(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-02-21
(45)【発行日】2024-03-01
(54)【発明の名称】リニアモータ
(51)【国際特許分類】
H02K 41/03 20060101AFI20240222BHJP
【FI】
H02K41/03 A
(21)【出願番号】P 2020194437
(22)【出願日】2020-11-24
【審査請求日】2023-02-16
(73)【特許権者】
【識別番号】000180025
【氏名又は名称】山洋電気株式会社
(74)【代理人】
【識別番号】110002572
【氏名又は名称】弁理士法人平木国際特許事務所
(72)【発明者】
【氏名】唐 玉▲棋▼
【審査官】池田 貴俊
(56)【参考文献】
【文献】特開2014-192959(JP,A)
【文献】特開2007-189837(JP,A)
【文献】特開2013-255313(JP,A)
【文献】特開2018-125953(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H02K 41/03
(57)【特許請求の範囲】
【請求項1】
モータハウジングと、
前記モータハウジングの一つの軸線方向に対して直線状に往復動が可能であって複数の磁石を交互に積層したモータ可動子と、
前記モータハウジング内において前記モータ可動子が往復動する経路上に前記モータ可動子を一定の間隔を介して取り囲むように設けられた電機子コイルからなる固定子と、
前記モータ可動子に設けられて出力を負荷機器に伝える可動子シャフトと、
前記モータ可動子及び前記可動子シャフトを前記モータハウジングに対して直線状の往復動が可能なように支持する直線軸受と、
前記モータハウジング自体から構成され又はモータハウジングに接して設けられたバックヨークと、
を備えるリニアモータであって、
前記バックヨークの前記電機子コイルが設けられていない領域
のみに前記軸線方向に延在する開口部を有
し、
前記開口部は、前記バックヨークの一部を、前記軸線方向に沿った長さを短くすることにより形成され、前記リニアモータの端部に設けられたものである
リニアモータ。
【請求項2】
前記バックヨークは前記モータ可動子の動作範囲を含めた長さより長い
請求項
1に記載のリニアモータ。
【請求項3】
前記開口部は、前記電機子コイルの中央に対して対称な位置に設けられている
請求項1
又は2に記載のリニアモータ。
【請求項4】
前記開口部は、前記バックヨークのうち磁気干渉を最も増加させる面を回避して設けられている
請求項1から
3までのいずれか1項に記載のリニアモータ。
【請求項5】
前記開口部は、モータ取付面側に設けられている
請求項1から
4までのいずれか1項に記載のリニアモータ。
【請求項6】
前記開口部の内側形状は、前記バックヨークの面又は延長面上において、前記軸線方向に沿って直線状に延びる形状を有する
請求項1から
5までのいずれか1項に記載のリニアモータ。
【請求項7】
前記開口部の
外側形状は、前記バックヨークの面又は延長面上
であった部分において、前記軸線方向に沿って凹凸形状を有する
請求項1から
6までのいずれか1項に記載のリニアモータ。
【請求項8】
前記バックヨークが前記電機子コイルと一体成型されている
請求項1から
7までのいずれか1項に記載のリニアモータ。
【請求項9】
前記バックヨークは、前記軸線を通る平面にて分割した同形状の2つの磁性板を突き合わせたものからなる
請求項1~
8のいずれか1項に記載のリニアモータ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電機子内で、マグネットの磁界とコイルに流す電流によって生じる電磁界により、モータハウジングの一軸線方向に対して直線状に往復動をさせて直線運動するための推力を得るリニアモータの構造に関する。
【背景技術】
【0002】
リニアモータは、回転形のモータの固定子側と回転子側を直線状に引き伸ばしたもので、電気エネルギを、電磁界を介して一軸上で直線運動するシャフト又はロッドなどの移動による推力に変換するものであり、例えば、チップマウンター(SMT)やFPC、IC貼り付け機などの半導体製造装置などにおいて、高速・高精度の動作を実現するために、Z軸にそのようなリニアモータ、特に小型(小幅)を使用する機械が数多く存在している。なお、リニアモータ自体は、それら以外にも、生産機械、搬送装置等様々な機器において直線的な推力による移動や圧力を必要とする場合にも用いられる。簡単な構造の機器では、一つの、すなわち一軸のリニアモータが用いられるが、ワーク、治具等を移動させる場合や、プレス機を作動させる場合等、ある程度の推力を必要とする場合には、二軸以上のリニアモータが用いられることが多い。
【0003】
