(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-02-21
(45)【発行日】2024-03-01
(54)【発明の名称】固体撮像装置
(51)【国際特許分類】
H01L 27/146 20060101AFI20240222BHJP
H04N 25/70 20230101ALI20240222BHJP
H04N 25/77 20230101ALI20240222BHJP
【FI】
H01L27/146 E
H04N25/70
H04N25/77
(21)【出願番号】P 2020532305
(86)(22)【出願日】2019-07-16
(86)【国際出願番号】 JP2019027890
(87)【国際公開番号】W WO2020022119
(87)【国際公開日】2020-01-30
【審査請求日】2022-06-08
(31)【優先権主張番号】P 2018140218
(32)【優先日】2018-07-26
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】316005926
【氏名又は名称】ソニーセミコンダクタソリューションズ株式会社
(74)【代理人】
【識別番号】110001357
【氏名又は名称】弁理士法人つばさ国際特許事務所
(74)【代理人】
【氏名又は名称】山本 孝久
(74)【代理人】
【氏名又は名称】吉井 正明
(72)【発明者】
【氏名】佐藤 友亮
【審査官】柴山 将隆
(56)【参考文献】
【文献】特開2018-085402(JP,A)
【文献】国際公開第2014/112279(WO,A1)
【文献】国際公開第2014/002366(WO,A1)
【文献】特開2015-177323(JP,A)
【文献】特開2012-151771(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 27/146
H04N 25/70
H04N 25/77
(57)【特許請求の範囲】
【請求項1】
第1の方向に沿って並置されると共に第1の方向とは異なる第2の方向に延びる境界線に対して線対称に配置された第1の撮像素子および第2の撮像素子、を含む撮像素子ブロックを有し、
第1の撮像素子および第2の撮像素子の各々は、
第1電極、
第1電極と離間して配置された電荷蓄積用電極、
第1電極と接し、絶縁層を介して電荷蓄積用電極の上方に形成された光電変換部、並びに、
光電変換部上に形成された第2電極、
を備えており、
第1の撮像素子および第2の撮像素子の各々における第1電極及び電荷蓄積用電極は、層間絶縁層上に
第2の方向に並ぶように設けられており、
第1の撮像素子および第2の撮像素子の各々における第1電極は、
第2の方向に延びる第1の撮像素子と第2の撮像素子との境界線上の層間絶縁層内に設けられた接続部に接続されており、
第1の撮像素子の第1電極と第2の撮像素子の第1電極とが第2の方向に延びる境界線に対して線対称に配置され、
第1の撮像素子の電荷蓄積用電極と第2の撮像素子の電荷蓄積用電極とが第2の方向に延びる境界線に対して線対称に配置され、
第1の撮像素子の光電変換部と第2の撮像素子の光電変換部とが共通化されており、
第1の撮像素子の第2電極と第2の撮像素子の第2電極とが共通化されている
固体撮像装置。
【請求項2】
撮像素子ブロックは、連続した分離電極によって囲まれている請求項1に記載の固体撮像装置。
【請求項3】
第1の撮像素子と第2の撮像素子との間には、分離電極から第2の方向に沿って延びる連続した第2分離電極が設けられている請求項2に記載の固体撮像装置。
【請求項4】
第1の撮像素子と第2の撮像素子との間には、第2の方向に沿って延びる第2分離電極が設けられている請求項1に記載の固体撮像装置。
【請求項5】
撮像素子ブロックは、第1の撮像素子と第2の方向に隣接する第3の撮像素子と、第2の撮像素子と第2の方向に隣接する第4の撮像素子と、をさらに含み、
第3の撮像素子と第4の撮像素子とは、第2の方向に延びる境界線に対して線対称に配置され、
第3の撮像素子および第4の撮像素子の各々は、
第1電極、
第1電極と離間して配置された電荷蓄積用電極、
第1電極と接し、絶縁層を介して電荷蓄積用電極の上方に形成された光電変換部、並びに、
光電変換部上に形成された第2電極、
を備えており、
第3の撮像素子および第4の撮像素子の各々における第1電極及び電荷蓄積用電極は、層間絶縁層上に
第2の方向に並ぶように設けられており、
第3の撮像素子および第4の撮像素子の各々における第1電極は、
第2の方向に延びる第3の撮像素子と第4の撮像素子との境界線上の層間絶縁層内に設けられた接続部に接続されており、
第3の撮像素子の第1電極と第4の撮像素子の第1電極とが第2の方向に延びる境界線に対して線対称に配置され、
第3の撮像素子の電荷蓄積用電極と第4の撮像素子の電荷蓄積用電極とが第2の方向に延びる境界線に対して線対称に配置され、
第1の撮像素子の光電変換部と第2の撮像素子の光電変換部と第3の撮像素子の光電変換部と第4の撮像素子の光電変換部とが共通化されており、
第1の撮像素子の第2電極と第2の撮像素子の第2電極と第3の撮像素子の第2電極と第4の撮像素子の第2電極とが共通化されている
請求項1に記載の固体撮像装置。
【請求項6】
撮像素子ブロックは、連続した分離電極によって囲まれている請求項5に記載の固体撮像装置。
【請求項7】
第1の撮像素子と第2の撮像素子との間には、分離電極から第2の方向に沿って延びる連続した第2分離電極が設けられている請求項6に記載の固体撮像装置。
【請求項8】
第1の撮像素子と第2の撮像素子との間には、第2方向に沿って延びる第2分離電極が設けられている請求項5に記載の固体撮像装置。
【請求項9】
第1の撮像素子および第3の撮像素子は第1電極を共有し、第1の撮像素子および第3の撮像素子が共有する第1電極は層間絶縁層内に設けられた接続部に接続されており、
第2の撮像素子および第4の撮像素子は第1電極を共有し、第2の撮像素子および第4の撮像素子が共有する第1電極は層間絶縁層内に設けられた接続部に接続されている
請求項5に記載の固体撮像装置。
【請求項10】
第1の撮像素子および第2の撮像素子は第1電極を共有し、第1の撮像素子および第2の撮像素子が共有する第1電極は層間絶縁層内に設けられた接続部に接続されており、
第3の撮像素子および第4の撮像素子は第1電極を共有し、第3の撮像素子および第4の撮像素子が共有する第1電極は層間絶縁層内に設けられた接続部に接続されている
請求項5に記載の固体撮像装置。
【請求項11】
撮像素子ブロックは、連続した分離電極によって囲まれて請求項9又は請求項10に記載の固体撮像装置。
【請求項12】
第1の撮像素子と第2の撮像素子との間には、分離電極から第2の方向に沿って延びる連続した第2分離電極が設けられている請求項11に記載の固体撮像装置。
【請求項13】
第1の撮像素子と第2の撮像素子との間には、第2方向に沿って延びる第2分離電極が設けられている請求項9に記載の固体撮像装置。
【請求項14】
分離電極の電位は一定の値V
ESである請求項2に記載の記載の固体撮像装置。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、固体撮像装置に関する。
【背景技術】
【0002】
光電変換層に有機半導体材料を用いる撮像素子は、特定の色(波長帯)を光電変換することが可能である。そして、このような特徴を有するが故に、固体撮像装置における撮像素子として用いる場合、オンチップ・カラーフィルタ(OCCF)と撮像素子との組合せから副画素が成り、副画素が2次元配列されている、従来の固体撮像装置では不可能な、副画素を積層した構造(積層型撮像素子)を得ることが可能である(例えば、特開2017-157816号公報参照)。また、デモザイク処理を必要としないことから、偽色が発生しないといった利点がある。尚、以下の説明において、半導体基板の上あるいは上方に設けられた光電変換部を備えた撮像素子を、便宜上、『第1タイプの撮像素子』と呼び、第1タイプの撮像素子を構成する光電変換部を、便宜上、『第1タイプの光電変換部』と呼び、半導体基板内に設けられた撮像素子を、便宜上、『第2タイプの撮像素子』と呼び、第2タイプの撮像素子を構成する光電変換部を、便宜上、『第2タイプの光電変換部』と呼ぶ場合がある。
【0003】
図9に、特開2017-157816号公報に開示された積層型撮像素子(積層型固体撮像装置)の構造例を示す。
図9に示す例では、半導体基板70内に、第2タイプの撮像素子である第3撮像素子15及び第2撮像素子13を構成する第2タイプの光電変換部である第3光電変換部43及び第2光電変換部41が積層され、形成されている。また、半導体基板70の上方(具体的には、第2撮像素子13の上方)には、第1撮像素子を構成する第1タイプの光電変換部(便宜上、『第1光電変換部』と呼ぶ)が配置されている。ここで、第1光電変換部は、第1電極21、有機材料から成る光電変換部23、第2電極22を備えており、第1タイプの撮像素子である第1撮像素子11を構成する。また、第1電極21と離間して電荷蓄積用電極24が設けられており、電荷蓄積用電極24の上方には、絶縁層82を介して光電変換部23が位置している。第2光電変換部41及び第3光電変換部43においては、吸収係数の違いにより、それぞれ、例えば、青色光及び赤色光が光電変換される。また、第1光電変換部においては、例えば、緑色光が光電変換される。
【0004】
第2光電変換部41及び第3光電変換部43において光電変換によって生成した電荷は、これらの第2光電変換部41及び第3光電変換部43に一旦蓄積された後、それぞれ、縦型トランジスタ(ゲート部45を図示する)と転送トランジスタ(ゲート部46を図示する)によって第2浮遊拡散層(Floating Diffusion)FD2及び第3浮遊拡散層FD3に転送され、更に、外部の読み出し回路(図示せず)に出力される。これらのトランジスタ及び浮遊拡散層FD2,FD3も半導体基板70に形成されている。
【0005】
第1光電変換部において光電変換によって生成した電荷は、電荷蓄積時、電荷蓄積用電極24に引き付けられ、光電変換部23に蓄積される。電荷転送時、光電変換部23に蓄積された電荷は、第1電極21、コンタクトホール部61、配線層62を介して、半導体基板70に形成された第1浮遊拡散層FD1に蓄積される。また、第1光電変換部は、コンタクトホール部61、配線層62を介して、電荷量を電圧に変換する増幅トランジスタのゲート部52にも接続されている。そして、第1浮遊拡散層FD1は、リセット・トランジスタ(ゲート部51を図示する)の一部を構成している。尚、その他の構成要素については、実施例1において説明する。
【先行技術文献】
【特許文献】
【0006】
【発明の概要】
【発明が解決しようとする課題】
【0007】
後に詳しく説明するが、第1撮像素子11に入射する光の角度に依存して、隣接する第1撮像素子11において、それぞれの第1撮像素子11の光電変換部23において生成した電荷の第1電極21への移動状態に差異が生じるといった第1の問題点が発生し、その結果、得られる画像において画質低下が生じる虞がある。また、光電変換部23に蓄積された電荷が、第1撮像素子11の動作中に、隣接する第1撮像素子11に移動する可能性が皆無とは云えないし、光電変換部23に蓄積された電荷が、第1電極21にスムースに転送されない可能性が皆無とは云えないといった第2の問題点が発生し、その結果、固体撮像装置の特性劣化へと繋がる。
【0008】
従って、本開示の第1の目的は、撮像素子に入射する光の角度に依存して、撮像素子に生成した電荷の第1電極への移動状態に差異が生じることの無い固体撮像装置を提供することにある。また、本開示の第2の目的は、撮像素子の動作中、隣接する撮像素子間における電荷の移動を確実に抑制することができ、しかも、光電変換部に蓄積された電荷が、第1電極にスムースに転送される構成、構造を有する撮像素子を備えた固体撮像装置を提供することにある。
【課題を解決するための手段】
【0009】
上記の第1の目的を達成するための本開示の固体撮像装置は、複数の撮像素子から構成された撮像素子ブロックを、複数、有しており、
各撮像素子は、
第1電極、
第1電極と離間して配置された電荷蓄積用電極、
第1電極と接し、絶縁層を介して電荷蓄積用電極の上方に形成された光電変換部、並びに、
光電変換部上に形成された第2電極、
を備えており、
第1電極及び電荷蓄積用電極は、層間絶縁層上に設けられており、
第1電極は、層間絶縁層内に設けられた接続部に接続されている。
【図面の簡単な説明】
【0010】
【
図1】
図1A及び
図1Bは、それぞれ、実施例1の固体撮像装置及び実施例2の固体撮像装置における電荷蓄積用電極及び第1電極等の配置状態を模式的に示す図である。
【
図2】
図2A及び
図2Bは、実施例2の固体撮像装置の変形例における電荷蓄積用電極、第1電極及び分離電極等の配置状態を模式的に示す図である。
【
図3】
図3A及び
図3Bは、それぞれ、実施例3の固体撮像装置及びその変形例における電荷蓄積用電極及び第1電極等の配置状態を模式的に示す図である。
【
図4】
図4A及び
図4Bは、実施例3の固体撮像装置の変形例における電荷蓄積用電極、第1電極及び分離電極等の配置状態を模式的に示す図である。
【
図5】
図5A及び
図5Bは、それぞれ、実施例4の固体撮像装置及びその変形例における電荷蓄積用電極及び第1電極等の配置状態を模式的に示す図である。
【
図6】
図6A及び
図6Bは、実施例4の固体撮像装置の変形例における電荷蓄積用電極、第1電極及び分離電極等の配置状態を模式的に示す図である。
【
図7】
図7A及び
図7Bは、実施例4の固体撮像装置の変形例における電荷蓄積用電極及び第1電極等の配置状態を模式的に示す図である。
【
図8】
図8A及び
図8Bは、それぞれ、
図6Aに示した実施例4の固体撮像装置の変形例の模式的な斜視図、及び、従来の固体撮像装置の変形例の模式的な斜視図である。
【
図9】
図9は、実施例1の固体撮像装置の模式的な一部断面図である。
【
図10】
図10A及び
図10Bは、実施例1の固体撮像装置及びその変形例を構成する撮像素子(並置された2つの撮像素子)の一部分の模式的な断面図である。
【
図11】
図11は、実施例1の撮像素子、積層型撮像素子の等価回路図である。
【
図12】
図12は、実施例1の撮像素子、積層型撮像素子の等価回路図である。
【
図13】
図13は、実施例1の撮像素子を構成する第1電極及び電荷蓄積用電極並びに制御部を構成するトランジスタの模式的な配置図である。
【
図14】
図14は、実施例1の撮像素子の動作時の各部位における電位の状態を模式的に示す図である。
【
図17】
図17は、実施例1の撮像素子、積層型撮像素子の変形例の等価回路図である。
【
図18】
図18は、
図17に示した実施例1の撮像素子の別の変形例を構成する第1電極及び電荷蓄積用電極並びに制御部を構成するトランジスタの模式的な配置図である。
【
図19】
図19A及び
図19Bは、実施例2の固体撮像装置及びその変形例を構成する撮像素子(並置された2つの撮像素子)の一部分の模式的な断面図である。
【
図20】
図20は、実施例5の撮像素子(並置された2つの撮像素子)の一部分の模式的な断面図である。
【
図21】
図21A及び
図21Bは、実施例5の撮像素子(並置された2つの撮像素子)の変形例の一部分の模式的な断面図である。
【
図22】
図22A及び
図22Bは、実施例5の撮像素子(並置された2つの撮像素子)の変形例の一部分の模式的な断面図である。
【
図23】
図23は、実施例6の固体撮像装置の模式的な一部断面図である。
【
図24】
図24は、実施例7の固体撮像装置の模式的な一部断面図である。
【
図25】
図25は、実施例7の固体撮像装置の変形例の模式的な一部断面図である。
【
図26】
図26は、実施例7の撮像素子の別の変形例の模式的な一部断面図である。
【
図27】
図27は、実施例7の撮像素子の更に別の変形例の模式的な一部断面図である。
【
図28】
図28は、実施例8の固体撮像装置の一部分の模式的な一部断面図である。
【
図29】
図29は、実施例8の固体撮像装置の等価回路図である。
【
図30】
図30は、実施例8の固体撮像装置の等価回路図である。
【
図31】
図31は、実施例8の撮像素子を構成する第1電極、転送制御用電極及び電荷蓄積用電極並びに制御部を構成するトランジスタの模式的な配置図である。
【
図32】
図32は、実施例8の撮像素子の動作時の各部位における電位の状態を模式的に示す図である。
【
図33】
図33は、実施例8の撮像素子の別の動作時の各部位における電位の状態を模式的に示す図である。
【
図34】
図34は、実施例8の撮像素子の変形例を構成する第1電極、転送制御用電極及び電荷蓄積用電極並びに制御部を構成するトランジスタの模式的な配置図である。
【
図35】
図35は、実施例9の固体撮像装置の模式的な一部断面図である。
【
図36】
図36は、実施例1の固体撮像装置の更に別の変形例の模式的な一部断面図である。
【
図37】
図37は、実施例1の固体撮像装置の更に別の変形例の模式的な一部断面図である。
【
図38】
図38は、実施例1の固体撮像装置の更に別の変形例の模式的な一部断面図である。
【
図39】
図39は、実施例1の固体撮像装置の別の変形例の模式的な一部断面図である。
【
図40】
図40は、実施例1の固体撮像装置の更に別の変形例の模式的な一部断面図である。
【
図41】
図41は、本開示の固体撮像装置から構成された固体撮像装置を電子機器(カメラ)を用いた例の概念図である。
【
図42】
図42は、本開示の固体撮像装置の一例の駆動方法を説明するための固体撮像装置の一部の概念図である。
【
図43】
図43は、第1の問題点を説明するための従来の固体撮像装置の第1電極等の配置状態を模式的に示す図である。
【
図44】
図44は、車両制御システムの概略的な構成の一例を示すブロック図である。
【
図45】
図45は、車外情報検出部及び撮像部の設置位置の一例を示す説明図である。
【
図46】
図46は、内視鏡手術システムの概略的な構成の一例を示す図である。
【
図47】
図47は、カメラヘッド及びCCUの機能構成の一例を示すブロック図である。
【発明を実施するための形態】
【0011】
以下、図面を参照して、実施例に基づき本開示を説明するが、本開示は実施例に限定されるものではなく、実施例における種々の数値や材料は例示である。尚、説明は、以下の順序で行う。
1.本開示の固体撮像装置、全般に関する説明
2.実施例1(本開示の固体撮像装置、第1構成の固体撮像装置)
3.実施例2(実施例1の変形)
4.実施例3(実施例1~実施例2の変形、第2構成の固体撮像装置)
5.実施例4(実施例1~実施例2の別の変形、第3構成の固体撮像装置)
6.実施例5(実施例1~実施例4の変形、上方分離電極)
7.実施例6(実施例1~実施例5の変形、表面照射型の固体撮像装置)
8.実施例7(実施例1~実施例6の変形)
9.実施例8(実施例1~実施例7、転送制御用電極)
10.実施例9(実施例1~実施例8、電荷排出電極)
11.その他
【0012】
〈本開示の固体撮像装置、全般に関する説明〉
本開示の固体撮像装置において、撮像素子ブロックは、第1の方向に沿ってP個、第1の方向とは異なる第2の方向に沿ってQ個の、P×Q個(但し、P≧2,Q≧1)の撮像素子から構成されている形態とすることができる。
【0013】
本開示の固体撮像装置の上記の好ましい形態においては、上記の第2の目的を達成するために、
P=2,Q=1であり、
第1の方向に沿った2つの撮像素子のそれぞれを構成する第1電極は、層間絶縁層内に設けられた接続部に接続されている構成とすることができる。ここで、このような構成の固体撮像装置を、便宜上、『第1構成の固体撮像装置』と呼ぶ。2つの撮像素子において、第1電極は接続部を介して相互に繋がっている。そして、第1構成の固体撮像装置において、撮像素子ブロックは、連続した分離電極(便宜上、『第1分離電極』と呼ぶ場合がある)によって囲まれている構成とすることができ、更には、第1の方向に沿った2つの撮像素子の間には、分離電極(第1分離電極)から第2の方向に沿って延びる連続した第2分離電極が設けられている構成とすることができる。第1分離電極と第2分離電極とは繋がっている。あるいは又、第1構成の固体撮像装置において、第1の方向に沿った2つの撮像素子の間には、第2方向に沿って延びる第2分離電極が設けられている構成とすることができる。
【0014】
あるいは又、本開示の固体撮像装置の上記の好ましい形態においては、上記の第2の目的を達成するために、
P=2,Qは2以上の自然数であり、
第1の方向に沿った2つの撮像素子のそれぞれを構成する第1電極は、層間絶縁層内に設けられた接続部に接続されている構成とすることができる。ここで、このような構成の固体撮像装置を、便宜上、『第2構成の固体撮像装置』と呼ぶ。P×Q個の撮像素子において、第1電極は接続部を介して相互に繋がっている。そして、第2構成の固体撮像装置において、撮像素子ブロックは、連続した分離電極(第1分離電極)によって囲まれている構成とすることができ、更には、第1の方向に沿った2つの撮像素子の間には、分離電極(第1分離電極)から第2の方向に沿って延びる連続した第2分離電極が設けられている構成とすることができる。第1分離電極と第2分離電極とは繋がっている。あるいは又、第2構成の固体撮像装置において、第1の方向に沿った2つの撮像素子の間には、第2方向に沿って延びる第2分離電極が設けられている構成とすることができる。
