IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ コーニンクレッカ フィリップス エヌ ヴェの特許一覧

特許7442455分光イメージングデータからの分光炎症マップ
<>
  • 特許-分光イメージングデータからの分光炎症マップ 図1
  • 特許-分光イメージングデータからの分光炎症マップ 図2
  • 特許-分光イメージングデータからの分光炎症マップ 図3
  • 特許-分光イメージングデータからの分光炎症マップ 図4
  • 特許-分光イメージングデータからの分光炎症マップ 図5
  • 特許-分光イメージングデータからの分光炎症マップ 図6
  • 特許-分光イメージングデータからの分光炎症マップ 図7
  • 特許-分光イメージングデータからの分光炎症マップ 図8
  • 特許-分光イメージングデータからの分光炎症マップ 図9
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-02-22
(45)【発行日】2024-03-04
(54)【発明の名称】分光イメージングデータからの分光炎症マップ
(51)【国際特許分類】
   A61B 6/03 20060101AFI20240226BHJP
   A61B 6/46 20240101ALI20240226BHJP
【FI】
A61B6/03 573
A61B6/46 536A
【請求項の数】 10
(21)【出願番号】P 2020551474
(86)(22)【出願日】2019-03-22
(65)【公表番号】
(43)【公表日】2021-08-10
(86)【国際出願番号】 EP2019057184
(87)【国際公開番号】W WO2019185457
(87)【国際公開日】2019-10-03
【審査請求日】2022-03-17
(31)【優先権主張番号】62/647,865
(32)【優先日】2018-03-26
(33)【優先権主張国・地域又は機関】US
【前置審査】
(73)【特許権者】
【識別番号】590000248
【氏名又は名称】コーニンクレッカ フィリップス エヌ ヴェ
【氏名又は名称原語表記】Koninklijke Philips N.V.
【住所又は居所原語表記】High Tech Campus 52, 5656 AG Eindhoven,Netherlands
(74)【代理人】
【識別番号】110001690
【氏名又は名称】弁理士法人M&Sパートナーズ
(72)【発明者】
【氏名】フレイマン モルデカイ ピンカス
(72)【発明者】
【氏名】ゴシェン リラン
【審査官】蔵田 真彦
(56)【参考文献】
【文献】特開2004-174261(JP,A)
【文献】国際公開第2016/171570(WO,A1)
【文献】特表2009-508617(JP,A)
【文献】特開2008-062035(JP,A)
【文献】特開2007-229464(JP,A)
【文献】米国特許出願公開第2014/0010427(US,A1)
【文献】国際公開第2016/147844(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 6/00-6/58
G06T 1/00-19/20
(57)【特許請求の範囲】
【請求項1】
炎症マップ生成器モジュールを記憶するメモリと、
分光投影データ又は分光ボリューメトリック画像データの少なくとも一方を受け取り、2ベース分解を使用して、分光投影データ又は分光ボリューメトリック画像データの前記少なくとも一方を分解して、前記分光投影データ又は前記分光ボリューメトリック画像データの前記少なくとも一方の中で表される各ベースについてベクトルのセットを生成し、各ベースについての前記ベクトルのセットから、ボクセル内の各ベースの濃度を算出し、各ベースの前記濃度から、前記ボクセル内の脂肪又は炎症の少なくとも一方の濃度を決定する、プロセッサと、
脂肪又は炎症の決定された前記少なくとも一方の濃度を表示するディスプレイと、
を備える、システムにおいて、
前記2ベース分解の一方の物質が脂肪であり、他方が炎症である、システム
【請求項2】
X線放射線を放出する放射線源と、
X線放射線を検出し、前記分光投影データを生成する、検出器アレイと、
信号を再構成し、前記分光ボリューメトリック画像データを生成する、再構成器と、
