(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-02-26
(45)【発行日】2024-03-05
(54)【発明の名称】冷却チャネルを含むセラミックマトリックス複合材構成要素およびその製造方法
(51)【国際特許分類】
C04B 35/80 20060101AFI20240227BHJP
F01D 5/28 20060101ALI20240227BHJP
F01D 9/02 20060101ALI20240227BHJP
F01D 5/18 20060101ALI20240227BHJP
F02C 7/18 20060101ALI20240227BHJP
【FI】
C04B35/80
F01D5/28
F01D9/02 102
F01D5/18
F02C7/18 E
【外国語出願】
(21)【出願番号】P 2022115649
(22)【出願日】2022-07-20
(62)【分割の表示】P 2020210197の分割
【原出願日】2020-12-18
【審査請求日】2022-08-18
(32)【優先日】2019-12-20
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】390041542
【氏名又は名称】ゼネラル・エレクトリック・カンパニイ
(74)【代理人】
【識別番号】100188558
【氏名又は名称】飯田 雅人
(74)【代理人】
【識別番号】100154922
【氏名又は名称】崔 允辰
(74)【代理人】
【識別番号】100207158
【氏名又は名称】田中 研二
(72)【発明者】
【氏名】トーマス・アール・ダイソン
(72)【発明者】
【氏名】マシュー・ハーパー・ホッケマイヤー
【審査官】浅野 昭
(56)【参考文献】
【文献】特開2002-234777(JP,A)
【文献】特開2019-085310(JP,A)
【文献】特開2019-007479(JP,A)
【文献】特開2017-095342(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C04B 35/622-35/84
C04B 41/80-41/91
(57)【特許請求の範囲】
【請求項1】
セラミックマトリックス複合材構成要素(10、50)であって、
高密度体を形成するスタック構成の複数の長手方向に延びるセラミックマトリックス複合材プライ(44)と、
前記高密度体内に形成され、前記複数の長手方向に延びるセラミックマトリックス複合材プライ(44)と位置合わせする1つまたは複数の細長い機能的特徴(40)であって、前記1つまたは複数の細長い機能的特徴(40)のそれぞれは、流体源からの冷却流体の流れ(62)と流体連通する入口(48)を含む、1つまたは複数の細長い機能的特徴と、
冷却チャネルを形成するために、前記1つまたは複数の細長い機能的特徴(40)の少なくとも1つから前記セラミックマトリックス複合材構成要素(10、50)の外面(11)の近位の出口(46)まで、前記複数の長手方向に延びるセラミックマトリックス複合材プライ(44)を切開する1つまたは複数の孔(47)と、
を備え、
前記1つまたは複数の細長い機能的特徴(40)の少なくとも1つが、
前記セラミックマトリックス複合材構成要素(10、50)の前記外面(11)に近位の出口(46)を含まず、少なくとも1つの絶縁チャネル(80)を形成するために、前記流体源からの前記冷却流体の流れ(62)を前記細長い機能的特徴(40)内に保持するように構成される、セラミックマトリックス複合材構成要素。
【請求項2】
前記1つまたは複数の細長い機能的特徴(40)のそれぞれは、前記セラミックマトリックス複合材構成要素(10、50)によって画定された長さ方向において延在する、請求項1に記載のセラミックマトリックス複合材構成要素(10、50)。
【請求項3】
前記1つまたは複数の細長い機能的特徴(40)が、前記複数の長手方向に延びるセラミックマトリックス複合材プライ(44)の複数のプライ(44)内に構成される、請求項1に記載のセラミックマトリックス複合材構成要素(10、50)。
【請求項4】
前記1つまたは複数の細長い機能的特徴(40)が、前記複数の長手方向に延びるセラミックマトリックス複合材プライ(44)のレイアップ中に形成される、請求項1に記載のセラミックマトリックス複合材構成要素(10、50)。
【請求項5】
前記セラミックマトリックス複合材構成要素(10、50)が、ガスタービンエンジン用の高温ガス経路タービン構成要素であり、
前記ガスタービンエンジン
の翼は、高温ガス
の流れ(16)を画定し、
前記絶縁チャネル(80)は、前記高温ガス
の流れ(16)と流体連通されていない、請求項1に記載のセラミックマトリックス複合材構成要素(10、50)。
【請求項6】
セラミックマトリックス複合材(CMC)構成要素(10、50)を形成する方法(100)であって、
マトリックス前駆体、複数の強化繊維、および複数の犠牲繊維を含むCMCプリフォームを形成するステップ(102)と、
1つまたは複数の細長い機能的特徴(40)が冷却流体流源と流体連通して前記CMCプリフォーム内に形成されるように、前記複数の犠牲繊維を除去するステップ(106)、または
流体含浸材を前記CMCプリフォームに加えるステップであって、それによって前記CMCプリフォームを高密度化し、複数の長手方向に延びるセラミックマトリックス複合材プライを画定するステップ(104)の一方を実行するステップと、
1つまたは複数の細長い機能的特徴(40)が冷却流体流源と流体連通して前記CMCプリフォーム内に形成されるように前記複数の犠牲繊維を除去するステップ(106)、または
流体含浸材を前記CMCプリフォームに加えるステップであって、それによって前記CMCプリフォームを高密度化し、複数の長手方向に延びるセラミックマトリックス複合材プライを画定するステップ(104)の他方を実行するステップと、