従来は、このような直線的な推力による移動や圧力を必要とする場合には、回転モータの軸にボールねじ機構やウォームギア機構等の動力伝達機構を介して回転運動を直線運動に変換して用いられることも多かったが、動力伝達機構の精度を上げるためにはギアのバックラッシュを防ぐための複雑な機構や精度の高いギアを用いることが必要であり、また、二軸以上の多軸のアクチュエータを構成する場合には、円筒形の回転モータの形状や、動力伝達機構の形状・配置等の自由度に制限があるので、前述のリニアモータが用いられることが多い。
【0004】
このようなリニアモータの基本要求としては、次のような機能や構造が求められている。
1.幅寸法が狭く、多軸に並べられる小型リニアモータ。
2.高速運動を実現するために大推力・高加減速に対応できる小型リニアモータ。
3.装置ヘッド構成に柔軟に対応できる単軸、多軸(軸数は使用者側で指定可能)小型リニアモータ。
【0005】
このようなリニアモータの形態には様々なものがあるが、代表的なものとしてリニアモータの推力をシャフト又はロッドの往復直線運動により伝達するシャフト又はロッドタイプのものがあげられる。
【0006】
このタイプのリニアモータは、モータハウジングを有し、モータハウジングの一軸線方向に対して直線状に往復動が可能であって複数の磁石を交互に積層したモータ可動子と、モータハウジング内において前記モータ可動子が往復動する経路上にモータ可動子を一定の間隔を介して取り囲むように設けられた電機子コイルからなる固定子と、モータ可動子に設けられて出力を負荷機器に伝える可動子シャフトと、前記モータ可動子及び可動子シャフトを前記モータハウジングに対して直線状の往復動が可能なように支持する直線軸受と、を備えている。
【0007】
なお、モータハウジングは通常バックヨークを兼ねており、鋼その他金属や合金等のうち磁性体材料から形成される。
【0008】
モータ可動子に設けられた複数の磁石は、円筒形をなす複数の電機子コイルが積層されたモータ固定子の内側で、位相が適宜ずらされた電流によってモータ固定子が移動磁界を発生し、その移動磁界により軸方向の力を受け、モータ可動子に連結されたシャフトを一定の推力で軸方向に移動させる。
【0009】
シャフトは、負荷機器に、直接又は間接的に、あるいは着脱自在な形態で連結され、負荷機器を、往復動するように、あるいは、軸方向に圧力を作用させるように駆動される。シャフトの移動速度や推力は、モータ固定子及びモータ可動子の電磁力や位相の変化速度に応じて変更することができる。
【0010】
このような、シャフト又はロッドタイプのリニアモータとしては、例えば、特許文献1~4に記載されたようなものが知られている。
【先行技術文献】
【特許文献】
【0011】
【文献】特許第4580847号公報
【文献】特許第5254651号公報
【文献】特許第4385406号公報
【文献】特許第4775760号公報
【発明の概要】
【発明が解決しようとする課題】
【0012】
特許文献1には、例えば、コアレス小型リニアモータを並べるときの軸干渉を無くすために、小型リニアモータの間に磁気遮蔽板(磁性板)を介在させるリニアモータユニット及びその組み合わせ方法が開示されている。
【0013】
特許文献2には、磁気シールド板を取り付けるためのピン(突起6)をコアレスリニアモータの電機子と一緒にモールドし、突起に合わせて磁気シールド板を取り付けるものが記載されており、磁気遮蔽面はベース面を除き、3面とする磁気シールド板付きリニアモータ、磁気シールド板付き多軸リニアモータ、及び磁気シールド板付きリニアモータの製造方法が記載されている。
【0014】
特許文献3には、バックヨーク付コアレスリニアモータをフレームに並べ、外付けリニアエンコーダを有するヘッドモジュールが記載されている。
【0015】
特許文献4には、コアレスリニアモータ電機子のバックヨークの端部にずれを設けることでコギング対策を行っているシリンダ形リニアモータおよびそのガイド装置が記載されている。
【0016】
これら特許文献1~4に記載されたリニアモータは、それぞれ利点等があるものの、このようなリニアモータのストロークを長くしようとする場合、軸干渉を防ぐためにバックヨーク及び/又はモータ固定部のフレームを同時に長くする必要があるため、リニアモータの小型化、すなわち電機子の小型化が難しくなる。
【0017】
一方、バックヨークの長さを単に短くすると、可動子移動時に可動子の磁石部がバックヨークの端部から出てしまうため、漏れ磁束が発生するだけではなく、端効果によりコギングが発生するという問題がある。
【0018】
本発明は、リニアモータのストロークを長くしてもリニアモータを大型化することなく、また、リニアモータの小型化のために電機子を短くしても、リニアモータのストロークを維持することを目的とする。
【0019】
また、リニアモータの小型化等のためにバックヨークの長さを短くしても、可動子の移動時に磁石部がバックヨークの端部から出ることを防止し、漏れ磁束の発生を抑制するとともに、端効果によりコギングが発生することを抑制することができるリニアモータの構造を提供することを目的とする。
