(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-02-22
(45)【発行日】2024-03-04
(54)【発明の名称】種子選別
(51)【国際特許分類】
B07C 5/342 20060101AFI20240226BHJP
【FI】
B07C5/342
(21)【出願番号】P 2020565491
(86)(22)【出願日】2019-06-10
(86)【国際出願番号】 US2019036327
(87)【国際公開番号】W WO2019241123
(87)【国際公開日】2019-12-19
【審査請求日】2021-08-04
(32)【優先日】2018-06-11
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】501231613
【氏名又は名称】モンサント テクノロジー エルエルシー
(74)【代理人】
【識別番号】100108453
【氏名又は名称】村山 靖彦
(74)【代理人】
【識別番号】100110364
【氏名又は名称】実広 信哉
(74)【代理人】
【識別番号】100133400
【氏名又は名称】阿部 達彦
(72)【発明者】
【氏名】エリック・エル・ボローマン
(72)【発明者】
【氏名】ジャレット・アール・セグリンスキ
(72)【発明者】
【氏名】ゴヴィンド・チャウダリ
(72)【発明者】
【氏名】レーンデルト・デ・ブルイン
(72)【発明者】
【氏名】ジョニー・ジェイ・コティク
(72)【発明者】
【氏名】ルイス・エム・ポンぺ・ファン・メールデルフォールト
(72)【発明者】
【氏名】ブラッド・ディ・ホワイト
(72)【発明者】
【氏名】ハンフリ-・シンチェン・チェン
【審査官】板澤 敏明
(56)【参考文献】
【文献】米国特許出願公開第2013/0126399(US,A1)
【文献】特開2012-055859(JP,A)
【文献】特開2013-178242(JP,A)
【文献】米国特許第05289921(US,A)
【文献】特開2005-058853(JP,A)
【文献】米国特許第08452445(US,B2)
【文献】特表2004-515778(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B07C 1/00-99/00
(57)【特許請求の範囲】
【請求項1】
種子を選別するための種子選別システムであって、
前記
種子選別システム内で種子を移動させるように構成された種子移送ステーションであって、コンベアを含む種子移送ステーションと、
前記種子を種子装入ステーションから前記種子移送ステーションの前記コンベアに送達するよう構成された
フィーダプレートであって、前記コンベアへ送達するために前記種子を複数の間隔を空けた列に整列させる複数の溝を規定し、これにより前記種子が該
フィーダプレートによって前記コンベア上に前記間隔を空けた列で配置される、
フィーダプレートと、
前記種子が前記
種子選別システム内を移動するときに、前記コンベア上の前記種子のX線画像を取得するように構成されたX線カメラを備える画像化アセンブリであって、前記X線カメラは、前記種子移送ステーションの前記コンベアによって前記
種子選別システム内を前記種子が移動される速度及び幅に対応するために、高ラインスキャンレートで高品質の画像を生成するように構成されている、前記画像化アセンブリと、
前記画像を生成するためにX線光子を放出するよう構成されたX線源であって、
前記コンベアは前記X線源と前記X線カメラとの間に配置されており、かつ
前記X線カメラは、
カメラハウジングと、
前記カメラハウジング内に収容された光学センサ構成要素と、
前記光学センサ構成要素に取り付けられ、前記光学センサ構成要素から延在している光ファイバであって、前記光ファイバは前記カメラハウジング内に収容されている、前記光ファイバと、
前記光ファイバに取り付けられた光ファイバシンチレータと、を備えるX線源と、
前記種子の前記取得されたX線画像に基づいて、前記種子を別個の容器に選別するように構成された選別アセンブリと
を備える、前記種子選別システム。
【請求項2】
前記X線画像を測定し、分析して、前記種子を分類するように構成されたコントローラを更に備えており、前記コントローラは、各種子が特定のクラスに属する確率を前記取得されたX線画像から決定する分類モデルをリアルタイムで実行するように構成されており、前記コントローラは、前記選別アセンブリを制御して、前記取得されたX線画像からの前記種子の前記決定された確率に基づいて、前記種子を選別するように構成されている、請求項1に記載の種子選別システム。
【請求項3】
前記X線画像を測定し、分析して、前記種子を分類するように構成されたコントローラを更に備えており、前記コントローラは、特定のクラスに属するものとして各種子を識別するために、前記取得されたX線画像に基づいて分類決定を提供する分類モデルをリアルタイムで実行するように構成されている、請求項1に記載の種子選別システム。
【請求項4】
前記X線カメラは、約5~約50keVの範囲の低エネルギX線光子を使用して、高画像化速度で前記高品質の画像を生成する、請求項1に記載の種子選別システム。
【請求項5】
前記コンベアは、前記種子を実質的に水平方向に搬送するように構成されたベルトを備えており、
前記X線カメラは、
シンチレータと、
前記シンチレータと前記ベルトとの間に配された入射窓と、
前記シンチレータと前記入射窓との間で前記シンチレータ上に設けられたシンチレータ材料と、を備え、
前記シンチレータと前記ベルトとの距離は、約0.4mm(0.01インチ)~約10mm(0.4インチ)であり、
前記入射窓と前記シンチレータとの距離は約1mm(0.04インチ)未満であ
る、
請求項1に記載の種子選別システム。
【請求項6】
前記X線カメラと前記X線
源との間に配置されたフィルタを更に備える、請求項4に記載の種子選別システム。
【請求項7】
コントローラを更に備えており、前記選別アセンブリは、少なくとも1つの選別モジュール及び複数の選別容器を備えており、前記選別モジュールは、前記種子が前記種子移送ステーションを離れる前に、前記種子の少なくとも一部を前記選別容器の少なくとも1つに向かわせるように、前記コントローラによって動作可能であり、前記選別モジュールは、複数の可動真空ノズルのうちの1つと、複数の高速エアバルブとを備えており、前記種子移送ステーションは、種子を第1の選別容器に導くように構成されており、前記選別モジュールは、種子を第2の選別容器及び第3の選別容器のうちの一方に導くように動作可能である、請求項1に記載の種子選別システム。
【請求項8】
入口、上部出口、及び下部出口を有する本体と、前記本体の内部空間に配置されたパイプとを備える破片分離器であって、前記破片分離器は、機械的力及び空気力学的力を使用して、前記入口から前記下部出口に送られる種子を迂回させる、前記破片分離器と、
前記入口を通って送られる前記種子から破片を分離して、空気または破片が前記下部出口に向けられないように、前記破片を前記上部出口に向かわせるための、前記本体の前記内部空間と流体連通するエアトランスベクタと、
配管であって、前記本体の前記入口と、前記配管を介して前記入口に前記種子を送るための、前記配管と流体連通する第2のエアトランスベクタとに取り付けられた前記配管とを更に備える、請求項1に記載の種子選別システム。
【請求項9】
前記カメラハウジングに結合され、かつ前記
X線カメラのシンチレータと前記コンベアとの間に取り付けられた入射窓を更に備えており、前記入射窓と前記シンチレータとの間の距離は1mm(0.04インチ)未満である、請求項
1に記載の種子選別システム。
【請求項10】
前記
X線源は、少なくとも約1.0mm×1.0mmの焦点サイズ
を有するX線管を含む、請求項6に記載の種子選別システム。
【請求項11】
前記光ファイバシンチレータの上部に配置されたシンチレータ材料を更に備えており、前記シンチレータ材料は、ヨウ化セシウム及びオキシ硫化ガドリニウムの一方を含む、請求項
1に記載の種子選別システム。
【請求項12】
種子を選別するための種子選別システムであって、
前記
種子選別システム内で種子を移動させるように構成された種子移送ステーションであって、コンベアを含む種子移送ステーションと、
前記種子を種子装入ステーションから前記種子移送ステーションの前記コンベアに送達するよう構成された
フィーダプレートであって、前記コンベアへ送達するために前記種子を複数の間隔を空けた列に整列させる複数の溝を規定し、これにより前記種子が該
フィーダプレートによって前記コンベア上に前記間隔を空けた列で配置される、
フィーダプレートと、
前記種子が前記
種子選別システム内を移動するときに、前記コンベア上の前記種子のX線画像を取得するように構成されたX線カメラを備える画像化アセンブリであって、前記X線カメラは、前記種子移送ステーションの前記コンベアによって前記
種子選別システム内を前記種子が移動される速度及び幅に対応するために、高ラインスキャンレートで高品質の画像を生成するように構成されている、前記画像化アセンブリと、
前記種子の前記取得されたX線画像に基づいて、前記種子を別個の容器に選別するように構成された選別アセンブリと、
前記X線画像を測定し、分析して、前記種子を分類するように構成されたコントローラと、を備え、
前記コントローラは、各種子が特定のクラスに属する確率を前記取得されたX線画像から決定する分類モデルをリアルタイムで実行するように構成されており、前記コントローラは、前記選別アセンブリを制御して、前記取得されたX線画像からの前記種子の前記決定された確率に基づいて、前記種子を選別するように構成されている、
前記種子選別システム。
【請求項13】
種子を選別するための種子選別システムであって、
前記
種子選別システム内で種子を移動させるように構成された種子移送ステーションであって、
前記種子を実質的に水平方向に搬送するように構成されたベルトを備えたコンベアを含む種子移送ステーションと、
前記種子を種子装入ステーションから前記種子移送ステーションの前記コンベアに送達するよう構成された
フィーダプレートであって、前記コンベアへ送達するために前記種子を複数の間隔を空けた列に整列させる複数の溝を規定し、これにより前記種子が該
フィーダプレートによって前記コンベア上に前記間隔を空けた列で配置される、
フィーダプレートと、
前記種子が前記
種子選別システム内を移動するときに、前記コンベア上の前記種子のX線画像を取得するように構成されたX線カメラを備える画像化アセンブリであって、前記X線カメラは、前記種子移送ステーションの前記コンベアによって前記
種子選別システム内を前記種子が移動される速度及び幅に対応するために、高ラインスキャンレートで高品質の画像を生成するように構成されている、前記画像化アセンブリと、
を備え、
前記X線カメラは、
シンチレータと、
前記シンチレータと前記ベルトとの間に配された入射窓と、
前記シンチレータと前記入射窓との間で前記シンチレータ上に設けられたシンチレータ材料と、を備え、
前記シンチレータと前記ベルトとの距離は、約0.4mm(0.01インチ)~約10mm(0.4インチ)であり、
前記入射窓と前記シンチレータとの距離は約1mm(0.04インチ)未満であり、