前記1つまたは複数の細長い機能的特徴(40)の少なくとも1つから前記セラミックマトリックス複合材構成要素(10、15)の外面(11)の近位の出口(46)まで、前記複数の長手方向に延びるセラミックマトリックス複合材プライ(44)を切開する1つまたは複数の孔(47)を形成するステップ(108)であって、それによって前記冷却流体流源から前記セラミックマトリックス複合材構成要素(10、50)の外部までの流体の流れ(62)をもたらし、1つまたは複数の冷却チャネル(42)を形成する、ステップ(108)と、
を含み、
前記1つまたは複数の細長い機能的特徴(40)の少なくとも1つが、
前記セラミックマトリックス複合材構成要素(10、50)の前記外面(11)の近位の出口(46)を含まず、少なくとも1つの絶縁チャネル(80)を形成するために、前記冷却流体流源からの前記流体の流れ(62)を前記細長い機能的特徴(42)内に保持するように構成される、方法(100)。
【請求項7】
前記少なくとも1つの絶縁チャネル(80)のそれぞれは、前記セラミックマトリックス複合材構成要素(10、50)によって画定された長さ方向において延在する、請求項
6に記載の方法(100)。
【請求項8】
前記セラミックマトリックス複合材構成要素(10、50)が、ガスタービンエンジン用の高温ガス経路タービン構成要素であり、
前記ガスタービンエンジン
の翼は、高温ガス
の流れ(16)を画定し、
前記絶縁チャネル(80)は、前記高温ガス
の流れ(16)と流体連通されていない、請求項
6に記載の方法(100)。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、一般に、発電用のガスタービンに関し、より詳細には、ガスタービン用の高温ガス経路タービン構成要素のためのセラミックマトリックス複合材構成要素を形成する方法に関する。
【背景技術】
【0002】
タービンブレード、ベーン、ノズル、シュラウド、およびバケットなどのガスタービンエンジンの特定の構成要素用の材料として、炭化ケイ素(SiC)系セラミックマトリックス複合(CMC)材料が提案されている。シリコンプ(Silicomp)、溶融含浸(MI)、化学蒸気含浸(CVI)、ポリマー膨張焼成(PIP)、および酸化物/酸化物方法を含む、SiC系構成要素を製作するためのさまざまな方法が知られている。これらの製作技術は、互いに大きく異なるが、それぞれは、ハンドレイアップおよび工具またはダイスを使用して、さまざまな方法段階で熱をかけることを含む方法によってニアネットシェイプ(near-net-shape)部材を生み出すことを伴う。
【0003】
より一般的な超合金材料から形成されるタービンブレードおよびベーンと同様に、CMCブレード、ベーンおよびシュラウドには、基本的に空洞および冷却ボイドが装備され、それによって構成要素の重量を減少させ、遠心負荷を減少させ、作動温度を低下させる。これらの特徴は通常、取り外し可能で延長可能な工具、穿孔などの組み合わせを使用してCMC構成要素内に形成される。内部冷却チャネルは、これらが冷却流の要求事項および熱勾配/応力を低減するので、金属およびCMC両方の高温ガス経路のハードウェアを冷却するために有利である。
【0004】
多くの場合、CMCガスタービン構成要素は、極限の熱勾配および高温の形の極限状態にさらされる。前に説明したようにCMC構成要素内に空洞および冷却ボイドを含んでいても、極限状態は、CMC構成要素内に亀裂形成、コーティング剥離、および凹みを引き起こし得る。これらの問題により使用寿命が短縮されると、CMC構成要素がその全可能性を実現することが妨げられる。
【先行技術文献】
【特許文献】
【0005】
【文献】「ceramic Matrix Composite Component Including Cooling Channels in Multiple Layers and Method of Producing」と題する、T. Dysonらの、代理人案件番号328243-1を有する米国特許出願
【文献】「Methods of Forming Ceramic Matrix Composites Using Sacrificial Fibers and Related Products」と題する、D. Hallらの米国特許第10,384,981号
【文献】「Methods of Forming Ceramic Matrix Composites Using Sacrificial Fibers and Non-Wetting Coating」と題する、D. Dunnらの代理人案件番号328251-1を有する米国特許出願
【発明の概要】
【発明が解決しようとする課題】
【0006】
したがって、極限の熱勾配および高温などの極限状態にさらされたときにCMCガスタービン構成要素に改良された冷却をもたらすセラミックマトリックス複合材構成要素およびセラミックマトリックス複合材構成要素を製造する方法が、必要とされる。
【課題を解決するための手段】
【0007】
本開示の態様および利点は、これ以後の説明において部分的に記載されるか、またはこの説明から明らかになることができるか、または本開示の実践を通して習得され得る。
【0008】
全体として、セラミックマトリックス複合材(CMC)構成要素が、セラミックマトリックス複合材構成要素を形成する方法と共に提供される。1つの実施形態では、セラミックマトリックス複合材構成要素は、高密度体を形成するスタック構成の複数の長手方向に延びるセラミックマトリックス複合材プライと、高密度体内に形成され、複数の長手方向に延びるセラミックマトリックス複合材プライと位置合わせする1つまたは複数の細長い機能的特徴と、1つまたは複数の細長い機能的特徴の少なくとも1つからセラミックマトリックス複合材構成要素の外面の近位の出口まで、複数の長手方向に延びるセラミックマトリックス複合材プライを切開する1つまたは複数の孔とを備える。1つまたは複数の細長い機能的特徴のそれぞれは、流体源からの冷却流体の流れと流体連通する入口を含む。