【課題を解決するための手段】
【0020】
上記課題を解決するために、本発明においては、モータハウジングと、前記モータハウジングの一つの軸線方向に対して直線状に往復動が可能であって複数の磁石を交互に積層したモータ可動子と、前記モータハウジング内において前記モータ可動子が往復動する経路上に前記モータ可動子を一定の間隔を介して取り囲むように設けられた電機子コイルからなる固定子と、前記モータ可動子に設けられて出力を負荷機器に伝える可動子シャフトと、前記モータ可動子及び前記可動子シャフトを前記モータハウジングに対して直線状の往復動が可能なように支持する直線軸受と、前記モータハウジング自体から構成され又はモータハウジングに接して設けられたバックヨークと、を備えるリニアモータであって、前記バックヨークの前記電機子コイルが設けられていない領域に前記軸線方向に延在する開口部を有するリニアモータを採用した。なお、前記モータハウジング自体が前記バックヨークを兼ねていても良いことは上記に記載したとおりである。
上記において、前記開口部は、前記バックヨークの一部を、前記軸線方向に沿った長さを短くすることにより形成されたものであることが好ましい。
【0021】
前記開口部は、前記軸線方向に沿う前記リニアモータの両端部に設けられているものであることが好ましい。
【0022】
前記バックヨークは、前記可動子の動作範囲(ストローク範囲)を含めた長さより長いことが好ましい。
【0023】
前記開口部は、前記電機子の中央に対して対称な位置に設けられていることが好ましい。
前記開口部の内側形状は、前記バックヨークの面又は延長面上において、前記軸線方向に沿って直線状(ストレート)に延びる形状を有しても良い。また、前記開口部の内側形状は、前記バックヨークの面又は延長面上において、前記軸線方向に沿って凹凸(ジグザグ)形状を有するようにすると、より好ましい。
前記開口部は、前記バックヨークのうち磁気干渉を最も増加させる面を回避して設けられていることが好ましい。
前記開口部は、モータ取付面側に設けられていることが好ましい。
【0024】
前記バックヨークが前記電機子コイルと一体成型されていることが好ましい。
前記バックヨークは、前記軸線を通る平面にて分割した同形状の2つの磁性板を突き合わせたものからなることが好ましい。
【0025】
本発明のその他の形態は、後述する発明を実施するための形態の説明から明らかである。
【発明の効果】
【0026】
本発明によれば、次のような効果が得られる。
【0027】
すなわち、前記したリニアモータの構成を採用することにより、バックヨーク付リニアモータ電機子のバックヨークにおいて、推力発生部である電機子コイルからなる固定子を除いた領域で、軸線方向に沿ったバックヨークの面又は延長面上において、軸線方向に沿って開口部を設け、バックヨークの欠如による電磁気学的損失を低減しつつリニアモータの小型化と高性能化を両立することができる。
【0028】
また、開口部の軸線方向に沿ったバックヨークの面又は延長面上における内側形状は、軸線方向に沿った凹凸(ジグザグ)形状をすることで、開口部に起因するコギング影響を低減することができる。
【0029】
また、バックヨークを、軸線を通る平面にて分割した同形状の2つの磁性板を突き合わせたものからなるようにしたので、製造しやすいという利点がある。
【0030】
本発明のその他の効果は、後述の発明を実施するための形態における詳細な説明においてより明らかになる。
【図面の簡単な説明】
【0031】
【
図1】本発明のリニアモータの一形態の外観を示す斜視図であり、直線状の辺を有する開口部を有する図
【
図2】本発明のリニアモータの構造の一形態を示す断面図その他の図
【
図3】本発明のリニアモータの構造の密着配列の使用例を示す正面図と側面図
【
図4】本発明のリニアモータのモータ電機子の断面図その他の図
【
図5】本発明のリニアモータのバックヨークの一形態を示す側面図その他の図
【
図6】
図1の変形例を示す斜視図であり、凹凸形状の辺を有する開口部を有する第1例を示す図
【
図7】
図6のバックヨークの一形態を示す側面図その他の図
【
図8】
図6の変形例を示す斜視図であり、凹凸形状の辺を有する開口部を有する第2例を示す図
【
図9】
図8のバックヨークの一形態を示す側面図その他の図
【
図10】本発明のリニアモータのバックヨークの展開図であり、
図10(b)は直線状の開口部を有する、
図10(c)は、凹凸形状の開口部を有する例であり、
図10(a)は開口部を有していない例を示す図
【
図12】
図8に示すリニアモータのコギングトルクと凹凸形状の関係を示す第1の図
【
図13】
図8に示すリニアモータのコギングトルクと凹凸形状の関係を示す第2の図
【発明を実施するための形態】
【0032】
添付図面に基づいて本発明の実施の形態を詳細に説明する。