を含むイメージングシステムをさらに備える、請求項1に記載のシステム。
【請求項3】
前記プロセッサがさらに、
【数19】
を解くことにより、前記ボクセル内の脂肪又は炎症の前記少なくとも一方の濃度を決定し、
ここで、Low kvは低エネルギー画像からの分光ボリューメトリック画像データであり、High kvは高エネルギー画像からの分光ボリューメトリック画像データであり、
【数20】
は原点からのバイアスであり、
【数21】
は脂肪を表すベクトルであり、cfatは脂肪濃度であり、
【数22】
は炎症を表すベクトルであり、cinfは炎症濃度である、請求項に記載のシステム。
【請求項4】
脂肪又は炎症の少なくとも一方の前記濃度が、対応するボクセル内の脂肪又は炎症の前記少なくとも一方の前記濃度に基づいてピクセルを色付けすることによって表示され、炎症を表すボクセルは、第1の色で表示され、脂肪を表すボクセルは、異なる第2の色で表示され、炎症と脂肪との組み合わせを表すボクセルは、前記第1の色と前記第2の色との間の色範囲にある異なる第3の色で表示される、請求項1に記載のシステム。
【請求項5】
分光投影データ又は分光ボリューメトリック画像データの少なくとも一方を受け取るステップと、
2ベース分解を使用して、分光投影データ又は分光ボリューメトリック画像データの前記少なくとも一方を分解して、分光投影データ又は分光ボリューメトリック画像データの前記少なくとも一方の中で表される各ベースについてベクトルのセットを生成するステップと、
各ベースについての前記ベクトルのセットから、ボクセル内の各ベースの濃度を算出するステップと、
各ベースの前記濃度から、前記ボクセル内の脂肪又は炎症の少なくとも一方の濃度を決定するステップと、
脂肪又は炎症の前記少なくとも一方の決定された前記濃度を表示するステップと、
を有する、方法において、
前記2ベース分解の一方の物質が脂肪であり、他方が炎症である、方法
【請求項6】
【数36】
を解くことにより、前記ボクセル内の脂肪又は炎症の前記少なくとも一方の濃度を決定するステップをさらに有し、
ここで、Low kvは低エネルギー画像からの分光ボリューメトリック画像データであり、High kvは高エネルギー画像からの分光ボリューメトリック画像データであり、
【数37】
は原点からのバイアスであり、
【数38】
は脂肪を表すベクトルであり、cfatは脂肪濃度であり、
【数39】
は炎症を表すベクトルであり、cinfは炎症濃度である、請求項に記載の方法。
【請求項7】
脂肪又は炎症の前記少なくとも一方の濃度が、対応するボクセル内の脂肪又は炎症の前記少なくとも一方の濃度に基づいてピクセルを色付けすることによって表示され、炎症を表すボクセルは、第1の色で表示され、脂肪を表すボクセルは、異なる第2の色で表示され、炎症と脂肪との組み合わせを表すボクセルは、前記第1の色と前記第2の色との間の色範囲にある異なる第3の色で表示される、請求項に記載の方法。
【請求項8】
コンピュータ可読命令で符号化されたコンピュータ可読記憶媒体であって、前記コンピュータ可読命令は、コンピューティングシステムのプロセッサによって実行されると、前記プロセッサに、
分光投影データ又は分光ボリューメトリック画像データの少なくとも一方を受け取ることと、
2ベース分解を使用して、分光投影データ又は分光ボリューメトリック画像データの前記少なくとも一方を分解して、分光投影データ又は分光ボリューメトリック画像データの前記少なくとも一方の中で表される各ベースについてベクトルのセットを生成することと、
各ベースについての前記ベクトルのセットから、ボクセル内の各ベースの濃度を算出することと、
各ベースの濃度から、前記ボクセル内の脂肪又は炎症の少なくとも一方の濃度を決定することと、
脂肪又は炎症の決定された前記少なくとも一方の濃度を表示することと、
を行わせる、コンピュータ可読記憶媒体において、
前記2ベース分解の一方の物質が脂肪であり、他方が炎症である、コンピュータ可読記憶媒体
【請求項9】
前記コンピュータ可読命令の実行がさらに、前記プロセッサに、訓練データ、又は対象者内の既知の脂肪若しくは炎症の少なくとも一方の場所、の少なくとも一方から、脂肪又は炎症ベクトル識別の少なくとも一方を学習させる、請求項に記載のコンピュータ可読記憶媒体。
【請求項10】
