なヌル化サブアセンブリ415
7は、セクタ4のポート1向けであり、電力分配器450
1と、移相器455
1および455
2と、ヌル化アンテナ素子460
1および460
2とを含んでよい。
図4Eに示す取り外し可能なヌル化サブアセンブリ415
8は、セクタ4のポート2向けであり、電力分配器450
2と、移相器455
3および455
4と、ヌル化アンテナ素子460
3および460
4とを含んでよい。1つまたは複数のプロセッサ304が、ヌル化起動スイッチ435
4を制御してコンタクト437
1と437
2とを互いに接続し、それによりRF信号465が、ヌル化サブアセンブリ415
7および415
8に進むことが許可されると、ヌル化サブアセンブリ415
7および415
8は、電力分配器450
1および450
2と、移相器455
1~455
4およびヌル化アンテナ素子460
1~460
4をそれぞれ含む複数の処理チェーンとをRF信号465が通って流れられるようにすることによって、起動される。取り外し可能なヌル化サブアセンブリ415
7は、RF信号465に基づき、主アンテナシステム410に供給するRF信号495
7を出力する。取り外し可能なヌル化サブアセンブリ415
8は、RF信号465に基づき、主アンテナシステム410に供給するRF信号495
8を出力する。こうして、主アンテナシステム410は、一方または両方のRF信号495
7および495
8に基づきビームを生成する。
【0037】
図4B~
図4Eは(分かりやすくするために)、セクタの2つの異なるポートに関連付けられた取り外し可能なヌル化サブアセンブリ415が、RF信号495を出力することを示しているが、セクタのポートのうちの1つのみに関連付けられたRF信号、4つのセクタそれぞれの両方のポートに関連付けられたRF信号、4つのセクタそれぞれの特定のポートに関連付けられたRF信号などを提供するように、ヌル化起動スイッチの構成が修正されてよい。
【0038】
図3に戻ると、ペイロード300は、気球の様々な構成要素に給電するための電源310も含むものとして示されている。電源310は、1つまたは複数の再充電可能バッテリ、またはコンデンサもしくは再生燃料電池のような他のエネルギー貯蔵システムを含むことができる。加えて、気球300は、電源に加えてまたはその一部として、発電システム312を含んでよい。発電システム312は、ソーラパネル、貯蔵エネルギー(高温空気)、相対的風力発電、またはディファレンシャル大気充電(differential atmospheric charging)(図示せず)、またはこれらの任意の組み合わせを含んでよく、電源310を充電する電力および/または電源310によって分配される電力を発生させるために使用されてよい。
【0039】
ペイロード300は、ポジショニングシステム314をさらに含んでよい。ポジショニングシステム314は、例えば全地球測位システム(GPS)、慣性航法システム、および/または恒星追跡システムを含むことができる。ポジショニングシステム314は、付加的または代替的に、様々な運動センサ(例えば、加速度計、磁力計、ジャイロスコープ、および/またはコンパス)を含んでよい。
【0040】
ペイロード300は、制御システム302とは別個の、または制御システム302に部分的もしくは全体的に組み込まれたナビゲーションシステム316を含んでよい。ナビゲーションシステム316は、ステーションキープ機能を実装して、所望のトポロジまたは他のサービス要件の範囲内のポジションを維持し、かつ/またはそれに応じたポジションまで移動してよい。特に、ナビゲーションシステム316は、(例えば搭載センサおよび/または遠隔センサからの)風力データを使用して、高度および/または横方向のポジション調整を決定し、その結果、気球が風力により所望の方向および/または所望の位置に運ばれることになってよい。横方向のポジション調整は、ペイロードとは別個の横方向ポジショニングシステムによって直接処理されてもよい。代替的に、高度および/または横方向の調整は、中央制御位置によって計算され、地上の、空中の、または衛星のシステムによって送信され、高高度気球に通信されてよい。他の実施形態においては、特定の気球が、他の気球の高度および/または横方向の調整を計算するように構成され、調整コマンドをそれらの他の気球に送信してよい。
【0041】
横方向のポジションまたは速度を変更するために、プラットフォームは、横方向推進システムを含んでよい。
図5は、プロペラによる横方向推進力を有する気球プラットフォームの例示的な一構成500を示しており、これは