【0009】
代替の実施形態では、セラミックマトリックス複合材構成要素は、高密度体を形成するスタック構成の複数の長手方向に延びるセラミックマトリックス複合材プライと、高密度体内に形成された1つまたは複数の細長い機能的特徴と、1つまたは複数の細長い機能的特徴の少なくとも1つからセラミックマトリックス複合材の外面の近位の出口まで、複数の長手方向に延びるセラミックマトリックス複合材プライを切開して少なくとも1つの冷却チャネルを形成する、1つまたは複数の孔とを含む。1つまたは複数の細長い機能的特徴のそれぞれは、流体源からの冷却流体の流れと流体連通する入口を含む。1つまたは複数の細長い機能的特徴の少なくとも1つは、絶縁チャネルを形成するために、流体源からの流体の流れを細長い機能的特徴内に保持するように構成される。
【0010】
さらに別の実施形態では、セラミックマトリックス複合材製品を形成する方法は、マトリックス前駆体、複数の強化繊維および複数の犠牲繊維を含むCMCプリフォームを形成するステップと、1つまたは複数の細長い機能的特徴が冷却流体流源と流体連通してCMCプリフォーム内に形成されるように、複数の犠牲繊維を除去するステップ、または流体含浸材をCMCプリフォームに加えるステップであって、それによってCMCプリフォームを高密度化する、ステップの一方を実行するステップと、1つまたは複数の細長い機能的特徴が冷却流体流源と流体連通してCMCプリフォーム内に形成されるように、複数の犠牲繊維を除去するステップ、または流体含浸材をCMCプリフォームに加えるステップであって、それによってCMCプリフォームを高密度化する、ステップの他方を実行するステップと、1つまたは複数の細長い機能的特徴の少なくとも1つからセラミックマトリックス複合構成要素の外面の近位の出口まで、複数の長手方向に延びるセラミックマトリックス複合材プライを切開する1つまたは複数の孔を形成するステップであって、それによって流体源からセラミックマトリックス複合材構成要素の外部までの流体の流れをもたらし、1つまたは複数の冷却チャネルを形成する、ステップとを含む。
【0011】
本開示のこれらおよび他の特徴、態様、および利点は、以下の説明および付属の特許請求の範囲を参照することでより良好に理解されるであろう。本明細書に組み込まれ、その一部を構成する添付の図は、本開示の実施形態を例示し、説明と共に本開示の原理を説明する働きをする。
【0012】
最良の形態を含む、当業者を対象とするすべての有効な開示が、付属の図を参照して本明細書に記載される。
【図面の簡単な説明】
【0013】
【
図1】本明細書に開示する1つまたは複数の実施形態による、セラミックマトリックス構成要素(CMC)、より具体的にはCMCノズルの斜視図である。
【
図2】本明細書に開示する1つまたは複数の実施形態による、
図1のセラミックマトリックス複合材(CMC)構成要素の
図1の方向2-2で切り取られた断面図である。
【
図3】本明細書に開示する1つまたは複数の実施形態による、セラミックマトリックス構成要素(CMC)、より具体的にはCMCブレードの別の実施形態の斜視図である。
【
図4】本明細書に開示する1つまたは複数の実施形態による、
図1のセラミックマトリックス複合材(CMC)構成要素の一部の
図1の方向4-4で切り取られた概略断面図である。
【
図5】本明細書に開示する1つまたは複数の実施形態による、
図1のセラミックマトリックス複合材(CMC)構成要素の一部の
図1の方向5-5で切り取られた概略断面図である。
【
図6】本明細書に開示する1つまたは複数の実施形態による、1つまたは複数の機能的特徴を隠線で示す、
図3のセラミックマトリックス複合材(CMC)構成要素の一部の概略図である。
【
図7】本明細書に開示する1つまたは複数の実施形態による、CMC構成要素を形成するための方法の概略図である。
【発明を実施するための形態】
【0014】
可能であればどこでも、全図にわたって同じ参照番号を使用して同じ部分を表す。
【0015】
本開示の実施形態は、たとえば本明細書に開示する特徴の1つまたは複数を含まない概念と比較して、CMC翼構成要素内に1つまたは複数の冷却チャネルを形成することを可能にし、ここでチャネルは、1つまたは複数のCMC層と位置合わせして構成される。1つまたは複数のCMC層と位置合わせした冷却チャネルを含むことにより、構成要素の構造的完全性の維持がもたらされる。CMC翼構成要素は、1つもしくは複数の絶縁チャネルまたは1つもしくは複数のフィルム冷却穴をさらに含む。本開示による方法は、複雑性を低下させると共にコストを低下させ、部材の冷却需要および流量を低減する能力によって冷却をより効率的にする。
【0016】
本発明のさまざまな実施形態の要素を導入する際、冠詞「1つ(a)」、「1つ(an)」、「その」および「前記」は、要素の1つまたは複数が存在することを意味することを意図する。用語「備える」、「含む」、および「有する」は、包括的であることを意図し、あげられた要素以外にさらに要素が存在し得ることを意味する。次に、図に1つまたは複数の例を示す本開示の実施形態をより詳細に参照する。各例は、本開示を限定するのではなく、本開示を説明するものとして提供される。実際、本開示の範囲または趣旨から逸脱することなく、さまざまな改変形態および変形形態を本開示内に加えることができることが、当業者に明らかとなろう。たとえば、1つの実施形態の一部として示す、または説明する特徴を別の実施形態と共に使用して、さらに別の実施形態を生み出すことができる。したがって、本開示は、そのような改変形態および変形形態を付属の特許請求の範囲およびその等価物内に入るものとしてカバーすることを意図する。
【0017】