図1は本発明のリニアモータの一形態の外観を示す斜視図である。なお、図はいずれも、図の左側を上手として説明する(以下同じ)。
【0033】
なお、バックヨークは実際には厚みのあるものであるが、特許請求の範囲及び明細書の説明においては、開口部の内側形状を説明するために、便宜的に、厚みのないものとして、バックヨークの「面」又は「延長面上」という表現を用いている。したがって、かかる面等は厳密な上面又は下面であるとか、上面と下面との間を除くものと解されてはならない。また、逆に、バックヨークに実際に厚みがあることにより、バックヨークの上面と下面の形状が異なってくる場合も含まれることに留意すべきである。
【0034】
このリニアモータは、ロッドタイプの複数のリニアモータを、任意の方向で、可動子シャフト2の軸線が平行になるように多数組み合わせて構成されることが多いが、ここで示すものはそのうちの一つのリニアモータ1のみを表した図である。リニアモータ1は、モータハウジング3内に内装され、モータ可動子を構成する永久磁石5(
図2参照)を有する可動子シャフト2と、一定の間隔を介して可動子シャフト2を取り囲み、複数の電機子コイル6aから構成されるモータ固定子となる電機子単体6(
図2参照)と、を備えている。可動子シャフト2は、モータハウジング3内の適宜位置に設けられた直線軸受4(
図2参照)によって、その軸線(可動子シャフト2の軸線)C方向(一軸方向)に一定のストロークの範囲内で直線状の往復運動が可能となるように支持されている。なお、「電機子単体6」とは、バックヨーク、電機子コイルと、軸受支持筒などを一体成型で形成したものを指す。
【0035】
モータハウジング3は、バックヨークを兼ねることが多いが、ここでは、特に機械的剛性が高い材料が使用される。リニアモータの発熱はその性能の低下につながるので、モータハウジング3は、効率良く外部に熱を伝達する材料が用いられている。
また、バックヨークは磁性材料からなり、モータ取付部(フレーム)10は放熱性が良い材料からなる。モータハウジング3はフレームを含んでも良いし含まなくても良い。
もちろん、モータハウジング3とバックヨークとを別体のものから構成しても良い。
以下、モータハウジング3自体が磁性体材料からなる場合と、別体の磁性体材料からなるバックヨークをモータハウジング3に設けた場合とのいずれの場合も、磁性体として説明する。
【0036】
モータ固定子を構成する電機子コイル6aは、例えばU・V・W相からなる3個一組の三相の電機子コイル6a等を用い、U・V・W相の電流の位相変化による移動磁界を発生させ、可動子シャフト2の永久磁石5に、移動磁界による推力を与えて、移動磁界の速さに同期した直線運動(往復運動)をさせるものである。
【0037】
可動子シャフト2は、例えばステンレス等の非磁性材から形成され、パイプのように内部に中空の空間を有し、この可動子シャフト2のこの中空の空間には、円盤状又は円筒状の複数の永久磁石5を互いに同極が対向するように、例えば鉄等の磁性材料からなるスペーサ7を介して配置している。
【0038】
モータハウジング3には、リニアモータ1の回転を防止するためのリニアガイド8や、電機子コイル6aに流す電力の位相を制御するために、可動子シャフト2の位置、すなわちモータ可動子の位置を検出するリニアエンコーダ9等の周辺装置が設けられているが、リニアガイド8、リニアエンコーダ9等は、周知の又は市場で入手可能なものであれば特段限定されたものを用いる必要はない。リニアモータ1の可動子シャフト2は、例えば、チップマウンタのヘッド軸、その他直線運動や推力が求められている負荷機器に接続されている。
【0039】
なお、リニアモータ1全体は、例えば、負荷機器を含む装置本体又はそれに連なる実装面にフレーム10のモータ取付面11が当接され、ボルト、ねじ等任意の固着手段により面固定されている。
【0040】
可動子シャフト2の磁石からの磁力線を外部に漏洩させないよう、かつ、電機子コイル6aに鎖交する磁束を増やすために電機子コイル6aは、詳細には後述するように、バックヨークと呼ばれる磁性体材料からなる第1磁性板12と第2磁性板13(以下、「磁性板12、13」と称する。)により、軸線Cに直交する断面で見て周囲を取り囲まれている。これにより、永久磁石5から生じた磁束は、磁性板12、13内を軸線C方向に通ることとなり、磁力の外部漏洩を防いでいる。
【0041】
また、磁性板12、13は、磁力の外部漏洩を防ぐだけでなく磁束を集中させ、コアとしての能力も有している。
図1においては、リニアモータ1の上面側に位置する磁性板12、13の一部が描かれている。他の部分はモータハウジング3やモータ取付部(フレーム)10により隠されている。以下、第2磁性板の符号13については、図面においてその符号を省略することがある。
【0042】
磁性板12、13は、リニアモータ1の前後端にも配置されるが、かかる部分の磁性板12、13については、適宜周知の形態のものであればよい。
【0043】