該種子選別システムはさらに、X線画像を生成するためにX線光子を放出するよう構成されたX線源を備え、前記ベルトは該X線源と前記画像化アセンブリとの間に設けられており、
該種子選別システムはさらに、前記種子の前記取得されたX線画像に基づいて、前記種子を別個の容器に選別するように構成された選別アセンブリを備える、
前記種子選別システム。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、一般に、種子を処理するためのシステム及び方法、より詳細には、X線画像化ならびに種子分類及び種子選別のための種子選別システム及び種子選別方法に関する。
【背景技術】
【0002】
農産業、より具体的には、種子育種産業及び種子生産産業では、種子の分析、分類、及び選別をハイスループットで行い得ることが重要となる。このことは、種子の分析は、迅速であるだけでなく、確実に、かつ大量の総量に対して高効率で行われることが好ましいことを意味する。歴史的には、種子は、所定の大きさに対応する穴の開いたスクリーンを含む機械設備を使用して、大きさによって類別される。種子のカテゴリ化はまた、種子のある特定の外観特性を検出できるように、種子の画像分析を使用して行われる。
【0003】
従来の種子画像化処理を使用する場合、個々の種子の内部形態を、ハイスループットで、かつ高予測分類精度で、自動化されるように画像化して分析することは不可能である。以前は、種子会社は、スタンドアロンのX線画像化キャビネットまたはX線画像化デバイスを使用して、種子をX線画像化することができた。しかし、この処理は、一般的には、オフラインで実行される非常に遅いバッチ処理である。したがって、リアルタイムの画像化、分類、及び選別を、ハイスループット及び高画質を産業規模で両立させ、かつ長期間にわたり持続的に実行できるシステムが必要とされている。更に、関連する種子の特徴を計測して、分類/予測の精度の高い分類モデルを開発しまたは訓練するための高度なPCベースの方法が必要である。
【発明の概要】
【課題を解決するための手段】
【0004】
一態様では、種子を選別するための種子選別システムは、一般に、システム内で種子を移動させるように構成された種子移送ステーションを備える。画像化アセンブリは、種子がシステム内を移動するときに、種子のX線画像を取得するように構成されたX線カメラを備える。X線カメラは、種子移送ステーションによってシステム内を種子が移動される速度及び幅に対応するために、高ラインスキャンレートで高品質の画像を生成するように構成されている。選別アセンブリは、種子の取得されたX線画像に基づいて、種子を別個の容器に選別するように構成されている。
【0005】
別の態様では、X線カメラは、一般に、カメラハウジングと、カメラハウジング内に収容された光学センサ構成要素とを備える。光ファイバは、光学センサ構成要素に取り付けられ、光学センサ構成要素から延在している。光ファイバは、カメラハウジング内に収容されている。光ファイバシンチレータは、光ファイバに取り付けられている。
【0006】
更に別の態様では、種子のバッチの分類モデルを構築するための訓練方法は、一般に、複数の穴を含むスキャントレイに種子を装入することを含む。種子は、スキャントレイの穴の中に保持される。種子選別アセンブリに関連付けられたX線カメラを使用して、スキャントレイ内の種子のX線画像を撮影する。種子を特定のクラスに属するものとして識別するために、スキャントレイ内の種子のX線画像を使用して、種子分類モデルを構築する。
【図面の簡単な説明】
【0007】
【
図3】X線シールドドアを開いた種子選別システムの透視図である。
【
図4】X線シールドドアを取り外した種子選別システムの透視図である。
【
図5】種子選別システムの装入移送アセンブリの透視図である。
【
図6】装入移送アセンブリの個別化フィーダプレートの透視図である。
【
図7】種子収集器と装入移送アセンブリの個別化フィーダプレートとの側面図である。
【
図8】装入移送アセンブリの種子、空気、破片の分離器の透視図である。
【
図9】種子選別システムのX線画像取得アセンブリの透視図である。
【
図10】個別化された種子がシステムの種子移送ステーションによって搬送されており、種子移送ステーションの上部にX線管が取り付けられ、種子移送ステーションの下部にX線カメラがあることを示す種子選別システムの透視図である。
【
図11】画像化アセンブリのX線カメラの入射窓の透視図である。
【
図12】画像化アセンブリのX線カメラの透視図である。
【
図14】カメラの入射窓を取り外して、光ファイバシンチレータを見せるようにしたX線カメラの部分透視図である。
【
図14A】光ファイバシンチレータの上部にあるシンチレータ材料の拡大断片図である。
【
図16】カバー及び光ファイバシンチレータを取り外して、カメラの光ファイバを見せるようにしたX線カメラの部分透視図である。
【
図16A】入射窓及び光ファイバシンチレータを取り外して、カメラの光ファイバを見せるようにしたX線カメラの部分透視図である。
【
図17】3つの選別容器を含む種子選別システムの選別アセンブリの透視図である。
【
図20】種子選別システム及びスキャントレイ処理アセンブリの透視図である。
【
図21】上部のスキャントレイに種子を装入した積み重なったスキャントレイの部分透視図である。
【
図21A】積み重なったスキャントレイの透視図である。
【
図23】カスタマイズした分類を訓練しているあいだ、画像化したスキャントレイの処理時に取得された訓練セットのX線画像である。
【
図24】種子選別システムを使用して取得したトマト種子のX線画像である。
【
図25】種子形態を表示するトマト種子のX線画像である。
【
図26】活性のあるトマト種子と失活したトマト種子とのX線画像である。
【
図27】種子選別システムを使用して取得したキュウリ種子のX線画像である。
【
図28B】異常のあるトマト種子のX線画像である。
【
図29】別の実施形態の種子選別システムの透視図である。
【
図31】
図29の種子選別システムのX線画像取得アセンブリの透視図である。
【
図32】
図29の種子選別システムの選別アセンブリの透視図である。
【
図33】
図29の種子選別システムのコンベア上の綿実のX線画像である。
【
図35A】造影剤を用いて検出された損傷を表示する綿実のX線画像である。
【
図36】様々な損傷の程度を示すトウモロコシ種子のX線画像である。
【
図37A】正常な綿実の光学画像とX線画像との比較である。
【
図37B】変色した綿実の光学画像とX線画像との比較である。
【
図38】綿実の光学画像とX線画像との比較である。
【
図39】健康な綿実と欠陥のある綿実とのX線画像である。
【
図40】健康な綿実と欠陥のある綿実とのX線画像である。
【
図41】造影剤で処理した場合と処理しなかった場合とが示される綿実のX線画像である。
【
図42】造影剤で処理した場合と処理しなかった場合とが示される内部亀裂を有するトウモロコシ種子のX線画像である。
【
図43】造影剤で処理した場合と処理しなかった場合とが示される外部亀裂を有するトウモロコシ種子のX線画像である。
【
図44A】造影剤で処理された高品質の大豆種子のX線画像である。
【
図44B】造影剤で処理された低品質の大豆種子のX線画像である。
【
図45】造影剤で処理された健康なカノーラ種子と欠陥のあるカノーラ種子とのX線画像である。
【
図46】平たいトウモロコシ種子と丸いトウモロコシ種子とのX線画像である。
【
図48】選別容器に選別された健康な種子のX線画像である。
【
図49】選別容器に選別された欠陥のある種子のX線画像である。
【発明を実施するための形態】
【0008】
全図面を通して、同様の参照符号は、対応する部分を示す。
【0009】
図1~4を参照すると、種子選別システムが全体として10で示される。本システムは、複数の種子の受け取り、分析、分類、及び選択されたカテゴリへの選別を行うように構成されている。システム10は、種子を受け取ってシステム内へ送り届けるように構成された装入移送アセンブリ12と、種子が装入移送アセンブリによってシステムを介して送られるときに種子の画像データを収集するための画像化アセンブリ14と、画像化アセンブリにより種子に対して収集された画像データに基づき、種子を選択されたカテゴリに選別するように構成された選別アセンブリ16とを備える。コントローラ18(例えば、プロセッサ及び好適なメモリ)が、システム10を動作させるようにプログラムされている。画像化アセンブリ14は画像データを取得し、システム10が種子内の欠陥を確実に検出する、または種子品質測定基準を予測することを可能にするコントローラ18は、種子の大きさ、形状、及び内部構造と、学習アルゴリズムと、分類モデルとを迅速かつ高精度に提供するために、画像特徴分析用に最適化された演算子を組み込む。種子選別システム10は、野菜種子(例えば、トマト、トマト台木、コショウ、ウリ科、アブラナ科)、条植え作物種子(例えば、トウモロコシ、大豆、ワタ)、及びその他の作物(例えば、アルファルファ、カノーラ、稲、コムギ)を含むがこれらに限定されない任意好適な種子タイプに使用することができる。好ましい実施形態では、本システムは、野菜種子を選別し、分類するために使用される。
【0010】
選別アセンブリ16は、種子が後の処理、評価、及び/または分析に備えてより正確に類別されるように、種子を2つ以上の選択されたカテゴリに選別するように構成されている。例えば、画像化アセンブリ14及びコントローラ18によって欠陥があると判定された種子を、健康な/欠陥のない種子から分離することができる。欠陥のある種子は、ある特定の品質測定基準に基づいて、使用できないもしくは望ましくない種子、病気にかかった種子、変色した種子、または機械的に損傷した種子、及び不活性物質であると識別され得る。例えば、野菜種子の種子品質は、使用可能な幼植物体(実生)を産出する種子の能力に従ってラベル付けされ得る。実生は、正常な、弱い、異常のある、発芽しないものであるとの代表的なラベル評価を有し得る。しかし、健康な/欠陥のない種子は、種子の外部画像からは同じように見え得るので、画像化アセンブリ14が種子の内部幾何学的形態を捉えることができれば、種子の状態のより正確な表示がもたらされる。例えば、画像化アセンブリ14を使用して内部亀裂を調べることができる。種子の胚にまで及ぶ亀裂は、種子の発芽に特に悪影響を及ぼすので、このことは有益である。更に、装入移送アセンブリ12、画像化アセンブリ14、コントローラ18、及び選別アセンブリ16により、システムは、リアルタイムの種子選別の速度要件を満たす種子のハイスループット測定を提供できるようになる。したがって、システム10は、既存の種子処理手順に組み込むことができ、迅速かつ連続的に種子選別機能を提供することができる。
【0011】
図5~8を参照すると、装入移送アセンブリ12は、種子をホッパに受け入れるための入口22と、ホッパから種子を分配するための出口24とを備えるホッパ(広義には、種子装入ステーション)20を備える。出口24には、種子が出口から分配されるときに種子を用量供給するために、振動フィーダ25及び供給シュート31が配置されている。個別化フィーダプレート26の出口に、コンベア27(広義には、種子移送ステーション)が設置されている。振動フィーダ25は、第1の振動フィーダ29と、第1の振動フィーダと結合された振動シュート31とを備える。第1の振動フィーダ29は、振動エネルギを利用して、振動シュート31沿いに個別化フィーダプレート26まで種子を搬送する。個別化フィーダプレート26には、第2の振動フィーダ33が結合されている。第2の振動フィーダ33は、振動エネルギを利用して、個別化フィーダプレート26沿いに種子を搬送する。個別化フィーダプレート26は、個別化フィーダプレート26の長さに沿って延在する複数の平行溝35を備える。溝35は、種子を複数の平行な列に整列させてコンベア27に送り届ける(