本開示では、層が別の層もしくは基板「上にある」またはそれを「覆う」ものとして説明されるとき、明示的にそうではないと述べられない限り、層は互いに直接接触していても、層間に別の層または特徴を有していてもよいことを理解されたい。したがって、これらの用語は、層の互いに対する相対的位置を説明するにすぎず、上下の相対位置は見る人に対する装置の向きに左右されるため、必ずしも「その上部にある」ことを意味しない。
【0018】
本開示では、化学元素は、元素の周期表で一般的に見出されるようなその一般的な化学的略語を用いて論じられる。たとえば水素をその一般的な化学略語Hによって表し、ヘリウムをその一般的な化学略語Heによって表し、他も同様に表す。
【0019】
本明細書において使用するとき、「平均粒子径」または「平均繊維径」は、粒子または繊維の約50%がその直径より大きい直径を有し、粒子または繊維の約50%がその直径より小さい直径を有するような粒子または繊維の直径を指す。
【0020】
本明細書において使用するとき、「実質的に」は、説明するグループの少なくとも約90%以上を指す。たとえば、本明細書において使用するとき、「実質的にすべて」は、それぞれのグループの少なくとも約90%以上が適用可能な特色を有することを示し、「実質的に有さない」または「実質的にない」は、それぞれのグループの少なくとも約90%以上が適用可能な特色を有さないことを示す。本明細書において使用するとき、「過半数」は、説明するグループの少なくとも約50%以上を指す。たとえば、本明細書では、「過半数」は、それぞれのグループの少なくとも約50%が適用可能な特色を有することを示す。
【0021】
全般的に、セラミックマトリックス複合材製品(「CMC製品」)、特に溶融含浸から形成されるセラミックマトリックス複合材製品が、そのような製品を形成する方法と共に本明細書において提供される。CMC製品は、複数のプライ層で形成され、この複数のプライ層は、複数のプライ層と位置合わせして形成された1つまたは複数の細長い機能的特徴を、複数のプライ層と位置合わせして形成された1つもしくは複数の絶縁チャネルまたは1つもしくは複数のフィルム冷却穴と組み合わせて含み、CMC構成要素の機能を強化することを組み合わせる。
【0022】
発電するために使用されるシステムは、それだけに限定されないが、ガスタービン、蒸気タービン、および発電に使用される陸上ベースの航空転用装置などの他のタービン組立体を含む。特定の用途では、内部にターボ機械(たとえばタービン、コンプレッサ、およびポンプ)および他の機械を含む発電システムは、厳しい磨耗条件にさらされる構成要素を含み得る。たとえば、ブレード、バケット、ケーシング、ロータホイール、シャフト、シュラウド、ノズルなどの特定の発電システム構成要素は、高温および/または高回転環境で動作し得る。これらの構成要素は、セラミックマトリックス複合材を使用して製造され、これらの構成要素もまた、冷却通路および絶縁通路を含むことができる。本開示は、1つもしくは複数の冷却通路またはチャネルを含むCMC構成要素と、セラミックマトリックス複合材(CMC)構成要素を形成する方法とを提供する。本開示の例示的な実施形態は、タービン翼として、より具体的にはノズルまたはタービンブレードとして
図1~
図6に示されるが、本開示は、図示する構造に限定されない。
【0023】
次に
図1および
図2を参照すれば、
図1には、それだけに限定されないがタービン翼14を含むタービンノズルセグメント12などの構成要素10の斜視図が示される。
図2には、
図1の線2-2に沿って切り取られたノズルセグメント12の側部断面図が示される。
図1および
図2は、タービンノズルセグメント12を示すが、本開示による他の適切な構成要素は、それだけに限定されないが、燃焼器ライナ、ブレード、ノズル端壁/バンド、ブレードプラットフォーム、シュラウドまたは他の高温ガス経路構成要素を含む。構成要素10は、好ましくは、セラミックマトリックス複合材(CMC)材料で形成される。
【0024】
本明細書で使用するとき、セラミックマトリックス複合材または「CMC」は、セラミック繊維によって強化されたセラミックマトリックスを含む複合材を指す。本明細書に使用するのに許容可能なCMCのいくつかの例は、それだけに限定されないが、マトリックスと、酸化物、炭化物、窒化物、オキシ炭化物、オキシ窒化物、およびその混合物を含む強化繊維とを有する材料を含むことができる。非酸化物材料の例は、それだけに限定されないが、炭化ケイ素マトリックスおよび炭化ケイ素繊維(ケイ素溶融含浸によって作製されるとき、このマトリックスは残留遊離ケイ素を含むことになる);炭化ケイ素/ケイ素マトリックス混合物および炭化ケイ素繊維;窒化ケイ素マトリックスおよび炭化ケイ素繊維;ならびに炭化ケイ素/窒化ケイ素マトリックス混合物および炭化ケイ素繊維を有するCMC含む。さらに、CMCは、マトリックスと、酸化物セラミックから構成される強化繊維とを有することができる。詳細には、酸化物-酸化物CMCは、マトリックスと、酸化アルミニウム(Al2O3)、二酸化ケイ素(SiO2)、アルミノケイ酸塩、およびその混合物などの酸化物系材料を含む強化繊維とから構成され得る。したがって、本明細書で使用するとき、用語「セラミックマトリックス複合材」は、それだけに限定されないが、炭素繊維強化炭素(C/C)、炭素繊維強化炭化ケイ素(C/SiC)、および炭化ケイ素炭素繊維強化炭化ケイ素(SiC/SiC)を含む。1つの実施形態では、セラミックマトリックス複合材は、(強化されない)モノリシックセラミック構造と比べて、伸張性、破壊靱性、熱衝撃、および異方性の特性が高まる。
【0025】
SiC-SiC CMCを製作するために使用できる方法はいくつか存在する。1つの方法では、マトリックスは、溶融ケイ素またはケイ素含有合金の溶融含浸(MI)によってCMCプリフォームになるように部分的に形成されるか、または高密度化される。別の方法では、マトリックスは、炭化ケイ素の化学蒸気含浸(CVI)によってCMCプリフォームになるように少なくとも部分的に形成される。第3の方法では、マトリックスは、プレセラミックポリマーを生み出す炭化ケイ素を熱分解することによって少なくとも部分的に形成される。この方法は、しばしばポリマー含浸焼成(PIP)と称される。上記の3つの技術の組み合わせを使用することもできる。