【0015】
あるいは又、本開示の固体撮像装置の上記の好ましい形態においては、上記の第2の目的を達成するために、
P=2,Q=2であり、
第2の方向に沿った2つの撮像素子を構成する第1電極は共有されており、
共有された第1電極は、層間絶縁層内に設けられた接続部に接続されている構成とすることができる。ここで、このような構成の固体撮像装置を、便宜上、『第3A構成の固体撮像装置』と呼ぶ。あるいは又、本開示の固体撮像装置の上記の好ましい形態においては、上記の第2の目的を達成するために、
P=2,Q=2であり、
第1の方向に沿った2つの撮像素子を構成する第1電極は共有されており、
共有された第1電極は、層間絶縁層内に設けられた接続部に接続されている構成とすることができる。ここで、このような構成の固体撮像装置を、便宜上、『第3B構成の固体撮像装置』と呼ぶ。2×2個の撮像素子において、第1電極は接続部を介して相互に繋がっている。そして、第3A構成の固体撮像装置あるいは第3B構成の固体撮像装置において、撮像素子ブロックは、連続した分離電極(第1分離電極)によって囲まれている構成とすることができ、更には、第3A構成の固体撮像装置あるいは第3B構成の固体撮像装置において、第1の方向に沿った2つの撮像素子の間には、分離電極(第1分離電極)から第2の方向に沿って延びる連続した第2分離電極が設けられている構成とすることができる。第1分離電極と第2分離電極とは繋がっている。あるいは又、第3A構成の固体撮像装置あるいは第3B構成の固体撮像装置において、第1の方向に沿った2つの撮像素子の間には、第2方向に沿って延びる第2分離電極が設けられている構成とすることができる。
【0016】
更には、以上に説明した好ましい形態、構成を含む本開示の固体撮像装置において、撮像素子ブロックを構成する撮像素子と撮像素子との間を第2の方向に延びる境界線に対して、撮像素子は線対称に配置されている形態とすることができる。
【0017】
更には、以上に説明した好ましい形態、構成を含む本開示の固体撮像装置において、分離電極(第1分離電極)の電位は(第2分離電極が設けられている場合には第2分離電極の電位も)、一定の値VESである形態とすることができる。
【0018】
このように、1つの撮像素子ブロックを構成するP×Q個の撮像素子において第1電極を共有化すれば、撮像素子が複数配列された画素領域における構成、構造を簡素化、微細化することができる。そして、撮像素子ブロックを構成する複数(具体的には、P×Q個)の撮像素子は、共有された浮遊拡散層を備えている形態とすることができる。即ち、P×Q個の撮像素子によって構成された1つの撮像素子ブロックに対して1つの浮遊拡散層が設けられている。また、各撮像素子ブロックは、制御部を有しており、制御部は、少なくとも浮遊拡散層及び増幅トランジスタから構成されており、共有された第1電極は、接続部を介して制御部に接続されている形態とすることができる。P×Q個の撮像素子は、後述する第1タイプの撮像素子の複数から構成されていてもよいし、少なくとも1つの第1タイプの撮像素子と、1又は2以上の後述する第2タイプの撮像素子とから構成されていてもよい。
【0019】
本開示の固体撮像装置において、撮像素子ブロックが4個の撮像素子から構成され、これらの4つの撮像素子の第1電極が共有されている場合、4つの撮像素子に蓄積された電荷を、別々に、都合4回で読み出す読み出し方式を採用してもよいし、4つの撮像素子に蓄積された電荷を、同時に、都合1回で読み出す読み出し方式を採用してもよい。前者を、便宜上、『第1モードの読み出し方法』と呼び、後者を、便宜上、『第2モードの読み出し方法』と呼ぶ場合がある。第1モードの読み出し方法にあっては、固体撮像装置によって得られる画像の高精細化を図ることができる。第2モードの読み出し方法にあっては、感度の増加を図るために4つの撮像素子によって得られた信号が加算される。第1モードの読み出し方法と第2モードの読み出し方法との切替は、固体撮像装置に適切な切替手段を設けることで達成することができる。第1モードの読み出し方法にあっては、電荷転送期間のタイミングを適切に制御することで、P×Q個(例えば、2×2個)の撮像素子が1つの浮遊拡散層を共有することが可能であり、撮像素子ブロックを構成するP×Q個(例えば、2×2個)の撮像素子が1つの駆動回路に接続されている。但し、電荷蓄積用電極の制御は、撮像素子毎に行われる。
【0020】
本開示の固体撮像装置において、第1分離電極や第2分離電極は、絶縁層を介して光電変換部の領域に対向した領域に設けられている形態とすることができる。尚、これらの分離電極を、便宜上、『下方第1分離電極』、『下方第2分離電極』と呼ぶ場合があるし、これらを総称して、『下方分離電極』と呼ぶ場合がある。あるいは又、第1分離電極や第2分離電極は、光電変換部の上に、第2電極と離間して設けられている形態とすることができる。尚、これらの分離電極を、便宜上、『上方第1分離電極』、『上方第2分離電極』と呼ぶ場合があるし、これらを総称して、『上方分離電極』と呼ぶ場合がある。第3B構成の固体撮像装置において、第2分離電極が設けられている構成とする場合、第1分離電極や上方第2分離電極を、上方第1分離電極や上方第2分離電極から構成する必要がある。
【0021】
本開示の固体撮像装置において、下方第1分離電極は、第1電極及び電荷蓄積用電極と離間して配置され、電荷蓄積用電極を取り囲んでいる。一方、上方第1分離電極の正射影像は、第1電極及び電荷蓄積用電極の正射影像と離間して位置し、電荷蓄積用電極の正射影像を取り囲んでいる。場合によっては、上方第2分離電極の正射影像の一部と電荷蓄積用電極の正射影像の一部が重なっていてもよい。
【0022】
以下の説明において各種電極に印加される電位を表す符号を、以下の表1に示す。
【0023】
〈表1〉
電荷蓄積期間 電荷転送期間
第1電極 V11 V12
第2電極 V21 V22
電荷蓄積用電極 V31 V32
第1分離電極 VES VES
第2分離電極 VES VES
転送制御用電極 V41 V42
電荷排出電極 V51 V52
【0024】
以上に説明した好ましい形態、構成を含む本開示の固体撮像装置は、半導体基板を更に備えており、光電変換部は、半導体基板の上方に配置されている形態とすることができる。尚、第1電極、電荷蓄積用電極、第2電極、各種分離電極や各種電極は、後述する駆動回路に接続されている。
【0025】
更には、以上に説明した各種の好ましい形態、構成を含む本開示の固体撮像装置において、電荷蓄積用電極の大きさは第1電極よりも大きい形態とすることができる。電荷蓄積用電極の面積をs1’、第1電極の面積をs1としたとき、限定するものではないが、
4≦s1’/s1
を満足することが好ましい。
【0026】
光入射側に位置する第2電極は、上方分離電極が形成されている場合を除き、複数の撮像素子において共通化されていてもよい。即ち、第2電極を所謂ベタ電極とすることができる。光電変換部を構成する光電変換層は、複数の撮像素子において共通化することができる。即ち、複数の撮像素子において1層の光電変換層が形成されている形態とすることができる。
【0027】
更には、以上に説明した各種の好ましい形態、構成を含む本開示の固体撮像装置において、第1電極は、絶縁層に設けられた開口部内を延在し、光電変換部と接続されている形態とすることができる。あるいは又、光電変換部は、絶縁層に設けられた開口部内を延在し、第1電極と接続されている形態とすることができ、この場合、
第1電極の頂面の縁部は絶縁層で覆われており、
開口部の底面には第1電極が露出しており、
第1電極の頂面と接する絶縁層の面を第1面、電荷蓄積用電極と対向する光電変換部の部分と接する絶縁層の面を第2面としたとき、開口部の側面は、第1面から第2面に向かって広がる傾斜を有する形態とすることができ、更には、第1面から第2面に向かって広がる傾斜を有する開口部の側面は、電荷蓄積用電極側に位置する形態とすることができる。尚、光電変換部と第1電極との間に他の層が形成されている形態(例えば、光電変換部と第1電極との間に電荷蓄積に適した材料層が形成されている形態)を包含する。
【0028】
更には、以上に説明した各種の好ましい形態、構成を含む本開示の固体撮像装置において、
半導体基板に設けられ、駆動回路を有する制御部を更に備えており、
第1電極及び電荷蓄積用電極は、駆動回路に接続されており、
電荷蓄積期間において、駆動回路から、第1電極に電位V11が印加され、電荷蓄積用電極に電位V31が印加され、光電変換部に電荷が蓄積され、
電荷転送期間において、駆動回路から、第1電極に電位V12が印加され、電荷蓄積用電極に電位V32が印加され、光電変換部に蓄積された電荷が第1電極を経由して制御部に読み出される構成とすることができる。但し、第1電極の電位が第2電極の電位よりも高い場合、
V31≧V11、且つ、V32<V12
であり、第1電極の電位が第2電極の電位よりも低い場合、
V31≦V11、且つ、V32>V12
である。
【0029】
更には、以上に説明した各種の好ましい形態、構成を含む本開示の固体撮像装置は、第1電極と電荷蓄積用電極との間に、第1電極及び電荷蓄積用電極と離間して配置され、且つ、絶縁層を介して光電変換部と対向して配置された転送制御用電極(電荷転送電極)を更に備えている形態とすることができる。尚、このような形態の本開示の固体撮像装置を、便宜上、『転送制御用電極を備えた本開示の固体撮像装置』と呼ぶ場合がある。そして、転送制御用電極を備えた本開示の固体撮像装置にあっては、電荷蓄積期間において、転送制御用電極に印加される電位をV41としたとき、第1電極の電位が第2電極の電位よりも高い場合、V41≦V11,V31<V41を満足するが好ましい。また、電荷転送期間において、転送制御用電極に印加される電位をV42としたとき、第1電極の電位が第2電極の電位よりも高い場合、V32≦V42≦V12を満足するが好ましい。
【0030】
更には、以上に説明した各種の好ましい形態、構成を含む本開示の固体撮像装置にあっては、光電変換部に接続され、第1電極及び電荷蓄積用電極と離間して配置された電荷排出電極を更に備えている形態とすることができる。尚、このような形態の本開示の固体撮像装置を、便宜上、『電荷排出電極を備えた本開示の固体撮像装置』と呼ぶ。そして、電荷排出電極を備えた本開示の固体撮像装置において、電荷排出電極は、第1電極及び電荷蓄積用電極を取り囲むように(即ち、額縁状に)配置されている形態とすることができる。電荷排出電極は、複数の撮像素子において共有化(共通化)することができる。電荷排出電極を設ける場合、各種分離電極を上方分離電極から構成することが好ましい。そして、この場合、
光電変換部は、絶縁層に設けられた第2開口部内を延在し、電荷排出電極と接続されており、
電荷排出電極の頂面の縁部は絶縁層で覆われており、
第2開口部の底面には電荷排出電極が露出しており、
電荷排出電極の頂面と接する絶縁層の面を第3面、電荷蓄積用電極と対向する光電変換部の部分と接する絶縁層の面を第2面としたとき、第2開口部の側面は、第3面から第2面に向かって広がる傾斜を有する形態とすることができる。
【0031】
更には、電荷排出電極を備えた本開示の固体撮像装置にあっては、
半導体基板に設けられ、駆動回路を有する制御部を更に備えており、
第1電極、電荷蓄積用電極及び電荷排出電極は、駆動回路に接続されており、
電荷蓄積期間において、駆動回路から、第1電極に電位V11が印加され、電荷蓄積用電極に電位V31が印加され、電荷排出電極に電位V51が印加され、光電変換部に電荷が蓄積され、
電荷転送期間において、駆動回路から、第1電極に電位V12が印加され、電荷蓄積用電極に電位V32が印加され、電荷排出電極に電位V52が印加され、光電変換部に蓄積された電荷が第1電極を介して制御部に読み出される構成とすることができる。但し、第1電極の電位が第2電極の電位よりも高い場合、
V51>V11、且つ、V52<V12
であり、第1電極の電位が第2電極の電位よりも低い場合、
V51<V11、且つ、V52>V12
である。
【0032】
更には、以上に説明した各種の好ましい形態、構成を含む本開示の固体撮像装置において、電荷蓄積用電極は、複数の電荷蓄積用電極セグメントから構成されている形態とすることができる。尚、このような形態の本開示の固体撮像装置を、便宜上、『複数の電荷蓄積用電極セグメントを備えた本開示の固体撮像装置』と呼ぶ場合がある。電荷蓄積用電極セグメントの数は、2以上であればよい。そして、複数の電荷蓄積用電極セグメントを備えた本開示の固体撮像装置にあっては、N個の電荷蓄積用電極セグメントのそれぞれに、異なる電位を加える場合、
第1電極の電位が第2電極の電位よりも高い場合、電荷転送期間において、第1電極に最も近い所に位置する電荷蓄積用電極セグメント(第1番目の光電変換部セグメント)に印加される電位は、第1電極に最も遠い所に位置する電荷蓄積用電極セグメント(第N番目の光電変換部セグメント)に印加される電位よりも高く、
第1電極の電位が第2電極の電位よりも低い場合、電荷転送期間において、第1電極に最も近い所に位置する電荷蓄積用電極セグメント(第1番目の光電変換部セグメント)に印加される電位は、第1電極に最も遠い所に位置する電荷蓄積用電極セグメント(第N番目の光電変換部セグメント)に印加される電位よりも低い形態とすることができる。
【0033】
更には、以上に説明した各種の好ましい形態、構成を含む本開示の固体撮像装置において、
半導体基板には、制御部を構成する少なくとも浮遊拡散層及び増幅トランジスタが設けられており、
第1電極は、浮遊拡散層及び増幅トランジスタのゲート部に接続されている形態とすることができる。そして、この場合、更には、
半導体基板には、更に、制御部を構成するリセット・トランジスタ及び選択トランジスタが設けられており、
浮遊拡散層は、リセット・トランジスタの一方のソース/ドレイン領域に接続されており、
増幅トランジスタの一方のソース/ドレイン領域は、選択トランジスタの一方のソース/ドレイン領域に接続されており、選択トランジスタの他方のソース/ドレイン領域は信号線に接続されている形態とすることができる。
【0034】
あるいは又、以上に説明した各種の好ましい形態、構成を含む本開示の固体撮像装置の変形例として、以下に説明する第1構成~第6構成の撮像素子を挙げることができる。即ち、以上に説明した各種の好ましい形態、構成を含む本開示の固体撮像装置における第1構成~第6構成の撮像素子において、
光電変換部は、N個(但し、N≧2)の光電変換部セグメントから構成されており、
光電変換部を構成する光電変換層は、N個の光電変換層セグメントから構成されており、
絶縁層は、N個の絶縁層セグメントから構成されており、
第1構成~第3構成の撮像素子にあっては、電荷蓄積用電極は、N個の電荷蓄積用電極セグメントから構成されており、
第4構成~第5構成の撮像素子にあっては、電荷蓄積用電極は、相互に離間されて配置された、N個の電荷蓄積用電極セグメントから構成されており、
第n番目(但し、n=1,2,3・・・N)の光電変換部セグメントは、第n番目の電荷蓄積用電極セグメント、第n番目の絶縁層セグメント及び第n番目の光電変換層セグメントから構成されており、
nの値が大きい光電変換部セグメントほど、第1電極から離れて位置する。
【0035】
そして、第1構成の撮像素子にあっては、第1番目の光電変換部セグメントから第N番目の光電変換部セグメントに亙り、絶縁層セグメントの厚さが、漸次、変化している。また、第2構成の撮像素子にあっては、第1番目の光電変換部セグメントから第N番目の光電変換部セグメントに亙り、光電変換層セグメントの厚さが、漸次、変化している。更には、第3構成の撮像素子にあっては、隣接する光電変換部セグメントにおいて、絶縁層セグメントを構成する材料が異なる。また、第4構成の撮像素子にあっては、隣接する光電変換部セグメントにおいて、電荷蓄積用電極セグメントを構成する材料が異なる。更には、第5構成の撮像素子にあっては、第1番目の光電変換部セグメントから第N番目の光電変換部セグメントに亙り、電荷蓄積用電極セグメントの面積が、漸次、小さくなっている。尚、面積は、連続的に小さくなっていてもよいし、階段状に小さくなっていてもよい。
【0036】
あるいは又、以上に説明した各種の好ましい形態、構成を含む本開示の固体撮像装置における第6構成の撮像素子において、電荷蓄積用電極と絶縁層と光電変換部の積層方向をZ方向、第1電極から離れる方向をX方向としたとき、YZ仮想平面で電荷蓄積用電極と絶縁層と光電変換部が積層された積層部分を切断したときの積層部分の断面積は、第1電極からの距離に依存して変化する。尚、断面積の変化は、連続的な変化であってもよいし、階段状の変化であってもよい。
【0037】
第1構成~第2構成の撮像素子において、N個の光電変換層セグメントは連続して設けられており、N個の絶縁層セグメントも連続して設けられており、N個の電荷蓄積用電極セグメントも連続して設けられている。第3構成~第5構成の撮像素子において、N個の光電変換層セグメントは連続して設けられている。また、第4構成、第5構成の撮像素子において、N個の絶縁層セグメントは連続して設けられている一方、第3構成の撮像素子において、N個の絶縁層セグメントは、光電変換部セグメントのそれぞれに対応して設けられている。更には、第4構成~第5構成の撮像素子において、場合によっては、第3構成の撮像素子において、N個の電荷蓄積用電極セグメントは、光電変換部セグメントのそれぞれに対応して設けられている。そして第1構成~第6構成の撮像素子にあっては、電荷蓄積用電極セグメントの全てに同じ電位が加えられる。あるいは又、第4構成~第5構成の撮像素子において、場合によっては、第3構成の撮像素子において、N個の電荷蓄積用電極セグメントのそれぞれに、異なる電位を加えてもよい。
【0038】
第1構成~第6構成の撮像素子、係る撮像素子を適用した本開示の固体撮像装置にあっては、絶縁層セグメントの厚さが規定され、あるいは又、光電変換層セグメントの厚さが規定され、あるいは又、絶縁層セグメントを構成する材料が異なり、あるいは又、電荷蓄積用電極セグメントを構成する材料が異なり、あるいは又、電荷蓄積用電極セグメントの面積が規定され、あるいは又、積層部分の断面積が規定されているので、一種の電荷転送勾配が形成され、光電変換によって生成した電荷を、一層容易に、且つ、確実に、第1電極へ転送することが可能となる。そして、その結果、残像の発生や電荷転送残しの発生を防止することができる。
【0039】
本開示の固体撮像装置の変形例として、上述した第1構成~第6構成の撮像素子を、複数、備えている固体撮像装置とすることができる。
【0040】
第1構成~第5構成の撮像素子にあっては、nの値が大きい光電変換部セグメントほど第1電極から離れて位置するが、第1電極から離れて位置するか否かは、X方向を基準として判断する。また、第6構成の撮像素子にあっては、第1電極から離れる方向をX方向としているが、『X方向』を以下のとおり、定義する。即ち、撮像素子あるいは積層型撮像素子が複数配列された画素領域は、2次元アレイ状に、即ち、X方向及びY方向に規則的に複数配列された画素から構成される。画素の平面形状を矩形とした場合、第1電極に最も近い辺が延びる方向をY方向とし、Y方向と直交する方向をX方向とする。あるいは又、画素の平面形状を任意の形状とした場合、第1電極に最も近い線分や曲線が含まれる全体的な方向をY方向とし、Y方向と直交する方向をX方向とする。
【0041】
以下、第1構成~第6構成の撮像素子に関して、第1電極の電位が第2電極の電位よりも高い場合についての説明を行うが、第1電極の電位が第2電極の電位よりも低い場合は、電位の高低を逆にすればよい。
【0042】
第1構成の撮像素子にあっては、第1番目の光電変換部セグメントから第N番目の光電変換部セグメントに亙り、絶縁層セグメントの厚さが、漸次、変化しているが、絶縁層セグメントの厚さは、漸次、厚くなっていってもよいし、薄くなっていってもよく、これによって、一種の電荷転送勾配が形成される。
【0043】
蓄積すべき電荷を電子とする場合、絶縁層セグメントの厚さが、漸次、厚くなる構成を採用すればよいし、蓄積すべき電荷を正孔とする場合、絶縁層セグメントの厚さが、漸次、薄くなる構成を採用すればよい。そして、これらの場合、電荷蓄積期間において、|V31|≧|V11|といった状態になると、第n番目の光電変換部セグメントの方が、第(n+1)番目の光電変換部セグメントよりも、多くの電荷を蓄積することができるし、強い電界が加わり、第1番目の光電変換部セグメントから第1電極への電荷の流れを確実に防止することができる。そして、電荷転送期間において、|V32|<|V12|といった状態になると、第1番目の光電変換部セグメントから第1電極への電荷の流れ、第(n+1)番目の光電変換部セグメントから第n番目の光電変換部セグメントへの電荷の流れを、確実に確保することができる。
【0044】
第2構成の撮像素子にあっては、第1番目の光電変換部セグメントから第N番目の光電変換部セグメントに亙り、光電変換層セグメントの厚さが、漸次、変化しているが、光電変換層セグメントの厚さは、漸次、厚くなっていってもよいし、薄くなっていってもよく、これによって、一種の電荷転送勾配が形成される。
【0045】