図10)。振動エネルギはまた、各種子を画像化アセンブリ14によって画像化し得るように、種子を移動方向に列内で互いに間隔を空けさせる。各溝35は、溝の両側面に形成された溝穴37を有し、種子が渡るための各溝の底部に材料の小断面を残す。他の溝穴構成及び配置もまた、本開示の範囲内で想定される。各溝穴37は、種子収集器39の上に設置されている。以下で更に詳細に説明するように、過剰な種子は溝穴37に落下し、種子収集器39によって捕捉されてホッパ20に送り返される。図示の実施形態では、個別化フィーダプレート26は、8つの溝35を含む。ただし、個別化フィーダプレート26は、本開示の範囲から逸脱しない範囲で、異なる数の溝35を有してもよい。一実施形態では、個別化フィーダプレート26は、5つの溝35を有し得る。更に他の数の溝が想定される。
【0012】
振動供給速度は、振動フィーダ29、33の振動振幅及びまたは振動周波数を変化させることにより、制御システムによって調整することができる。振動フィーダ29及び33を提示しているが、種子を個別化するための他の方法を使用できることが想定されている。一実施形態では、個別化ホイール(図示せず)が使用され得る。更に、追跡センサ(図示せず)を、個別化フィーダプレート26の出口に設置してもよい。
【0013】
種子収集器39によって収集された種子は、エアトランスベクタ45の空気力を受けて、配管41を通って種子、空気、及び破片の分離器43に送られる。種子、空気、及び破片の分離器43は、入口47、上部出口49、及び下部出口51を有する本体52を備える。本体43の内側にパイプ53が収容されている。配管41により、種子が入口47を通って本体43に導入される。種子、空気、及び破片の分離器43は、機械的及び空気力学的な力を利用して、種子を下部出口51に向かわせ、空気及び破片を上部出口49に向かわせる。この力により、種子は分離器43の周りを回転し、本体52を下部出口51まで沈降する。空気及び破片はパイプ53中に捕捉され、上部出口49から外へ上向きに向けられる。下部出口51は、種子をホッパ20に落下させて、再び装入移送アセンブリ12によって処理される。破片分離器43内の空気の流れを、下部出口51で実質的に空気の流出がないようにバランスさせるために、上部出口49に、第2のエアトランスベクタ(図示せず)が配置されてもよい。
【0014】
図示の実施形態では、コンベア27は、平坦な水平コンベア搬送面を画定するベルト28を備える。コンベア27は、種子がシステム10を介して送られるときに種子が置かれる平坦な表面を提供する。一実施形態では、コンベア27は、ベルト28を固定し得る長尺のプレートを含み得、この長尺のプレートの材料は、ベルト28が平らであり続けるとともに、ベルトへの摩擦/摩耗を最小限に抑えることができるような材料である(例えば、ステンレス鋼またはクロムで作られている)。結果として、種子はコンベア上で実質的に固定された向き及び位置に留まるようになるので、システム10は、本システムを通る各種子の移動を完全に制御することができ、したがって、種子がコンベア27上を移動するときの種子の位置の追跡を向上させることができる。各種子の重心の実際の位置は、画像取得アセンブリ14(例えば、X線カメラ)によって判定される。一実施形態では、X線カメラ60はラインスキャンカメラである。ラインスキャンカメラ60は、移動する対象物をスキャンして対象物の「ライン」を捉える一列の光感受性画素を有する。対象物が移動する速度を知っていることで、カメラ60は、ラインをつなぎ合わせて、対象物の完全な画像を形成することが可能になる。画像取得アセンブリ14のラインスキャン速度及び空間分解能とコンベア27の移動速度との両方を、制御し、追跡することにより、各種子の実際の位置を計算することができる。一実施形態では、コンベア27の位置を追跡するために、高精度エンコーダがシステム10に組み込まれている。エンコーダはまた、それらの画像を取得するために、画像化アセンブリ14をトリガするマスタタイミングデバイスとして機能し得る。以下で更に詳細に説明するように、平坦な表面により、画像化アセンブリ14が取得しようとする測定結果を一層正確にすることが可能になる。コンベア27は平坦な表面を含む必要はなく、種子を運ぶベルト28がそれに沿って移動できる表面のみを有する必要があることに留意されたい。
【0015】
コンベア27は、通常は約10~110mm/秒の間で稼働し、最高で約40インチ/秒以上の速度で動作し得る高速コンベアにもなり得る。野菜種子の場合、コンベア27は、約10~100mm/秒の間の速度で稼働し得る。一実施形態では、コンベアは、野菜種子向けに約55mm/秒の速度で稼働する。これにより、14ミクロンのセンサ画素分解能で、約3024mm2/秒の画像化速度が得られる。また一方、稼働の速度は、10~1000mm/秒の範囲に及び得る。コンベア速度を増加させると、ベルト28の移動方向における種子間のピッチ間隔が増加し、または種子間のピッチ間隔が一定に保たれている場合には、種子の高速化を可能にする。コンベア27は、約50mm(2インチ)から約90mm(3.5インチ)の代表的なスキャン幅では、代表的には約30から約60種子/秒の速度で種子をシステム10内へ送り届けることができる。一実施形態では、コンベア27は、約55mm/秒の速度で、約55mm(2.2インチ)の一致したスキャン幅を伴って稼働される。必要に応じて、X線カメラへの幅広のTDIセンサの使用、及び/またはカメラへの光ファイバテーパの使用により、スキャン幅を増加させることができる。あるいは、ベルト28の速度を上げることで、毎秒画像化することのできる領域を増やすことができる。また、スキャン幅を広げるには、横に並べて置かれた複数のX線カメラを使用してもよい。ベルト28の速度は、コントローラ18によって制御し得る。
【0016】
一実施形態では、コンベアベルト28は光学的に透明である。コンベアベルト28の透明な性質により、以下で更に詳細に説明するように、コンベアの下からの光学的な画像化を実行できるようになる。ただし、コンベアは、本開示の範囲から逸脱しない範囲で、半透明(translucent)または半透明(semi-transparent)であってもよい。一実施形態では、ベルト28はMylar(登録商標)から形成されている。Mylar(登録商標)は、二軸延伸ポリエチレンテレフタレートのブランド名であり、延伸ポリエチレンテレフタレート(PET)から作られたポリエステルフィルムである。薄膜Mylar(登録商標)が使用され、これは、本発明で使用される低エネルギ(一般的には5~50keV)のX線光子に対して、典型的な低減衰特性を有する。光学的透過性材料及びX線透過性材料を含む他の材料もまた、本開示の範囲から逸脱しない範囲で想定される。コンベアはまた、本開示の範囲から逸脱しない範囲で、不透明であってもよい。コンベア27のベルト28にコーティングを被着させてもよい。コーティングは、ベルト28を清潔に保ち、画像化アセンブリ14が明瞭な画像を取得する能力を損なう可能性のある傷跡がないようにするのに有用な帯電防止特性及び耐擦傷特性を有するように構成され得る。追加として、または代替として、システム10上の静電荷を逃がして、コンベア27への微粒子物質の付着を低減させるために、複数のイオン化装置(図示せず)または伝導性ブラシ(図示せず)を設けてもよい。種子がベルト28上を動き回ること、及び/またはベルト28の水平面の端でベルト28に付着したままになることを避けるには、静電荷を逃がすことが必要である。あるいは、または並行して、55パーセント(55%)を超える高湿度を維持することにより、静電荷を最小化し、または低減させてもよい。
【0017】
図9~16Bを参照すると、画像化アセンブリ14は、種子のX線画像を取得するためにコンベア表面の下に取り付けられたX線カメラ60を備える。一実施形態では、X線カメラ60は、高効率、低エネルギ、高感度のX線TDIカメラ(例えば、10~50KeV)を備える。TDI(時間、遅延、及び積分)テクノロジは、移動対象物の多重露光を累積するという概念に基づいており、入射光または入射光子を収集するために利用可能な積分時間を効果的に増加させる。X線カメラ60の構造は、システムが高速の画像化速度で稼働しながら、高品質画像を取得することを可能にする。標準的なX線カメラでは、本システムで利用されるベルト速度及びスキャン幅において、動くコンベア27上の種子を有用な情報品質を伴って画像化することに対処するには、画像化感度が低すぎる可能性がある。更に、X線カメラ60の高効率設計により、必要とされるkV設定の状態での最大電力設定でX線管を動作させる必要がなくなり、それによってカメラ内のX線管の寿命が延びる。一実施形態では、X線管の寿命は約10,000時間を超える。
【0018】
X線カメラ60は、ハウジング62と、ハウジング内に部分的に収容されたTDI CCDセンサ63とを備える。センサ63は、ハウジング62内の回路(図示せず)に動作可能なように接続されている。
図16~16Bに示すように、センサ63は、センサの一部分がハウジング62の上面よりも上側に延在するように隆起させてある。CCDセンサ63の上には、光ファイバ67が取り付けられている。光ファイバ67は、センサ63に機械的にかつ光学的に結合されている。図示の実施形態では、光ファイバ67は、複数の垂直に配向した光ファイバストランドからなる。光ファイバは、互いに融着させた光学ファイバのブロックに構成されている。一実施形態では、個々の繊維の直径はそれぞれ約10マイクロメートルである。一実施形態では、光ファイバ67は、光ファイバフェースプレート(FOFP)としてのものである。光ファイバフェースプレートはコヒーレントマルチファイバプレートであり、これは深さゼロの窓として機能し、プレートの一方の面から他方の面へ画素ごとに(ファイバごとに)画像を伝達する。光ファイバ67に光ファイバシンチレータ70が取り付けられ、かつ光学的に結合されている。光ファイバシンチレータ70の上部には、カスタマイズされたシンチレータ材料69が配置されている/成長している(
図16B)。シンチレータ70は、光ファイバ67の上または第2の光ファイバ(図示せず)の上に直接配置させてもよい。一実施形態では、シンチレータ材料69は、約10マイクロメートルから約500マイクロメートルの間の厚さT
1を有する。一実施形態では、シンチレータ材料は、約55マイクロメートルの厚さT
1を有する(
図16B)。光ファイバシンチレータ70は、光ファイバ67に機械的にかつ光学的に結合されている。一実施形態では、光ファイバ67と光ファイバシンチレータ70との間に、光学オイル71(
図16B)が配置されている。一実施形態では、光学オイル71が、光ファイバ67とセンサ63との間に配置されてもよい。
【0019】