【0026】
MI CMCプロセスの1つの例では、窒化ホウ素系コーティングシステムが、SiC繊維上に堆積される。次いで、プリプレグテープを形成するために、コーティングされた繊維にマトリックス前駆体材料を染みこませる。テープを製作する1つの方法は、フィラメント巻き法である。繊維をマトリックス前駆体スラリーの浴を通るように引き出し、染みこませた繊維をドラム上に巻き付ける。マトリックス前駆体は、炭化ケイ素およびまたは炭素粒子状物質ならびに有機材料を含むことができる。次いで、染みこませた繊維をドラムの軸に沿って切断し、ドラムから取り外して平坦なプレプレグテープを生み出し、ここでは繊維は、名目上同じ方向に通っている。結果として生じた材料は、一方向プレプレグテープである。プレプレグテープはまた、連続プレプレグ機を用いてまたは他の手段によって作製することもできる。次いで、テープを切断して成形し、レイアップし、積層してプリフォームを生成することができる。プリフォームは、熱分解されるか、または焼却され、それによってマトリックス前駆体からすべての有機材料を炭化させ、多孔部を作り出す。次いで、溶融ケイ素を、多孔性プリフォームに含浸させ、ここでは溶融ケイ素は、炭素と反応して炭化ケイ素を形成することができる。理想的には、過剰な遊離ケイ素は、すべての残留多孔部を満たし、高密度複合物が得られる。このように生成されたマトリックスは、通常、残留遊離ケイ素を含む。
【0027】
プレプレグMIプロセスは、複数の一次元プレプレグプライを一緒に重ねることによって二次元繊維アーキテクチャを有する材料を生成し、ここでは繊維の向きは、プライ間で可変である。プライはしばしば、連続繊維の向きに基づいて特定される。0度の向きが確立され、他のプライは、0度方向に対するその繊維の角度に基づいて設計される。繊維が0方向に垂直に通るプライは、90度プライ、交差プライ、または横断プライとして知られている。
【0028】
MI方法はまた、二次元または三次元織りアーキテクチャで使用することもできる。この方法の一例は、スラリーキャストプロセスであり、ここでは繊維は最初に三次元プリフォームになるように、または二次元布になるように織られる。布の場合、布の層を切断して成形し、積み上げてプリフォームを作り出す。化学蒸気含浸(CVI)技術を使用して界面コーティング(通常は窒化ホウ素ベースまたは炭素ベース)を繊維上に堆積する。CVIを使用して炭化ケイ素マトリックスの層を堆積することもできる。マトリックスの残りの部分は、マトリックス前駆体スラリーをプリフォームになるように鋳造し、次いで、溶融ケイ素で含浸されることによって形成される。
【0029】
MI方法の代替策は、CIV技術を使用して一次元、二次元、または三次元アーキテクチャで炭化ケイ素マトリックスを高密度化することである。同様に、PIPを使用して複合材のマトリックスを高密密度化することもできる。CVIおよびPIPで生成したマトリックスは、過剰な遊離ケイ素無しで生み出すことができる。MI、CVIおよびPIPの組み合わせを使用してマトリックスを高密度化することもできる。
【0030】
構成要素10、より具体的にはノズルセグメント12は、1つのみを図示し、本明細書では翼14と称する、円周方向に離間した翼形状の複数の中空ベーンを含み、これらのベーンは、本明細書では端壁とも称する、弧状のセグメント化された外側バンド22と内側バンド23(それぞれの1つのみを示す)との間に支持される。翼14、外側バンド22、および内側バンド23は、円周方向に隣接する複数のノズルセグメント12になるように配置され、このノズルセグメントは、集合して完全な360°組立体を形成する。
【0031】
ノズルセグメント12の構造は例として使用されるにすぎず、本発明の原理は任意のタービン翼に適用可能であることに留意されたい。図に示すように、
図1は、高温排気ガス16の流れが向けられる単一の翼14を含む、単一のノズルセグメント12を示す。翼14は、幅方向に離間されて置かれた翼圧力側18および翼吸引側20を含み、これらは、高さ方向または全長方向に、対向するノズル端壁、またはバンド22および23間を外方向に延びる。本明細書に示す例示的な翼圧力側18および翼吸引側20は、凹状および凸状それぞれであり得る。翼14は、翼14の前方端28および後方端30に、またはその近くに長さ方向または翼弦方向に離間されて置かれた翼前縁24および翼後縁26を含む。翼弦C(図示せず)が、翼断面の翼前縁24と翼後縁26との間に画定される。
【0032】
図2は、
図1の方向2-2で切り取られた構成要素10の断面図であり、ここで説明する1つまたは複数の機能的特徴40、より具体的には構成要素10内に形成された1つまたは複数の冷却チャネル42を示す。複数のセラミックマトリックス複合材(CMC)プライ44(明確にするために少ししか示さず)が、示される。複数の機能的特徴40は、(ここに説明する)セラミックマトリックス複合材プライ44と位置合わせして延びる。各機能的特徴40は、(ここに説明する)入口を介して冷却流体源と、出口46(
図1)を介して構成要素10の外部と(ここに説明するように)流体連通する。代替の実施形態では、複数の機能的特徴40の少なくとも1つは、翼14内に画定されたプレナム32と流体連通してもよい。
【0033】
次に
図3を参照すれば、本明細書において説明するCMC構成要素の代替の実施形態が示される。ここでも、全図にわたって同じ参照番号を使用して同じ部分を表すことが留意される。
図3の実施形態では、それだけに限定されないが、翼14を含むタービンロータセグメント52などの構成要素50が示される。
図3は上記で述べたようにタービンロータセグメント52を示すが、本開示による他の適切な構成要素は、それだけに限定されないが、燃焼器ライナ、ブレード、ノズル端壁/バンド、ブレードプラットフォーム、シュラウドまたは他の高温ガス経路構成要素を含む。