蓄積すべき電荷を電子とする場合、光電変換層セグメントの厚さが、漸次、厚くなる構成を採用すればよいし、蓄積すべき電荷を正孔とする場合、光電変換層セグメントの厚さが、漸次、薄くなる構成を採用すればよい。そして、光電変換層セグメントの厚さが、漸次、厚くなる場合、電荷蓄積期間においてV31≧V11といった状態になると、また、光電変換層セグメントの厚さが、漸次、薄くなる場合、電荷蓄積期間においてV31≦V11といった状態になると、第n番目の光電変換部セグメントの方が、第(n+1)番目の光電変換部セグメントよりも強い電界が加わり、第1番目の光電変換部セグメントから第1電極への電荷の流れを確実に防止することができる。そして、電荷転送期間において、光電変換層セグメントの厚さが、漸次、厚くなる場合、V32<V12といった状態になると、また、光電変換層セグメントの厚さが、漸次、薄くなる場合、V32>V12といった状態になると、第1番目の光電変換部セグメントから第1電極への電荷の流れ、第(n+1)番目の光電変換部セグメントから第n番目の光電変換部セグメントへの電荷の流れを、確実に確保することができる。
【0046】
第3構成の撮像素子にあっては、隣接する光電変換部セグメントにおいて、絶縁層セグメントを構成する材料が異なり、これによって、一種の電荷転送勾配が形成されるが、第1番目の光電変換部セグメントから第N番目の光電変換部セグメントに亙り、絶縁層セグメントを構成する材料の比誘電率の値が、漸次、小さくなることが好ましい。そして、このような構成を採用することで、電荷蓄積期間において、V31≧V11といった状態になると、第n番目の光電変換部セグメントの方、が第(n+1)番目の光電変換部セグメントよりも多くの電荷を蓄積することができる。そして、電荷転送期間において、V32<V12といった状態になると、第1番目の光電変換部セグメントから第1電極への電荷の流れ、第(n+1)番目の光電変換部セグメントから第n番目の光電変換部セグメントへの電荷の流れを、確実に確保することができる。
【0047】
第4構成の撮像素子にあっては、隣接する光電変換部セグメントにおいて、電荷蓄積用電極セグメントを構成する材料が異なり、これによって、一種の電荷転送勾配が形成されるが、第1番目の光電変換部セグメントから第N番目の光電変換部セグメントに亙り、絶縁層セグメントを構成する材料の仕事関数の値が、漸次、大きくなることが好ましい。そして、このような構成を採用することで、電圧(電位)の正負に依存すること無く、信号電荷転送に有利な電位勾配を形成することができる。
【0048】
第5構成の撮像素子にあっては、第1番目の光電変換部セグメントから第N番目の光電変換部セグメントに亙り、電荷蓄積用電極セグメントの面積が、漸次、小さくなっており、これによって、一種の電荷転送勾配が形成されるので、電荷蓄積期間において、V31≧V11といった状態になると、第n番目の光電変換部セグメントの方が、第(n+1)番目の光電変換部セグメントよりも多くの電荷を蓄積することができる。そして、電荷転送期間において、V32<V12といった状態になると、第1番目の光電変換部セグメントから第1電極への電荷の流れ、第(n+1)番目の光電変換部セグメントから第n番目の光電変換部セグメントへの電荷の流れを、確実に確保することができる。
【0049】
第6構成の撮像素子において、積層部分の断面積は第1電極からの距離に依存して変化し、これによって、一種の電荷転送勾配が形成される。具体的には、積層部分の断面の厚さを一定とし、積層部分の断面の幅を第1電極から離れるほど狭くする構成を採用すれば、第5構成の撮像素子において説明したと同様に、電荷蓄積期間において、V31≧V11といった状態になると、第1電極に近い領域の方が、遠い領域よりも多くの電荷を蓄積することができる。従って、電荷転送期間において、V32<V12といった状態になると、第1電極に近い領域から第1電極への電荷の流れ、遠い領域から近い領域への電荷の流れを、確実に確保することができる。一方、積層部分の断面の幅を一定とし、積層部分の断面の厚さ、具体的には、絶縁層セグメントの厚さを、漸次、厚くする構成を採用すれば、第1構成の撮像素子において説明したと同様に、電荷蓄積期間において、V31≧V11といった状態になると、第1電極に近い領域の方が、遠い領域よりも、多くの電荷を蓄積することができるし、強い電界が加わり、第1電極に近い領域から第1電極への電荷の流れを確実に防止することができる。そして、電荷転送期間において、V32<V12といった状態になると、第1電極に近い領域から第1電極への電荷の流れ、遠い領域から近い領域への電荷の流れを、確実に確保することができる。また、光電変換層セグメントの厚さを、漸次、厚くする構成を採用すれば、第2構成の撮像素子において説明したと同様に、電荷蓄積期間において、V31≧V11といった状態になると、第1電極に近い領域の方が、遠い領域よりも強い電界が加わり、第1電極に近い領域から第1電極への電荷の流れを確実に防止することができる。そして、電荷転送期間において、V32<V12といった状態になると、第1電極に近い領域から第1電極への電荷の流れ、遠い領域から近い領域への電荷の流れを、確実に確保することができる。
【0050】
更には、以上に説明した各種の好ましい形態、構成を含む本開示の固体撮像装置において、第2電極側から光が入射し、第2電極よりの光入射側には遮光層が形成されている形態とすることができる。あるいは又、第2電極側から光が入射し、第1電極(場合によっては、第1電極及び転送制御用電極)には光が入射しない形態とすることができる。そして、この場合、第2電極よりの光入射側であって、第1電極(場合によっては、第1電極及び転送制御用電極)の上方には遮光層が形成されている形態とすることができるし、あるいは又、電荷蓄積用電極及び第2電極の上方にはオンチップ・マイクロ・レンズが設けられており、オンチップ・マイクロ・レンズに入射する光は、電荷蓄積用電極に集光される形態とすることができる。ここで、遮光層は、第2電極の光入射側の面よりも上方に配設されてもよいし、第2電極の光入射側の面の上に配設されてもよい。場合によっては、第2電極に遮光層が形成されていてもよい。遮光層を構成する材料として、クロム(Cr)や銅(Cu)、アルミニウム(Al)、タングステン(W)、光を通さない樹脂(例えば、ポリイミド樹脂)を例示することができる。
【0051】
本開示の固体撮像装置として、具体的には、青色光(425nm乃至495nmの光)を吸収する光電変換部(便宜上、『第1タイプの青色光用光電変換部』と呼ぶ)を備えた青色光に感度を有する撮像素子(便宜上、『第1タイプの青色光用撮像素子』と呼ぶ)、緑色光(495nm乃至570nmの光)を吸収する光電変換部(便宜上、『第1タイプの緑色光用光電変換部』と呼ぶ)を備えた緑色光に感度を有する撮像素子(便宜上、『第1タイプの緑色光用撮像素子』と呼ぶ)、赤色光(620nm乃至750nmの光)を吸収する光電変換部(便宜上、『第1タイプの赤色光用光電変換部』と呼ぶ)を備えた赤色光に感度を有する撮像素子(便宜上、『第1タイプの赤色光用撮像素子』と呼ぶ)を挙げることができる。また、電荷蓄積用電極を備えていない従来の撮像素子であって、青色光に感度を有する撮像素子を、便宜上、『第2タイプの青色光用撮像素子』と呼び、緑色光に感度を有する撮像素子を、便宜上、『第2タイプの緑色光用撮像素子』と呼び、赤色光に感度を有する撮像素子を、便宜上、『第2タイプの赤色光用撮像素子』と呼び、第2タイプの青色光用撮像素子を構成する光電変換部を、便宜上、『第2タイプの青色光用光電変換部』と呼び、第2タイプの緑色光用撮像素子を構成する光電変換部を、便宜上、『第2タイプの緑色光用光電変換部』と呼び、第2タイプの赤色光用撮像素子を構成する光電変換部を、便宜上、『第2タイプの赤色光用光電変換部』と呼ぶ。
【0052】
本開示における積層型撮像素子は、少なくとも本開示の固体撮像装置(光電変換素子)を1つ有するが、具体的には、例えば、
[A]第1タイプの青色光用光電変換部、第1タイプの緑色光用光電変換部及び第1タイプの赤色光用光電変換部が、垂直方向に積層され、
第1タイプの青色光用撮像素子、第1タイプの緑色光用撮像素子及び第1タイプの赤色光用撮像素子の制御部のそれぞれが、半導体基板に設けられた構成、構造
[B]第1タイプの青色光用光電変換部及び第1タイプの緑色光用光電変換部が、垂直方向に積層され、
これらの2層の第1タイプの光電変換部の下方に、第2タイプの赤色光用光電変換部が配置され、
第1タイプの青色光用撮像素子、第1タイプの緑色光用撮像素子及び第2タイプの赤色光用撮像素子の制御部のそれぞれが、半導体基板に設けられた構成、構造
[C]第1タイプの緑色光用光電変換部の下方に、第2タイプの青色光用光電変換部及び第2タイプの赤色光用光電変換部が配置され、
第1タイプの緑色光用撮像素子、第2タイプの青色光用撮像素子及び第2タイプの赤色光用撮像素子の制御部のそれぞれが、半導体基板に設けられた構成、構造
[D]第1タイプの青色光用光電変換部の下方に、第2タイプの緑色光用光電変換部及び第2タイプの赤色光用光電変換部が配置され、
第1タイプの青色光用撮像素子、第2タイプの緑色光用撮像素子及び第2タイプの赤色光用撮像素子の制御部のそれぞれが、半導体基板に設けられた構成、構造
を挙げることができる。尚、これらの撮像素子の光電変換部の垂直方向における配置順は、光入射方向から青色光用光電変換部、緑色光用光電変換部、赤色光用光電変換部の順、あるいは、光入射方向から緑色光用光電変換部、青色光用光電変換部、赤色光用光電変換部の順であることが好ましい。これは、より短い波長の光がより入射表面側において効率良く吸収されるからである。赤色は3色の中では最も長い波長であるので、光入射面から見て赤色光用光電変換部を最下層に位置させることが好ましい。これらの撮像素子の積層構造によって、1つの画素が構成される。また、第1タイプの赤外線用光電変換部を備えていてもよい。ここで、第1タイプの赤外線用光電変換部の光電変換層は、例えば、有機系材料から構成され、第1タイプの撮像素子の積層構造の最下層であって、第2タイプの撮像素子よりも上に配置することが好ましい。あるいは又、第1タイプの光電変換部の下方に、第2タイプの赤外線用光電変換部を備えていてもよい。
【0053】
第1タイプの撮像素子にあっては、例えば、第1電極が、半導体基板の上に設けられた層間絶縁層上に形成されている。半導体基板に形成された撮像素子は、裏面照射型とすることもできるし、表面照射型とすることもできる。
【0054】
光電変換部を有機系材料から成る光電変換層から構成する場合、光電変換層を、
(1)p型有機半導体から構成する。
(2)n型有機半導体から構成する。
(3)p型有機半導体層/n型有機半導体層の積層構造から構成する。p型有機半導体層/p型有機半導体とn型有機半導体との混合層(バルクヘテロ構造)/n型有機半導体層の積層構造から構成する。p型有機半導体層/p型有機半導体とn型有機半導体との混合層(バルクヘテロ構造)の積層構造から構成する。n型有機半導体層/p型有機半導体とn型有機半導体との混合層(バルクヘテロ構造)の積層構造から構成する。
(4)p型有機半導体とn型有機半導体の混合(バルクヘテロ構造)から構成する。
の4態様のいずれかとすることができる。但し、積層順は任意に入れ替えた構成とすることができる。
【0055】
p型有機半導体として、ナフタレン誘導体、アントラセン誘導体、フェナントレン誘導体、ピレン誘導体、ペリレン誘導体、テトラセン誘導体、ペンタセン誘導体、キナクリドン誘導体、チオフェン誘導体、チエノチオフェン誘導体、ベンゾチオフェン誘導体、ベンゾチエノベンゾチオフェン誘導体、トリアリルアミン誘導体、カルバゾール誘導体、ペリレン誘導体、ピセン誘導体、クリセン誘導体、フルオランテン誘導体、フタロシアニン誘導体、サブフタロシアニン誘導体、サブポルフィラジン誘導体、複素環化合物を配位子とする金属錯体、ポリチオフェン誘導体、ポリベンゾチアジアゾール誘導体、ポリフルオレン誘導体等を挙げることができる。n型有機半導体として、フラーレン及びフラーレン誘導体〈例えば、C60や、C70,C74等のフラーレン(高次フラーレン)、内包フラーレン等)又はフラーレン誘導体(例えば、フラーレンフッ化物やPCBMフラーレン化合物、フラーレン多量体等)〉、p型有機半導体よりもHOMO及びLUMOが大きい(深い)有機半導体、透明な無機金属酸化物を挙げることができる。n型有機半導体として、具体的には、窒素原子、酸素原子、硫黄原子を含有する複素環化合物、例えば、ピリジン誘導体、ピラジン誘導体、ピリミジン誘導体、トリアジン誘導体、キノリン誘導体、キノキサリン誘導体、イソキノリン誘導体、アクリジン誘導体、フェナジン誘導体、フェナントロリン誘導体、テトラゾール誘導体、ピラゾール誘導体、イミダゾール誘導体、チアゾール誘導体、オキサゾール誘導体、イミダゾール誘導体、ベンゾイミダゾール誘導体、ベンゾトリアゾール誘導体、ベンゾオキサゾール誘導体、ベンゾオキサゾール誘導体、カルバゾール誘導体、ベンゾフラン誘導体、ジベンゾフラン誘導体、サブポルフィラジン誘導体、ポリフェニレンビニレン誘導体、ポリベンゾチアジアゾール誘導体、ポリフルオレン誘導体等を分子骨格の一部に有する有機分子、有機金属錯体やサブフタロシアニン誘導体を挙げることができる。フラーレン誘導体に含まれる基等として、ハロゲン原子;直鎖、分岐若しくは環状のアルキル基若しくはフェニル基;直鎖若しくは縮環した芳香族化合物を有する基;ハロゲン化物を有する基;パーシャルフルオロアルキル基;パーフルオロアルキル基;シリルアルキル基;シリルアルコキシ基;アリールシリル基;アリールスルファニル基;アルキルスルファニル基;アリールスルホニル基;アルキルスルホニル基;アリールスルフィド基;アルキルスルフィド基;アミノ基;アルキルアミノ基;アリールアミノ基;ヒドロキシ基;アルコキシ基;アシルアミノ基;アシルオキシ基;カルボニル基;カルボキシ基;カルボキソアミド基;カルボアルコキシ基;アシル基;スルホニル基;シアノ基;ニトロ基;カルコゲン化物を有する基;ホスフィン基;ホスホン基;これらの誘導体を挙げることができる。有機系材料から構成された光電変換層(『有機光電変換層』と呼ぶ場合がある)の厚さは、限定するものではないが、例えば、1×10-8m乃至5×10-7m、好ましくは2.5×10-8m乃至3×10-7m、より好ましくは2.5×10-8m乃至2×10-7m、一層好ましくは1×10-7m乃至1.8×10-7mを例示することができる。尚、有機半導体は、p型、n型と分類されることが多いが、p型とは正孔を輸送し易いという意味であり、n型とは電子を輸送し易いという意味であり、無機半導体のように熱励起の多数キャリアとして正孔又は電子を有しているという解釈に限定されない。
【0056】
あるいは又、緑色光を光電変換する有機光電変換層を構成する材料として、例えば、ローダミン系色素、メラシアニン系色素、キナクリドン誘導体、サブフタロシアニン系色素(サブフタロシアニン誘導体)等を挙げることができるし、青色光を光電変換する有機光電変換層を構成する材料として、例えば、クマリン酸色素、トリス-8-ヒドリキシキノリアルミニウム(Alq3)、メラシアニン系色素等を挙げることができるし、赤色光を光電変換する有機光電変換層を構成する材料として、例えば、フタロシアニン系色素、サブフタロシアニン系色素(サブフタロシアニン誘導体)を挙げることができる。
【0057】
あるいは又、光電変換層を構成する無機系材料として、結晶シリコン、アモルファスシリコン、微結晶シリコン、結晶セレン、アモルファスセレン、及び、カルコパライト系化合物であるCIGS(CuInGaSe)、CIS(CuInSe2)、CuInS2、CuAlS2、CuAlSe2、CuGaS2、CuGaSe2、AgAlS2、AgAlSe2、AgInS2、AgInSe2、あるいは又、III-V族化合物であるGaAs、InP、AlGaAs、InGaP、AlGaInP、InGaAsP、更には、CdSe、CdS、In2Se3、In2S3、Bi2Se3、Bi2S3、ZnSe、ZnS、PbSe、PbS等の化合物半導体を挙げることができる。加えて、これらの材料から成る量子ドットを光電変換層に使用することも可能である。
【0058】
あるいは又、光電変換部を、下層半導体層と、上層光電変換層の積層構造とすることができる。このように下層半導体層を設けることで、例えば、電荷蓄積時の再結合を防止することができる。また、光電変換部に蓄積した電荷の第1電極への電荷転送効率を増加させることができる。更には、光電変換部で生成された電荷を一時的に保持し、転送のタイミング等を制御することができる。また、暗電流の生成を抑制することができる。上層光電変換層を構成する材料は、上記の光電変換層を構成する各種材料から、適宜、選択すればよい。一方、下層半導体層を構成する材料として、バンドギャップエネルギーの値が大きく(例えば、3.0eV以上のバンドギャップエネルギーの値)、しかも、光電変換層を構成する材料よりも高い移動度を有する材料を用いることが好ましい。具体的には、酸化物半導体材料;遷移金属ダイカルコゲナイド;シリコンカーバイド;ダイヤモンド;グラフェン;カーボンナノチューブ;縮合多環炭化水素化合物や縮合複素環化合物等の有機半導体材料を挙げることができ、より具体的には、酸化物半導体材料として、インジウム酸化物、ガリウム酸化物、亜鉛酸化物、スズ酸化物や、これらの酸化物が少なくとも1種類含まれる材料、これらの材料にドーパントを添加した材料、具体的には、例えば、IGZO、ITZO、IWZO、IWO、ZTO、ITO-SiOX系材料、GZO、IGO、ZnSnO3、AlZnO、GaZnO、InZnOを挙げることができるし、また、CuI、InSbO4、ZnMgO、CuInO2、MgIn2O4、CdO等を含む材料を挙げることができるが、これらの材料に限定するものではない。あるいは又、下層半導体層を構成する材料として、蓄積すべき電荷が電子である場合、上層光電変換層を構成する材料のイオン化ポテンシャルよりも大きなイオン化ポテンシャルを有する材料を挙げることができるし、蓄積すべき電荷が正孔である場合、上層光電変換層を構成する材料の電子親和力よりも小さな電子親和力を有する材料を挙げることができる。あるいは又、下層半導体層を構成する材料における不純物濃度は1×1018cm-3以下であることが好ましい。下層半導体層は、単層構成であってもよいし、多層構成であってもよい。また、電荷蓄積用電極の上方に位置する下層半導体層を構成する材料と、第1電極の上方に位置する下層半導体層を構成する材料とを、異ならせてもよい。
【0059】
本開示の固体撮像装置によって、単板式カラー固体撮像装置を構成することができる。
【0060】
積層型撮像素子を備えた本開示の固体撮像装置にあっては、ベイヤ配列の撮像素子を備えた固体撮像装置と異なり(即ち、カラーフィルタを用いて青色、緑色、赤色の分光を行うのではなく)、同一画素内で光の入射方向において、複数種の波長の光に対して感度を有する撮像素子を積層して1つの画素を構成するので、感度の向上及び単位体積当たりの画素密度の向上を図ることができる。また、有機系材料は吸収係数が高いため、有機光電変換層の膜厚を従来のSi系光電変換層と比較して薄くすることができ、隣接画素からの光漏れや、光の入射角の制限が緩和される。更には、従来のSi系撮像素子では3色の画素間で補間処理を行って色信号を作成するために偽色が生じるが、積層型撮像素子を備えた本開示の固体撮像装置にあっては、偽色の発生が抑えられる。有機光電変換層それ自体がカラーフィルタとしても機能するので、カラーフィルタを配設しなくとも色分離が可能である。
【0061】
一方、積層型撮像素子ではなく撮像素子を備えた本開示の固体撮像装置にあっては、カラーフィルタを用いることで、青色、緑色、赤色の分光特性への要求を緩和することができるし、また、高い量産性を有する。本開示の固体撮像装置における撮像素子の配列として、ベイヤ配列の他、インターライン配列、GストライプRB市松配列、GストライプRB完全市松配列、市松補色配列、ストライプ配列、斜めストライプ配列、原色色差配列、フィールド色差順次配列、フレーム色差順次配列、MOS型配列、改良MOS型配列、フレームインターリーブ配列、フィールドインターリーブ配列を挙げることができる。ここで、1つの撮像素子によって1つの画素(あるいは副画素)が構成される。
【0062】
本開示の固体撮像装置は、2次元アレイ状に規則的に複数配列された画素から構成される。画素領域は、通常、実際に光を受光し光電変換によって生成された信号電荷を増幅して駆動回路に読み出す有効画素領域と、黒レベルの基準になる光学的黒を出力するための黒基準画素領域とから構成されている。黒基準画素領域は、通常は、有効画素領域の外周部に配置されている。
【0063】
以上に説明した各種の好ましい形態、構成を含む本開示の固体撮像装置において、光が照射され、光電変換部で光電変換が生じ、正孔(ホール)と電子がキャリア分離される。そして、正孔が取り出される電極を陽極、電子が取り出される電極を陰極とする。第1電極が陽極を構成し、第2電極が陰極を構成する形態もあるし、逆に、第1電極が陰極を構成し、第2電極が陽極を構成する形態もある。
【0064】