ハウジング62の上部にカメラ本体68が取り付けられており、光ファイバシンチレータ70が光ファイバ67に機械的にかつ光学的に結合されるように、カメラ本体68は光ファイバ67の上部に光ファイバシンチレータ70を付着させる。光ファイバシンチレータ70は、X線光子を可視光光子に変換するように構成されている。可視光光子は、光ファイバシンチレータ70を下って、結合された光ファイバ67内に入り、光学的に結合されたTDI-CCDセンサ63上に移動する。本体68はまた、光ファイバシンチレータ70を取り囲み、したがって、カメラ60のためのハウジング構造の一部を形成する。入射窓72が、カメラ本体68に取り付けられ、光ファイバシンチレータ70を覆う。図示の実施形態では、入射窓72は、フレーム74と、このフレームによって支持された薄い炭素繊維シート76とを備える。入射窓72はまた、カメラ60のハウジング構造の一部を形成する。光ファイバシンチレータ70及び光ファイバ67は、画像鮮鋭度、感度、光量子効率、減衰及び残光を最適化するように設計され、製造されている。カメラ60は、複数のハウジング構成要素を有することが示されているが、カメラは、単一のハウジング構造でもって形成されていてもよい。更に、ハウジング構成要素は、本開示の範囲から逸脱しない範囲で、様々な構造を有し得る。
【0020】
一実施形態では、光ファイバシンチレータ70は、シンチレータ材料69としての55ミクロンの柱状CsI:TI(タリウムで活性化されたヨウ化セシウム)でコーティングされ得る。一実施形態では、光ファイバシンチレータ70は、シンチレータ材料69としてのGd2O2S:Pr、Ce、Fでコーティングされ得る。更に、厚みを減らしたシンチレータ70を設計することにより、放出された光子エネルギスペクトルの高エネルギ光子の一部が、シンチレータ材料69内では変換されず、または単に部分的に変換されるだけなので、X線管81を、より高いkV設定でより効率的に動作させることができる。
【0021】
カメラ60は、隆起したTDI CCDセンサ63上に光ファイバ67及び光ファイバシンチレータ70を組み込むことにより、標準的なX線TDIカメラの構造を改良する。光ファイバシンチレータ70の上部にあるシンチレータ材料69は、入射窓から遠方にシンチレータを取り付ける標準的なX線TDIカメラで可能であるよりも、コンベアベルト28にはるかに近いところに配置される。したがって、シンチレータ70及び光ファイバ67は、センサをベルト/種子に近づけるのと同じ効果をもたらしながらも、センサ63を引っ込ませることを可能にする。薄い炭素繊維シート76を含む入射窓72はまた、シンチレータと種子が置かれているコンベアベルトとの間の材料及びエアギャップの厚さを減少させることにより、シンチレータ70及びシンチレータ材料69をコンベアベルト28のできるだけ近くに配置することを容易にする。一実施形態では、炭素繊維シート76の厚さは0.2mm(0.01インチ)であり、シンチレータ70から炭素繊維シート76までの距離Dは約0.6mm(0.02インチ)であり、一方でそれと同時に、コンベアベルト28の厚さは約0.1mm(0.004インチ)である。
【0022】
カメラ60をコンベアベルトに密着して配置することは、光子束、幾何学的(不)鮮鋭度、及び幾何学的倍率を考慮した場合に利点がある。光子束は、X線管から放出される1平方メートル毎秒当たりの光子の分量である。したがって、光子束は、X線管の焦点からの測定距離の関数である。幾何学的(不)鮮鋭度は、X線管の焦点から対象物(種子)までの距離、対象物からシンチレータまでの距離の関数であり、X線管の焦点サイズの関数である。幾何学的倍率は、「X線管焦点から対象物(種子)までの距離」の「対象物からカメラシンチレータまでの距離」に対する比であり、本実施形態では、約1.01倍に過ぎない。不鮮鋭度とは、放射線画像での空間分解能の損失のことである。一般に、不鮮鋭度には、幾何学的不鮮鋭度、動きの不鮮鋭度、及び写真またはシステムの不鮮鋭度の3つのタイプがあると考えられている。幾何学的不鮮鋭度は、X線ビームの幾何学的形状の態様に起因する。2つの主要因が同時に効力を発揮するようになる。すなわち、識別できる焦点サイズと、対象物~フィルムの距離(OFD)と焦点~フィルムの距離(FFD)との比率とである。微細な焦点サイズでは、幾何学的不鮮鋭度が最小限に抑えられるため、より詳細な画像が得られる。FFD:OFDの比率を高く保つことで、幾何学的不鮮鋭度が最小限に抑えられる。これを保つことは、OFDを最小限に抑えること、つまり、X線撮影される対象物の一部分を検出器のできるだけ近くに保つことにより、最も簡単に行われる。しかし、これが不可能な場合は、不鮮鋭度のレベルを許容範囲内に保つために、FFDを通常の100~110cmを超えて増やす必要がある。
【0023】
シンチレータ70及びシンチレータ材料69をコンベアベルト28の近くに取り付けることができるようにカメラ60を構成することにより、画像の好ましからざる不鮮鋭度を招くことなく、より大きな焦点サイズ(例えば、1.0mm×1.0mm以上)を有するX線管81の使用が可能になる。焦点を大きくするほど、光子束を高めることが可能になり、それによって戻りの画像化速度が上がる。結果として、X線管81から1秒間当たりに放出される離散光子の量が多くなる。このサイズの焦点を有するX線管を使用して、標準的なX線TDIカメラで動いているコンベアベルト28上の種子を画像化すると、X線画像の幾何学的鮮鋭度が損なわれることになる。これは、焦点が大きいと幾何学的な不鮮鋭度が増すためである。本開示は、カメラシンチレータを種子の非常に近くに配置し、その結果、倍率が非常に低くなる。これにより、幾何学的な不鮮鋭度を許容範囲内に保ちながら、比較的大きな焦点(比較的高い出力)を有するX線管を使用できるようになる。
【0024】
一実施形態では、コンベアベルト28(種子)とX線管81の焦点との間の距離は、約130mm(5インチ)である。上記のように、X線カメラの入射窓72は、コンベアベルト28に近接して取り付けられている。一実施形態では、X線カメラの光ファイバシンチレータ70は、コンベアベルト28から約0.4mm(0.01インチ)~約10mm(0.4インチ)の間隔をおいて配置されている。一実施形態では、望ましい間隔は0.7mm(0.03インチ)である。種子運搬コンベア27のベルト28の近くにX線カメラシンチレータ70を取り付けることにより、カメラは、X線画像の幾何学的鮮鋭度を損ねることなく、より大きな焦点サイズを有したX線管を使用できるようになる。焦点の大型化により、画像化速度を高速化する高光子束が可能となり、及び/または所与のX線管が、見返りとして管の寿命を大幅に延長する最大出力設定未満で動作できるようになる。
【0025】
カメラ60のスキャン幅をコンベア27上の種子の動きに同期させることにより、画質が更に最適化される。すなわち、カメラ60のラインスキャン速度がコンベア27の速度に適合しているので、種子がコンベアに沿って移動するときに、種子の実際の形状及び構成がカメラによって捕捉される。例えば、ラインスキャン速度をコンベア速度と同期させることで、円形種子は確実に円形種子として画像化され、カメラのラインスキャン速度が遅すぎたり速すぎたりするために、楕円形または長方形の種子として画像化されることはない。形状及び全体的な種子構成は、システムによって行われる分類決定にとって重要であるため、種子構造を正確に捕捉するX線画像を生成できるカメラ60を有することは、信頼できる種子分類モデルを生成するために重要である。
【0026】
フィルタ80が、X線カメラ60と、フィルタの上のX線管81との間に配置されている。コンベアベルト28の上に取り付けられたフレーム82が、フィルタ80を保持する。一実施形態では、フィルタは、ベルト28と同じ材料を含み、ベルト28と同じ厚さを有する。以下で更に詳細に説明するように、スキャントレイ90のフィルムもまた、ベルトと同じ材料からなり、ベルトと同じ厚さを有する。フィルタ80は、コントローラ18によって自動的に制御され、スキャントレイ90の画像化時にX線カメラ60の視野外に移動され、コンベアベルト28上に直接配置された種子の画像化時に(例えば、種子選別時に)視野内に移動される。
【0027】
X線画像の精度及び再現性を維持するために、カメラの適切な機能及び較正を確認するための備えをシステム10に追加することができる。この較正には、カメラに入る光をゼロにすることが含まれており、ゼロ設定へのカメラの較正が可能になる。次に、フレーム82内のフィルタ80は、X線伝送規格を含む時間的に安定な基準サンプルである。これらの規格はまた、X線ターゲット(例えば、合成材料からの可変厚のサンプル物体)を含んでもよい。規格は、定期的な間隔(例えば、各バッチの開始)で画像化することができ、画像化ハードウェアのステータスを確認し、必要な全てのカメラ補正を実行するために、画像化処理方法が使用される。別の実施形態では、カメラの較正は自動的に達成され得る。カメラを自動的に較正するために、本システムは、更なる種子がベルト上に供給されるのを禁止しまたは防止し、ベルトは、全ての種子がベルトからなくなるまで動く。その後、ベルトが動いている間に、種子のないベルトからの測定値に基づいてカメラが自動的に較正を行う。ベルトを動かすことで、システムがベルトの欠陥を平均化することが可能になる。
【0028】
図示の実施形態では、システム10は、X線への曝露からオペレータを保護するための格納式X線シールドドア102を含む。
【0029】
図17~19を参照すると、選別アセンブリ16は、画像化アセンブリ14及びコントローラ18によって得られた測定結果に基づいて種子を少なくとも2つの異なるカテゴリに選別するための、コンベア27の端部に設置された、一対の選別モジュール40と複数の選別容器42とを備える。図示の実施形態では、3つの選別容器42が示されている。選別モジュール40はそれぞれ、種子がコンベア27の端部に沿って搬送されるときに種子を吸い上げるための真空源と流体連通する複数の真空ノズル44を含む。本実施形態では、各選別モジュールは、8つの選別ノズルを含む。この選別ノズルの数は、個別化フィーダプレート内の個々の溝の数に対応している。本実施形態では、選別機は、直列に2つの選別モジュールを有する。これにより、本システムは、バッチからの種子を3つの別個の画分に分類し、選別することが可能になる。選別モジュール40によって吸い上げられない種子は、コンベア27の端部に移動されるようにし、そこでそれらの種子は第1の選別容器42aに落とされる。選別モジュール40の真空吸引は、選択された種子をコンベアベルト28から取り去って、それらを第2の選別容器及び第3の選別容器42b、42cに送るのに使用される。一実施形態では、本システムは、1つの選別モジュールのみを装備し得る。真空ノズルの数は、個別化フィーダプレートの溝数に対応しており、より広いコンベアベルトシステムの導入により、また8つ以上の溝を収容するより広い個別化フィーダプレートに対応して、その数を増加させてもよい。一実施形態では、トマト種子またはトマト台木種子を選別する場合、本システムは、8つの溝の個別化フィーダプレートと、選別モジュールごとに8つのノズルとを備え得る。別の実施形態では、コショウ種子を選別する場合、本システムは、5~6個の溝の個別化フィーダプレート26と、対応する数のノズルとを備え得る。
【0030】