図1および
図2の構成要素10と同様に、構成要素50は、好ましくは、セラミックマトリックス複合材(CMC)材料で形成される。
【0034】
図3の実施形態では、CMC構成要素50は、高温排気ガス16の流れが向けられる翼14を含む。翼14は、先端53からありつぎ部54まで延びる。構成要素50は、ありつぎ部54によってタービンディスク(図示せず)に装着され、ありつぎ部54は、翼14から下方向に延び、タービンディスク上のスロットと係合する。プラットフォーム56は、翼14がありつぎ部54に接合される領域から横方向に外方向に延びる。構成要素50は、翼14の内部に沿って延びる少なくとも1つのプレナム32を含む。発電システムの動作中、冷却空気(図示せず)の流れは、翼14の温度を低下させるために、プレナム32を通るように向けられる。
【0035】
構成要素10、より詳細には翼14は、翼プラットフォーム56から翼の全長58に沿って翼先端53まで高さ方向または全長方向に外方向に延びる、幅方向に離間されて置かれた翼圧力側18および翼吸引側20を含む。
図1および
図2の翼14と同様に、この特定の実施形態に示す翼圧力側18および翼吸引側20は、凹状および凸状それぞれであり得る。翼14は、翼14の前方端28および後方端30に、またはその近くにそれぞれ、長さ方向または翼弦方向に離間されて置かれた翼の前縁24および後縁26を含む。入来するガス16と接触する翼14の第1の縁は、本明細書では前縁24と称され、高温排気ガス16が翼14を流れ過ぎるときに高温排気ガス16と接触する第2の縁は、後縁26と称される。翼弦(C)(図示せず)が、翼14の断面の翼前縁24と翼後縁26との間の線として画定される。
【0036】
前の実施形態と同様に、構成要素50は、1つまたは複数の機能的特徴(図示せず)、より具体的には構成要素50内に形成された1つまたは複数の冷却チャネルを含む。構成要素50は、複数のセラミックマトリックス複合材(CMC)プライ44と、セラミックマトリックス複合材プライ44と位置合わせして延びる複数の機能的特徴40とで構成される。各機能的特徴は、(ここに説明する)入口を介して翼14内に画定されたプレナム32と、出口46を介して構成要素50の外部と(ここに説明するように)流体連通する。代替の実施形態では、複数の機能的特徴40の少なくとも1つは、冷却流体の代替源と流体連通してもよい。
【0037】
次に
図4を参照すれば、
図1内の線4-4を通って切り取られた構成要素10の一部の概略断面図が示され、複数のCMCプライ44を示している。開示するこの実施形態では、複数のCMCプライ44のうち1つまたは複数は、内部に1つまたは複数の機能的特徴40(その1つのみを
図4に示す)が形成される。一実施形態では、機能的特徴40は、細長いチャネルであり、この細長いチャネルは、本明細書では流体流62とも称する冷却流体流62が通過するための冷却マニホールド60として働く。
【0038】
複数のCMCプライ44を敷設し、(ここに説明する)機能的特徴40を製作するプロセス中、入口48が、機能的特徴40ごとに形成される。複数の機能的特徴40のそれぞれは、それぞれの入口48からCMCプライ44を通って、CMCプライ44と位置合わせして延びる。入口48は、冷却流体流62の投与を実現する。
【0039】
複数のCMCプライ44を敷設し、機能的特徴40を製作した後、出口46が機能的特徴40ごとに、複数のCMCプライ44を切開するように実質的にプライを切断する構成で孔47を複数のCMCプライ44に穿孔するなどによって、セラミックマトリックス複合材構成要素10の外面11の近位に形成され、それによって機能的特徴40をセラミックマトリックス複合材構成要素10の外部と流体的に結合させる。入口48、機能的特徴40、孔47、および出口46は、冷却流体流62が流れ抜けることを可能にするのに十分な冷却チャネル42を、CMCプライ44を貫通して画定する。
【0040】
加えて、また任意選択により、1つまたは複数のフィルム冷却貫通孔70(その1つのみを示す)が、複数のCMCプライ44に穿孔するなどによって形成され、それによってプライ44を切開し、構成要素表面の追加の冷却をもたらす。1つまたは複数のフィルム冷却貫通孔70のそれぞれは、セラミックマトリックス複合材構成要素10の内面13に同一平面に配設された入口72から、セラミックマトリックス複合材構成要素10の外面11に同一平面に配設された出口74まで延びる。圧縮器からの加圧空気の一部が、1つまたは複数のフィルム冷却貫通孔70を通るように向けられ、追加の冷却流体流64として入口72を通って入り、出口74から退出する。複数のフィルム冷却貫通孔70のそれぞれは、追加の冷却流体流64が流れ抜けることを可能にするのに十分な寸法の開口部を複数のCMCプライ44を貫通して形成する。一実施形態では、複数のフィルム冷却貫通孔70を機能的特徴40と交互に配置することができ、この機能的特徴は、フィルム冷却貫通孔70によって引き起こされる低温スポットを軽減するためにより温かい空気を有する冷却チャネル42を形成する。さらに、冷却チャネル42を形成する機能的特徴40は、(ここに説明する)複数の出口46に供給するのに十分なサイズにされ得る。冷却チャネル出口46および複数のフィルム冷却貫通孔70の位置を慎重に配置することにより、表面フィルム温度をより均一にすることができる。より詳細には、複数のフィルム冷却貫通孔70(より短い経路)によって供給されるより低温のフィルム冷却を、複数の冷却チャネル42によって供給される、より高温のフィルム冷却の下流側に構成することができ、それによってさらに均一な全体的なフィルム温度を生み出す。
【0041】