磁性板12、13は、既に知られている如く、例えば、鉄、ニッケル、クロム、パーマロイ等の、磁界の中に置くと磁化され易い磁性材料から形成されている。その材料自体は、如何なるものでもあっても差し支えない。
【0044】
図2には、本発明のリニアモータの構造の一形態を示す断面図その他の図を示す。図面の左右に、正面図及び背面図を、その中央に上から順に、上面図、正面図及び背面
図A-A断面図、並びに底面図を示す。
図1も適宜参照する。
【0045】
本形態においては、リニアモータ1は、可動子シャフト2、断面略直方形状のモータハウジング3、可動子シャフト2上に軸線C方向に沿って配置され、モータ可動子を構成する複数の永久磁石5、モータハウジング3の両端側近傍に配置された軸受支持部材である軸受支持筒14、軸受支持筒14の内周側に固定された滑り軸受(軸受の材質は適宜のものが使用されるし、ボールやローラを用いた転がり軸受その他の軸受であっても良い。)からなる直線軸受4、モータハウジング3の内周側に固定され、かつ、位相を持つ電流によって可動子シャフト2を軸線C方向に移動せしめる、固定子を構成する複数の電機子コイル6aなどから構成されている(以下、これらの部材を「構成部材」と略記することがある。)。
【0046】
前述したとおり、モータハウジング3には、バックヨーク、すなわち外部への磁気漏洩を遮蔽し、また、磁束を集束するコアとなる、磁性板(磁気シールド)12、13が設けられている。
【0047】
この磁性板12、13は、モータ可動子を構成する複数の永久磁石5や、可動子シャフト2を軸線C方向に移動せしめる固定子を構成する複数の電機子コイル6aを包囲していれば良いが、本形態では、
図2の正面図及び背面図に明示される如く、モータハウジング3の軸線C方向に直交する断面形状が直方体であることから、磁性板12、13は、それぞれ同じ形状の「コ」の字磁性板を左右に配置して突き合わせた上、一体成型で製造した四角形状の電機子をモータ取付部(フレーム)10にボルトで固定している。磁性板12、13が同じ形状のものを突き合わせるため、製造しやすいという利点がある。
モータ固定子は、磁性板、12、13を含めた一体成型された電機子単体6に、電機子コイル6a、動力線結線板(プリント基板)と軸受支持筒14等が入って構成されている。
【0048】
このように、磁性板12、13は、軸線Cを通る平面にて分割した同形状の2つの前記磁性板を突き合わせたものからなることが好ましい。磁性板12、13は、左右のいずれか一方の片側の上面側、側面側及び底面側を包囲する断面コ字状の第1磁性板12と、左右のいずれか他方の片側の上面側、側面側及び底面側を包囲する断面コ字状の第2磁性板13との組み合わせにより、外部への磁気漏洩を遮蔽している。
【0049】
なお、磁性板12、13の組み合わせは、平板状の磁性板を複数組み合わせたり、山形状の磁性板を組み合わせたり、コ字状の代わりにU溝状の磁性板を用いたりするなど、任意の断面等の構造を取り得る。
【0050】
第1及び第2磁性板12、13は外面に露出していても露出していなくとも良い。
【0051】
前述したとおり、本形態においては、モータハウジング3が、内部に種々のリニアモータ構成部材を内装しているが、これら構成部材の固定は、モールド成形により注入された注入樹脂が充填されて充填樹脂により隙間の埋められた状態により一体的に固定されていても良い。このような構成にすると、一体的に固定されたこれら構成部材の位置は、製造時、すなわちモールド成形時に固定され、応力、反力等の力が可動子シャフト2を介してリニアモータ1に作用しても、また、リニアモータ1本体にあらゆる方向から応力、反力等の力が作用しても、内装されたリニアモータ構成部材や、リニアモータ1それ自体が容易にずれることはなく、設計・製造時に想定していた精度を維持することができ、リニアモータ1の性能の低下を防ぐことができる。
【0052】
また、充填樹脂により一体的に固定される構成によれば、リニアモータ1の各構成部材(内装部材も含む)に異なる材料を用いていても、固定が可能であり、それぞれの部材に要求される性質に好適な材料を用いることができる。
【0053】
図2の底面図に、フレーム10を底面側から見た様子が示されている。
図2において、フレーム10は、リニアモータ1全体を、負荷機器を含む装置本体又はそれに連なる実装面に取り付けるためのものであり、そのモータ取付面11に、リニアモータ1全体を、負荷機器を含む装置本体側に取り付けるための取付用ねじ穴15が設けられている。
【0054】
また、モータ取付部(フレーム)10には、電機子単体6をフレーム10に固定するための固定用ねじ穴16が設けられている。
これらのねじ穴15、16により、リニアガイド8、リニアエンコーダ9関連部品をモータ取付部(フレーム)10、そして負荷機器を含む装置本体側に固定して、可動子の回転を防ぐことができる。
【0055】