前に述べたように、カメラのトリガとコンベア27の動きの制御とを同期させることによって、種子を追跡することができる。これは、あるラインスキャンから次のラインスキャンまでの実際の空間変位に、(ベルトの移動方向の)ラインスキャン幅を同期させることによって行い得る。別の実施形態では、種子は、光ゲート50によって追跡され得る。
図18及び19を再び参照すると、光ゲート50は、決定された位置での種子の存在及びタイミングを検出するように構成される。個別化フィーダプレート26の溝の数は、光ゲートの光センサの数と一致する。システム10は、種子の経路を追跡し、種子が光ゲート内の対応する光センサに位置合わせされるタイミングを予測することができる。したがって、システム10は、種子がコンベア27上を移動するときに各種子の位置を予測することができる。種子の予測位置と、対応する光センサでの実際のタイミングとの間の偏差を使用して、対応する真空ノズルが下方に突き出るための計算された時点を修正し得る。この情報は、コントローラ18によって、選別モジュール40の真空ノズル44の動作を指示するために使用され得る。光ゲート50からの種子位置情報を使用して、種子の検出された位置を種子の予想された位置と比較することもでき、位置の違いに関連した時間遅延を使用して、その特定の種子の溝(種子の並び)に対応する1つ以上の真空ノズル44の始動を調整することができる。本システムはまた、X線画像データにおいて検出された種子が、ある特定の空間的窓内で光ゲート50によって物理的にも検出されるかどうかを確認することもできる。これを相互参照して、対応する画像データ、位置データ、及び分類データがシステムに保存されていることを確認することができる。本システムはまた、光ゲート50によって検出された種子がデータキューにも存在するかどうかと、仮想データ位置が、光ゲートによって物理的に検出された実際の時間及び地点と十分に一致しているかどうかとを確認することができる。更に、位置データを使用して、画像データがコンベアベルト28上の各種子と完全に揃っているかどうかを確認することができる。一実施形態では、ベルト28は、表面全体に傷がある材料で作られていてもよく、光ゲート50は、ベルトの傷を無視するように較正されることになる。これは、光ゲート50が透明なベルトの傷を誤って読み取った場合にエラーが発生するのを防止するのに役立つ。光ゲートからの信号データがなくても、各種子の仮想(予測された位置及び品質分類)データにより、選別ノズルが適切なタイミング及び場所で動作できるようになるので、システムは機能し続ける。
【0031】
記載した光ゲート(光ゲートを通過する種子が、送信機と受信機との間の光の伝送を遮断するという原理に依存している)を使用する代わりに、いわゆるレーザプロフィロメータを使用して、各種子の存在、位置、及びタイミングを検出し得ることが想定される。これにより、片面だけのセンサ検出が可能になり、ベルトの素材が光学的に透明である必要がなくなる。あるいは、別の選択肢として、ラインスキャンカメラを使用してもよい。
【0032】
一実施形態では、選別モジュール40は、それぞれ、8つの真空ノズル44を含む。ただし、本開示の範囲から逸脱しない範囲で、異なる数の真空ノズルが想定される。真空ノズル44の配列は、コンベア27上の種子の配置に対応する位置に真空ノズル44を設置するために適切な数及び配置で提供される。真空ノズル44は、電気機械式アクチュエータ(例えば、ソレノイド)によって個別に作動(始動/突出)されて、種子に向けて真空ノズル44を下方に移動させ、それによって種子を真空吸引する。次に、この種子は、ホース及びその他の手段を介して選別容器に運ばれる。真空ノズル44の真空圧は、必要に応じて調整することができる。
【0033】
図示の実施形態では、種子を3つの選別容器42に選別するために、選択的に配置された2つの選別モジュール40がある。コンベア27の出口に、第1の選別容器42aが設置されている。したがって、種子が選別モジュール40によって向け直されない場合、種子は、コンベア27を離れる種子の自然な軌道の結果として、第1の選別容器42a内に着地する。一実施形態では、種子ガイド48が、種子を第1の選別容器42aに導く。第1の選別容器42aの隣に、第2の選別容器及び第3の選別容器42b、42cが設置されている。配管46は、真空ノズルを第2の選別容器及び第3の選別容器42b、42cに接続する。種子を3つ以上の容器に選別するために、追加の選別モジュールを使用できることが理解されよう。選別モジュールを使用して、種子を2つの容器のみに選別することも可能である。また、本開示の範囲から逸脱することなく、別タイプの選別アセンブリを使用し得ることも想定される。
【0034】
図20~22を参照すると、特定の種子バッチを実際にX線で選別する前に、サンプル画像を取得して、カスタマイズされた分類モデルを訓練する。これは、サンプルから個々の種子のグループを画像化し、数値画像の特徴の範囲を測定することから始める。種子または実生の品質データがこの特徴ファイルに追加されて、関連する種子バッチの訓練セットが作成される。この訓練セットから最適分類モデルを構築するのに、機械学習アルゴリズムが使用される。例えば、訓練セットから最適分類モデルを構築するのに、ロジットブースト機械学習アルゴリズムを使用してもよい。相互検証された結果の分析は、モデルに必要な動作点確率(p)閾値を設定するために使用される。p閾値点はまた、期待される性能パラメータを、出力品質、回収速度、及び拒否率として定義する。バッチの実際の選別時に、訓練されたモデルと指定されたp閾値とがシステム10に設定される。選別中に、受け入れ及び拒否の割合からの品質パラメータが使用できないため、監視できる残りのパラメータは、p値ヒストグラムと実際の拒否率のみである。最高の選別性能を得るためには、カスタム訓練セットを作成して使用し、それによって各商用種子バッチの分類モデルを構築する必要がある。また、(種子バッチごとに訓練セットを作成する必要がない)汎用的な分類モデルを採用し得ることも想定される。他の分類アルゴリズムもまた想定される。
【0035】
この訓練手順を実行するための一プロセスを以下に説明する。最初に、バッチ内の種子が個々のスキャントレイ(90)に装入され、X線シールドドアの開口部を通して、システム(10)内に、個別に装入されたスキャントレイが積み重ねられ、配置される。一実施形態では、複数のスキャントレイに種子が装入される。積み重なった3つのスキャントレイを
図21に示し、積み重なった8つのスキャントレイを
図21Aに示す。各スキャントレイは、スキャントレイを位置合わせする位置決めピンを使用することによって、別のスキャントレイと積み重ねられる。訓練セットには、積み重なった12個のスキャントレイが含まれ得る。各スキャントレイ90は、本体の上面96に形成された複数の円形の穴94を有する本体92を備える。一実施形態では、本体92は金属である。上面96と底面100との間の本体92の溝穴には透明フィルム98が配置されており、透明フィルム98は、各穴に種子を保持するために穴94の底部を覆う。底面100を覆う透明フィルム98の代表的な厚さは、0.1mm(0.004インチ)~0.2mm(0.008インチ)である。上面96の代表的な厚さは、好ましい実施形態における種子の厚さと同じほどの厚さである。ただし、その厚さは、種子が脱落したり、位置が入れ替わったりすることができないような厚さにすべきである。一実施形態では、透明フィルム98は、Mylar(登録商標)フィルムを含む。代表的なMylar(登録商標)フィルムの厚さは75~100マイクロメートルであり、この厚さはフィルタ80にも使用される。次に、スキャントレイ90は、種子がカメラ60によって画像化され得るように、システム10上に配置される。具体的には、積み重なったスキャントレイ90は、選別機システム中のコンベアベルト28に近接して位置合わせ機構(例えば、位置決めピン)を使用することにより、所定の場所に手動で挿入される。積み重なったスキャントレイ90のそれぞれは、選別機システム内の決定している場所に挿入され、位置選定ピンを使用して設置される。図示の実施形態では、事前に画像化された積み重なったスキャントレイ90が、画像化アセンブリ14と選別アセンブリ16との間のコンベアベルト28の一方の側に隣接して設置されている。スタック90の高さは、ハンドラのグリッパヘッド105内の近接スイッチを使用して、ピックアンドプレースハンドラ103によって決定される。このように、ハンドラ103は、スキャントレイ90のX、Y、及びZ座標の区別がつく。
【0036】
フィルタ80は、各スキャントレイ90内の透明フィルム98に対する追加のX線減衰を補償するためにカスタマイズされた分類を訓練するのに備えて、スキャントレイの画像化を開始するときに自動的に除去される。フィルタ80は、選別プロセス中に交換され、選別プロセス中にX線カメラ60によって取得された画像が、スキャントレイ画像化手順中に生成された画像と一致するように、スキャントレイ90の画像化特性を模倣するように機能する。本体92に対して溝穴内の透明フィルム98を動かすことによって、スキャントレイに関する全ての種子について、各穴94内の種子の位置は、調整され、同時に同期させることができる。
【0037】
全てのスキャントレイ90中の種子が中央に配置され、全てのスキャントレイが積み重ねられて選別機システムに装入されると、選別機システムのシールドが閉じ、完全に自動化されたルーチンが開始される。続いて、2軸ピックアンドプレースハンドラ103が、スタックから最上段のスキャントレイ90に移動し、真空グリッパ105を使用して上段のスキャントレイを把持する。次に、そのスキャントレイ90は供給スタックから取り出され、コンベア27上の事前定義された位置に移動される。真空グリッパ105が非アクティブ化され、ハンドラ103が上方に移動する。次に、コンベア27は、逆方向に動き、このとき、第1のスキャントレイ90を運んで、スキャントレイを開始点(
図20の左側)に移動させる。次に、コンベア27は、スキャントレイ90を順方向に移動させ、スキャントレイはX線カメラ60を通過する。システム10は、種子を保持しているスキャントレイ90の画像を捕捉する。制御ソフトウェアは、各スキャントレイIDと個々の種子位置とを追跡する。ソフトウェアはスキャントレイ画像を自動的に処理し、その結果、個々の種子が抽出され、関連データ(例えばスキャントレイID、種子位置、種子タイプ、バッチ番号など)と共に個別に保存される。
図23は、訓練手順中に取得されたトマト種子のX線画像を示す。画像化処理に続いて、スキャントレイ90は、コンベア27によって所定の位置に移動され、ハンドラ103は、スキャントレイ90を把持して、スキャントレイを選別機内の準備完了スタック位置に配置するように移動される。例えば、ハンドラ103は、画像化されたスキャントレイ90を、供給/事前画像化スタックからコンベアベルトの反対側にあるコンベアベルト28の隣のスタックに配置し得る。続いて、ハンドラ103は、供給/事前画像化スタック90から次のスキャントレイ90に移動し、供給/事前画像化スタックからの全てのスキャントレイが画像化されて、準備完了スタック位置に積み重ねられるまで、同じルーチンを繰り返す。次に、ハンドラ103は、準備完了スタックにある各スキャントレイ90を移動させて元の供給スタックに戻す。他の実施形態では、オペレータが、準備完了スタック位置からスキャントレイスタックを手動で取り出してもよい。次に、X線シールドを開いてもよく、オペレータは、積み重なったスキャントレイ90全体を取り出すことができる。