積層型撮像素子を構成する場合、第1電極、電荷蓄積用電極、各種分離電極、転送制御用電極、電荷排出電極及び第2電極は透明導電材料から成る構成とすることができる。尚、第1電極、電荷蓄積用電極、各種分離電極、転送制御用電極及び電荷排出電極を総称して、『第1電極等』と呼ぶ場合がある。あるいは又、本開示の固体撮像装置が、例えばベイヤ配列のように平面に配される場合には、第2電極は透明導電材料から成り、第1電極や電荷蓄積用電極等は金属材料から成る構成とすることができ、この場合、具体的には、光入射側に位置する第2電極は透明導電材料から成り、第1電極等は、例えば、Al-Nd(アルミニウム及びネオジウムの合金)又はASC(アルミニウム、サマリウム及び銅の合金)から成る構成とすることができる。尚、透明導電材料から成る電極を『透明電極』と呼ぶ場合がある。ここで、透明導電材料のバンドギャップエネルギーは、2.5eV以上、好ましくは3.1eV以上であることが望ましい。透明電極を構成する透明導電材料として、導電性のある金属酸化物を挙げることができ、具体的には、酸化インジウム、インジウム-錫酸化物(ITO,Indium Tin Oxide,SnドープのIn2O3、結晶性ITO及びアモルファスITOを含む)、酸化亜鉛にドーパントとしてインジウムを添加したインジウム-亜鉛酸化物(IZO,Indium Zinc Oxide)、酸化ガリウムにドーパントとしてインジウムを添加したインジウム-ガリウム酸化物(IGO)、酸化亜鉛にドーパントとしてインジウムとガリウムを添加したインジウム-ガリウム-亜鉛酸化物(IGZO,In-GaZnO4)、酸化亜鉛にドーパントとしてインジウムと錫を添加したインジウム-錫-亜鉛酸化物(ITZO)、IFO(FドープのIn2O3)、酸化錫(SnO2)、ATO(SbドープのSnO2)、FTO(FドープのSnO2)、酸化亜鉛(他元素をドープしたZnOを含む)、酸化亜鉛にドーパントとしてアルミニウムを添加したアルミニウム-亜鉛酸化物(AZO)、酸化亜鉛にドーパントとしてガリウムを添加したガリウム-亜鉛酸化物(GZO)、酸化チタン(TiO2)、酸化チタンにドーパントとしてニオブを添加したニオブ-チタン酸化物(TNO)、酸化アンチモン、スピネル型酸化物、YbFe2O4構造を有する酸化物を例示することができる。あるいは又、ガリウム酸化物、チタン酸化物、ニオブ酸化物、ニッケル酸化物等を母層とする透明電極を挙げることができる。透明電極の厚さとして、2×10-8m乃至2×10-7m、好ましくは3×10-8m乃至1×10-7mを挙げることができる。第1電極が透明性を要求される場合、製造プロセスの簡素化といった観点から、他の電極も透明導電材料から構成することが好ましい。
【0065】
あるいは又、透明性が不要である場合、正孔を取り出す電極としての機能を有する陽極を構成する導電材料として、高仕事関数(例えば、φ=4.5eV~5.5eV)を有する導電材料から構成することが好ましく、具体的には、金(Au)、銀(Ag)、クロム(Cr)、ニッケル(Ni)、パラジウム(Pd)、白金(Pt)、鉄(Fe)、イリジウム(Ir)、ゲルマニウム(Ge)、オスミウム(Os)、レニウム(Re)、テルル(Te)を例示することができる。一方、電子を取り出す電極としての機能を有する陰極を構成する導電材料として、低仕事関数(例えば、φ=3.5eV~4.5eV)を有する導電材料から構成することが好ましく、具体的には、アルカリ金属(例えばLi、Na、K等)及びそのフッ化物又は酸化物、アルカリ土類金属(例えばMg、Ca等)及びそのフッ化物又は酸化物、アルミニウム(Al)、亜鉛(Zn)、錫(Sn)、タリウム(Tl)、ナトリウム-カリウム合金、アルミニウム-リチウム合金、マグネシウム-銀合金、インジウム、イッテリビウム等の希土類金属、あるいは、これらの合金を挙げることができる。あるいは又、陽極や陰極を構成する材料として、白金(Pt)、金(Au)、パラジウム(Pd)、クロム(Cr)、ニッケル(Ni)、アルミニウム(Al)、銀(Ag)、タンタル(Ta)、タングステン(W)、銅(Cu)、チタン(Ti)、インジウム(In)、錫(Sn)、鉄(Fe)、コバルト(Co)、モリブデン(Mo)等の金属、あるいは、これらの金属元素を含む合金、これらの金属から成る導電性粒子、これらの金属を含む合金の導電性粒子、不純物を含有したポリシリコン、炭素系材料、酸化物半導体、カーボン・ナノ・チューブ、グラフェン等の導電性材料を挙げることができるし、これらの元素を含む層の積層構造とすることもできる。更には、陽極や陰極を構成する材料として、ポリ(3,4-エチレンジオキシチオフェン)/ポリスチレンスルホン酸[PEDOT/PSS]といった有機材料(導電性高分子)を挙げることもできる。また、これらの導電性材料をバインダー(高分子)に混合してペースト又はインクとしたものを硬化させ、電極として用いてもよい。
【0066】
第1電極等や第2電極(陽極や陰極)の成膜方法として、乾式法あるいは湿式法を用いることが可能である。乾式法として、物理的気相成長法(PVD法)及び化学的気相成長法(CVD法)を挙げることができる。PVD法の原理を用いた成膜方法として、抵抗加熱あるいは高周波加熱を用いた真空蒸着法、EB(電子ビーム)蒸着法、各種スパッタリング法(マグネトロンスパッタリング法、RF-DC結合形バイアススパッタリング法、ECRスパッタリング法、対向ターゲットスパッタリング法、高周波スパッタリング法)、イオンプレーティング法、レーザーアブレーション法、分子線エピタキシー法、レーザー転写法を挙げることができる。また、CVD法として、プラズマCVD法、熱CVD法、有機金属(MO)CVD法、光CVD法を挙げることができる。一方、湿式法として、電解メッキ法や無電解メッキ法、スピンコート法、インクジェット法、スプレーコート法、スタンプ法、マイクロコンタクトプリント法、フレキソ印刷法、オフセット印刷法、グラビア印刷法、ディップ法等の方法を挙げることができる。パターニング法として、シャドーマスク、レーザー転写、フォトリソグラフィー等の化学的エッチング、紫外線やレーザー等による物理的エッチング等を挙げることができる。第1電極等や第2電極の平坦化技術として、レーザー平坦化法、リフロー法、CMP(Chemical Mechanical Polishing)法等を用いることができる。
【0067】
絶縁層や層間絶縁層、絶縁膜、層間絶縁膜を構成する材料として、酸化ケイ素系材料;窒化ケイ素(SiNY);酸化アルミニウム(Al2O3)等の金属酸化物高誘電絶縁材料に例示される無機系絶縁材料だけでなく、ポリメチルメタクリレート(PMMA);ポリビニルフェノール(PVP);ポリビニルアルコール(PVA);ポリイミド;ポリカーボネート(PC);ポリエチレンテレフタレート(PET);ポリスチレン;N-2(アミノエチル)3-アミノプロピルトリメトキシシラン(AEAPTMS)、3-メルカプトプロピルトリメトキシシラン(MPTMS)、オクタデシルトリクロロシラン(OTS)等のシラノール誘導体(シランカップリング剤);ノボラック型フェノール樹脂;フッ素系樹脂;オクタデカンチオール、ドデシルイソシアネイト等の一端に制御電極と結合可能な官能基を有する直鎖炭化水素類にて例示される有機系絶縁材料(有機ポリマー)を挙げることができるし、これらの組み合わせを用いることもできる。尚、酸化ケイ素系材料として、酸化シリコン(SiOX)、BPSG、PSG、BSG、AsSG、PbSG、酸化窒化シリコン(SiON)、SOG(スピンオングラス)、低誘電率材料(例えば、ポリアリールエーテル、シクロパーフルオロカーボンポリマー及びベンゾシクロブテン、環状フッ素樹脂、ポリテトラフルオロエチレン、フッ化アリールエーテル、フッ化ポリイミド、アモルファスカーボン、有機SOG)を例示することができる。
【0068】
制御部を構成する浮遊拡散層、増幅トランジスタ、リセット・トランジスタ及び選択トランジスタの構成、構造は、従来の浮遊拡散層、増幅トランジスタ、リセット・トランジスタ及び選択トランジスタの構成、構造と同様とすることができる。駆動回路も周知の構成、構造とすることができる。
【0069】
第1電極は、浮遊拡散層及び増幅トランジスタのゲート部に接続されているが、第1電極と浮遊拡散層及び増幅トランジスタのゲート部との接続のためにコンタクトホール部を形成すればよい。コンタクトホール部を構成する材料として、不純物がドーピングされたポリシリコンや、タングステン、Ti、Pt、Pd、Cu、TiW、TiN、TiNW、WSi2、MoSi2等の高融点金属や金属シリサイド、これらの材料から成る層の積層構造(例えば、Ti/TiN/W)を例示することができる。
【0070】
有機光電変換層と第1電極との間に、第1キャリアブロッキング層を設けてもよいし、有機光電変換層と第2電極との間に、第2キャリアブロッキング層を設けてもよい。また、第1キャリアブロッキング層と第1電極との間に第1電荷注入層を設けてもよいし、第2キャリアブロッキング層と第2電極との間に第2電荷注入層を設けてもよい。例えば、電子注入層を構成する材料として、例えば、リチウム(Li)、ナトリウム(Na)、カリウム(K)といったアルカリ金属及びそのフッ化物や酸化物、マグネシウム(Mg)、カルシウム(Ca)といったアルカリ土類金属及びそのフッ化物や酸化物を挙げることができる。
【0071】
各種有機層の成膜方法として、乾式成膜法及び湿式成膜法を挙げることができる。乾式成膜法として、抵抗加熱あるいは高周波加熱、電子ビーム加熱を用いた真空蒸着法、フラッシュ蒸着法、プラズマ蒸着法、EB蒸着法、各種スパッタリング法(2極スパッタリング法、直流スパッタリング法、直流マグネトロンスパッタリング法、高周波スパッタリング法、マグネトロンスパッタリング法、RF-DC結合形バイアススパッタリング法、ECRスパッタリング法、対向ターゲットスパッタリング法、高周波スパッタリング法、イオンビームスパッタリング法)、DC(Direct Current)法、RF法、多陰極法、活性化反応法、電界蒸着法、高周波イオンプレーティング法や反応性イオンプレーティング法等の各種イオンプレーティング法、レーザーアブレーション法、分子線エピタキシー法、レーザー転写法、分子線エピタキシー法(MBE法)を挙げることができる。また、CVD法として、プラズマCVD法、熱CVD法、MOCVD法、光CVD法を挙げることができる。一方、湿式法として、具体的には、スピンコート法;浸漬法;キャスト法;マイクロコンタクトプリント法;ドロップキャスト法;スクリーン印刷法やインクジェット印刷法、オフセット印刷法、グラビア印刷法、フレキソ印刷法といった各種印刷法;スタンプ法;スプレー法;エアドクタコーター法、ブレードコーター法、ロッドコーター法、ナイフコーター法、スクイズコーター法、リバースロールコーター法、トランスファーロールコーター法、グラビアコーター法、キスコーター法、キャストコーター法、スプレーコーター法、スリットオリフィスコーター法、カレンダーコーター法といった各種コーティング法を例示することができる。尚、塗布法においては、溶媒として、トルエン、クロロホルム、ヘキサン、エタノールといった無極性又は極性の低い有機溶媒を例示することができる。パターニング法として、シャドーマスク、レーザー転写、フォトリソグラフィー等の化学的エッチング、紫外線やレーザー等による物理的エッチング等を挙げることができる。各種有機層の平坦化技術として、レーザー平坦化法、リフロー法等を用いることができる。
【0072】
以上に説明した好ましい形態、構成を含む第1構成~第6構成の撮像素子の2種類あるいはそれ以上を、所望に応じて、適宜、組み合わせることができる。
【0073】
固体撮像装置には、前述したとおり、必要に応じて、オンチップ・マイクロ・レンズや遮光層を設けてもよいし、撮像素子を駆動するための駆動回路や配線が設けられている。必要に応じて、撮像素子への光の入射を制御するためのシャッターを配設してもよいし、固体撮像装置の目的に応じて光学カットフィルタを具備してもよい。
【0074】
例えば、固体撮像装置を読出し用集積回路(ROIC)と積層する場合、読出し用集積回路及び銅(Cu)から成る接続領域が形成された駆動用基板と、接続領域が形成された撮像素子とを、接続領域同士が接するように重ね合わせ、接続領域同士を接合することで、積層することができるし、接続領域同士をハンダバンプ等を用いて接合することもできる。
【0075】
また、本開示の固体撮像装置を駆動するための駆動方法にあっては、
全ての撮像素子において、一斉に、光電変換部に電荷を蓄積しながら、第1電極における電荷を系外に排出し、その後、
全ての撮像素子において、一斉に、光電変換部に蓄積された電荷を第1電極に転送し、転送完了後、順次、各撮像素子において第1電極に転送された電荷を読み出す、
各工程を繰り返す固体撮像装置の駆動方法とすることができる。
【0076】
このような固体撮像装置の駆動方法にあっては、各撮像素子は、第2電極側から入射した光が第1電極には入射しない構造を有し、全ての撮像素子において、一斉に、光電変換部に電荷を蓄積しながら、第1電極における電荷を系外に排出するので、全撮像素子において同時に第1電極のリセットを確実に行うことができる。そして、その後、全ての撮像素子において、一斉に、光電変換部に蓄積された電荷を第1電極に転送し、転送完了後、順次、各撮像素子において第1電極に転送された電荷を読み出す。それ故、所謂グローバルシャッター機能を容易に実現することができる。
【実施例1】
【0077】
実施例1は、本開示の固体撮像装置、具体的には、第1構成の固体撮像装置に関する。実施例1の固体撮像装置における電荷蓄積用電極及び第1電極の配置状態を模式的に
図1Aに示す。また、実施例1の固体撮像装置の模式的な一部断面図を
図9及び
図10Aに示し、実施例1の撮像素子、積層型撮像素子の等価回路図を
図11及び
図12に示し、実施例1の撮像素子を構成する第1電極及び電荷蓄積用電極並びに制御部を構成するトランジスタの模式的な配置図を
図13に示す。更には、実施例1の撮像素子の動作時の各部位における電位の状態を模式的に
図14に示し、
図14の各部位を説明するための実施例1の撮像素子、積層型撮像素子の等価回路図を
図15Aに示し、実施例1の固体撮像装置の概念図を
図16に示す。
【0078】
ここで、
図9は、
図1Aに示す一点鎖線A-B-Cに沿った模式的な一部断面図であり、
図10Aは、
図1Aに示す一点鎖線A-B-D-Eに沿った模式的な一部断面図である。また、後述する層間絶縁層より下方に位置する各種の撮像素子構成要素を、図面を簡素化するために、便宜上、纏めて、参照番号91で示す場合がある。
【0079】
実施例1の固体撮像装置は、複数の撮像素子11から構成された撮像素子ブロック10を、複数、有しており、
各撮像素子11は、
第1電極21、
第1電極21と離間して配置された電荷蓄積用電極24、
第1電極21と接し、絶縁層82を介して電荷蓄積用電極24の上方に形成された光電変換部23、並びに、
光電変換部23上に形成された第2電極22、
を備えており、
第1電極21及び電荷蓄積用電極24は、層間絶縁層81上に設けられており、
撮像素子11の第1電極21は、層間絶縁層81内に設けられた接続部63に接続されている。
【0080】
実施例1の固体撮像装置において、撮像素子ブロック10は、第1の方向に沿ってP個、第1の方向とは異なる第2の方向に沿ってQ個の、P×Q個(但し、P≧2,Q≧1)の撮像素子11から構成されている。具体的には、実施例1の固体撮像装置にあっては、P=2,Q=1である。即ち、撮像素子ブロック10は、第1の方向に沿って並置された2つの第1撮像素子11から構成されている。第1の方向に沿った2つの撮像素子11のそれぞれを構成する第1電極21は、層間絶縁層81内に設けられた接続部63に接続されている。複数の撮像素子ブロック10は、例えば、第1の方向及び第2の方向に2次元マトリクス状に配列されている。
【0081】
撮像素子ブロック10を構成する撮像素子11と撮像素子11との間を第2の方向に延びる境界線BLに対して、撮像素子11は線対称に配置されている。また、
図1Aにおいては、1つの撮像素子ブロック10を図示している。接続部63は、第1電極21に接続され、層間絶縁層81内に設けられた接続孔65、及び、接続孔65から層間絶縁層81内に設けられ、絶縁膜75上を延びる配線部64から構成されている。接続部63は、コンタクトホール部61に繋がっている。
【0082】
また、実施例1の固体撮像装置は、実施例1の撮像素子11を少なくとも1つ有する積層型撮像素子を備えている。具体的には、実施例1の撮像素子11の下方には、少なくとも1つの下方撮像素子13,15が設けられており、撮像素子11が受光する光の波長と、下方撮像素子13,15が受光する光の波長とは、異なり、この場合、2つの下方撮像素子13,15が積層されている。
【0083】
光入射側に位置する第2電極22は、後述する実施例5の撮像素子を除き、複数の撮像素子11において共通化されている。即ち、第2電極22は所謂ベタ電極とされている。光電変換部23は、複数の撮像素子11において共通化されている。即ち、複数の撮像素子11において1層の光電変換部23が形成されている。
【0084】
実施例1の積層型撮像素子は、実施例1の撮像素子11を少なくとも1つ(具体的には、実施例1にあっては実施例1の撮像素子11を1つ)、有する。
【0085】
更には、半導体基板に設けられ、駆動回路を有する制御部を更に備えており、撮像素子ブロック10を構成する2つの撮像素子11における第1電極21は、接続部63(具体的には、接続孔65及び配線部64)、コンタクトホール部61を介して駆動回路に接続されている。また、第2電極22及び電荷蓄積用電極24も駆動回路に接続されている。
【0086】
例えば、第1電極21を正の電位とし、第2電極22を負の電位とし、光電変換部23において光電変換によって生成した電子が第1浮遊拡散層FD1に読み出される。他の実施例においても同様とする。第1電極21を負の電位とし、第2電極22を正の電位とし、光電変換部23において光電変換に基づき生成した正孔が第1浮遊拡散層FD1に読み出される形態にあっては、以下の述べる電位の高低を逆にすればよい。
【0087】
また、実施例1の撮像素子11は、
半導体基板70に設けられ、駆動回路を有する制御部を更に備えており、
第1電極21及び電荷蓄積用電極24は、駆動回路に接続されており、
電荷蓄積期間において、駆動回路から、第1電極21に電位V11が印加され、電荷蓄積用電極24に電位V31が印加され、光電変換部23に電荷が蓄積され、
電荷転送期間において、駆動回路から、第1電極21に電位V12が印加され、電荷蓄積用電極24に電位V32が印加され、光電変換部23に蓄積された電荷が第1電極21を経由して制御部に読み出される。但し、第1電極21の電位を第2電極22の電位よりも高くしたので、
V31≧V11、且つ、V32<V12
である。
【0088】
以下、
図14、
図15Aを参照して、実施例1の電荷蓄積用電極を備えた積層型撮像素子(第1撮像素子)の動作を説明する。ここで、第1電極21の電位を第2電極22の電位よりも高くした。即ち、例えば、第1電極21を正の電位とし、第2電極22を負の電位とした。光電変換部23において光電変換によって生成した電子が浮遊拡散層に読み出される。他の実施例においても同様とする。尚、第1電極21を負の電位とし、第2電極22を正の電位とし、光電変換部23において光電変換に基づき生成した正孔が浮遊拡散層に読み出される形態にあっては、以下の述べる電位の高低を逆にすればよい。
【0089】
図14、後述する実施例8における
図32、
図33中で使用している符号は、以下のとおりである。
【0090】
PA ・・・・・電荷蓄積用電極24あるいは転送制御用電極(電荷転送電極)25と第1電極21の中間に位置する領域と対向した光電変換部23の領域の点PAにおける電位
PB ・・・・・電荷蓄積用電極24と対向した光電変換部23の領域の点PBにおける電位
PC ・・・・・転送制御用電極(電荷転送電極)25と対向した光電変換部23の領域の点PCにおける電位
FD・・・・・第1浮遊拡散層FD1における電位
VOA・・・・・電荷蓄積用電極24における電位
VOT ・・・・・転送制御用電極(電荷転送電極)25における電位
RST・・・・リセット・トランジスタTR1rstのゲート部51における電位
VDD・・・・・電源の電位
VSL1 ・・・信号線(データ出力線)VSL1
TR1rst ・・リセット・トランジスタTR1rst
TR1amp ・・増幅トランジスタTR1amp
TR1sel ・・選択トランジスタTR1sel
【0091】
〈電荷蓄積期間〉
電荷蓄積期間においては、駆動回路から、第1電極21に電位V11が印加され、電荷蓄積用電極24に電位V31が印加される。また、第2電極22に電位V21が印加される。こうして、光電変換部23に入射された光によって光電変換部23において光電変換が生じ、光電変換部23に電荷(電子である)が蓄積される。光電変換によって生成した正孔は、第2電極22から配線VOUを介して駆動回路へと送出される。一方、第1電極21の電位を第2電極22の電位よりも高くしたので、即ち、例えば、第1電極21に正の電位が印加され、第2電極22に負の電位が印加されるとしたので、V31≧V11、好ましくは、V31>V11とする。これによって、光電変換によって生成した電子は、電荷蓄積用電極24に引き付けられ、電荷蓄積用電極24と対向した光電変換部23の領域に止まる。即ち、光電変換部23に電荷が蓄積される。V31>V11であるが故に、光電変換部23の内部に生成した電子が、第1電極21に向かって移動することはない。光電変換の時間経過に伴い、電荷蓄積用電極24と対向した光電変換部23の領域における電位は、より負側の値となる。
【0092】