脂肪又は炎症の前記少なくとも一方の濃度が、対応するボクセル内の脂肪又は炎症の前記少なくとも一方の濃度に基づいてピクセルを色付けすることによって表示され、炎症を表すボクセルは、第1の色で表示され、脂肪を表すボクセルは、異なる第2の色で表示され、炎症と脂肪との組み合わせを表すボクセルは、前記第1の色と前記第2の色との間の色範囲にある異なる第3の色で表示される、請求項に記載のコンピュータ可読記憶媒体。
【発明の詳細な説明】
【技術分野】
【0001】
以下の内容は、概してイメージングに関し、特に、分光イメージングデータから分光炎症画像を生成することに関し、コンピュータ断層撮影イメージングへの特定の適用に関して記載される。
【背景技術】
【0002】
炎症は、神経変性、心臓血管、及び癌を含む多種の疾患に関係すると考えられる。したがって、非侵襲的な炎症検出方法は、その疾患によって生じる損傷がまだ可逆である時の早期の疾患検出、改善された患者層化、及び治療査定への応答を支援する。放射標識した白血球細胞及び18F-フッ化デオキシグルコース(18F-FDG)を陽子放出断層撮影(PET)でイメージングするなどの核医学技術を介して、炎症のある組織をイメージングすることで、炎症反応に関する情報を得ることができる。しかし、この技術は、要する放射線量が多量であること、制限された利用可能性、高いコスト、制限された空間及び時間解像度、並びに心臓などの高代謝の健康な臓器と付近の炎症とを区別する能力の制限のために制限がある。
【0003】
コンピュータ断層撮影(CT)を用いて炎症のある組織をイメージングすることにより、構造的な組織変化に関する情報が得られる。これらの変化には、浮腫、細胞外空間への流体の蓄積、コントラスト強化、内皮破裂、及び臓器損傷が含まれる。しかし、CTは、健康な組織及び/又は脂肪、炎症、並びに線硬化を含むイメージングアーチファクト間のコントラストが低いことに起因して、炎症を特徴化する能力に制限がある。例えば、図1は、第1の関心領域(ROI)102及び第2のROI 104がある心臓のCT画像100を描いている。第1の関心領域102は、高い炎症を有し、脂肪濃度がほとんどないか又は全くないことが分かっており、第2の関心領域104は、炎症をほとんど有さないか又は全く有さず、高い脂肪濃度を有することが分かっている。図2は、ROI 102及び104についての箱ひげ図200を提示する。
【発明の概要】
【発明が解決しようとする課題】
【0004】
図2において、第1の軸202はハウンスフィールド単位(HU)値を表し、第2の軸204はROIを表す。図2は、第1のROI 102について、最小値206、最大値208、及び中央値210を示し、第2のROI 104について、最小値212、最大値214、及び中央値216を示している。箱ひげ図200は、2つのROI 102及び104の間には中央HU値210及び216の差があり得るが、この差は統計的に有意でないことを示している。そのため、炎症は、一般に、増大した炎症に関連する血管透過性を主として描画する、コントラスト強化CTスキャンの遅延強化を通じて査定される。不都合点として、これらの変化は、主観的に決定され、また、例えば線硬化を含む様々なイメージングアーチファクトや、健康な組織と炎症との間のコントラストが低いこと等のために定量化することが難しい。
【0005】
本明細書に記載される態様は、上記で参照された問題及びその他に対処する。
【0006】
本明細書に記載されるのは、分光ボリューメトリック画像データ(例えばCT)内の炎症を描画し、定量化する分光マップを生成することにより炎症を査定するための手法である。
【課題を解決するための手段】
【0007】
1つの態様において、システムは、炎症マップ生成器モジュールを記憶するように構成されたメモリを含む。このシステムは、分光投影データ又は分光ボリューメトリック画像データの少なくとも一方を受け取り、2ベース分解を使用して、分光投影データ又は分光ボリューメトリック画像データの少なくとも一方を分解して、分光投影データ又は分光ボリューメトリック画像データの少なくとも一方の中で表される各ベースについてベクトルのセットを生成し、各ベースについてのベクトルのセットからボクセル内の各ベースの濃度を算出し、各ベースの濃度から、ボクセル内の脂肪又は炎症の少なくとも一方の濃度を決定するように構成されたプロセッサをさらに含む。システムはまた、脂肪又は炎症の少なくとも一方の決定された濃度を表示するように構成されたディスプレイも含む。