図1の気球のうちのいずれかを表していてよい。示してあるように、例500は、エンベロープ502と、ペイロード504と、エンベロープ502とペイロード504との間に配置されたダウンコネクト部材506とを含む。ペイロード504とエンベロープ502との間のケーブルまたは他の配線は、ダウンコネクト部材506の中を通っていてよい。1つまたは複数のソーラパネルアセンブリ508が、ペイロード504に、または気球プラットフォームの別の部分に結合されていてよい。ペイロード504およびソーラパネルアセンブリ508は、ダウンコネクト部材506を中心として回転(例えば最大360°回転)するように構成されていて、例えばソーラパネルアセンブリ508を太陽に位置合わせして発電を最大化してよい。また、例500は、横方向推進システム510も示している。横方向推進システム510のこの例は、1つの可能性である一方で、位置はペイロード区分504の前および/もしくは後ろであってもよいし、またはエンベロープ区分502の前および/もしくは後ろであってもよいし、または所望の推力ベクトルを提供する任意の他の位置であってもよい。
【0042】
ナビゲーションシステムは、慣性測定ユニット(IMU)および/もしくはディファレンシャルGPSなどの搭載ナビゲーションセンサから取得したデータ、受信データ(例えば気象情報)、ならびに/または健全性および性能のセンサ(例えば、力トルクセンサ)などの他のセンサからのデータを評価して、気球のシステムの動作を管理することが可能である。横方向推進システムを起動して、例えばステーションキープすることが決定されたとき、ナビゲーションシステムは、ポジション、風向き、高度、および電力利用可能性に関する受信したセンサデータを活用して、プロペラを適切に方向付け、特定の継続時間にわたって、または特定の状態に到達するまで(例えば、全体的なシステムの健全性、温度、振動、および他の性能パラメータを監視および通知しながら、特定の速度またはポジションに到達するまで)、特定の推力状態を実現する。
(例示的な方法)
【0043】
上で説明し図に示した動作に加えて、様々な動作をここで説明する。以下の動作は、下で説明する厳密な順序で実行されなくてもよいことが理解されるべきである。むしろ、様々な段階は、異なる順序で、または同時に処理されてよく、段階が追加または省略されてもよい。
【0044】
さらに、1つまたは複数の受信機420は、地上のシミュレーションおよび制御のシステムから信号を受信するように構成されていてよい。例えば、シミュレーションおよび制御のシステム120は、
図1に示す地上基地局106または地上基地局112の一部であってもよいし、または別のタイプの地上局であってもよい。代替的に、シミュレーションおよび制御のシステム120は、いかなるノードとも別個で、独立して動作してよい。シミュレーションおよび制御のシステム120は、HAPの位置に基づきシミュレーションを走らせ、ヌル化を有効にすべきかどうか、および有効にすべき場合にはどのセクタに対してかを決定してよい。シミュレーションは、契約者の総数を最大化すること、または何らかの他のパラメータを最適化することを目的とする。例えば、シミュレーションおよび制御のシステム120は、
図4A~
図4Eに示してあるように、ヌル化起動スイッチ435を制御して取り外し可能なヌル化サブアセンブリ415を起動するかどうかに関して、決定を下してよい。そのような決定は、HAPの位置、地上の陸上位置の知識、国境の知識、およびサービス領域の知識のうちの1つまたは複数に基づいてよい。さらに、様々な制約を考慮する必要がある。例えば、すべてのHAP伝送(すなわち、すべてのHAP伝送の合計)からの、国境をまたぐ超過してはならない総電力束密度に関して、制限を確立する必要があり得る。さらに、すべてのHAP伝送(すなわち、すべてのHAP伝送の合計)から陸上タワーに向かう総電力束密度に関して、制限を確立する必要があり得る。加えて、何らかの所定の閾値を超過することによるアップリンク(UL)干渉を防止することが必要であり得る。陸上タワーに送られるUE伝送によって生じることがあるそのようなUL干渉を、1つまたは複数の受信機420は検出してよく、地上のあらゆる関連点における総電力束密度は、すべてのHAP伝送の合計に基づき継続的に監視されてよい。地上の信号が特定の閾値を超過することをシミュレーションが示すとき、このメカニズムがトリガされてよい。加えて、ULノイズレベル(干渉レベル)を測定して、動的測定に基づき、このメカニズムをオンにするかどうかを決定することができる。
【0045】
図4A~
図4Eに示してあるように、Tx/Rx用RFサブアセンブリ405の1つまたは複数の送信機425は、主アンテナシステム410の電力分配器440およびヌル化起動スイッチ435の入力部に対して、RF信号465を出力する。1つまたは複数のプロセッサ304は、ヌル化起動スイッチ435を制御するための信号470を出力して、コンタクト437
1と437