電荷蓄積期間の後期において、リセット動作がなされる。これによって、第1浮遊拡散層FD1の電位がリセットされ、第1浮遊拡散層FD1の電位(VFD)は電源の電位VDDとなる。
【0093】
〈電荷転送期間〉
リセット動作の完了後、電荷の読み出しを行う。即ち、電荷転送期間が開始される。電荷転送期間においては、駆動回路から、第1電極21に電位V12が印加され、電荷蓄積用電極24に電位V32が印加される。また、第2電極22に電位V22が印加される。ここで、V32<V12とする。こうして、撮像素子11の光電変換部23に蓄積された電荷が、読み出される。即ち、電荷蓄積用電極24と対向した光電変換部23の領域に止まっていた電子は、第1電極21、更には、第1浮遊拡散層FD1へと読み出される。云い換えれば、光電変換部23に蓄積された電荷は制御部に読み出される。
【0094】
以上で、電荷蓄積、リセット動作、電荷転送といった一連の動作が完了する。
【0095】
第1浮遊拡散層FD1へ電子が読み出された後の増幅トランジスタTR1amp、選択トランジスタTR1selの動作は、従来のこれらのトランジスタの動作と同じである。第2撮像素子13、第3撮像素子15の電荷蓄積、リセット動作、電荷転送といった一連の動作は、従来の電荷蓄積、リセット動作、電荷転送といった一連の動作と同様である。第1浮遊拡散層FD1のリセットノイズは、従来と同様に、相関2重サンプリング(CDS,Correlated Double Sampling)処理によって除去することができる。
【0096】
実施例1の固体撮像装置にあっては、半導体基板(より具体的には、シリコン半導体層)70が更に備えられており、光電変換部は、半導体基板70の上方に配置されている。また、半導体基板70に設けられ、第1電極21や第2電極22、電荷蓄積用電極24が接続された駆動回路を有する制御部を更に備えている。ここで、半導体基板70における光入射面を上方とし、半導体基板70の反対側を下方とする。半導体基板70の下方には複数の配線から成る配線層62が設けられている。
【0097】
半導体基板70には、制御部を構成する少なくとも浮遊拡散層FD1及び増幅トランジスタTR1ampが設けられており、第1電極21は、浮遊拡散層FD1及び増幅トランジスタTR1ampのゲート部に接続されている。半導体基板70には、更に、制御部を構成するリセット・トランジスタTR1rst及び選択トランジスタTR1selが設けられている。浮遊拡散層FD1は、リセット・トランジスタTR1rstの一方のソース/ドレイン領域に接続されており、増幅トランジスタTR1ampの他方のソース/ドレイン領域は、選択トランジスタTR1selの一方のソース/ドレイン領域に接続されており、選択トランジスタTR1selの他方のソース/ドレイン領域は信号線VSL1に接続されている。これらの増幅トランジスタTR1amp、リセット・トランジスタTR1rst及び選択トランジスタTR1selは、駆動回路を構成する。
【0098】
図示した例では、2つの撮像素子11に対して1つの浮遊拡散層FD1等が設けられている状態を示しているが、後述する実施例では、4つの撮像素子11に対して浮遊拡散層FD1等が共有されている。
【0099】
具体的には、実施例1の撮像素子、積層型撮像素子は、裏面照射型の撮像素子、積層型撮像素子であり、緑色光を吸収する第1タイプの緑色光用光電変換部を備えた緑色光に感度を有する第1タイプの実施例1の緑色光用撮像素子(以下、『第1撮像素子』と呼ぶ)、青色光を吸収する第2タイプの青色光用光電変換部を備えた青色光に感度を有する第2タイプの従来の青色光用撮像素子(以下、『第2撮像素子』と呼ぶ)、赤色光を吸収する第2タイプの赤色光用光電変換部を備えた赤色光に感度を有する第2タイプの従来の赤色光用撮像素子(以下、『第3撮像素子』と呼ぶ)の3つの撮像素子11,13,15が積層された構造を有する。ここで赤色光用撮像素子(第3撮像素子)15及び青色光用撮像素子(第2撮像素子)13は、半導体基板70内に設けられており、第2撮像素子13の方が、第3撮像素子15よりも光入射側に位置する。また、緑色光用撮像素子(第1撮像素子)11は、青色光用撮像素子(第2撮像素子)13の上方に設けられている。第1撮像素子11、第2撮像素子13及び第3撮像素子15の積層構造によって、1画素が構成される。カラーフィルタは設けられていない。
【0100】
第1撮像素子11にあっては、層間絶縁層81内には接続部63(具体的には、接続孔65及び配線部64)が形成されており、層間絶縁層81上に、第1電極21及び電荷蓄積用電極24が、離間して形成されている。層間絶縁層81及び電荷蓄積用電極24は、絶縁層82によって覆われている。絶縁層82上には光電変換部23が形成され、光電変換部23上には第2電極22が形成されている。第2電極22を含む全面には、保護層83が形成されており、保護層83上にオンチップ・マイクロ・レンズ90が設けられている。第1電極21、電荷蓄積用電極24及び第2電極22は、例えば、ITO(仕事関数:約4.4eV)から成る透明電極から構成されている。光電変換部23は光電変換層から構成されており、少なくとも緑色光に感度を有する周知の有機光電変換材料(例えば、ローダミン系色素、メラシアニン系色素、キナクリドン等の有機系材料)を含む層から構成されている。また、光電変換部23は、更に、電荷蓄積に適した材料層を含む構成であってもよい。即ち、光電変換部23と第1電極21との間に(例えば、接続部分68内に)、更に、電荷蓄積に適した材料層が形成されていてもよい。層間絶縁層81や絶縁層82、保護層83は、周知の絶縁材料(例えば、SiO2やSiN)から構成されている。光電変換部23と第1電極21とは、絶縁層82に設けられた接続部分68によって接続されている。接続部分68内には、光電変換部23が延在している。即ち、光電変換部23は、絶縁層82に設けられた開口部84内を延在し、第1電極21と接続されている。
【0101】
電荷蓄積用電極24は駆動回路に接続されている。具体的には、電荷蓄積用電極24は、層間絶縁層81内に設けられた接続部分67、パッド部66及び配線VOAを介して、駆動回路を構成する垂直駆動回路112に接続されている。
【0102】
電荷蓄積用電極24の大きさは第1電極21よりも大きい。電荷蓄積用電極24の面積をs1’、第1電極21の面積をs1としたとき、限定するものではないが、
4≦s1’/s1
を満足することが好ましく、実施例1あるいは後述する各種実施例の撮像素子にあっては、限定するものではないが、例えば、
s1’/s1=8
とした。
【0103】
半導体基板70の第1面(おもて面)70Aの側には素子分離領域71が形成され、また、半導体基板70の第1面70Aには酸化膜72が形成されている。更には、半導体基板70の第1面側には、第1撮像素子11の制御部を構成するリセット・トランジスタTR1rst、増幅トランジスタTR1amp及び選択トランジスタTR1selが設けられ、更に、第1浮遊拡散層FD1が設けられている。
【0104】
リセット・トランジスタTR1rstは、ゲート部51、チャネル形成領域51A、及び、ソース/ドレイン領域51B,51Cから構成されている。リセット・トランジスタTR1rstのゲート部51はリセット線RST1に接続され、リセット・トランジスタTR1rstの一方のソース/ドレイン領域51Cは、第1浮遊拡散層FD1を兼ねており、他方のソース/ドレイン領域51Bは、電源VDDに接続されている。
【0105】
第1電極21は、層間絶縁層81内に設けられた接続部63(接続孔65、配線部64)、半導体基板70及び層間絶縁膜76に形成されたコンタクトホール部61、層間絶縁膜76に形成された配線層62を介して、リセット・トランジスタTR1rstの一方のソース/ドレイン領域51C(第1浮遊拡散層FD1)に接続されている。
【0106】
増幅トランジスタTR1ampは、ゲート部52、チャネル形成領域52A、及び、ソース/ドレイン領域52B,52Cから構成されている。ゲート部52は配線層62を介して、第1電極21及びリセット・トランジスタTR1rstの一方のソース/ドレイン領域51C(第1浮遊拡散層FD1)に接続されている。また、一方のソース/ドレイン領域52Bは、電源VDDに接続されている。
【0107】
選択トランジスタTR1selは、ゲート部53、チャネル形成領域53A、及び、ソース/ドレイン領域53B,53Cから構成されている。ゲート部53は、選択線SEL1に接続されている。また、一方のソース/ドレイン領域53Bは、増幅トランジスタTR1ampを構成する他方のソース/ドレイン領域52Cと、領域を共有しており、他方のソース/ドレイン領域53Cは、信号線(データ出力線)VSL1(117)に接続されている。
【0108】
第2撮像素子13は、半導体基板70に設けられたn型半導体領域(第2光電変換部)41を光電変換層として備えている。縦型トランジスタから成る転送トランジスタTR2trsのゲート部45が、n型半導体領域41まで延びており、且つ、転送ゲート線TG2に接続されている。また、転送トランジスタTR2trsのゲート部45の近傍の半導体基板70の領域45Cには、第2浮遊拡散層FD2が設けられている。n型半導体領域41に蓄積された電荷は、ゲート部45に沿って形成される転送チャネルを介して第2浮遊拡散層FD2に読み出される。
【0109】
第2撮像素子13にあっては、更に、半導体基板70の第1面側に、第2撮像素子13の制御部を構成するリセット・トランジスタTR2rst、増幅トランジスタTR2amp及び選択トランジスタTR2selが設けられている。
【0110】
リセット・トランジスタTR2rstは、ゲート部、チャネル形成領域、及び、ソース/ドレイン領域から構成されている。リセット・トランジスタTR2rstのゲート部はリセット線RST2に接続され、リセット・トランジスタTR2rstの一方のソース/ドレイン領域は電源VDDに接続され、他方のソース/ドレイン領域は、第2浮遊拡散層FD2を兼ねている。
【0111】
増幅トランジスタTR2ampは、ゲート部、チャネル形成領域、及び、ソース/ドレイン領域から構成されている。ゲート部は、リセット・トランジスタTR2rstの他方のソース/ドレイン領域(第2浮遊拡散層FD2)に接続されている。また、一方のソース/ドレイン領域は、電源VDDに接続されている。
【0112】
選択トランジスタTR2selは、ゲート部、チャネル形成領域、及び、ソース/ドレイン領域から構成されている。ゲート部は、選択線SEL2に接続されている。また、一方のソース/ドレイン領域は、増幅トランジスタTR2ampを構成する他方のソース/ドレイン領域と、領域を共有しており、他方のソース/ドレイン領域は、信号線(データ出力線)VSL2に接続されている。
【0113】
第3撮像素子15は、半導体基板70に設けられたn型半導体領域(第3光電変換部)43を光電変換層として備えている。転送トランジスタTR3trsのゲート部46は転送ゲート線TG3に接続されている。また、転送トランジスタTR3trsのゲート部46の近傍の半導体基板70の領域46Cには、第3浮遊拡散層FD3が設けられている。n型半導体領域43に蓄積された電荷は、ゲート部46に沿って形成される転送チャネル46Aを介して第3浮遊拡散層FD3に読み出される。
【0114】
第3撮像素子15にあっては、更に、半導体基板70の第1面側に、第3撮像素子15の制御部を構成するリセット・トランジスタTR3rst、増幅トランジスタTR3amp及び選択トランジスタTR3selが設けられている。
【0115】
リセット・トランジスタTR3rstは、ゲート部、チャネル形成領域、及び、ソース/ドレイン領域から構成されている。リセット・トランジスタTR3rstのゲート部はリセット線RST3に接続され、リセット・トランジスタTR3rstの一方のソース/ドレイン領域は電源VDDに接続され、他方のソース/ドレイン領域は、第3浮遊拡散層FD3を兼ねている。
【0116】
増幅トランジスタTR3ampは、ゲート部、チャネル形成領域、及び、ソース/ドレイン領域から構成されている。ゲート部は、リセット・トランジスタTR3rstの他方のソース/ドレイン領域(第3浮遊拡散層FD3)に接続されている。また、一方のソース/ドレイン領域は、電源VDDに接続されている。
【0117】
選択トランジスタTR3selは、ゲート部、チャネル形成領域、及び、ソース/ドレイン領域から構成されている。ゲート部は、選択線SEL3に接続されている。また、一方のソース/ドレイン領域は、増幅トランジスタTR3ampを構成する他方のソース/ドレイン領域と、領域を共有しており、他方のソース/ドレイン領域は、信号線(データ出力線)VSL3に接続されている。
【0118】
リセット線RST1,RST2,RST3、選択線SEL1,SEL2,SEL3、転送ゲート線TG2,TG3は、駆動回路を構成する垂直駆動回路112に接続され、信号線(データ出力線)VSL1,VSL2,VSL3は、駆動回路を構成するカラム信号処理回路113に接続されている。
【0119】
n型半導体領域43と半導体基板70の表面70Aとの間にはp+層44が設けられており、暗電流発生を抑制している。n型半導体領域41とn型半導体領域43との間には、p+層42が形成されており、更には、n型半導体領域43の側面の一部はp+層42によって囲まれている。半導体基板70の裏面70Bの側には、p+層73が形成されており、p+層73から半導体基板70の内部のコンタクトホール部61を形成すべき部分には、HfO2膜74及び絶縁膜75が形成されている。層間絶縁膜76には、複数の層に亙り配線が形成されているが、図示は省略した。
【0120】
HfO2膜74は、負の固定電荷を有する膜であり、このような膜を設けることによって、暗電流の発生を抑制することができる。尚、HfO2膜の代わりに、酸化アルミニウム(Al2O3)膜、酸化ジルコニウム(ZrO2)膜、酸化タンタル(Ta2O5)膜、酸化チタン(TiO2)膜、酸化ランタン(La2O3)膜、酸化プラセオジム(Pr2O3)膜、酸化セリウム(CeO2)膜、酸化ネオジム(Nd2O3)膜、酸化プロメチウム(Pm2O3)膜、酸化サマリウム(Sm2O3)膜、酸化ユウロピウム(Eu2O3)膜、酸化ガドリニウム((Gd2O3)膜、酸化テルビウム(Tb2O3)膜、酸化ジスプロシウム(Dy2O3)膜、酸化ホルミウム(Ho2O3)膜、酸化ツリウム(Tm2O3)膜、酸化イッテルビウム(Yb2O3)膜、酸化ルテチウム(Lu2O3)膜、酸化イットリウム(Y2O3)膜、窒化ハフニウム膜、窒化アルミニウム膜、酸窒化ハフニウム膜、酸窒化アルミニウム膜を用いることもできる。これらの膜の成膜方法として、例えば、CVD法、PVD法、ALD法が挙げることができる。
【0121】
図16に、実施例1の固体撮像装置の概念図を示す。実施例1の固体撮像装置100は、積層型撮像素子101が2次元アレイ状に配列された撮像領域111、並びに、その駆動回路(周辺回路)としての垂直駆動回路112、カラム信号処理回路113、水平駆動回路114、出力回路115及び駆動制御回路116等から構成されている。尚、これらの回路は周知の回路から構成することができるし、また、他の回路構成(例えば、従来のCCD型固体撮像装置やCMOS型固体撮像装置にて用いられる各種の回路)を用いて構成することができることは云うまでもない。尚、
図16において、積層型撮像素子101における参照番号「101」の表示は、1行のみとした。
【0122】
駆動制御回路116は、垂直同期信号、水平同期信号及びマスター・クロックに基づいて、垂直駆動回路112、カラム信号処理回路113及び水平駆動回路114の動作の基準となるクロック信号や制御信号を生成する。そして、生成されたクロック信号や制御信号は、垂直駆動回路112、カラム信号処理回路113及び水平駆動回路114に入力される。
【0123】
垂直駆動回路112は、例えば、シフトレジスタによって構成され、撮像領域111の各積層型撮像素子101を行単位で順次垂直方向に選択走査する。そして、各積層型撮像素子101における受光量に応じて生成した電流(信号)に基づく画素信号(画像信号)は、信号線(データ出力線)117,VSLを介してカラム信号処理回路113に送られる。
【0124】
カラム信号処理回路113は、例えば、積層型撮像素子101の列毎に配置されており、1行分の積層型撮像素子101から出力される画像信号を撮像素子毎に黒基準画素(図示しないが、有効画素領域の周囲に形成される)からの信号によって、ノイズ除去や信号増幅の信号処理を行う。カラム信号処理回路113の出力段には、水平選択スイッチ(図示せず)が水平信号線118との間に接続されて設けられる。
【0125】
水平駆動回路114は、例えばシフトレジスタによって構成され、水平走査パルスを順次出力することによって、カラム信号処理回路113の各々を順次選択し、カラム信号処理回路113の各々から信号を水平信号線118に出力する。
【0126】
出力回路115は、カラム信号処理回路113の各々から水平信号線118を介して順次供給される信号に対して、信号処理を行って出力する。
【0127】
実施例1の撮像素子、積層型撮像素子の変形例(実施例1の変形例1)の等価回路図を
図17に示し、第1電極及び電荷蓄積用電極並びに制御部を構成するトランジスタの模式的な配置図を
図18に示すように、リセット・トランジスタTR1
rstの他方のソース/ドレイン領域51Bを、電源V
DDに接続する代わりに、接地してもよい。
【0128】
実施例1の撮像素子、積層型撮像素子は、例えば、以下の方法で作製することができる。即ち、先ず、SOI基板を準備する。そして、SOI基板の表面に第1シリコン層をエピタキシャル成長法に基づき形成し、この第1シリコン層に、p+層73、n型半導体領域41を形成する。次いで、第1シリコン層上に第2シリコン層をエピタキシャル成長法に基づき形成し、この第2シリコン層に、素子分離領域71、酸化膜72、p+層42、n型半導体領域43、p+層44を形成する。また、第2シリコン層に、撮像素子の制御部を構成する各種トランジスタ等を形成し、更にその上に、配線層62や層間絶縁膜76、各種配線を形成した後、層間絶縁膜76と支持基板(図示せず)とを貼り合わせる。その後、SOI基板を除去して第1シリコン層を露出させる。尚、第2シリコン層の表面が半導体基板70の表面70Aに該当し、第1シリコン層の表面が半導体基板70の裏面70Bに該当する。また、第1シリコン層と第2シリコン層を纏めて半導体基板70と表現している。次いで、半導体基板70の裏面70Bの側に、コンタクトホール部61を形成するための開口部を形成し、HfO2膜74、絶縁膜75及びコンタクトホール部61を形成し、更に、配線部64、パッド部66、層間絶縁層81、接続孔65、接続部分67、第1電極21、電荷蓄積用電極24、絶縁層82を形成する。次に、接続部分68を開口し、光電変換部23、第2電極22、保護層83及びオンチップ・マイクロ・レンズ90を形成する。以上によって、実施例1の固体撮像装置を得ることができる。
【0129】
あるいは又、実施例1の撮像素子11(並置された2つの撮像素子11を図示する)の変形例の模式的な一部断面図を
図10Bに示すが、光電変換部23を、下層半導体層23
DNと、上層光電変換層23
UPの積層構造とすることができる。上層光電変換層23
UPは、複数の撮像素子11において共通化されている。即ち、複数の撮像素子11において1層の上層光電変換層23
UPが形成されている。一方、下層半導体層23
DNは各撮像素子11に設けられている。このように下層半導体層23
DNを設けることで、例えば、電荷蓄積時の再結合を防止することができる。また、光電変換部23に蓄積した電荷の第1電極21への電荷転送効率を増加させることができる。更には、光電変換部23で生成された電荷を一時的に保持し、転送のタイミング等を制御することができる。また、暗電流の生成を抑制することができる。上層光電変換層23
UPを構成する材料は、光電変換部23を構成する各種材料から、適宜、選択すればよい。一方、下層半導体層23
DNを構成する材料として、バンドギャップエネルギーの値が大きく(例えば、3.0eV以上のバンドギャップエネルギーの値)、しかも、上層光電変換層23
UPを構成する材料よりも高い移動度を有する材料を用いることが好ましく、具体的には、例えば、IGZO等の酸化物半導体材料を挙げることができる。あるいは又、下層半導体層23
DNを構成する材料として、蓄積すべき電荷が電子である場合、上層光電変換層23
UPを構成する材料のイオン化ポテンシャルよりも大きなイオン化ポテンシャルを有する材料を挙げることができる。あるいは又、下層半導体層を構成する材料における不純物濃度は1×10
18cm
-3以下であることが好ましい。尚、この実施例1の変形例2の構成、構造は、他の実施例に適用することができる。
【0130】
実施例1の固体撮像装置の撮像素子ブロックにおいて、複数の第1電極が層間絶縁層内に設けられた接続部に接続されているので、撮像素子を構成する第1電極、電荷蓄積用電極及び光電変換部の配置状態を、撮像素子ブロックの撮像素子において、入射する光に対して同じ配置状態とすることができる結果、撮像素子に入射する光の角度に依存して撮像素子に生成した電荷の第1電極への移動状態に差異が生じることが無い。
【0131】