【0038】
各種子の画像が自動的に処理されて保存される。各デジタル種子X線画像は個別に評価されて、複数の形態学的及び幾何学的構造の特徴を決定する。訓練セットからの種子を保持するスキャントレイ90は、品質テストまたは他の何らかの関連する測定基準を決定するために送り出される。訓練セットの種子ごとに、関連する品質測定基準が決定される。野菜の種子の場合、種子は通常は発芽させられ、発芽及び実生の品質測定基準に関して検査される。対応する種子バッチについては、割り当てられた全ての実生の品質クラスは、真(使用可能な種子)または偽(使用不可能な種子)のバイナリクラスラベルに類別される。ただし、他のラベリングタイプ(例えばマルチクラスラベリング、連続データタイプなど)は除外されない。種子ごとに、ラベルデータが、全ての種子の特徴データと共にファイルに追加される。学習アルゴリズムが呼び出されて、所与の種子のバッチに対して最適分類モデルを構築/訓練する。統計的性能特性が、確率閾値の関数として評価される(回帰モデルが訓練されている場合)。性能測定基準及び性能要件に基づいて、最適なp閾値が決定される。次に、システム10は、対応する分類モデル及び閾値に基づいて、種子バッチに対して較正される。
【0039】
種子選別手順を開始するために、種子は、コンベア27によってシステム10内を搬送される準備のために、先ず最初に、ホッパ20内に置かれる。種子がホッパ20の出口24を離れるとき、供給シュート31及び個別化フィーダプレート26を備えた振動フィーダ25は、種子が個別化フィーダプレート31からコンベアベルト28上に落下するまで、種子を投与して前進させる。個別化フィーダプレート26は、種子を複数の列に間隔を空け、かつコンベアベルトに向かって移動方向の縦方向に間隔を空けることによって種子を個別化する。個別化フィーダプレート26の長穴37に落下した過剰な種子は、種子収集器39によって収集され、破片分離器43を経てホッパ20に送り戻される。各種子が個別化フィーダプレート26を離れるときに、追跡センサ(図示せず)が各種子を登録してもよい。一実施形態では、個々のシードはそれぞれ、X線カメラ60を通過するときに(初めて)登録される。種子は、コンベア27上の既知の位置で固定された向きに留まり、それによって、コンベアベルト28の運動制御プロファイルを知ることにより、各種子を高レベルの精度で追跡することが可能になる。あるいは、精密エンコーダを使用してもよい。コンベア27は、種子をX線カメラ60の視野に運び、そこで種子のX線ラインスキャンが取得される。個々のラインスキャンはフレームグラバに収集される。続いて、定義された数のラインを保持する画像フレームが、コントローラ18内の視覚処理PCに送られる。
【0040】
X線カメラ60によって取得されたX線画像から得られるデータに基づいて、コントローラ18は、特徴値を測定し、これらの値を分類モデルに供給し、各種子を類別することができる。本システムの機械視覚ソフトウェアは、X線画像から個々の種子を検出すること、種子のx座標及びy座標を決定すること、ならびにX線画像がダストや破片ではなく種子のものであることを示す条件を満たしているかどうかを確認することを行う。本システムは更に、X線画像が単一の種子のものであり、十分に分離されていない複数の種子ではないかどうかを確認し、種子がその特定の種子の溝内の隣接する種子に対して十分な空間的分離を有しているかどうかを確認する。本ソフトウェアは、訓練された分類モデルで使用される特徴に従って、関連する全ての特徴値を測定する。データは、バイナリであってもよく、またはカテゴリカルであってもよい。分類カテゴリは、分類子の訓練中に使用された使用済みラベルデータのタイプとラベルカテゴリとに基づいてもよい。ラベルのカテゴリには、正常、弱い、異常、非発芽、発芽前、損傷、半損傷、損傷なしなどが含まれ得る。これらの閾値/範囲に基づいて、少なくとも2つのカテゴリを定義することができる。例えば、測定データを使用して、どの種子が正常であるか、または欠陥があるかを判定することができる。各選別容器42は、カテゴリの1つに関連付けられている。図示の実施形態では、第1の選別容器42aは、所望の特性を有する種子を表し、第2の選別容器及び第3の選別容器42b、42cは、所望の特性が少ないか、または全くない種子を表す。各種子が分析されると、種子はカテゴリの1つに関連付けられる。例えば、閾値を超えるクラス確率をもたらす形態学的特徴を有する種子は、第1の受け入れカテゴリに類別される。そして、値の範囲内にあるか、またはある閾値未満のクラス確率をもたらす1つ以上の形態学的特徴を有する種子は、第2のカテゴリまたは第3のカテゴリに類別される。種子を更に2つ以上または3つ以上のカテゴリに類別するために、複数の範囲/閾値を設けてもよい。一実施形態では、設定されたp閾値よりも大きいp値を有する種子は健康であると分類され、設定されたp閾値よりも小さいp値を有する種子は欠陥があるとして分類される。確率値及び位置データならびにその他の情報は、種子ごとに、画像化アセンブリ14からコントローラ18に伝達される。次に、種子は光ゲート50を通過し、コントローラ18は、種子の物理的なタイミング及び位置が、その位置及びタイミングに関して仮想データキューに格納されたデータと一致するかどうかを確認する。種子がコンベア27の端部に到達すると、選別モジュール40は、コントローラ18によって動作されて、欠陥のある種子を第2の容器及び第3の容器42b、42cのいずれかに向かわせる。健康な種子は、コンベア27の端まで移動して、第1の容器42aに入ることが可能とされる。
【0041】
図24は、種子選別システム10を使用した種子選別/分類ルーチン中にカメラ60で取得されたトマト種子のX線画像である。
図25は、トマト種子の拡大X線画像であり、根端、エンドキャップ、及び子葉を含む種子の形態を示す。
図26を参照すると、健康で活性のあるトマト種子のX線画像が、欠陥のある、または失活したトマト種子のX線画像と比較されている。X線画像により、子葉の異常を明確に認識することができる。
図28A及び28Bはまた、それぞれ正常なトマト種子及び異常なトマト種子のX線画像を示す。
図28Cはコショウの種子のX線写真である。
図27は、種子選別システム10のカメラ60で取得された健康なキュウリ種子のX線画像である。
【0042】
図29~32を参照すると、別の実施形態の種子選別システムが全体として10′で示される。システム10と同様に、システム10′は、複数の種子の受け取り、分析、及び選択されたカテゴリへの選別を行うように構成されている。一実施形態では、システム10′は、条植え作物の種子(例えば、トウモロコシ、大豆、カノーラ、ワタなど)に使用される。システム10′は、種子を受け取ってシステムを介して送るように構成された装入移送アセンブリ12′と、種子が装入移送アセンブリによってシステムを介して送られるときに種子の画像データを収集するための画像化アセンブリ14′と、画像化アセンブリにより種子に対して収集された画像データに基づき、種子を選択されたカテゴリに選別するように構成された選別アセンブリ16′とを備える。
【0043】
図29及び30を参照すると、装入移送アセンブリ12′は、種子をホッパに受け入れるための入口22′と、ホッパから種子を分配するための出口24′とを備えるホッパ(広義には、種子装入ステーション)20′を備える。出口24′には、種子が出口から分配されるときに種子をランダムに供給するために、フィーダプレート26′が配置されている。フィーダプレート26′の出口に、コンベア27′(広義には、種子移送ステーション)が設置されている。図示の実施形態では、コンベア27′は、平坦な水平コンベア搬送面を画定するベルト28′を備える。コンベア27′は、種子がシステム10を介して送られるときに種子が置かれる平坦な表面を提供する。一実施形態では、コンベア27′の位置を追跡するために、高精度エンコーダ54′がシステム10に組み込まれている。エンコーダ54′はまた、それらの画像を取得するために、画像化アセンブリ14′をトリガするマスタタイミングデバイスとして機能し得る。一実施形態では、代表的には条植え作物の種子を画像化するために、コンベア27′は、約0.6~1.2m/秒で稼働し、4インチ幅の種子の流れに対して最大約200種子/秒のスループットを達成し得る。代表的な供給速度は毎秒約50種子である。しかし、より広いコンベアベルト、より高速のコンベア速度、またはコンベア27′上でのより近い種子間隔に対する許容を使用することにより、毎秒1000種子を超える供給速度が想定される。
【0044】
一実施形態では、コンベアベルト28′は光学的に透明である。コンベアベルト28′の透明な性質により、コンベアを通しての画像化が可能になる。ただし、コンベアは、本開示の範囲から逸脱しない範囲で、半透明(translucent)または半透明(semi-transparent)であってもよい。一実施形態では、ベルト28′はMylarから形成されている。光学的透過性材料及びX線透過性材料を含む他の材料が、本開示の範囲から逸脱しない範囲で想定される。コンベアはまた、本開示の範囲から逸脱しない範囲で、不透明であってもよい。
【0045】
図29及び31を参照すると、画像化アセンブリ14′は、コンベヤ28′の下に取り付けられてX線光子をコンベアに向けて上方に向かわせるX線管81′を備えるとともに、種子のX線画像を取得するためにコンベア表面の上に取り付けられたX線カメラ60′を備える。一実施形態では、X線カメラ60′は、低エネルギのX線TDIカメラ(例えば、10~50KeV)を備える。X線カメラ60′の構造は、システムが高速の画像化速度で稼働しながら、高品質画像を取得することを可能にする。X線カメラ60′の高効率設計により、最大電力設定でX線管を動作させる必要がなくなり、それによってカメラ内のX線管の寿命が延び、及び/または高ベルト速度及び関連する高い種子スループット率を可能にする高ラインスキャン速度での画像データの取得が可能になる。一実施形態では、X線管81′は、40Kv及び2mAの設定に設定されている。一実施形態では、ベルト28′上の種子とカメラ60′との間の距離により、カメラ60′における2×2のビニングでは、約1.1倍の幾何学的倍率と、約0.09mm/画素の実効画像分解能とが生み出される。
【0046】
コンベア27′が、X線管81′及びカメラ60′を通り過ぎて種子を搬送するとき、種子のX線画像が、カメラによって取得され、リアルタイム分析のために制御ソフトウェアに渡される。
図33は、種子が画像化アセンブリ14′を通過して搬送されるときに、カメラ60′によって撮影されたX線画像を示す。リアルタイム分析プログラムは、種子画像を背景から区別し、画像処理アルゴリズムと事前に訓練されたPLSDAモデルとに基づいて、種子をカテゴリ(例えば、成熟/未成熟)に分類する。
図34A及び34Bは、2つの綿実に対して行われた分析の図であり、一方(
図34A)は成熟として分類され、他方(
図34B)は未成熟として分類される。各種子の正確な位置はまた、X線画像とホイールエンコーダの指示値とを使用して、コントローラソフトウェアによっても決定される。
【0047】