図示する実施形態では、機能的特徴40および複数のフィルム冷却貫通孔70のそれぞれは、冷却流体流源に開き、これと連通し、さらに構成要素10の外部に開いている。知られている従来技術とは対照的に、複数の機能的特徴40、より詳細には複数のCMCプライ44間に複数の冷却チャネル42を形成することにより、CMCプライ44およびその結果生じる構成要素10の全体的強度は、脆弱化されず、従来の冷却特徴より精密な局所冷却速度の制御を可能にする。加えて、冷却チャネル42などの比較的小さい冷却チャネルが複数のフィルム冷却貫通孔70などの従来のフィルム冷却穴より長い流れ経路を有することにより、冷却流体流62中の利用可能な熱容量をより多く利用し、それによって流れの低減を可能にする。冷却流体流62を、冷却源から、最大の熱勾配誘発応力を受ける翼14の領域を通るようにルーティングし、本明細書に開示するように複数の機能的特徴40を配置することは、表面温度を均衡にし、新規の勾配/応力の軽減手段をもたらすのに役立つ。
【0042】
図4の実施形態では、セラミックマトリックス複合材プライ44、機能的特徴40、冷却チャネル42、入口48、出口46、およびフィルム冷却貫通孔70の配置は、概略的であり、例示目的のために拡大されている。CMCプライおよびボイドのサイズおよび形状は、
図4に示すものに限定されない。
【0043】
次に
図5を参照すれば、
図1の線5-5を通って切り取られた構成要素10の別の部分の概略図が示され、複数のCMCプライ44を示している。開示するこの実施形態では、複数のCMCプライ44の1つまたは複数は、その内部に1つまたは複数の機能的特徴40(その2つを
図5に示す)が形成される。一実施形態では、1つまたは複数の機能的特徴40は、細長いチャネルとして構成される。より詳細には、図示する実施形態では、1つまたは複数の機能的特徴40は、冷却流体流62が通過するための冷却マニホールド60として働く冷却チャネル42と、高温ガス経路の流れ16と流体連通しない絶縁チャネル80とを含む。
【0044】
図4の実施形態と同様に、複数のCMCプライ44を敷設し、(ここに説明する)機能的特徴40を製作するプロセス中、入口48が、機能的特徴40ごとに形成される。複数の機能的特徴40のそれぞれは、それぞれの入口48からCMCプライ44を通って、CMCプライ44と位置合わせして延びる。入口48は、冷却流体流62の投与を実現する。
【0045】
複数のCMCプライ44を敷設し、機能的特徴40を製作した後、出口46が、冷却チャネル42として働く機能的特徴40ごとに、実質的にプライを切断する構成で複数のCMCプライ44を切開するように孔47を複数のCMCプライ44に穿孔するなどによって形成され、それによって機能的特徴40を、出口46を介してセラミックマトリックス複合材構成要素10の外部と流体的に結合させる。
図4の実施形態と同様に、入口48、機能的特徴40、孔47および出口46は、冷却流体流62が流れ抜けることを可能にするのに十分な冷却チャネル42を、CMCプライ44を貫通して画定する。絶縁チャネル80として働く機能的特徴40は、出口を含まず、したがって、冷却流体62を構成要素10の外部まで通過させない。
【0046】
一実施形態では、絶縁チャネル80は、種々のプライ44内に形成されて、冷却チャネル42内に冷却流体流62の熱ピックアップの管理を提供することができる。本明細書において「死」チャネルとして説明する絶縁チャネル80はまた、EBC剥離/損傷の軽減をもたらす。より具体的には、絶縁チャネル80を高温ガス経路16の非常に近くに構成することにより、剥離が生じた場合にすぐに絶縁チャネルを露出させる。その後、新しい経路が冷却流体流62用に利用可能になり、それによって損傷を受けた翼14の温度を低下させ、この翼が取り換えられ得るまでのその寿命を延ばす。
【0047】
この実施形態では、複数の機能的特徴40の1つまたは複数は、冷却流体源からCMCプライ44を通って、CMCプライ44と位置合わせして出口46まで延び、冷却流体流62が流れ抜けることを可能にするのに十分な冷却チャネル42を、CMCプライ44を貫通して形成する。加えて、複数の機能的特徴40の1つまたは複数は、冷却流体源からCMCプライ44を通り、CMCプライ44と位置合わせして延び、出口の形成は含まずに絶縁チャネル80を形成する。前の実施形態と同様に、任意選択により、1つまたは複数のフィルム冷却貫通孔70(その1つのみを示す)が、プライ44を切開するように複数のCMCプライ44を穿孔するなどによって形成されて、翼面の十分な冷却をもたらすことができる。1つまたは複数のフィルム冷却貫通孔70のそれぞれは、セラミックマトリックス複合材構成要素10の内面13に同一平面に配設された入口72から、セラミックマトリックス複合材構成要素10の外面11に同一平面に配設された出口74まで延びる。圧縮器からの加圧空気の一部が、1つまたは複数のフィルム冷却貫通孔70を通るように向けられ、追加の冷却流体流64として入口72を通って入り、出口74から退出する。複数のフィルム冷却貫通孔70のそれぞれは、追加の冷却流体流64が流れ抜けることを可能にするのに十分な寸法の開口部を複数のCMCプライ44を貫通して形成する。一実施形態では、複数のフィルム冷却貫通孔70を機能的特徴40と交互に配置することができ、この機能的特徴は、フィルム冷却貫通孔70によって引き起こされる低温スポットを軽減するために、より温かい空気を有する冷却チャネル42および絶縁チャネル80を形成する。前の実施形態のように、冷却チャネル42を形成する機能的特徴40は、所望の場合、複数の出口46に供給するのに十分なサイズにされ得る。
【0048】
図5の実施形態では、セラミックマトリックス複合材プライ44、機能的特徴40、冷却チャネル42、出口46、入口48、絶縁チャネル80、フィルム冷却貫通孔70、およびそれぞれの入口72および出口74の配置は、概略的であり、例示目的で拡大されている。CMCプライおよびボイドのサイズおよび形状は、
図5に示すものに限定されない。
【0049】
次に
図6を参照すれば、