しかも、実施例1あるいは後述する実施例2~実施例9の撮像素子にあっては、第1電極と離間して配置され、且つ、絶縁層を介して光電変換部と対向して配置された電荷蓄積用電極が備えられているので、光電変換部に光が照射され、光電変換部において光電変換されるとき、光電変換部と絶縁層と電荷蓄積用電極とによって一種のキャパシタが形成され、光電変換部に電荷を蓄えることができる。それ故、露光開始時、電荷蓄積部を完全空乏化し、電荷を消去することが可能となる。その結果、kTCノイズが大きくなり、ランダムノイズが悪化し、撮像画質の低下をもたらすといった現象の発生を抑制することができる。しかも、全画素を一斉にリセットすることができるので、所謂グローバルシャッター機能を実現することができる。
【実施例2】
【0132】
実施例2は、実施例1の変形である。電荷蓄積用電極、第1電極及び分離電極(第1分離電極)の配置状態を模式的に
図1Bに示し、模式的な一部断面図を
図19Aに示す。尚、
図19Aは、
図1Bに示す一点鎖線A-B-C-Dに沿った模式的な一部断面図である。実施例2の固体撮像装置において、撮像素子ブロック10は、連続した分離電極(第1分離電極28)によって囲まれている。更には、電荷蓄積用電極24、第1電極21、第1分離電極28及び第2分離電極29の配置状態を模式的に
図2Aに示すように、第1の方向に沿った2つの撮像素子11の間には、第1分離電極28から第2の方向に沿って延びる連続した第2分離電極29が設けられている構成とすることができる。第1分離電極28と第2分離電極29とは繋がっている。第2分離電極29を設けることで、撮像素子ブロック10内において、撮像素子11での光電変換によって生成した電荷が隣接する撮像素子に流入することを確実に抑制することができる。あるいは又、電荷蓄積用電極24、第1電極21及び第2分離電極29の配置状態を模式的に
図2Bに示すように、第1の方向に沿った2つの撮像素子11の間には、第2の方向に沿って延びる第2分離電極29が設けられている構成とすることができる。尚、この場合、第1分離電極28は設けられていない。以下の説明において、第1分離電極28及び第2分離電極29を、総称して、『分離電極27』と呼ぶ場合がある。
【0133】
【0134】
ここで、第1分離電極28は、隣接する撮像素子ブロック10を構成する隣接する撮像素子11の間に位置する光電変換部23の領域に絶縁層82を介して対向する領域に設けられている。第1分離電極28は、下方第1分離電極である。第1分離電極28は、第1電極21あるいは電荷蓄積用電極24と同じレベルに形成されているが、異なるレベルに形成されていてもよい。また、第2分離電極29は、撮像素子ブロック10内において、撮像素子ブロック10を構成する隣接する撮像素子11の間に位置する光電変換部23の領域に絶縁層82を介して対向する領域に設けられている。即ち、第2分離電極29も、下方第2分離電極である。第2分離電極29も、第1電極21あるいは電荷蓄積用電極24と同じレベルに形成されているが、異なるレベルに形成されていてもよい。より具体的には、分離電極27は、光電変換部23の領域23’に絶縁層82を介して対向する領域(絶縁層の領域82’)に形成されている。云い換えれば、隣接する撮像素子11のそれぞれを構成する電荷蓄積用電極24と電荷蓄積用電極24とによって挟まれた領域における絶縁層82の部分82’の下に、分離電極27が形成されている。分離電極27は、電荷蓄積用電極24と離間して設けられている。あるいは又、云い換えれば、分離電極27は、電荷蓄積用電極24と離間して設けられており、分離電極27は絶縁層82を介して、光電変換部23の領域23’と対向して配置されている。以下に説明する実施例3~実施例4においても、同様とすることができる。
【0135】
そして、分離電極(第1分離電極28)の電位は(第2分離電極29が設けられている場合には第2分離電極29の電位も)、一定の値VESである。分離電極27も駆動回路に接続されている。具体的には、分離電極27は、層間絶縁層81内に設けられた接続部分27A、パッド部27B及び配線(図示せず)を介して、駆動回路を構成する垂直駆動回路112に接続されている。以下に説明する実施例3~実施例4においても、同様とすることができる。
【0136】
第1撮像素子11にあっては、層間絶縁層81上に、第1電極21及び電荷蓄積用電極24が、離間して形成されている。また、層間絶縁層81上に、分離電極27が、電荷蓄積用電極24と離間して形成されている。層間絶縁層81、電荷蓄積用電極24及び分離電極27は、絶縁層82によって覆われている。絶縁層82上には光電変換部23が形成され、光電変換部23上には第2電極22が形成されている。第2電極22を含む全面には、保護層83が形成されており、保護層83上にオンチップ・マイクロ・レンズ90が設けられている。第1電極21、電荷蓄積用電極24、分離電極27及び第2電極22は、例えば、ITO(仕事関数:約4.4eV)から成る透明電極から構成されている。以下に説明する実施例3~実施例4においても、同様とすることができる。
【0137】
以下、実施例2の固体撮像装置の動作の説明を行う。
【0138】
〈電荷蓄積期間〉
具体的には、電荷蓄積期間においては、駆動回路から、第1電極21に電位V11が印加され、電荷蓄積用電極24に電位V31が印加され、分離電極27に電位VESが印加される。また、第2電極22に電位V21が印加される。こうして、光電変換部23に電荷(電子である)が蓄積される。光電変換によって生成した電子は、電荷蓄積用電極24に引き付けられ、電荷蓄積用電極24と対向した光電変換部23の領域に止まる。即ち、光電変換部23に電荷が蓄積される。V31>V11であるが故に、光電変換部23の内部に生成した電子が、第1電極21に向かって移動することはない。また、電荷蓄積用電極24の電位V31は、分離電極27の電位VESよりも高いので、光電変換部23の内部に生成した電子が、分離電極27に向かって移動することもない。即ち、光電変換によって生成した電荷が隣接する撮像素子11に流れ込むことを抑制することができる。光電変換の時間経過に伴い、電荷蓄積用電極24と対向した光電変換部23の領域における電位は、より負側の値となる。電荷蓄積期間の後期において、リセット動作がなされる。これによって、第1浮遊拡散層FD1の電位がリセットされ、第1浮遊拡散層FD1の電位(VFD)は電源の電位VDDとなる。
【0139】
〈電荷転送期間〉
リセット動作の完了後、電荷転送期間が開始される。電荷転送期間においては、駆動回路から、第1電極21に電位V12が印加され、電荷蓄積用電極24に電位V32が印加される。また、分離電極27に電位VESが印加されている。電荷蓄積用電極24と対向した光電変換部23の領域に止まっていた電子は、第1電極21、更には、第1浮遊拡散層FD1へと読み出される。云い換えれば、光電変換部23に蓄積された電荷は制御部に読み出される。分離電極27の電位は、第1電極21の電位よりも低く、電荷蓄積用電極24の電位よりも低い。即ち、
VES<V32<V12
である。従って、光電変換部23の内部に生成した電子は、第1電極21へと流れ、分離電極27に向かって移動することがない。即ち、光電変換によって生成した電荷が隣接する撮像素子11に流れ込むことを抑制することができる。
【0140】
以上で、電荷蓄積、リセット動作、電荷転送といった一連の動作が完了する。
【0141】
実施例2にあっては、分離電極27が設けられているので、光電変換によって生成した電荷が隣接する撮像素子11に流れ込むことを確実に抑制することができる。
【0142】
実施例2の撮像素子11(並置された2つの撮像素子11を図示する)の変形例の模式的な一部断面図を
図19Bに示すように、
図10Bに示した実施例1の固体撮像装置の変形例と同様に、光電変換部23を、下層半導体層23
DNと、上層光電変換層23
UPの積層構造とすることができる。
【実施例3】
【0143】
実施例3は、実施例1~実施例2の変形であるが、第2構成の固体撮像装置に関する。電荷蓄積用電極24及び第1電極21の配置状態を模式的に
図3Aに示すように、実施例3の固体撮像装置において、P=2,Qは2以上の自然数である。図示した例では、Q=2であるが、これに限定するものではない。そして、第1の方向に沿った2つの撮像素子11のそれぞれを構成する第1電極21は、層間絶縁層81内に設けられた接続部63に接続されている。接続部63は、コンタクトホール部61に繋がっている。P×Q個の撮像素子11において、第1電極21は接続部63を介して相互に繋がっている。あるいは又、電荷蓄積用電極24、第1電極21及び分離電極(第1分離電極)28の配置状態を模式的に
図3Bに示すように、実施例3の固体撮像装置の変形例において、撮像素子ブロック10は、連続した分離電極(第1分離電極)28によって囲まれている。更には、電荷蓄積用電極24、第1電極21、第1分離電極28及び第2分離電極29の配置状態を模式的に
図4Aに示すように、第1の方向に沿った2つの撮像素子11の間には、第1分離電極28から第2の方向に沿って延びる連続した第2分離電極29が設けられている構成とすることができる。第1分離電極28と第2分離電極29とは繋がっている。第2分離電極29を設けることで、撮像素子ブロック10内において隣接する撮像素子11での光電変換によって生成した電荷の流入を確実に抑制することができる。あるいは又、電荷蓄積用電極24、第1電極21及び第2分離電極29の配置状態を模式的に
図4Bに示すように、第1の方向に沿った2つの撮像素子11の間には、第2の方向に沿って延びる第2分離電極29が設けられている構成とすることができる。尚、この場合、第1分離電極28は設けられていない。
【0144】
実施例3の固体撮像装置の動作は、実施例1及び実施例2において説明した固体撮像装置の動作と同様とすることができるので、詳細な説明は省略する。
【実施例4】
【0145】
実施例4も、実施例1~実施例2の変形であるが、第3A構成の固体撮像装置及び第3B構成の固体撮像装置に関する。電荷蓄積用電極24及び第1電極21の配置状態を模式的に
図5Aに示すように、実施例4の固体撮像装置において、P=2,Q=2であり、第2の方向に沿った2つの撮像素子11を構成する第1電極21は共有されており、共有された第1電極21は、層間絶縁層81内に設けられた接続部63に接続されている。あるいは又、電荷蓄積用電極24及び第1電極21の配置状態を模式的に
図7Aに示すように、P=2,Q=2であり、第1の方向に沿った2つの撮像素子11を構成する第1電極21は共有されており、共有された第1電極21は、層間絶縁層81内に設けられた接続部63に接続されている。接続部63は、コンタクトホール部61に繋がっている。2×2個の撮像素子11において、第1電極21は接続部63を介して相互に繋がっている。但し、この第3B構成の固体撮像装置にあっては、Qの値を2以上の自然数(例えば、Q=4)とすることもできる。
【0146】
あるいは又、電荷蓄積用電極24、第1電極21及び分離電極(第1分離電極)28の配置状態を模式的に
図5B、
図7Bに示すように、実施例4の固体撮像装置の変形例において、撮像素子ブロック10は、連続した分離電極(第1分離電極)28によって囲まれている。更には、電荷蓄積用電極24、第1電極21、第1分離電極28及び第2分離電極29の配置状態を模式的に
図6Aに示すように、第1の方向に沿った2つの撮像素子11の間には、第1分離電極28から第2の方向に沿って延びる連続した第2分離電極29が設けられている構成とすることができる。第1分離電極28と第2分離電極29とは繋がっている。第2分離電極29を設けることで、撮像素子ブロック10内において隣接する撮像素子11での光電変換によって生成した電荷の流入を確実に抑制することができる。あるいは又、電荷蓄積用電極24、第1電極21及び第2分離電極29の配置状態を模式的に
図6Bに示すように、第1の方向に沿った2つの撮像素子11の間には、第2の方向に沿って延びる第2分離電極29が設けられている構成とすることができる。尚、この場合、第1分離電極28は設けられていない。
図6A及び
図6Bに示す第2分離電極29の構造を、
図7Bに示す固体撮像装置に適用することができる。
【0147】
実施例4の固体撮像装置の動作は、実施例1及び実施例2において説明した固体撮像装置の動作と同様とすることができるので、詳細な説明は省略する。
【0148】
図6Aに示した実施例4の固体撮像装置の変形例の模式的な斜視図を
図8Aに示し、従来の固体撮像装置の変形例の模式的な斜視図を
図8Bに示す。
【0149】
実施例1の
図2A、
図2B、
図4A、
図4B、
図6A、
図6Bに示すように、実施例1~実施例4の固体撮像装置において、第2分離電極29は連続している。即ち、第2分離電極29に端部は存在しない。
【0150】
一方、従来の固体撮像装置において、例えば、1つの撮像素子ブロックを4つの撮像素子から構成し、4つの撮像素子によって1つの第1電極21’を共有する場合を想定する。この場合には、
図8Bに示すように、4つの撮像素子のそれぞれを構成する電荷蓄積用電極24’のコーナー部が集まる領域に第1電極21’を設ける必要がある。そして、4つの撮像素子の間に、本開示における第2分離電極29に相当する第2分離電極29’を設けた場合、第2分離電極29’と第1電極21’とが接触しないように、第2分離電極29’を第1電極21’から離間して設ける必要がある。即ち、第2分離電極29’には、必然的に端部29”が形成される。このように端部29”が形成された第2分離電極29’、電荷蓄積用電極24及び第1電極21’によって生成される電位は、第2分離電極29’の端部29”の存在によって複雑な電位勾配を有することになる。従って、光電変換によって光電変換部23において生成し、光電変換部23に蓄積された電荷が、電荷転送時、光電変換部23から第1電極21’に適切に、確実に流れ込まない状態が生じ得る。具体的には、例えば、第2分離電極29’の端部29”の存在によって、光電変換部23において蓄積される電荷の量が減少したり、電荷転送時、電荷が隣接する撮像素子の第1電極21’へと流れ込んでしまうといった問題が生じ得る。その結果、固体撮像装置の信頼性低下が生じる虞があるし、分解能が低下する虞もある。
【0151】
然るに、本開示の固体撮像装置にあっては、第2分離電極29に端部は存在しないので、第2分離電極29、電荷蓄積用電極24及び第1電極21によって生成される電位は、複雑な電位勾配になることが無く、光電変換によって生成した電荷を、光電変換部23から第1電極21へと適切に、確実に流すことができる。従って、固体撮像装置の信頼性低下、分解能低下の発生を抑制することができる。
【0152】
また、第1電極21’及び電荷蓄積用電極24’に着目したとき、第1の問題点を説明するための従来の固体撮像装置の第1電極等の配置状態を模式的に
図43に示すが、
図43の左斜め上方から光が入射した場合を想定する。ここで、各電荷蓄積用電極24’
1,24’
2,24’
3,24’
4の上方に位置する光電変換部の領域「A」,「B」,「B」,「C」について考察すると、電荷蓄積期間にあっては、領域「A」において生成した電荷の一部は、領域「A」が第1電極21’に隣接しているが故に、第1電極21’に流れ込む。一方、領域「B」、領域「C」において生成した電荷は、領域「B」、領域「C」が第1電極21’に隣接していないが故に、第1電極21’に流れ込み難い。以上の結果として、電荷蓄積用電極24’
1を有する撮像素子の信号出力は、電荷蓄積用電極24’
2,24’
2,24’
4を有する撮像素子の信号出力よりも低下する虞がある。即ち、光の入射状態に依存して各撮像素子において生成される信号出力に不均一な状態が生じ得る。
【0153】
一方、例えば、
図3A、
図3B、
図4A及び
図4Bに示した実施例3の固体撮像装置にあっては、
図3A、
図3B、
図4A及び
図4Bの左斜め上方から光が入射した場合であっても、4つの撮像素子において、第1電極21及び電荷蓄積用電極24に入射する光の入射方向は同じであるが故に、光の入射状態に依存して4つ撮像素子において生成される信号出力に不均一な状態が生じ難いことは、
図3A、
図3B、
図4A及び
図4Bからも明らかであろう。他の実施例においても、光の入射状態に対して撮像素子を構成する電荷蓄積用電極24及び第1電極21の配置が同じである複数の撮像素子にあっては、生成される信号出力に不均一な状態が生じ難いことは同様である。以上のとおり、1つの撮像素子ブロックにおいて、複数の第1電極21が層間絶縁層81内に設けられた接続部63に接続されており、第1電極21、光電変換部23及び電荷蓄積用電極24の配置状態を、入射する光に対して同じ配置状態とすることができる結果、第1電極21及び電荷蓄積用電極24に入射する光の入射方向を同じとすることができ、撮像素子に入射する光の角度に依存して撮像素子に生成される信号出力に不均一な状態が生じることを、出来る限り、抑制することができる。
【実施例5】
【0154】
実施例5は、実施例1~実施例4の変形であり、下方分離電極の代わりに、上方分離電極27’(上方第1分離電極、又は、上方第1分離電極及び上方第2分離電極、又は、上方第2分離電極)が設けられている。実施例5の撮像素子(並置された2つの撮像素子)の一部分の模式的な断面図を
図20に示す。実施例5の撮像素子において、隣接する撮像素子の間に位置する光電変換部23の領域23
Aの上には、第2電極22が形成される代わりに、上方分離電極27’が形成されている。上方分離電極27’は、第2電極22と離間して設けられている。云い換えれば、第2電極22は撮像素子毎に設けられており、上方分離電極27’は、第2電極22の少なくとも一部を取り囲んで、第2電極22と離間して、光電変換部23の領域-Aの上に設けられている。上方分離電極27’は、第2電極22と同じレベルに形成されている。
【0155】
また、実施例5の撮像素子(並置された2つの撮像素子)の一部分の模式的な断面図を
図21Aに示すように、第2電極22が複数に分割され、各分割された第2電極22に個別に異なる電位を印加してもよい。更には、
図21Bに示すように、分割された第2電極22と第2電極22との間に上方分離電極27’が設けられていてもよい。
【0156】
第2電極22及び上方分離電極27’は、光電変換部23の上に第2電極22及び上方分離電極27’を構成する材料層を成膜した後、この材料層をパターニングすることで得ることができる。第2電極22、上方分離電極27’のそれぞれは、別々に配線(図示せず)に接続されており、これらの配線は駆動回路に接続されている。第2電極22に接続された配線は、複数の撮像素子において共通化されている。上方分離電極27’に接続された配線も、複数の撮像素子において共通化されている。
【0157】
実施例5の撮像素子にあっては、電荷蓄積期間において、駆動回路から、第2電極22に電位V21が印加され、上方分離電極27’に電位VESが印加され、光電変換部23に電荷が蓄積され、電荷転送期間において、駆動回路から、第2電極22に電位V22が印加され、上方分離電極27’に電位VESが印加され、光電変換部23に蓄積された電荷が第1電極21を経由して制御部に読み出される。ここで、第1電極21の電位が第2電極22の電位よりも高いとしたので、
V21≧VES、且つ、V22≧VES
である。
【0158】
以上のとおり、実施例5の撮像素子にあっては、隣接する撮像素子の間に位置する光電変換部の領域の上には、第2電極が形成される代わりに、上方分離電極が形成されているが故に、光電変換によって生成した電荷が隣接する撮像素子に流れ込むことを上方分離電極によって抑制することができるので、撮影された映像(画像)に品質劣化が生じることが無い。
【0159】
実施例5の撮像素子(並置された2つの撮像素子)の変形例の一部分の模式的な断面図を
図22Aに示す。この変形例において、第2電極22は撮像素子毎に設けられており、上方分離電極27’は、第2電極22の少なくとも一部を取り囲んで、第2電極22と離間して設けられており、上方分離電極27’の下方には、電荷蓄積用電極24の一部が存在する。第2電極22は、電荷蓄積用電極24の上方に、電荷蓄積用電極24より小さい大きさで設けられている。また、
図22Bに示す例では、加えて、上方分離電極27’の下方には、下方分離電極27が設けられている。第2電極22の大きさは、
図22Aに示した変形例よりも小さい。即ち、上方分離電極27’と対向する第2電極22の領域は、
図22Aに示した変形例における上方分離電極27’と対向する第2電極22の領域よりも、第1電極21側に位置する。電荷蓄積用電極24は、下方分離電極27によって囲まれている。
【実施例6】
【0160】
実施例6は、実施例1~実施例5の変形である。
図23に模式的な一部断面図を示す実施例6の固体撮像装置は、表面照射型の固体撮像装置である。具体的には、緑色光を吸収する第1タイプの緑色光用光電変換部を備えた緑色光に感度を有する第1タイプの実施例1の緑色光用撮像素子(第1撮像素子)、青色光を吸収する第2タイプの青色光用光電変換部を備えた青色光に感度を有する第2タイプの従来の青色光用撮像素子(第2撮像素子)、赤色光を吸収する第2タイプの赤色光用光電変換部を備えた赤色光に感度を有する第2タイプの従来の赤色光用撮像素子(第3撮像素子)の3つの撮像素子が積層された構造を有する。ここで、赤色光用撮像素子(第3撮像素子)及び青色光用撮像素子(第2撮像素子)は半導体基板70内に設けられており、第2撮像素子の方が第3撮像素子よりも光入射側に位置する。また、緑色光用撮像素子(第1撮像素子)は、青色光用撮像素子(第2撮像素子)の上方に設けられている。