バックヨークを含めた電機子単体6はモールド材で一体成型を行い、一体成型により形成された電機子をこの固定用ねじ穴16によりモータ取付部(フレーム)10に固定位置決めされるようにしても良い。
【0056】
モータハウジング3の内側に磁性板12、13からなるバックヨークが形成されている。そして、本発明においては、バックヨークに開口部O1、O2が形成されている。
開口部O1、O2は、バックヨークのうち磁気干渉を増加させる面を回避して、すなわち磁気干渉による影響を実質的に許容可能な範囲に維持できる面に設けられていることが好ましい。例えば、後述するように、隣接して他のリニアモータ1を設ける場合には、開口部O1、O2は、モータ取付面(底面)11側に設けられていることが好ましい。
【0057】
開口部O1、O2は、バックヨークの一部(底面)を、軸線方向のバックヨークの面又は延長面上に軸線C方向(一軸方向)の長さを短く構成することにより形成される。
【0058】
図2等においては、開口部O1、O2は、軸線C方向の端部であって、固定子(電機子コイル6a)が設けられていないバックヨークの部分に設けることが好ましい。また、開口部O1、O2は、モータ可動子(永久磁石5)の両端部に設けられ、複数の電機子コイル6aから構成される固定子の中央に対して対称となる位置に設けられていることが好ましい。
【0059】
なお、開口部O1、O2は、バックヨークの両端部の一部を切り欠いて形成した切り欠け部により形成することができる。さらに、バックヨークの両端部の最端部が閉じられた形状であっても良い。
【0060】
なお、前述のように、バックヨークは、モータハウジング3自体から構成されていても良く又はモータハウジング3に接して設けられていても良い。
さらに、バックヨークの軸線C方向の長さは推力発生部である電機子(コイル)部分の長さと同じかそれより長くすることで磁力の外部漏洩を抑制することができる。
【0061】
本実施の形態によれば、バックヨーク付リニアモータ電機子のバックヨークにおいて、推力発生部である電機子コイル6a部分を除いた領域において、軸線C方向(往復動方向)に、軸線方向のバックヨークの面又は延長面上において開口部を設けることで、リニアモータの小型化と高性能化を両立することができる。
【0062】
なお、モータ取付部(フレーム)10は、モータの発熱をモータハウジング3の外部に伝達するため、熱伝導性が良くかつ軽量のアルミニウムやアルミニウム系合金等から構成されている。
【0063】
図3は、複数のリニアモータの密着配列使用例を示す図である。以下、その形態について詳細に説明する。
図3に示すように、
図1、
図2で説明したリニアモータ1は、可動子シャフト2がモータハウジング3の軸線C方向と交差する方向に、複数密着して使用することがある。このような実施の形態においては、バックヨークを兼ねた磁性板12、13を設けることで、隣接するリニアモータ1間の磁気漏れに起因する磁気干渉の影響を抑制することができる。なお、磁気干渉が発生する原因は、可動子である永久磁石5からの磁束である。特に、複数のリニアモータ1を密接に並べて配置するときに、永久磁石5からの磁束が互いに干渉し、可動子である永久磁石5の移動を妨げることに起因する。
【0064】
ここで、モータ構成は磁性板とフレームの長さは同じであるため、ストロークを長くしようとすると、フレームを含めた電機子が長くなるという問題がある。
そこで、本発明では、ストロークを長くしても、磁気干渉を防ぐ必要がある面の磁気干渉を防ぐ必要がある隣接面等は軸線方向の長さを保ちつつ、その他の面、すなわち、バックヨークのうち磁気干渉を防ぐ必要がある面以外の面、例えば、
図3に示すように隣接して他のリニアモータ1を設ける場合には、底面側の磁性板の長さを短くしても磁気干渉の影響が少ないことを利用して、底面側の磁性板の軸線方向の長さを短くする、換言すれば、底面側の一部に開口部O1、O2を設けることとした。
【0065】
以上に説明したように、
図3のように、モータ取付面11側の面には開口部を設け、最終的に装置に固定されるフレームの長さを抑えることで装置への磁気干渉の影響を最小限にすることができる。
【0066】
ここで、磁性板(バックヨーク)12、13に設けられる開口部O1、O2(
図2)に起因する可動子である永久磁石5からの磁束に基づく磁気漏れの影響は、開口部O1、O2の形成箇所がリニアモータ1を複数個並べて固定した隣接面ではなくモータ取付面11側の面であるため、可動子の動作を妨げない。
【0067】
このように、可動子である永久磁石5の軸線C方向の領域を避けた端部、例えば、推力発生部を除いた領域に開口部O1、O2(
図2)を設けることで、ストロークを確保しながら、要求されるモータ固定部であるフレーム10を短くすることができる。
【0068】
また、
図3において、磁性板(バックヨーク)12、13のモータ取付面11側の面の両端部に設ける開口部O1、O2(