図32を参照すると、選別アセンブリ16′は、画像化アセンブリ14′によって取得された画像から得られた測定結果に基づいて種子を2つの異なるカテゴリに選別するための、コンベア27′の端部に設置された、高速エアバルブバンク40′と複数の選別容器42′とを備える。バルブバンク40′は、種子がコンベア27′から排出されるときに種子に向けられる空気のバーストを生成するために空気圧縮機と流体連通する複数のエアバルブ44′を含む。エアは、種子の識別された特性に対応する選択された選別容器42′内に種子が着地するように、種子の飛行を向け直すために使用される。前に述べたように、種子は高精度エンコーダ54′によって追跡される。すなわち、システム10′は、種子の経路を監視し、いつ、どこで、種子がコンベア27′から排出されるかを予測し得る。したがって、システム10′は、種子がコンベア27′を離れるときの各種子の位置及び飛行を予測し得る。この情報は、コントローラが、バルブバンク40′内のバルブ44′の動作を指示するのに使用される。一実施形態では、バルブバンク40′は、それぞれ幅3.5mm(0.14インチ)で、ベルト28′を横切る幅4.41インチ(112mm)の種子の流れ領域をカバーする32個のエアバルブ44′を含む。本開示の範囲から逸脱しない範囲で、特定の種子の流れエリアをカバーするために、任意の数のエアバルブを共に組み立てることができる。更に、本開示の範囲から逸脱しない範囲で、異なる数のエアバルブが想定される。バルブ44′の配列は、コンベア27′上の種子のランダムな配置に対応する位置にバルブを設置するために適切な数及び配置で提供される。
【0048】
図示の実施形態では、種子を2つの選別容器42′に選別するために、選択的に配置された1つのバルブバンク40′がある。第1の選別容器42a′は、コンベア27′に最も近く設置され、第2の選別容器42b′は、第1の選別容器の隣に設置されるとともに、第1の選別容器よりもコンベアから遠くに設置される。バルブバンク40′は、概して第1の選別容器42a′の上に配置されており、バルブバンク内のバルブ44′からの空気のバーストが下向きの方向転換力を生み出すように下向きに向けられる。この下向きの方向転換力は、種子がコンベア27′を離れるときに種子の経路を向け直し、その結果、種子が第1の選別容器42a′に落ちるようにすることができる。したがって、種子がバルブバンク40′によって向け直されない場合、種子は、コンベア27′を離れる種子の自然な軌道の結果として、第2のバルブ容器42b′内に着地する。種子の自然な飛行により、種子が第1の選別容器42a′に着地し、バルブバンクを配置して、種子を第1の選別容器42a′から第2の選別容器42b′に向け直すことができるように、コンベア27′を動作させ、及び/または選別容器42′を配置することができることが理解されよう。更に、追加のバルブバンクを使用して種子を3つ以上の容器に選別することができる。
図48は、第2の選別容器42b′に選別された種子のX線画像を示し、
図49は、第1の選別容器42a′に選別された種子のX線画像を示す。本システムは、成熟した種子を第2の選別容器42b′に選別し、未成熟の種子を第1の選別容器42a′に選別する際に非常に正確であることが分かる。
【0049】
種子を成熟及び未成熟グループに選別することに加えて、システム10′は、種子の他の品質特徴に基づいて、種子(例えば、条植え作物種子)をグループに選別し得る。例えば、X線画像は、画像に描かれている損傷を直接視覚化することによって、ワタとトウモロコシとの両方の種子の損傷の程度を測定することができる。X線画像化を使用して綿実の内部色を予測することもでき、それによって種子の品質の指標が与えられる。
【0050】
種子の損傷は、X線造影剤で種子を処理した後の綿実において観察し得る。
図35Aの綿実のX線画像は、種子構造の損傷を介して造影剤を取り込むために強度が増加した領域(白い領域)を明らかにしている。データ内の高強度信号の存在を、損傷した種子を特定するために使用することができる(
図35B)。所与の種子の取り込み量は、損傷の重大度に関連しており、低損傷、中程度の損傷、または高損傷としてスコア化することができる。
図42及び43に示すように、造影剤で処理した後のトウモロコシ種子でも同様の損傷が観察される。この損傷は、自動ソフトウェアベースの亀裂検出アルゴリズムを使用して、造影剤を用いずに検出することもできる。
図36は、種子の亀裂を特定するために、このようなアルゴリズムを使用して分析されたトウモロコシ種子のX線画像を示す。
【0051】
また、X線画像から抽出された微妙な特徴(例えば、画像テクスチャ)を使用して、綿実を高品質と低品質とのカテゴリに選別することもできる。高品質の綿実は内部の白い色で証明され得る一方で、低品質の綿実は内部の黄色、赤色、茶色で証明され得る。このアプローチでは、従来の機械学習と現代の深層学習アプローチとを組み合わせたX線画像分析に基づく自動変色検出アルゴリズムを使用して、種子中のX線画像テクスチャの変化を測定し、これを種子の内部色に関連付け得る。これの定性的な説明は、光学画像がX線画像の結果と比較される
図38に示されている。100個の種子で20分かかり得る従来の主観的スクリーニングアプローチと比較して、この新しい方法は、客観的かつ高速であり、数分で400個の種子を実行できるため、プロセスが大幅に改善され、これらの方法の予測性能は非常に高くなる。
【0052】
X線画像化によって評価された種子の品質指標は、健康な種子と欠陥のある種子、及び低品質の種子と高品質の種子とを区別するための一貫した信頼できる検出方法であることが証明されている。
図39及び40を参照すると、良好で健康な綿実のX線画像は、未成熟で欠陥のある種子と比較して、全体的な平均X線減衰量が大きく、「充填率」測定基準が高くなっていることを表示する。また、X線画像化の結果は、生産施設(成熟した綿実と未成熟な綿実とを区別するために使用される)での重力テーブルの並べ替えから得られた結果と一致している。同様に、X線で測定された綿実の損傷は、標準的な視覚的機械的損傷プロトコルを使用して評価された損傷と一致している。更に、綿実の場合、X線画像から測定された不均質性は、種子の成熟度/年齢及び内部の色と相関しているように見受けられる。
【0053】
上記のように、X線画像化と組み合わせて、種子を造影剤で処理することで、微妙な損傷を検出するシステムの能力を高めることができる。一実施形態では、種子はヨウ化ナトリウム(NaI)で処理し得る。
図41は、NaI処理を行った場合と行わなかった場合の綿実のX線画像を示す。NaIで処理された種子は、損傷を強調する高信号によって示されるように、種子の損傷に対してより良いコントラストを示す。したがって、健康な種子は、造影剤が種子に入るのを可能にする重大な損傷がないため、損傷した種子とより容易に区別される。すなわち、造影剤の取り込みの存在及び程度は、種子の損傷の量と相関している。
図42及び43は、造影剤処理を行った場合と行わなかった場合との、それぞれ内部亀裂及び外部亀裂を有するトウモロコシ種子のX線画像を示す。これらの図に示すように、造影剤は外部亀裂のある種子に取り込まれるが、内部亀裂のある種子には取り込まれないため、これら2つのタイプの損傷を区別する。
図44A及び44Bは、造影剤で処理された高品質の大豆種子(
図44A)と低品質の大豆種子(
図44B)とのX線画像を示す。低品質の大豆サンプルは、高品質の大豆サンプルと比較した場合、種子が薬剤を取り込む割合が高いこと(つまり、各パネルの左側に向かってグループ化された、より明るくてより強度の高い種子)を示す。
図45は、造影剤で処理された健康な(損傷のない)カノーラ種子と欠陥のある(損傷した)カノーラ種子との同様のX線画像を示す。
図46は、トウモロコシ種子のグループの代表的な亀裂を示すX線画像を示し、
図47は、トウモロコシ種子の亀裂分類スキームの要約を示す。種子の重量がわかっている場合は、X線画像化を使用して種子の密度を測定することもできる。種子の高さ(または厚さ)の測定値を提供することにより、種子密度の計算に使用される総種子量の計算を行い得る。
【0054】
画像化アセンブリ14、14′を使用して得られた情報は、種子のその後の処理、評価、または分析において有用であり得る。例えば、種子生産プラントにおいては、システム10、10′によって生成されたデータは、種子在庫内の不良種子の全体的な分布を予測するために使用することができ、生産プロセスにおいて種子の欠陥がいつ発生するかを判断するために使用することができ、その後、全体的な種子在庫状況を予測するために外挿することができるサブサンプルの欠陥種子の分布を決定するのに使用することができる。この分布情報はまた、商業的なサイズカテゴリごとに種子の量を推定し、種子の量が限られている場合にサイズの閾値をわずかに調整するためにも使用することができる。選別された種子はまた、サイズ及び形状のカテゴリごとに種子品質を評価するための種子品質ラボでも使用できる。画像化アセンブリ14、14′からの情報は、その後の発芽試験で使用することができる。亀裂の程度及び量と種子の発芽との相関関係を描くことができる。例えば、種子の損傷の重症度が増すにつれて、種子の発芽スコアは低下する。次に、種子の損傷を特定する機能を使用して、製造中の各ステップを精査し、損傷が発生したプロセスの正確なステップを特定できる。この情報をもとに、そのようなダメージを軽減する方法を実行することで、プロセスを最適化することができる。また、このシステムでは、ハイパースペクトルや蛍光イメージングなど、種子の品質を評価する上で有益な検出技術を追加で組み込むことができる。
【0055】
本発明を詳細に説明すると、添付の特許請求の範囲に定義された本発明の範囲から逸脱することなく、修正及び変形が可能であることが明らかになるであろう。
【0056】
本発明の要素またはその好ましい実施形態(複数可)を導入する場合、「a」、「an」、「the」及び「said」という冠詞は、1つ以上の要素が存在することを意味することが意図されている。「備える(comprising)」、「含む(including)」、及び「有する(having)」という用語は、包括的であることを意図しており、記載された要素以外の追加の要素が存在する可能性があることを意味する。
【0057】
上記を考慮すると、本発明のいくつかの目的が達成され、他の有利な結果が達成されることが分かるであろう。本発明の範囲から逸脱することなく、上記の構成及び方法において様々な変更を加えることができるので、上記の説明に含まれ、添付の図面に示されている全ての事項は、限定的な意味ではなく例示として解釈されるべきであることが意図されている。
【0058】
発明の他の記述
以下は、本出願に記載された本発明の記述である。以下の記述のいくつかは、現在は請求項として提示されていないが、それらの記述は特許可能であると考えられ、後に請求項として提示される可能性がある。以下の装置またはシステムの記述に対応する方法などの関連する方法もまた、特許性があると考えられており、その後、特許請求の範囲として提示され得る。以下の記述は、上記の実施形態の1つ、複数、または全てを指し、上記の実施形態の1つ、複数、または全てによって支持され得ることが理解されよう。
【0059】