【0161】
半導体基板70の表面70A側には、実施例1と同様に制御部を構成する各種トランジスタが設けられている。これらのトランジスタは、実質的に実施例1において説明したトランジスタと同様の構成、構造とすることができる。また、半導体基板70には、第2撮像素子、第3撮像素子が設けられているが、これらの撮像素子も、実質的に実施例1において説明した第2撮像素子、第3撮像素子と同様の構成、構造とすることができる。
【0162】
半導体基板70の表面70Aの上方には層間絶縁層81が形成されており、層間絶縁層81内に、実施例1~実施例5の固体撮像装置撮像素子と同様に、第1電極21、光電変換部23及び第2電極22、並びに、必要に応じて、分離電極27,27’が設けられている。
【0163】
このように、表面照射型である点を除き、実施例6の固体撮像装置の構成、構造は、実施例1~実施例5の固体撮像装置の構成、構造と同様とすることができるので、詳細な説明は省略する。
【実施例7】
【0164】
実施例7は、実施例1~実施例6の変形である。
【0165】
図24に模式的な一部断面図を示す実施例7の固体撮像装置は、裏面照射型の固体撮像装置であり、第1タイプの実施例1の第1撮像素子、及び、第2タイプの第2撮像素子の2つの撮像素子が積層された構造を有する。また、
図25に模式的な一部断面図を示す実施例7の固体撮像装置の変形例は、表面照射型の固体撮像装置であり、第1タイプの実施例1の第1撮像素子、及び、第2タイプの第2撮像素子の2つの撮像素子が積層された構造を有する。ここで、第1撮像素子は原色の光を吸収し、第2撮像素子は補色の光を吸収する。あるいは又、第1撮像素子は白色光を吸収し、第2撮像素子は赤外線を吸収する。
【0166】
図26に模式的な一部断面図を示す実施例7の撮像素子の変形例は、裏面照射型の固体撮像装置であり、第1タイプの実施例1の第1撮像素子から構成されている。また、
図27に模式的な一部断面図を示す実施例7の固体撮像装置の変形例は、表面照射型の固体撮像装置であり、第1タイプの実施例1の第1撮像素子から構成されている。ここで、第1撮像素子は、赤色光を吸収する撮像素子、緑色光を吸収する撮像素子、青色光を吸収する撮像素子の3種類の撮像素子から構成されている。複数のこれらの撮像素子の配置として、ベイヤ配列を挙げることができる。各撮像素子の光入射側には、必要に応じて、青色、緑色、赤色の分光を行うためのカラーフィルタ層が配設されている。
【0167】
以上の点を除き、実施例7の固体撮像装置の構成、構造は、実施例1~実施例5の固体撮像装置の構成、構造と同様とすることができるので、詳細な説明は省略する。尚、半導体基板70の表面70Aの上方には層間絶縁層81が形成されており、層間絶縁層81内に、実施例1~実施例5の固体撮像装置撮像素子と同様に、第1電極21、光電変換部23及び第2電極22、並びに、必要に応じて、分離電極27,27’が設けられている。
【0168】
第1タイプの実施例1の撮像素子を1つ、設ける代わりに、2つ、積層する形態(即ち、光電変換部を2つ、積層し、半導体基板に2つの光電変換部の制御部を設ける形態)、あるいは又、3つ、積層する形態(即ち、光電変換部を3つ、積層し、半導体基板に3つの光電変換部の制御部を設ける形態)とすることもできる。第1タイプの撮像素子と第2タイプの撮像素子の積層構造例を、以下の表に例示する。
【0169】
【実施例8】
【0170】
実施例8は、実施例1~実施例7の変形であり、本開示の転送制御用電極(電荷転送電極)を備えた固体撮像装置に関する。実施例8の固体撮像装置の一部分の模式的な一部断面図を
図28に示し、実施例8の固体撮像装置の等価回路図を
図29及び
図30に示し、実施例8の固体撮像装置の撮像素子を構成する第1電極、転送制御用電極及び電荷蓄積用電極並びに制御部を構成するトランジスタの模式的な配置図を
図31に示し、実施例8の撮像素子の動作時の各部位における電位の状態を模式的に
図32及び
図33に示し、実施例8の撮像素子の各部位を説明するための等価回路図を
図15Bに示す。
【0171】
実施例8の固体撮像装置にあっては、第1電極21と電荷蓄積用電極24との間に、第1電極21及び電荷蓄積用電極24と離間して配置され、且つ、絶縁層82を介して光電変換部23と対向して配置された転送制御用電極(電荷転送電極)25を更に備えている。転送制御用電極25は、層間絶縁層81内に設けられた接続部分25B、パッド部25A及び配線VOTを介して、駆動回路を構成する画素駆動回路に接続されている。
【0172】
以下、
図32、
図33を参照して、実施例8の撮像素子(第1撮像素子)の動作を説明する。尚、
図32と
図33とでは、特に、電荷蓄積用電極24に印加される電位及び点P
Cにおける電位の値が相違している。
【0173】
電荷蓄積期間において、駆動回路から、第1電極21に電位V11が印加され、電荷蓄積用電極24に電位V31が印加され、転送制御用電極25に電位V41が印加される。光電変換部23に入射された光によって光電変換部23において光電変換が生じる。光電変換によって生成した正孔は、第2電極22から配線VOUを介して駆動回路へと送出される。一方、第1電極21の電位を第2電極22の電位よりも高くしたので、即ち、例えば、第1電極21に正の電位が印加され、第2電極22に負の電位が印加されるとしたので、V31>V41(例えば、V31>V11>V41、又は、V11>V31>V41)とする。これによって、光電変換によって生成した電子は、電荷蓄積用電極24に引き付けられ、電荷蓄積用電極24と対向した光電変換部23の領域に止まる。即ち、光電変換部23に電荷が蓄積される。V31>V41であるが故に、光電変換部23の内部に生成した電子が、第1電極21に向かって移動することを確実に防止することができる。光電変換の時間経過に伴い、電荷蓄積用電極24と対向した光電変換部23の領域における電位は、より負側の値となる。
【0174】
電荷蓄積期間の後期において、リセット動作がなされる。これによって、第1浮遊拡散層FD1の電位がリセットされ、第1浮遊拡散層FD1の電位は電源の電位VDDとなる。
【0175】
リセット動作の完了後、電荷の読み出しを行う。即ち、電荷転送期間において、駆動回路から、第1電極21に電位V12が印加され、電荷蓄積用電極24に電位V32が印加され、転送制御用電極25に電位V42が印加される。ここで、V32≦V42≦V12(好ましくは、V32<V42<V12)とする。これによって、電荷蓄積用電極24と対向した光電変換部23の領域に止まっていた電子は、第1電極21、更には、第1浮遊拡散層FD1へと確実に読み出される。即ち、光電変換部23に蓄積された電荷が制御部に読み出される。
【0176】
以上で、電荷蓄積、リセット動作、電荷転送といった一連の動作が完了する。
【0177】
第1浮遊拡散層FD1へ電子が読み出された後の増幅トランジスタTR1amp、選択トランジスタTR1selの動作は、従来のこれらのトランジスタの動作と同じである。また、例えば、第2撮像素子、第3撮像素子の電荷蓄積、リセット動作、電荷転送といった一連の動作は、従来の電荷蓄積、リセット動作、電荷転送といった一連の動作と同様である。
【0178】
実施例8の撮像素子の変形例を構成する第1電極及び電荷蓄積用電極並びに制御部を構成するトランジスタの模式的な配置図を
図34に示すように、リセット・トランジスタTR1
rstの他方のソース/ドレイン領域51Bを、電源V
DDに接続する代わりに、接地してもよい。
【0179】
また、第1電極21に最も近い位置から電荷蓄積用電極24に向けて、複数の転送制御用電極を設けてもよい。
【実施例9】
【0180】
実施例9は、実施例1~実施例8の変形であり、本開示の電荷排出電極を備えた撮像素子等に関する。実施例9の撮像素子の一部分の模式的な一部断面図を
図35に示す。
【0181】
実施例9の撮像素子にあっては、接続部分26Aを介して光電変換部23に接続され、第1電極21及び電荷蓄積用電極24と離間して配置された電荷排出電極26を更に備えている。ここで、電荷排出電極26は、第1電極21及び電荷蓄積用電極24を取り囲むように(即ち、額縁状に)配置されている。電荷排出電極26は、駆動回路を構成する画素駆動回路に接続されている。接続部分26A内には、光電変換部23が延在している。即ち、光電変換部23は、絶縁層82に設けられた第2開口部85内を延在し、電荷排出電極26と接続されている。電荷排出電極26は、複数の撮像素子において共有化(共通化)されている。電荷排出電極26は、例えば、光電変換部23のフローティングディフュージョンやオーバーフロードレインとして用いることができる。電荷排出電極26と下方分離電極27を同時に設けることが困難な場合には、上方分離電極27’を設ければよい。
【0182】
実施例9にあっては、電荷蓄積期間において、駆動回路から、第1電極21に電位V11が印加され、電荷蓄積用電極24に電位V31が印加され、電荷排出電極26に電位V51が印加され、光電変換部23に電荷が蓄積される。光電変換部23に入射された光によって光電変換部23において光電変換が生じる。光電変換によって生成した正孔は、第2電極22から配線VOUを介して駆動回路へと送出される。一方、第1電極21の電位を第2電極22の電位よりも高くしたので、即ち、例えば、第1電極21に正の電位が印加され、第2電極22に負の電位が印加されるとしたので、V51>V11(例えば、V31>V51>V11)とする。これによって、光電変換によって生成した電子は、電荷蓄積用電極24に引き付けられ、電荷蓄積用電極24と対向した光電変換部23の領域に止まり、第1電極21に向かって移動することを確実に防止することができる。但し、電荷蓄積用電極24による引き付けが充分ではなく、あるいは又、光電変換部23に蓄積しきれなかった電子(所謂オーバーフローした電子)は、電荷排出電極26を経由して、駆動回路に送出される。
【0183】
電荷蓄積期間の後期において、リセット動作がなされる。これによって、第1浮遊拡散層FD1の電位がリセットされ、第1浮遊拡散層FD1の電位は電源の電位VDDとなる。
【0184】
リセット動作の完了後、電荷の読み出しを行う。即ち、電荷転送期間において、駆動回路から、第1電極21に電位V12が印加され、電荷蓄積用電極24に電位V32が印加され、電荷排出電極26に電位V52が印加される。ここで、V52<V12(例えば、V52<V32<V12)とする。これによって、電荷蓄積用電極24と対向した光電変換部23の領域に止まっていた電子は、第1電極21、更には、第1浮遊拡散層FD1へと確実に読み出される。即ち、光電変換部23に蓄積された電荷が制御部に読み出される。
【0185】
以上で、電荷蓄積、リセット動作、電荷転送といった一連の動作が完了する。
【0186】
第1浮遊拡散層FD1へ電子が読み出された後の増幅トランジスタTR1amp、選択トランジスタTR1selの動作は、従来のこれらのトランジスタの動作と同じである。また、例えば、第2撮像素子、第3撮像素子の電荷蓄積、リセット動作、電荷転送といった一連の動作は、従来の電荷蓄積、リセット動作、電荷転送といった一連の動作と同様である。
【0187】
実施例9にあっては、所謂オーバーフローした電子は電荷排出電極26を経由して駆動回路に送出されるので、隣接画素の電荷蓄積部への漏れ込みを抑制することができ、ブルーミングの発生を抑えることができる。そして、これにより、撮像素子の撮像性能を向上させることができる。
【0188】
以上、本開示を好ましい実施例に基づき説明したが、本開示はこれらの実施例に限定されるものではない。実施例にて説明した固体撮像装置の構造や構成、製造条件、製造方法、使用した材料は例示であり、適宜変更することができる。各実施例において説明した撮像素子を、適宜、組み合わせることができる。
【0189】
場合によっては、前述したとおり、浮遊拡散層FD2,FD3,45C,46Cを共有化することもできる。
【0190】
また、
図36に、例えば、実施例1において説明した固体撮像装置の変形例を示すように、第2電極22の側から光が入射し、第2電極22よりの光入射側には遮光層92が形成されている構成とすることもできる。尚、光電変換部よりも光入射側に設けられた各種配線を遮光層として機能させることもできる。
【0191】
尚、
図36に示した例では、遮光層92は、第2電極22の上方に形成されているが、即ち、第2電極22よりの光入射側であって、第1電極21の上方に遮光層92が形成されているが、
図37に示すように、第2電極22の光入射側の面の上に配設されてもよい。また、場合によっては、
図38に示すように、第2電極22に遮光層92が形成されていてもよい。
【0192】
あるいは又、第2電極22側から光が入射し、第1電極21には光が入射しない構造とすることもできる。具体的には、
図36に示したように、第2電極22よりの光入射側であって、第1電極21の上方には遮光層92が形成されている。あるいは又、
図40に示すように、電荷蓄積用電極24及び第2電極22の上方にはオンチップ・マイクロ・レンズ90が設けられており、オンチップ・マイクロ・レンズ90に入射する光は、電荷蓄積用電極24に集光され、第1電極21には到達しない構造とすることもできる。尚、実施例11において説明したように、転送制御用電極25が設けられている場合、第1電極21及び転送制御用電極25には光が入射しない形態とすることができ、具体的には、
図39に図示するように、第1電極21及び転送制御用電極25の上方には遮光層92が形成されている構造とすることもできる。あるいは又、オンチップ・マイクロ・レンズ90に入射する光は、第1電極21あるいは第1電極21及び転送制御用電極25には到達しない構造とすることもできる。
【0193】
これらの構成、構造を採用することで、あるいは又、電荷蓄積用電極24の上方に位置する光電変換部23の部分のみに光が入射するように遮光層92を設け、あるいは又、オンチップ・マイクロ・レンズ90を設計することで、第1電極21の上方(あるいは、第1電極21及び転送制御用電極25の上方)に位置する光電変換部23の部分は光電変換に寄与しなくなるので、全画素をより確実に一斉にリセットすることができ、グローバルシャッター機能を一層容易に実現することができる。即ち、これらの構成、構造を有する撮像素子を、複数、備えた固体撮像装置の駆動方法にあっては、
全ての撮像素子において、一斉に、光電変換部23に電荷を蓄積しながら、第1電極21における電荷を系外に排出し、その後、
全ての撮像素子において、一斉に、光電変換部23に蓄積された電荷を第1電極21に転送し、転送完了後、順次、各撮像素子において第1電極21に転送された電荷を読み出す、
各工程を繰り返す。
【0194】
このような固体撮像装置の駆動方法にあっては、各撮像素子は、第2電極側から入射した光が第1電極には入射しない構造を有し、全ての撮像素子において、一斉に、光電変換部に電荷を蓄積しながら、第1電極における電荷を系外に排出するので、全撮像素子において同時に第1電極のリセットを確実に行うことができる。そして、その後、全ての撮像素子において、一斉に、光電変換部に蓄積された電荷を第1電極に転送し、転送完了後、順次、各撮像素子において第1電極に転送された電荷を読み出す。それ故、所謂グローバルシャッター機能を容易に実現することができる。
【0195】
実施例においては、電子を信号電荷としており、半導体基板に形成された光電変換部の導電型をn型としたが、正孔を信号電荷とする固体撮像装置にも適用できる。この場合には、各半導体領域を逆の導電型の半導体領域で構成すればよく、半導体基板に形成された光電変換部の導電型はp型とすればよい。
【0196】
また、実施例にあっては、入射光量に応じた信号電荷を物理量として検知する単位画素が行列状に配置されて成るCMOS型固体撮像装置に適用した場合を例に挙げて説明したが、CMOS型固体撮像装置への適用に限られるものではなく、CCD型固体撮像装置に適用することもできる。後者の場合、信号電荷は、CCD型構造の垂直転送レジスタによって垂直方向に転送され、水平転送レジスタによって水平方向に転送され、増幅されることにより画素信号(画像信号)が出力される。また、画素が2次元マトリクス状に形成され、画素列毎にカラム信号処理回路を配置して成るカラム方式の固体撮像装置全般に限定するものでもない。更には、場合によっては、選択トランジスタを省略することもできる。
【0197】
更には、本開示の固体撮像装置は、可視光の入射光量の分布を検知して画像として撮像する固体撮像装置への適用に限らず、赤外線やX線、あるいは、粒子等の入射量の分布を画像として撮像する固体撮像装置にも適用可能である。また、広義には、圧力や静電容量等、他の物理量の分布を検知して画像として撮像する指紋検出センサ等の固体撮像装置(物理量分布検知装置)全般に対して適用可能である。
【0198】
更には、撮像領域の各単位画素を行単位で順に走査して各単位画素から画素信号を読み出す固体撮像装置に限られるものではない。画素単位で任意の画素を選択して、選択画素から画素単位で画素信号を読み出すX-Yアドレス型の固体撮像装置に対しても適用可能である。固体撮像装置はワンチップとして形成された形態であってもよいし、撮像領域と、駆動回路又は光学系とを纏めてパッケージングされた撮像機能を有するモジュール状の形態であってもよい。
【0199】
また、固体撮像装置への適用に限られるものではなく、撮像装置にも適用可能である。ここで、撮像装置とは、デジタルスチルカメラやビデオカメラ等のカメラシステムや、携帯電話機等の撮像機能を有する電子機器を指す。電子機器に搭載されるモジュール状の形態、即ち、カメラモジュールを撮像装置とする場合もある。
【0200】
本開示の固体撮像装置から構成された固体撮像装置201を電子機器(カメラ)200に用いた例を、
図41に概念図として示す。電子機器200は、固体撮像装置201、光学レンズ210、シャッタ装置211、駆動回路212、及び、信号処理回路213を有する。光学レンズ210は、被写体からの像光(入射光)を固体撮像装置201の撮像面上に結像させる。これにより固体撮像装置201内に、一定期間、信号電荷が蓄積される。シャッタ装置211は、固体撮像装置201への光照射期間及び遮光期間を制御する。駆動回路212は、固体撮像装置201の転送動作等及びシャッタ装置211のシャッタ動作を制御する駆動信号を供給する。駆動回路212から供給される駆動信号(タイミング信号)により、固体撮像装置201の信号転送を行う。信号処理回路213は、各種の信号処理を行う。信号処理が行われた映像信号は、メモリ等の記憶媒体に記憶され、あるいは、モニタに出力される。このような電子機器200では、固体撮像装置201における画素サイズの微細化及び転送効率の向上を達成することができるので、画素特性の向上が図られた電子機器200を得ることができる。固体撮像装置201を適用できる電子機器200としては、カメラに限られるものではなく、デジタルスチルカメラ、携帯電話機等のモバイル機器向けカメラモジュール等の撮像装置に適用可能である。
【0201】
実施例3の固体撮像装置あるいは実施例4の固体撮像装置において、P=2,Q=2とするとき、以下に説明する駆動方法を採用することができる。即ち、
図42に模式図を示すように、1つの撮像素子ブロックを構成する4つの撮像素子11
2p+1,2q+1,11
2p+1,2q+2,11
2p+2,2q+1,11
2p+2,2q+2(但し、pは0又は正の整数、qは0又は正の整数)を想定する。ここで、撮像素子11
2p+1,2q+1の電荷蓄積用電極24は、第(2q+1)番目の水平駆動線L
2q+1に接続されている。撮像素子11
2p+1,2q+2の電荷蓄積用電極24は、第(2q+2)番目の水平駆動線L
2q+2に接続されている。撮像素子11
2p+2,2q+1の電荷蓄積用電極24は、第(2q)番目の水平駆動線L
2qに接続されている。撮像素子11
2p+2,2q+2の電荷蓄積用電極24は、第(2q+3)番目の水平駆動線L
2q+3に接続されている。
【0202】
このような構成とすることで、通常、1つの撮像素子ブロックを構成する4つの撮像素子における電荷蓄積用電極を駆動するための水平駆動線が、4本、必要とされるところを、2本で済ますことができる。そして、4本の水平駆動線L2q,L2q+1,L2q+2,L2q+3を、適宜、駆動することで、撮像素子112p+1,2q+1,112p+1,2q+2,112p+2,2q+1,112p+2,2q+2における電荷を読み出すことができる。
【0203】
本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
【0204】
図44は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。
【0205】
車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。
図44に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。
【0206】
駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。
【0207】
ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。
【0208】