【0008】
別の態様において、方法は、分光投影データ又は分光ボリューメトリック画像データの少なくとも一方を受け取るステップと、2ベース分解を使用して、分光投影データ又は分光ボリューメトリック画像データの少なくとも一方を分解して、分光投影データ又は分光ボリューメトリック画像データの少なくとも一方の中で表される各ベースについてベクトルのセットを生成するステップと、を有する。方法は、各ベースについてのベクトルのセットから、ボクセル内の各ベースの濃度を算出するステップと、各ベースの濃度からボクセル内の脂肪又は炎症の少なくとも一方の濃度を決定するステップと、脂肪又は炎症の少なくとも一方の決定された濃度を表示するステップと、をさらに有する。
【0009】
別の態様において、コンピュータ可読記憶媒体がコンピュータ可読命令で符号化され、コンピュータ可読命令は、コンピューティングシステムのプロセッサによって実行されると、プロセッサに、分光投影データ又は分光ボリューメトリック画像データの少なくとも一方を受け取ることと、2ベース分解を使用して、分光投影データ又は分光ボリューメトリック画像データの少なくとも一方を分解して、分光投影データ又は分光ボリューメトリック画像データの少なくとも一方の中で表される各ベースについてベクトルのセットを生成することと、を行わせる。コンピュータ可読命令は、プロセッサによって実行されると、プロセッサにさらに、各ベースについてのベクトルのセットから、ボクセル内の各ベースの濃度を算出することと、各ベースの濃度からボクセル内の脂肪又は炎症の少なくとも一方の濃度を決定することと、脂肪又は炎症の少なくとも一方の決定された濃度を表示することと、を行わせる。
【0010】
当業者は、添付の記載を読み、理解すると、本願のさらに他の態様を認識されよう。
【0011】
本発明は、様々な構成要素及び構成要素の配置、並びに様々なステップ及びステップの配置の形態を取る。図面は、好ましい実施形態を例示することのみを目的とし、本発明を制限するものとは解釈すべきでない。
【図面の簡単な説明】
【0012】
図1】主として脂肪を含む1つの関心領域と、主として炎症を含む別の関心領域とがある心臓の例示的CT画像の図である。
図2図1に示す画像中の各関心領域についての例示的箱ひげ図である。
図3炎症マップ生成器を備えるコンピューティングシステムと、イメージングシステムとを含むシステムを概略的に示す図である。
図4炎症マップ生成器の一例を概略的に示す図である。
図5】主として脂肪を含む1つの関心領域と、主として炎症を含む別の関心領域とがある心臓の例示的CT画像の図である。
図6炎症マップ生成器の別の例を概略的に示す図である。
図7】ベクトル分離プロットの図である。
図8】本明細書に記載される一実施形態に係る例示的方法を示す図である。
図9】本明細書に記載される別の実施形態に係る例示的方法を示す図である。
【発明を実施するための形態】
【0013】
図3は、分光(マルチエネルギー)イメージング用に構成されたCTスキャナなどのイメージングシステム302を含む、システム300を概略的に示す。イメージングシステム302は、概ね静止しているガントリ304と、回転ガントリ306とを含み、回転ガントリ306は、静止ガントリ304によって支持され、検査領域308の周りをz軸を中心に回転する。寝台などの対象者支持体310が、検査領域308内で物体又は対象者を支持する。
【0014】
X線管などの放射線源312が、回転ガントリ306によって回転可能に支持され、回転ガントリ306と共に回転し、検査領域308を横断する放射線を放出する。一例では、放射線源312は、単一の広域スペクトルX線管を含む。別の例では、放射線源312は、スキャン中に少なくとも2つの異なる放出電圧(例えば80kVp及び140kVp)間を切り替えるように構成された単一のX線管を含む。さらに別の例では、放射線源312は、異なる平均スペクトルを有する放射線を放出するように構成された2つ以上のX線管を含む。さらに別の例では、放射線源312はそれらの組み合わせを含む。
【0015】