図2)を除いた長さは、短くても電機子コイル6aの長さに等しくなる。その理由は、モータの推力を最大化するためである。なお、実際に磁性板(バックヨーク)12、13を含めた電機子をフレームにねじ固定するため、開口部O1、O2(
図2)を除いたフレームに接するバックヨークの長さは電機子コイル6aより長くなる。
【0069】
このように、複数のモータを並置した場合において、隣接するリニアモータ1間における磁気漏れに起因する磁気干渉の影響を抑制することができるとともに、モータの推力の確保と、コギングの影響の低減を両立させつつ、モータを小型化することができる。
【0070】
なお、
図3においては、開口部O1、O2を、モータ取付面11側に設けた例を示したが、開口部はモータ取付面11側に限らず、バックヨークのうち磁気干渉を防ぐ必要がある面以外の面に設ければ良く、モータ取付面11側に設けた例に限定されるものではない。
【0071】
(樹脂充填構造)
図4には、本発明のリニアモータ1に内装された一部の構成要素を取り除いたモータハウジング3が示されている。
【0072】
図4においては、モータハウジング3に外装されたリニアガイド8、リニアエンコーダ9等の電気系の部品や、内装された電気系、磁気系の構成要素、モータ固定用のフレーム10を取り除いた状態での電機子単体6の側面側及び底面側の構造が俯瞰される。
【0073】
図2と特に異なるのは、一体成型により形成された電機子単体6の構成を示したところにある。また、バックヨークを軸受支持筒14とモータ取付部(フレーム)10に取り付けるためなどに用いられる固定用ねじ穴16が、軸線C方向に沿って離隔した位置に複数設けられていることが示されているところにある。
【0074】
磁性板(バックヨーク)12、13、電機子コイル6aと軸受支持筒14で構成された電機子単体6は、一体モールド成型で製造する。この一体モールド成型により製造された電機子単体6を、モータ取付部(フレーム)10にねじ固定する。
【0075】
(開口部の形状依存性)
以下に、モータ取付面11側の面(底面)に形成される開口部O1、O2等の形状について説明する。
1)直線状の開口部についての説明
図1、
図5は実施の形態1の磁性板12、13に設けられた開口部O1、O2の軸線方向のバックヨークの面又は延長面上における内側形状が、軸線C方向に沿って直線状である例を示す図であり、
図5は、底面図、側面図及び上面図である。直線状とは、例えば開口部O1、O2を形成する四辺のうちの可動子シャフト2の軸線C方向に延在する方向の対向する2辺が直線状であることを意味する。
【0076】
2)凹凸形状(1)の開口部についての説明
図6及び
図7は、対応する
図1及び
図5に示すリニアモータ1の底面に設けられた開口部において、開口部O3、O4の軸線方向のバックヨークの面又は延長面上における内側形状が、軸線C方向に延在する2辺において、
図1、
図5のような直線状ではなく、かかる2辺の少なくとも一部が相対峙して近接乃至は離間する如く凹凸形状(凹凸であれば少なくとも一部に曲面が含まれていても良い)をなす例を示す図である。
【0077】
図6及び
図7を詳細にみると、開口部は、軸線C方向の両端に前端側開口部O3と後端側開口部O4とが設けられている。そして、開口部O3、O4は、
図7に示す底面図において、
図5の底面図と比較して、開口部の内側形状が直線状ではなく、軸線C方向の前記バックヨークの面又は延長面上において、内側形状が凹凸形状になっている点で異なる。
【0078】
3)凹凸形状(2)の開口部についての説明
図8及び
図9は、凹凸形状(2)の開口部を有する例を示す図であり、
図6、7と同様に、開口部O5、O6に加えて、磁性板12、13の上面にも凹凸形状の上面開口部41、41が両端に設けられている構造である。
【0079】
磁性板12、13に設けられた上面にも凹凸形状の上面開口部41、41を設けることで、バックヨーク付リニアモータ電機子のバックヨークにおいて、以下に説明するように、モータの小型化と高性能化をより一層両立することができる。
【0080】
4)直線状の開口部と凹凸形状の開口部のコギング対策の効果についての説明
図10は、バックヨークの形状を示す展開図である。
【0081】
(バックヨークの形状と定義)
バックヨーク(すなわち、
図10(a)の磁性板12、13。以下、「バックヨーク」と称することもある。)においては、図示しない推力発生部とストロークの合計長さがバックヨークの長さと等しくなる。
【0082】
また、バックヨークにおいては、軸線C方向に直線状の開口部O1、O2(
図2等参照)を設けられている。
このバックヨークの開口部O1、O2については、凹凸形状の開口部(
図6~
図9)や、軸線C方向に沿って内側に凹凸を付けた開口部を採用できる。
【0083】
ここで、
図10(c)に示す凹凸形状を示す各寸法は以下のとおりである
バックヨークの端部から順に、開口部O
3を例にとり、凹凸形状を有する開口部の形状要素を軸線C方向で見たときの長さは次のとおりとなる。