車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。
【0209】
撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。
【0210】
車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。
【0211】
マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。
【0212】
また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
【0213】
また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。
【0214】
音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。
図44の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。
【0215】
図45は、撮像部12031の設置位置の例を示す図である。
【0216】
図45では、車両12100は、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。
【0217】
撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。撮像部12101及び12105で取得される前方の画像は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。
【0218】
なお、
図45には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。
【0219】
撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。
【0220】
例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
【0221】
例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。
【0222】
撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。
【0223】
また、例えば、本開示に係る技術は、内視鏡手術システムに適用されてもよい。
【0224】
図46は、本開示に係る技術(本技術)が適用され得る内視鏡手術システムの概略的な構成の一例を示す図である。
【0225】
図46では、術者(医師)11131が、内視鏡手術システム11000を用いて、患者ベッド11133上の患者11132に手術を行っている様子が図示されている。図示するように、内視鏡手術システム11000は、内視鏡11100と、気腹チューブ11111やエネルギー処置具11112等の、その他の術具11110と、内視鏡11100を支持する支持アーム装置11120と、内視鏡下手術のための各種の装置が搭載されたカート11200と、から構成される。
【0226】
内視鏡11100は、先端から所定の長さの領域が患者11132の体腔内に挿入される鏡筒11101と、鏡筒11101の基端に接続されるカメラヘッド11102と、から構成される。図示する例では、硬性の鏡筒11101を有するいわゆる硬性鏡として構成される内視鏡11100を図示しているが、内視鏡11100は、軟性の鏡筒を有するいわゆる軟性鏡として構成されてもよい。
【0227】
鏡筒11101の先端には、対物レンズが嵌め込まれた開口部が設けられている。内視鏡11100には光源装置11203が接続されており、当該光源装置11203によって生成された光が、鏡筒11101の内部に延設されるライトガイドによって当該鏡筒の先端まで導光され、対物レンズを介して患者11132の体腔内の観察対象に向かって照射される。なお、内視鏡11100は、直視鏡であってもよいし、斜視鏡又は側視鏡であってもよい。
【0228】
カメラヘッド11102の内部には光学系及び撮像素子が設けられており、観察対象からの反射光(観察光)は当該光学系によって当該撮像素子に集光される。当該撮像素子によって観察光が光電変換され、観察光に対応する電気信号、すなわち観察像に対応する画像信号が生成される。当該画像信号は、RAWデータとしてカメラコントロールユニット(CCU: Camera Control Unit)11201に送信される。
【0229】
CCU11201は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等によって構成され、内視鏡11100及び表示装置11202の動作を統括的に制御する。さらに、CCU11201は、カメラヘッド11102から画像信号を受け取り、その画像信号に対して、例えば現像処理(デモザイク処理)等の、当該画像信号に基づく画像を表示するための各種の画像処理を施す。
【0230】
表示装置11202は、CCU11201からの制御により、当該CCU11201によって画像処理が施された画像信号に基づく画像を表示する。
【0231】
光源装置11203は、例えばLED(Light Emitting Diode)等の光源から構成され、術部等を撮影する際の照射光を内視鏡11100に供給する。
【0232】
入力装置11204は、内視鏡手術システム11000に対する入力インタフェースである。ユーザは、入力装置11204を介して、内視鏡手術システム11000に対して各種の情報の入力や指示入力を行うことができる。例えば、ユーザは、内視鏡11100による撮像条件(照射光の種類、倍率及び焦点距離等)を変更する旨の指示等を入力する。
【0233】
処置具制御装置11205は、組織の焼灼、切開又は血管の封止等のためのエネルギー処置具11112の駆動を制御する。気腹装置11206は、内視鏡11100による視野の確保及び術者の作業空間の確保の目的で、患者11132の体腔を膨らめるために、気腹チューブ11111を介して当該体腔内にガスを送り込む。レコーダ11207は、手術に関する各種の情報を記録可能な装置である。プリンタ11208は、手術に関する各種の情報を、テキスト、画像又はグラフ等各種の形式で印刷可能な装置である。
【0234】
なお、内視鏡11100に術部を撮影する際の照射光を供給する光源装置11203は、例えばLED、レーザ光源又はこれらの組み合わせによって構成される白色光源から構成することができる。RGBレーザ光源の組み合わせにより白色光源が構成される場合には、各色(各波長)の出力強度及び出力タイミングを高精度に制御することができるため、光源装置11203において撮像画像のホワイトバランスの調整を行うことができる。また、この場合には、RGBレーザ光源それぞれからのレーザ光を時分割で観察対象に照射し、その照射タイミングに同期してカメラヘッド11102の撮像素子の駆動を制御することにより、RGBそれぞれに対応した画像を時分割で撮像することも可能である。当該方法によれば、当該撮像素子にカラーフィルタを設けなくても、カラー画像を得ることができる。
【0235】
また、光源装置11203は、出力する光の強度を所定の時間ごとに変更するようにその駆動が制御されてもよい。その光の強度の変更のタイミングに同期してカメラヘッド11102の撮像素子の駆動を制御して時分割で画像を取得し、その画像を合成することにより、いわゆる黒つぶれ及び白とびのない高ダイナミックレンジの画像を生成することができる。
【0236】
また、光源装置11203は、特殊光観察に対応した所定の波長帯域の光を供給可能に構成されてもよい。特殊光観察では、例えば、体組織における光の吸収の波長依存性を利用して、通常の観察時における照射光(すなわち、白色光)に比べて狭帯域の光を照射することにより、粘膜表層の血管等の所定の組織を高コントラストで撮影する、いわゆる狭帯域光観察(Narrow Band Imaging)が行われる。あるいは、特殊光観察では、励起光を照射することにより発生する蛍光により画像を得る蛍光観察が行われてもよい。蛍光観察では、体組織に励起光を照射し当該体組織からの蛍光を観察すること(自家蛍光観察)、又はインドシアニングリーン(ICG)等の試薬を体組織に局注するとともに当該体組織にその試薬の蛍光波長に対応した励起光を照射し蛍光像を得ること等を行うことができる。光源装置11203は、このような特殊光観察に対応した狭帯域光及び/又は励起光を供給可能に構成され得る。
【0237】
図47は、
図46に示すカメラヘッド11102及びCCU11201の機能構成の一例を示すブロック図である。
【0238】
カメラヘッド11102は、レンズユニット11401と、撮像部11402と、駆動部11403と、通信部11404と、カメラヘッド制御部11405と、を有する。CCU11201は、通信部11411と、画像処理部11412と、制御部11413と、を有する。カメラヘッド11102とCCU11201とは、伝送ケーブル11400によって互いに通信可能に接続されている。
【0239】
レンズユニット11401は、鏡筒11101との接続部に設けられる光学系である。鏡筒11101の先端から取り込まれた観察光は、カメラヘッド11102まで導光され、当該レンズユニット11401に入射する。レンズユニット11401は、ズームレンズ及びフォーカスレンズを含む複数のレンズが組み合わされて構成される。
【0240】
撮像部11402は、撮像素子で構成される。撮像部11402を構成する撮像素子は、1つ(いわゆる単板式)であってもよいし、複数(いわゆる多板式)であってもよい。撮像部11402が多板式で構成される場合には、例えば各撮像素子によってRGBそれぞれに対応する画像信号が生成され、それらが合成されることによりカラー画像が得られてもよい。あるいは、撮像部11402は、3D(Dimensional)表示に対応する右目用及び左目用の画像信号をそれぞれ取得するための1対の撮像素子を有するように構成されてもよい。3D表示が行われることにより、術者11131は術部における生体組織の奥行きをより正確に把握することが可能になる。なお、撮像部11402が多板式で構成される場合には、各撮像素子に対応して、レンズユニット11401も複数系統設けられ得る。
【0241】
また、撮像部11402は、必ずしもカメラヘッド11102に設けられなくてもよい。例えば、撮像部11402は、鏡筒11101の内部に、対物レンズの直後に設けられてもよい。
【0242】
駆動部11403は、アクチュエータによって構成され、カメラヘッド制御部11405からの制御により、レンズユニット11401のズームレンズ及びフォーカスレンズを光軸に沿って所定の距離だけ移動させる。これにより、撮像部11402による撮像画像の倍率及び焦点が適宜調整され得る。
【0243】
通信部11404は、CCU11201との間で各種の情報を送受信するための通信装置によって構成される。通信部11404は、撮像部11402から得た画像信号をRAWデータとして伝送ケーブル11400を介してCCU11201に送信する。
【0244】
また、通信部11404は、CCU11201から、カメラヘッド11102の駆動を制御するための制御信号を受信し、カメラヘッド制御部11405に供給する。当該制御信号には、例えば、撮像画像のフレームレートを指定する旨の情報、撮像時の露出値を指定する旨の情報、並びに/又は撮像画像の倍率及び焦点を指定する旨の情報等、撮像条件に関する情報が含まれる。
【0245】
なお、上記のフレームレートや露出値、倍率、焦点等の撮像条件は、ユーザによって適宜指定されてもよいし、取得された画像信号に基づいてCCU11201の制御部11413によって自動的に設定されてもよい。後者の場合には、いわゆるAE(Auto Exposure)機能、AF(Auto Focus)機能及びAWB(Auto White Balance)機能が内視鏡11100に搭載されていることになる。
【0246】
カメラヘッド制御部11405は、通信部11404を介して受信したCCU11201からの制御信号に基づいて、カメラヘッド11102の駆動を制御する。
【0247】
通信部11411は、カメラヘッド11102との間で各種の情報を送受信するための通信装置によって構成される。通信部11411は、カメラヘッド11102から、伝送ケーブル11400を介して送信される画像信号を受信する。
【0248】
また、通信部11411は、カメラヘッド11102に対して、カメラヘッド11102の駆動を制御するための制御信号を送信する。画像信号や制御信号は、電気通信や光通信等によって送信することができる。
【0249】
画像処理部11412は、カメラヘッド11102から送信されたRAWデータである画像信号に対して各種の画像処理を施す。
【0250】
制御部11413は、内視鏡11100による術部等の撮像、及び、術部等の撮像により得られる撮像画像の表示に関する各種の制御を行う。例えば、制御部11413は、カメラヘッド11102の駆動を制御するための制御信号を生成する。
【0251】
また、制御部11413は、画像処理部11412によって画像処理が施された画像信号に基づいて、術部等が映った撮像画像を表示装置11202に表示させる。この際、制御部11413は、各種の画像認識技術を用いて撮像画像内における各種の物体を認識してもよい。例えば、制御部11413は、撮像画像に含まれる物体のエッジの形状や色等を検出することにより、鉗子等の術具、特定の生体部位、出血、エネルギー処置具11112の使用時のミスト等を認識することができる。制御部11413は、表示装置11202に撮像画像を表示させる際に、その認識結果を用いて、各種の手術支援情報を当該術部の画像に重畳表示させてもよい。手術支援情報が重畳表示され、術者11131に提示されることにより、術者11131の負担を軽減することや、術者11131が確実に手術を進めることが可能になる。
【0252】
カメラヘッド11102及びCCU11201を接続する伝送ケーブル11400は、電気信号の通信に対応した電気信号ケーブル、光通信に対応した光ファイバ、又はこれらの複合ケーブルである。
【0253】
ここで、図示する例では、伝送ケーブル11400を用いて有線で通信が行われていたが、カメラヘッド11102とCCU11201との間の通信は無線で行われてもよい。
【0254】
なお、ここでは、一例として内視鏡手術システムについて説明したが、本開示に係る技術は、その他、例えば、顕微鏡手術システム等に適用されてもよい。
【0255】
尚、本開示は、以下のような構成を取ることもできる。
[A01]《固体撮像装置》
複数の撮像素子から構成された撮像素子ブロックを、複数、有しており、
各撮像素子は、
第1電極、
第1電極と離間して配置された電荷蓄積用電極、
第1電極と接し、絶縁層を介して電荷蓄積用電極の上方に形成された光電変換部、並びに、
光電変換部上に形成された第2電極、
を備えており、
第1電極及び電荷蓄積用電極は、層間絶縁層上に設けられており、
第1電極は、層間絶縁層内に設けられた接続部に接続されている固体撮像装置。
[A02]撮像素子ブロックは、第1の方向に沿ってP個、第1の方向とは異なる第2の方向に沿ってQ個の、P×Q個(但し、P≧2,Q≧1)の撮像素子から構成されている[A01]に記載の固体撮像装置。
[A03]《第1構成の固体撮像装置》
P=2,Q=1であり、
第1の方向に沿った2つの撮像素子のそれぞれを構成する第1電極は、層間絶縁層内に設けられた接続部に接続されている[A02]に記載の固体撮像装置。
[A04]撮像素子ブロックは、連続した分離電極によって囲まれている[A03]に記載の固体撮像装置。
[A05]第1の方向に沿った2つの撮像素子の間には、分離電極から第2の方向に沿って延びる連続した第2分離電極が設けられている[A04]に記載の固体撮像装置。
[A06]第1の方向に沿った2つの撮像素子の間には、第2方向に沿って延びる第2分離電極が設けられている[A03]に記載の固体撮像装置。
[A07]《第2構成の固体撮像装置》
P=2,Qは2以上の自然数であり、
第1の方向に沿った2つの撮像素子のそれぞれを構成する第1電極は、層間絶縁層内に設けられた接続部に接続されている[A02]に記載の固体撮像装置。
[A08]撮像素子ブロックは、連続した分離電極によって囲まれている[A07]に記載の固体撮像装置。
[A09]第1の方向に沿った2つの撮像素子の間には、分離電極から第2の方向に沿って延びる連続した第2分離電極が設けられている[A08]に記載の固体撮像装置。
[A10]第1の方向に沿った2つの撮像素子の間には、第2方向に沿って延びる第2分離電極が設けられている[A07]に記載の固体撮像装置。
[A11]《第3A構成の固体撮像装置》
P=2,Q=2であり、
第2の方向に沿った2つの撮像素子を構成する第1電極は共有されており、
共有された第1電極は、層間絶縁層内に設けられた接続部に接続されている[A02]に記載の固体撮像装置。
[A12]《第3A構成の固体撮像装置》
P=2,Q=2であり、
第1の方向に沿った2つの撮像素子を構成する第1電極は共有されており、
共有された第1電極は、層間絶縁層内に設けられた接続部に接続されている[A02]に記載の固体撮像装置。
[A13]撮像素子ブロックは、連続した分離電極によって囲まれて[A11]又は[A12]に記載の固体撮像装置。
[A14]第1の方向に沿った2つの撮像素子の間には、分離電極から第2の方向に沿って延びる連続した第2分離電極が設けられている[A13]に記載の固体撮像装置。
[A15]第1の方向に沿った2つの撮像素子の間には、第2方向に沿って延びる第2分離電極が設けられている[A11]に記載の固体撮像装置。
[A16]撮像素子ブロックを構成する撮像素子と撮像素子との間を第2の方向に延びる境界線に対して、撮像素子は線対称に配置されている[A01]乃至[A15]のいずれか1項に記載の固体撮像装置。
[A17]分離電極の電位は一定の値VESである[A04]乃至[A16]のいずれか1項に記載の記載の固体撮像装置。
【符号の説明】
【0256】
10・・・撮像素子ブロック、21・・・第1電極、22・・・第2電極、23・・・光電変換部、23UP・・・上層光電変換層、23DN・・・下層半導体層、24・・・電荷蓄積用電極、25・・・転送制御用電極(電荷転送電極)、25A,26A・・・接続部分、26・・・電荷排出電極、27・・・分離電極(下方分離電極)、27’・・・上方分離電極、28・・・第1分離電極(下方第1分離電極)、29・・・第2分離電極(上方第2分離電極)、41・・・第2撮像素子を構成するn型半導体領域(第2光電変換部)、43・・・第3撮像素子を構成するn型半導体領域(第3光電変換部)、42,44,73・・・p+層、FD1,FD2,FD3,45C,46C・・・浮遊拡散層、TR1amp・・・増幅トランジスタ、TR1rst・・・リセット・トランジスタ、TR1sel・・・選択トランジスタ、51・・・リセット・トランジスタTR1rstのゲート部、51A・・・リセット・トランジスタTR1rstのチャネル形成領域、51B,51C・・・リセット・トランジスタTR1rstのソース/ドレイン領域、52・・・増幅トランジスタTR1ampのゲート部、52A・・・増幅トランジスタTR1ampチャネル形成領域、52B,52C・・・増幅トランジスタTR1ampのソース/ドレイン領域、53・・・選択トランジスタTR1selのゲート部、53A・・・選択トランジスタTR1selのチャネル形成領域、53B,53C・・・選択トランジスタTR1selのソース/ドレイン領域、TR2trs・・・転送トランジスタ、45・・・転送トランジスタのゲート部、TR2rst・・・リセット・トランジスタ、TR2amp・・・増幅トランジスタ、TR2sel・・・選択トランジスタ、TR3trs・・・転送トランジスタ、46・・・転送トランジスタのゲート部、TR3rst・・・リセット・トランジスタ、TR3amp・・・増幅トランジスタ、TR3sel・・・選択トランジスタ、VDD・・・電源、RST1,RST2,RST3・・・リセット線、SEL1,SEL2,SEL3・・・選択線、117,VSL1,VSL2,VSL3・・・信号線、TG2,TG3・・・転送ゲート線、VOA,VOB,VOT,VOU・・・配線、61・・・コンタクトホール部、62・・・配線層、63・・・接続部、64・・・配線層、65・・・接続孔、66・・・パッド部、67,68・・・接続部分、70・・・半導体基板、70A・・・半導体基板の第1面(おもて面)、70B・・・半導体基板の第2面(裏面)、71・・・素子分離領域、72・・・絶縁材料膜、74・・・HfO2膜、75・・・絶縁膜、76・・・層間絶縁膜、81・・・層間絶縁層、82・・・絶縁層、83・・・保護層、84・・・開口部、85・・・第2開口部、90・・・オンチップ・マイクロ・レンズ、91・・・層間絶縁層より下方に位置する各種の撮像素子構成要素、92・・・遮光層、100・・・固体撮像装置、101・・・積層型撮像素子、111・・・撮像領域、112・・・垂直駆動回路、113・・・カラム信号処理回路、114・・・水平駆動回路、115・・・出力回路、116・・・駆動制御回路、118・・・水平信号線、200・・・電子機器(カメラ)、201・・・固体撮像装置、210・・・光学レンズ、211・・・シャッタ装置、212・・・駆動回路、213・・・信号処理回路