放射線感応検出器アレイ314は、検出器要素316の列の1次元又は2次元のアレイを含み、検査領域308をはさんで放射線源312の反対側で一定の角度弧に対している。放射線感応検出器アレイ314は、検査領域308を横断する放射線を検出し、分光投影データを生成する。放射線源312が単一の広域スペクトルX線管を含む場合、放射線感応検出器アレイ314は、エネルギー分解検出器(例えば、直接変換光子計数検出器、異なる分光感度をもつフォトダイオードの少なくとも2つのセット(マルチレイヤ)等)を含む。kVp切り替え及び多管構成を用いて、検出器要素316は、代替として、非エネルギー分解検出器とすることもできる。
【0016】
再構成器318は、分光投影データを受け取り、光電画像、コンプトン散乱画像、ヨウ素画像、仮想非コントラスト画像、骨画像、軟組織画像、及び/又は他のベース分光画像の1つ又は複数などの、分光ボリューメトリック画像データを再構成する。再構成器318はまた、例えば、分光投影データを組み合わせて組み合わせた分光投影データを再構成するか、又は分光ボリューメトリック画像データを組み合わせることにより、非分光ボリューメトリック画像データを生成することもできる。
【0017】
コンピューティングシステム320は、オペレータコンソールとして働く。コンソール320は、ディスプレイなどの人間可読の出力装置と、キーボードやマウス等の入力装置とを含む。コンソール320に常駐するソフトウェアが、オペレータが、グラフィカルユーザインターフェース(GUI)を介して、又はその他の形でスキャナ302と対話する、及び/又はスキャナ302を操作することを可能にする。コンソール320はさらに、プロセッサ322(例えばマイクロプロセッサ、コントローラ、中央演算処理装置(CPU)等)と、非一時的な媒体を除き、物理的メモリ装置等の一時的媒体を含む、コンピュータ可読記憶媒体324とを含む。
【0018】
コンピュータ可読記憶媒体324は、少なくとも炎症マップ生成器328に対する命令326を含む。一変形例では、プロセッサ322及びコンピュータ可読記憶媒体324は、コンピューティングシステム320とは別個でコンピューティングシステム320から遠隔にある(すなわち、その一部ではない)別のコンピューティングシステムの一部である。別の変形例では、プロセッサ322は、追加又は代替として、搬送波、信号、及び/又は他の一時的媒体によって搬送される1つ又は複数のコンピュータ可読命令を実行する。
【0019】
炎症マップ生成器328は、少なくとも分光ボリューメトリック画像データ及び/又は分光投影データを処理して、炎症マップを生成するように構成される。下記で詳しく説明するように、炎症マップ生成器328は、少なくとも炎症マップを通じてピクセル当たりの組織成分(例えば炎症及び/又は脂肪)の寄与分を定量化することにより、少なくとも分光投影データ及び/又は分光ボリューメトリック画像データ中の炎症及び/又は脂肪を定量化する。そのため、本明細書に記載される手法は、一例において、例えば改良された描画及び炎症の定量化を通じてCTによる非侵襲的な炎症の査定を改良する、新しい分光マップ(すなわち、炎症マップ)を提供する。
【0020】
図4は、炎症マップ生成器328の一例を概略的に示す。
【0021】
炎症マップ生成器328は、物質分解器402を含む。物質分解器402は、分光データ(分光投影データ及び/又は分光ボリューメトリック画像データ)を受け取り、受け取った分光データを、少なくとも脂肪及び炎症に、少なくとも直接分解する。物質分解器402は、脂肪を表すベクトルのセット及び炎症を表すベクトルのセットを出力し、ボクセル当たり1つの脂肪ベクトル及び1つの炎症ベクトルがある。
【0022】
炎症マップ生成器328はさらに、それらベクトルに基づいてボクセル内の脂肪及び炎症濃度を決定する、脂肪及び炎症濃度計算器404を含む。一例では、脂肪及び炎症濃度計算器404は、式1に示されるように脂肪の濃度及び炎症の濃度を決定する。
【数1】
ここで、Low kvは、低い方のエネルギー獲得についての分光データであり、High kvは、高い方のエネルギー獲得についての分光データであり、
【数2】
は、原点からのバイアスベクトルであり(例えば、バイアスがない場合は
【数3】
)、
【数4】
は、物質分解器402によって出力される脂肪を表すベクトルであり、cfatは、未知の脂肪濃度であり、
【数5】
は、物質分解器402によって出力される炎症を表すベクトルであり、cinfは、未知の炎症濃度である。一般に、式1は、cfat及びcinfを求めるために同時に解くことができる線形方程式の系を表す。
【0023】