2とを互いに接続することにより、RF信号465を取り外し可能なヌル化サブアセンブリ415に選択的に供給する。こうして、RF信号465が、取り外し可能なヌル化サブアセンブリ415の電力分配器450の入力部に提供されると、移相器455は、ヌル化アンテナ素子460によって出力されるヌル化信号を生成するようにアライメントされる。ビームは、複数の素子を有するアンテナアレイを有することにより、概して形成される。素子ごとに異なるゲインおよび位相を有することにより、ビームがステアリングされるか、またはビーム形状が変えられる。ゲインまたは位相を変更し、より多くのゲインを有するビームを生成すること、異なる方向にビームをステアリングすること、ビームにヌルを生成することなどが可能である。位相は、特定の移相器を調整または選択することによって変更可能である。代替的に、位相は、素子間のケーブル長さを変える(例えば、素子間のトレースを変える)ことよって、変更可能である。
【0046】
図4A~
図4Eを参照すると、1つまたは複数の受信機420は、主アンテナシステム410および取り外し可能なヌル化サブアセンブリ415によって生成されたビームを検出してよい。これらのビームに基づき、1つまたは複数のプロセッサ304は、
図1に示してある地上基地局112のシミュレーションおよび制御のシステム120と通信してよく、それにより解析および計算を実行して、取り外し可能なヌル化サブアセンブリ415を起動すべきかどうか、起動すべき場合には、主アンテナシステム410により生成されるビームパターンが、取り外し可能なヌル化サブアセンブリ415により生成されるビームによって変更されるように、ヌル化起動スイッチ435をどのように制御すべきかを決定してよい。
【0047】
複数の素子が組み合わされて、異なるアンテナ素子に対して適切なゲインおよび位相を使用することにより、ビームが形成されてよい。最終的な複合ビームパターンは、個々の素子のビームパターン、個々の素子同士間の距離、ならびに個々の素子で使用されるゲインおよび位相のうちの1つまたは複数に依存してよい。ヌル化サブアセンブリは、ゲインおよび位相を必要に応じて変えることができる素子を提供するので、最終的なビームパターンを変更する能力を提供する。これにより、利用可能な自由度が増大し、ヌル化を生成する方法が提供される。
【0048】
主アンテナシステム410は、複数の陸上ユーザに通信サービスを提供するためのフットプリントを地上に形成するビームを生成する。1つまたは複数のプロセッサ304は、シミュレーションおよび制御のシステム120と通信して、国境および/または物体(例えば陸上タワー)に関するHAPのポジションを監視および解析するとともに、超過してはならない様々な閾値および規格(例えば、国際電気通信連合(ITU)規格)を確立するように構成されていてよい。インタフェース490は、取り外し可能なヌル化サブアセンブリ415を接続解除し、それをペイロードに含めず飛行する融通性を、HAPオペレータに与えることができる。
【0049】
HAPの位置、1つまたは複数の他のHAPの位置、ユーザの位置、陸上タワーの位置、LTEシミュレーション、および/または地上の電力束密度の推定値を、1つまたは複数のプロセッサ304が検出したことに応答して、取り外し可能なヌル化サブアセンブリ415内の特定のまたはすべてのセクタ処理チェーンが停止または起動されてよい。
【0050】
図6は、本技術の態様による、例示的なフロー図を示している。より具体的には、
図6は、アンテナノッチ素子の選択的な起動の検出を実行するための例示的な方法600のフローを示している。
【0051】
図6のブロック602において、送信機425がRF信号465を生成する。
【0052】
図6のブロック604において、主アンテナシステム410を使用することにより、RF信号に基づきRFビームが生成される。
【0053】
図6のブロック606において、1つまたは複数のプロセッサ304が、RFビームを修正すべきかどうかを指示する結果を決定する。
【0054】
図6のブロック608において、結果がRFビームを修正するよう指示している場合、取り外し可能なヌル化サブアセンブリ415にRF信号465を供給するために、主アンテナシステム410のヌル化起動スイッチ435が閉じられる。
【0055】
図6のブロック610において、取り外し可能なヌル化サブアセンブリ415が、RF信号465に基づき主アンテナシステム410によって生成されるRFビームを修正するためのヌル化信号を生成する。
【0056】
別段の記載がない限り、前述の代替的な例は、相互に排他的ではなく、様々な組み合わせで実装されて独特な利点を達成してよい。上で考察した機能の上記その他の変形および組み合わせは、特許請求の範囲によって定義される主題から逸脱することなく利用可能であることから、実施形態の前述の説明は、特許請求の範囲によって定義される主題の限定としてではなく例示として受け取られるべきである。加えて、本明細書に記載の例、ならびに「など」、「含む」のように表現される節を提供することは、特許請求の範囲の主題を具体例に限定するものと解釈されるべきではなく、むしろ例は、多数の可能な実施形態のうちの1つのみを例示することを意図している。さらに、異なる図面における同じ参照符号は、同じまたは同様の要素を識別することができる。