A1.種子を選別するための種子選別システムであって、前記システム内で種子を移動させるように構成された種子移送ステーションと、前記種子が前記システム内を移動するときに、前記種子のX線画像を取得するように構成されたX線カメラを備える画像化アセンブリであって、前記X線カメラは、前記種子移送ステーションによって前記システム内を前記種子が移動される速度及び幅に対応するために、高ラインスキャンレートで高品質の画像を生成するように構成されている、前記画像化アセンブリと、前記種子の前記取得されたX線画像に基づいて、前記種子を別個の容器に選別するように構成された選別アセンブリとを備える、前記種子選別システム。
【0060】
A2.前記X線画像を測定し、分析して、前記種子を分類するように構成されたコントローラを更に備える、A1に記載の種子選別システム。
【0061】
A3.前記コントローラは、特定のクラスに属するものとして各種子を識別する各種子の確率値を、前記取得されたX線画像から決定する分類モデルをリアルタイムで実行するように構成されている、A2に記載の種子選別システム。
【0062】
A4.前記コントローラは、前記選別アセンブリを制御して、前記取得されたX線画像からの前記種子の前記決定された確率値に基づいて、前記種子を選別するように構成されている、A3に記載の種子選別システム。
【0063】
A5.前記コントローラは、特定のクラスに属するものとして各種子を識別するために、前記取得されたX線画像に基づいて分類決定を提供する分類モデルをリアルタイムで実行するように構成されている、A2に記載の種子選別システム。
【0064】
A6.前記X線カメラは、約5~約50keVの範囲の低エネルギX線光子を使用して、高画像化速度で前記高品質の画像を生成する、A1に記載の種子選別システム。
【0065】
A7.前記種子移送ステーションはコンベアを備えている、A1に記載の種子選別システム。
【0066】
A8.前記コンベアは、前記種子を実質的に水平方向に搬送するように構成されたベルトを備えている、A7に記載の種子選別システム。
【0067】
A9.前記コンベアは、1つまたは透明もしくは半透明である、A7に記載の種子選別システム。
【0068】
A10.前記コンベアは、不透明である、A7に記載の種子選別システム。
【0069】
A11.前記コンベアは、ポリエステルフィルムで作られている、A7に記載の種子選別システム。
【0070】
A12.前記X線カメラは、前記コンベアから約20mm(約0.79インチ)~約0.8mm(0.04インチ)離れて取り付けられたシンチレータを備える、A7に記載の種子選別システム。
【0071】
A13.前記カメラと前記コンベアとの間に配置されたフィルタを更に備える、A6に記載の種子選別システム。
【0072】
A14.コントローラを更に備えており、前記選別アセンブリは、少なくとも1つの選別モジュール及び複数の選別容器を備えており、前記選別モジュールは、前記種子が前記種子移送ステーションを離れる前に、前記種子の少なくとも一部を前記選別容器の少なくとも1つに向かわせるように、前記コントローラによって動作可能である、A1に記載の種子選別システム。
【0073】
A15.前記選別モジュールは、複数の可動真空ノズルを備えている、A14に記載の種子選別システム。
【0074】
A16.前記選別モジュールは、複数の高速エアバルブを備えている、A14に記載の種子選別システム。
【0075】
A17.前記種子移送ステーションは、種子を第1の選別容器に導くように構成されており、前記選別モジュールは、種子を第2の選別容器及び第3の選別容器のうちの一方に導くように動作可能である、A15に記載の種子選別システム。
【0076】
B1.種子選別方法であって、種子移送ステーションを使用してシステム内で種子を移動させることと、前記種子が前記種子移送ステーションを介して前記システム内を移動するときに、X線カメラを使用して前記種子のX線画像を取得することであって、前記X線カメラは、前記種子移送ステーションによって前記システム内を前記種子が移動される速度に対応するために、高ラインスキャンレートで高品質の画像を生成するように構成されている、前記X線画像を取得することと、前記X線画像を分析して、前記種子のそれぞれのパラメータを決定することと、選別アセンブリを使用して、前記種子の前記決定されたパラメータに基づいて前記種子を選別することとを含む、前記種子選別方法。
【0077】
B2.前記画像の分析は、分類子モデルを動作させるコントローラを使用して、前記取得されたX線画像からの前記種子の確率値を決定することを含み、前記確率値は、前記種子を特定のクラスに属するものとして識別する、B1に記載の方法。
【0078】
B3.前記コントローラを使用して、前記種子の前記確率値に基づいて前記種子のそれぞれを分類することを更に含む、B2に記載の方法。
【0079】
B4.前記種子の類別は、前記種子を許容可能または許容不可能として類別することを含む、B3に記載の方法。
【0080】
B5.前記画像の分析は、分類子モデルを動作させるコントローラを使用して、特定のクラスに属するものとして各種子を識別するために、前記取得されたX線画像に基づいて分類決定を提供することを含む、B1に記載の方法。
【0081】
B6.前記システム内で前記種子を前記移動させることは、コンベヤを介して前記種子を実質的に水平方向に移動させることを含む、B1に記載の方法。
【0082】
B7.前記システム内で前記種子を前記移動させることは、前記コンベアを約10~約1000mm/秒の速度で稼働させることを含む、B6に記載の方法。
【0083】
B8.前記システム内で前記種子を前記移動させることは、前記コンベアを約0.6~1.2m/sの速度で稼働させることを含む、B6に記載の方法。
【0084】
B9.前記システム内で前記種子を前記移動させることは、前記種子を約20種子/秒~約200種子/秒の速度で移動させることを含む、B6に記載の方法。
【0085】
B10.前記種子の前記選別は、前記種子を少なくとも2つの別個の選別容器に選別することを含み、第1の選別容器は健康な種子を表し、第2の選別容器は欠陥のある種子を表す、B1に記載の方法。
【0086】
B11.前記種子の前記選別は、前記種子を前記第1の選別容器及び前記第2の選別容器に選別するために、少なくとも1つの選別モジュールを動作させることを含む、B8に記載の方法。
【0087】
B12.過剰な種子を種子収集器に収集し、前記過剰な種子を前記種子移送ステーションに送り戻すことを更に含む、B1に記載の方法。
【0088】
B13.前記過剰な種子を前記種子移送ステーションに送り戻すステップは、前記種子から粒子及び空気を分離することを含む、B12に記載の方法。
【0089】
C1.X線画像を取得するためのX線カメラであって、カメラハウジングと、前記カメラハウジング内に収容された光学センサ構成要素と、前記光学センサ構成要素に取り付けられ、前記光学センサ構成要素から延在している光ファイバであって、前記光ファイバは前記カメラハウジング内に収容されている、前記光ファイバと、前記光ファイバに取り付けられた光ファイバシンチレータとを備える、前記X線カメラ。
【0090】
C2.前記シンチレータに取り付けられた入射窓を更に備えており、前記入射窓と前記シンチレータとの間の距離は1mm(0.04インチ)未満である、C1に記載のX線カメラ。
【0091】
C3.前記光学センサ構成要素は、焦点サイズが少なくとも約1.0mm×1.0mmであるX線管を備える、C1に記載のX線カメラ。
【0092】
C4.前記光ファイバシンチレータの上部に配置されたシンチレータ材料を更に備えており、前記シンチレータ材料は、ヨウ化セシウム及びオキシ硫化ガドリニウムの一方を含む、C1に記載のX線カメラ。
【0093】
D1.種子のバッチの分類モデルを構築するための訓練方法であって、複数の穴を備えるスキャントレイに種子を装入することであって、前記種子は前記スキャントレイの前記穴の中に保持される、前記種子を装入することと、種子選別アセンブリに関連付けられたX線カメラを使用して、前記スキャントレイ内の前記種子のX線画像を撮影することと、前記種子を特定のクラスに属するものとして識別するために、前記スキャントレイ内の前記種子の前記X線画像を使用して、種子分類モデルを構築することとを含む、前記訓練方法。
【0094】
D2.前記スキャントレイは、本体の上面に複数の穴が形成された前記本体を含む、D1に記載の訓練方法。
【0095】
D3.前記スキャントレイは、前記本体の前記上面と底面との間に配置された透明フィルムを更に含み、各穴に種子を保持するために、前記透明フィルムが前記穴の底を覆う、D2に記載の訓練方法。
【0096】
D4.それぞれが複数の穴を備える複数のスキャントレイに種子を装入することであって、前記種子は前記スキャントレイの前記穴の中に保持される、前記種子を装入することと、回収デバイスによって回収されて、前記スキャントレイ内の前記種子を画像化するために、前記スキャントレイをスタックに積み重ねることとを更に含む、D1に記載の訓練方法。
【0097】
D5.前記回収デバイスで前記スタックから前記スキャントレイの1つを自動的に回収し、前記回収されたスキャントレイ内の前記種子を画像化するために、前記回収されたスキャントレイをコンベア上に配置することを更に含む、D4に記載の訓練方法。
【0098】
E1.種子選別システムで使用するための破片分離器アセンブリであって、入口、上部出口、及び下部出口を有する本体と、前記本体の内部空間に配置されたパイプとを備える破片分離器であって、前記破片分離器は、機械的力及び空気力学的力を使用して、前記入口から前記下部出口に送られる種子を迂回させる、前記破片分離器と、前記入口を通って送られる前記種子から破片を分離して、空気または破片が前記下部出口に向けられないように、前記破片を前記上部出口に向かわせるための、前記本体の前記内部空間と流体連通するエアトランスベクタとを備える、前記破片分離器アセンブリ。
【0099】
E2.配管であって、前記本体の前記入口と、前記配管を介して前記入口に前記種子を送るための、前記配管と流体連通する第2のエアトランスベクタとに取り付けられた前記配管とを更に備える、E2に記載の破片分離器アセンブリ。
【符号の説明】
【0100】
10 種子選別システム
12 装入移送アセンブリ
14 画像取得アセンブリ
16 選別アセンブリ
18 コントローラ
20 ホッパ
22 入口
24 出口
25 振動フィーダ
26 個別化フィーダプレート
27 種子運搬コンベア
28 コンベアベルト
29 第1の振動フィーダ
31 振動シュート
33 第2の振動フィーダ
35 平行溝
37 溝穴
39 種子収集器
40 高速エアバルブバンク
41 配管
42 選別容器
42a 第1の選別容器
42b 第2の選別容器
42c 第3の選別容器
43 破片分離器
44 真空ノズル
45 エアトランスベクタ
46 配管
47 入口
48 種子ガイド
49 上部出口
50 光ゲート
51 下部出口
52 本体
53 パイプ
54 高精度エンコーダ
54 エンコーダ
60 ラインスキャンカメラ
62 ハウジング
63 TDI-CCDセンサ
63 センサ
67 光ファイバ
68 カメラ本体
69 シンチレータ材料
70 X線カメラシンチレータ
71 光学オイル
72 入射窓
74 フレーム
76 炭素繊維シート
80 フィルタ
81 X線管
82 フレーム
90 第1のスキャントレイ
92 本体
94 穴
96 上面
98 透明フィルム
100 底面
102 格納式X線シールドドア
103 軸ピックアンドプレースハンドラ
105 真空グリッパ