炎症マップ生成器328はさらに、分光炎症マップ可視化モジュール406を含む。分光炎症マップ可視化モジュール406は、ディスプレイに、各ピクセルをその脂肪及び/又は炎症濃度cfat及びcinfに基づいて視覚的に強化する(例えば色付けする)ことにより、定量化された脂肪濃度及び炎症濃度を表示させる。例えば、一例では、脂肪のみを含んでいるピクセルは、第1の又は暗い濃淡の陰影で色付けされ、炎症のみを含んでいるピクセルは、第2の又は明るい濃淡の陰影で色付けされ、脂肪と炎症との両方を含んでいるピクセルは、それらの間の濃淡の陰影で色付けされ、濃淡の陰影は、ピクセルが脂肪より炎症を多く含んでいる場合は、第1の陰影に近づき、ピクセルが炎症より脂肪を多く含んでいる場合は、第2の陰影に近づく。
【0024】
これが図5に示され、同図は、第1のROI 502、第2のROI 504、及び第3のROI 506のあるCT画像500を描いている。第1のROI 502は、より高い炎症濃度を有し、その結果、より高い脂肪濃度を有する第2のROI 504よりも明るく見える。第3のROI 506は、脂肪と炎症との両方を含み、その結果、第1のROI 502に対応する濃淡値と第2のROI 504に対応する濃淡値との間の濃淡の陰影として見える。この例では、第1のROI 502及び第2のROI 504は、図1に描かれる第1のROI 102及び第2のROI 104と実質的に同じ位置に位置する。図1に示すように、第1のROI 102及び第2のROI 104内のボクセルは、実質的に同じ濃淡の陰影である。その結果、図1の画像では炎症から脂肪を区別することが難しいのに対し、第1のROI 502及び第2のROI 504内のボクセルは、炎症から脂肪を区別する異なる濃淡の陰影を明らかに備えている。
【0025】
図6は、炎症マップ生成器328の別の例を概略的に示す。
【0026】
この例では、物質分解器602は、入力された分光データを、2ベース物質(例えばヨウ素及び水)、又は成分(例えば光電効果及びコンプトン散乱)に分解する。物質分解器602は、一方のベースを表すベクトルのセットと、別のベースを表すベクトルのセットとを出力し、ボクセルごとに1つのベクトルがある。
【0027】
炎症マップ生成器328はさらに、物質濃度計算器604を含む。物質濃度計算器604は、所与の2ベース分解(例えば、下記に示されるように光電効果及びコンプトン散乱)に対して、例えば式2に示すように、ボクセルごとに各ベースの濃度を見つける。
【数6】
ここで、PhotoEは、光電効果分光データであり、CScatterは、コンプトン散乱分光データであり、
【数7】
は、物質濃度計算器604によって生成される光電効果を表すベクトルであり、cPhotoEは、光電効果についての未知の濃度であり、
【数8】
は、物質濃度計算器605によって生成されるコンプトン散乱を表すベクトルであり、cCScatterは、コンプトン散乱についての未知の濃度である。
【0028】
炎症マップ生成器328はさらに、脂肪及び炎症ベクトル識別器606を含む。脂肪及び炎症ベクトル識別器606は、2ベース図を用いて脂肪ベクトル及び炎症ベクトルを識別する。脂肪ベクトル及び炎症ベクトルは、訓練データから、又は事前知識(例えば炎症及び健康な脂肪の場所)を使用して対象者から、学習することができる。
【0029】
炎症マップ生成器328は、脂肪及び炎症濃度計算器608も含む。脂肪及び炎症濃度計算器608は、図7に示されるようにベクトル分離技術を概念的に使用して、所与のボクセル内の脂肪及び炎症の濃度を決定する。一般に、ベクトル分離技術は、所与のボクセルに対応する脂肪及び/又は炎症のグラフィック上の場所を、対応する脂肪ベクトル及び/又は炎症ベクトルと位置合わせすることに基づいて、ボクセル内の脂肪及び炎症の濃度を決定する。図7において、第1の軸702は第1のベースを表し、第2の軸704は、第2のベースを表す(例えば光電及びコンプトン散乱)。
【0030】
図7は、炎症に対応する第1のベクトル706及び脂肪に対応する第2のベクトル708をさらに示す。2つのベクトル同士は、原点からの2つのベクトルのバイアスを表す点710で接する。この場合、原点からのバイアスはゼロ(0)である。図7は、第1のベクトル706の第1の外挿712、及び第2のベクトル708の第2の外挿714も示している。外挿712及び714に基づき、第1及び第2のベース702及び704に対応する既知の値を有する所与のボクセル716について、脂肪及び/又は炎症の濃度を決定することができる。