L
1は、第1凸部の開口部の長さである。
符号のない第1凹部については後述する。
L
01は、開口部O
3全体の長さである。
L
2は、第2凸部の開口部の長さである。
L
02は、第2凹部の開口部の長さである。
L
0は開口部を除いたバックヨークの長さ(推力発生部を含む)である。
前述した第1凹部については、L
01からL
2とL
02を減算した長さとなり、独立したパラメータとはならないので、符号を省略した。
【0084】
(コギング対策の効果の比較について)
以下に、開口部の形状等に依存するコギング対策の効果を比較する。
図11から
図13において、横軸は位置、縦軸はコギングトルクの大きさ(任意単位)である。
図11は、
図10(a)の磁性板12、13、
図10(b)の磁性板12、13および
図10(c)の磁性板12、13を用いて開口部が設けられたバックヨークを形成した場合のコギング対策の効果を示す図である。
ストロークを含めた全バックヨーク(
図10(a))の場合、磁石部の可動子が移動しても磁気変動がないため、コギングは、理論上では0となる。但し、
図11の解析結果においては小さな推力の変動が見られる。
【0085】
軸線C方向に直線状の開口部O1、O2を設けると、バックヨーク開口部の端部に磁気変動が急に発生するため、コギングは開口部がない場合より大きいことがわかる。
軸線C方向に凹凸形状の開口部O3、O4を設けると、磁気変動に起因したコギングは凹凸によりキャンセルされる部分があるため、コギングは直線状の開口部を設けた場合よりも小さくなることがわかる。
【0086】
(コギングの影響の低減について)
図12は、リニアモータのコギングトルクと凹凸形状の関係を示す第1の図であって、コギングに関し、第2凹部L
02の長さを変化させたときの状態を示す図である。
図12に示すように、L
0、L
01、L
1及びL
2を一定値にしておき、L
02のみを変化させると、L
02-1からL
02-3のように、コギングの位相と大きさが変化することがわかる。
【0087】
図13は、リニアモータのコギングトルクと凹凸形状の関係を示す第2の図であって、コギングに関し、第2凸部L
2の長さを変化させたときの状態を示す図である。
図13に示すように、L
0、L
01、L
1及びL
02を一定値にしておき、L
2のみを変化させると、コギングの位相と大きさが変化することがわかる。
【0088】
以上のことから、第2凹部L02及び第2凸部の長さL2を最適化することで、モータのコギングを減少させることができることがわかる。
また、第1凹凸形状も同様な解析を行い、第1凹凸と第2凹凸との組み合わせによりコギングを最小になる方向にすることができることがわかる。
まとめてみれば、凹凸部の長さと位置により、コギングの位相と大きさの変化があるため、位相をキャンセル(波形の位相が180°反対となるように)することができ、かつ、大きさが、小さくなるように長さと位置を調整することでコギングの低減を実現することができる、ということである。
【0089】
このように、バックヨーク付リニアモータ電機子のバックヨークにおいて、推力発生部を除いた領域に軸線C方向の開口部を設けることにより、モータの小型化と高性能化を両立できる。
【0090】
特に、開口部の内側形状を凹凸形状にすることで、モータの大推力を確保しながら、コギングの影響を抑止することができていることがわかる。
【0091】
以上、縷々説明してきたが、本発明により、バックヨーク付リニアモータ電機子のバックヨークにおいて、推力発生部を除いた領域に軸線C方向に開口部を設けることにより、モータの小型化と高性能化を両立させることができ、特に開口部に凹凸形状をすることでモータの大推力を確保しながら、コギング影響を低減することができものである。
【0092】
なお、本発明は、リニアモータにおいて、バックヨーク付リニアモータ電機子のバックヨークにおいて、推力発生部を除いた領域の軸線方向に延在する開口部を設けることで、モータの小型化と高性能化を両立すること、を要旨とするものであるので、それを具体化するものであれば、上記実施の形態に限られることなく、本発明の要旨を変更しない範囲、すなわち、リニアモータの可動子の構造や磁石の配列、固定子の構造や電機子コイルの巻線構造、可動子シャフトの軸受・軸支構造、リニアモータの制御手段・方法などは、任意のものに変更が可能である。
【符号の説明】
【0093】
リニアモータ 1
可動子シャフト 2
可動子シャフト軸線(軸線) C
モータハウジング 3
直線軸受 4
永久磁石 5
電機子単体 6
電機子コイル 6a
スペーサ 7
リニアガイド 8
リニアエンコーダ 9
モータ取付部(フレーム) 10
モータ取付面 11
第1磁性板 12
第2磁性板 13
軸受支持筒 14
取付用ねじ穴 15
固定用ねじ穴 16
上面開口部 41
直線状の開口部 O1、O2
凹凸形状の開口部 O3、O4、O5、O6、41、