【0031】
一例では、脂肪及び炎症濃度計算器608は、式3に示されるように、ベクトル分離技術を使用して脂肪の濃度及び炎症の濃度を決定する。
【数9】
ここで、
【数10】
は、物質分解によって定義され、ピクセル値を与えられる2D座標系中でのボクセルの表現であり、軸として、
【数11】
及び
【数12】
を持つ2D座標で、
【数14】
及び
【数15】
によって定義される座標系中で
【数13】
に等しく、
【数16】
は、原点からのバイアスを表し、
【数17】
は、脂肪及び炎症ベクトル識別器606によって識別された脂肪を表すベクトルであり、cfatは、脂肪の未知の濃度であり、
【数18】
は、脂肪及び炎症ベクトル識別器606によって識別された炎症を表すベクトルであり、cinfは、炎症の未知の濃度である。
【0032】
炎症マップ生成器328はさらに、分光炎症マップ可視化モジュール610を含む。分光炎症マップ可視化モジュール610は、ディスプレイに、分光投影データ及び/又は分光ボリューメトリック画像データの中の各ピクセルを、その脂肪濃度及び/又は炎症濃度に基づいて色付けすることにより、定量化された脂肪濃度及び炎症濃度を表示させる。
【0033】
図8は、本明細書に記載される実施形態に係る例示的方法を示す。
【0034】
802において、分光データ(すなわち分光投影データ又は分光ボリューメトリック画像データ)が、本明細書に記載されるように、及び/又は他の形で受け取られる。
【0035】
804において、分光データを物質的に分解し、本明細書に記載されるように、及び/又は他の形で、2つの異なるベースについてのベクトルのセットを生成する。
【0036】
806において、各ベースを表すベクトルを使用して、本明細書に記載されるように、及び/又は他の形で、ボクセル内の脂肪及び/又は炎症の濃度を得る。
【0037】
808において、決定されたボクセル内の脂肪及び/又は炎症が、本明細書に記載されるように、及び/又は他の形で表示される。
【0038】
図9は、本明細書に記載される実施形態に係る例示的方法を示す。
【0039】
902において、分光データ(すなわち分光投影データ又は分光ボリューメトリック画像データ)が、本明細書に記載されるように、及び/又は他の形で受け取られる。
【0040】
904において、分光データを物質的に分解し、本明細書に記載されるように、及び/又は他の形で、2つの異なるベースについてのベクトルのセットを生成する。
【0041】
906において、各ベースを表すベクトルを使用して、本明細書に記載されるように、及び/又は他の形で、ボクセル内の各ベースの濃度を得る。
【0042】
908において、既知の脂肪又は炎症を有する2つのベース図中での場所を使用して、本明細書に記載されるように、及び/又は他の形で、脂肪及び炎症を表すベクトルを得る。
【0043】
910において、ボクセル内の脂肪及び/又は炎症の濃度が、本明細書に記載されるように、及び/又は他の形で決定される。
【0044】
912において、決定されたボクセル内の脂肪及び/又は炎症が、本明細書に記載されるように、及び/又は他の形で表示される。
【0045】
上記動作の順序は、制限的なものではないことが理解されるべきである。そのため、本明細書において他の順序が企図される。また、1つ若しくは複数の動作が省略されてもよく、及び/又は1つ若しくは複数の追加的な動作が含まれてもよい。
【0046】
上記は、コンピュータ可読記憶媒体に符号化された又はコンピュータ可読記憶媒体に内蔵されたコンピュータ可読命令によって実施され、コンピュータ可読命令は、コンピュータプロセッサによって実行されると、プロセッサに上記の動作を遂行させる。追加又は代替として、コンピュータ可読命令の少なくとも1つが、コンピュータ可読記憶媒体ではない、信号、搬送波、他の一時的媒体によって搬送される。
【0047】
本発明について好ましい実施形態を参照して説明した。上述の詳細な説明を読み、理解すると、変更及び改変が他者に想到されよう。本発明は、それらが添付の特許請求の範囲又はその均等物に該当する限りにおいてすべてのそのような変更及び改変を含むと解釈されることが意図される。
図1
図2
図3
図4
図5
図6
図7
図8
図9