図3の翼14の一部が示され、1つまたは複数の機能的特徴40、より具体的には冷却チャネル42の代替のレイアウトを示す。図示するように、機能的特徴40は、プラットフォーム56(
図3)またはノズルセグメント12の外側バンド22(
図1)および/または内側バンド23(
図1)などのバンドに連結する1つまたは複数の転換部を備えて構成され得る。そのように構成される機能的特徴40は、プライ44内に湾曲したまたは傾斜したスロットを置くことによって形成することができ、事前成形されたチャネルと交差するために複数の層または穿孔開口部内に機能的特徴を形成する。機能的特徴40を複数の層内に形成することにより、プラットフォーム56および/またはバンド22、23内の限定された表面アクセスからより大きな高温領域をカバーする冷却チャネル42が提供される。複数の層内の機能的特徴の製作は、本明細書と同時に出願された、T. Dysonらの、代理人案件番号328243-1を有する米国特許出願、「ceramic Matrix Composite Component Including Cooling Channels in Multiple Layers and Method of Producing」内に論じられ、この文献は、全体的に本明細書に組み込まれる。
【0050】
加えて、
図6に示すように、冷却チャネル42を形成する機能的特徴40は、複数の出口46に供給するのに十分なサイズにされ、それによって冷却マニホールド60として作用することができる。より詳細には、単一の入口48を有する各冷却チャネル42は、複数の出口46に流体的に結合され得る。
【0051】
図6の実施形態では、機能的特徴40、冷却チャネル42、出口46、入口48、およびフィルム冷却貫通孔70の配置は、概略的であり、例示目的のために拡大されている。CMCプライおよびボイドのサイズおよび形状は、
図6に示すものに限定されない。
【0052】
図7は、1つまたは複数の細長い機能的特徴40が内部に画定される、より詳細には1つまたは複数の冷却チャネル42がCMC構成要素のプライ内に形成される、本開示によるCMC構成要素10、50を形成する方法100を概略的に示す。構成要素10、50は、レイアップ技術を用いて形成される。方法100は、ステップ102において、マトリックス前駆体、複数のセラミック強化繊維、および複数の犠牲繊維を含むCMCプリフォームを最初に形成するステップを含む。CMCプリフォームを形成するステップは、積層スタックになるように形成された一連のプライ44などの複数のセラミックマトリックス複合材プライ44を最初に提供するステップを含む。プライ44用の材料の一例は、それだけに限定されないが、たとえば、前に説明したように、炭素繊維織布、結合剤材料、およびコーティングされたSiC繊維を含むプレプレグ複合材プライを含む。
【0053】
前に説明したように、方法、より具体的にはCMCプリフォームを形成するステップ102は、複数の犠牲繊維を使用するなどによって、プライ44内に1つまたは複数の細長い機能的特徴を画定するための手段を含む。犠牲繊維は、CMCプリフォーム内に1つもしくは複数の冷却チャネル42および/または複数の絶縁チャネル80などの、CMCの機能を強化するための1つまたは複数の細長い機能的特徴40を形成することを可能にする。犠牲繊維を用いた細長い機能的特徴の製作は、本明細書に全体的に組み込まれる、同一出願人による、「Methods of Forming Ceramic Matrix Composites Using Sacrificial Fibers and Related Products」と題する、D. Hallらの米国特許第10,384,981号、および本明細書に全体的に組み込まれる、「Methods of Forming Ceramic Matrix Composites Using Sacrificial Fibers and Non-Wetting Coating」と題する、D. Dunnらの、本明細書と同時に出願された代理人案件番号328251-1を有する米国特許出願において論じられている。CMCプリフォーム内に画定される1つまたは複数の細長い機能的特徴40の形状は、丸形、湾曲、楕円、直線、または他の適切な形状を含む任意の適切な形状を含む。
【0054】
追加のプライ44が、犠牲繊維を封入するために配設される。プリフォーム構成要素は、高圧蒸気滅菌器内に置かれ、高圧蒸気滅菌サイクルを完了して、マトリックス前駆体、複数のセラミック強化繊維、および複数の犠牲繊維を含むCMCプリフォームを形成する。プリフォーム構成要素は、セラミック複合材料向けの工業で使用される通常の高圧蒸気滅菌圧力および温度サイクルにかけられる。高圧蒸気滅菌することにより、プライ内に残存するすべての揮発物が引き出され、プライ材料に応じて高圧蒸気滅菌状態を変化させることができる。高圧蒸気滅菌後、焼却方法を実行して、プリフォーム構成要素内の任意の残存する材料または追加の結合剤を除去する。焼却方法は、通常、約426~648℃(華氏約800~1200度)の温度において行われる。
【0055】
焼却後、プリフォーム構成要素は、ステップ104において、高密度化のために真空炉内に置かれる。高密度化は、それだけに限定されないが、シリコンプ、溶融含浸(MI)、化学蒸気含浸(CVI)、ポリマー膨張焼成(PIP)および酸化物/酸化物方法を含む任意の知られている高密度化技術を使用して実行される。高密度化は、1200℃を上回る温度で確立された雰囲気を有する真空炉内で行われて、ケイ素または他の含浸材料をプリフォーム構成要素に溶融含浸させることを可能にすることができる。高密度化の1つの適切な方法は、溶融含浸であり、ここでは、溶融したマトリックス材料がプライ44内に引き出され、固化させられる。高密度化後、高密度化されたプリフォーム構成要素または高密度体には、ステップ104に示すように複数の犠牲繊維が内部に配設され、構成要素10、50の少なくとも一部を形成する。
【0056】
高密度化に続いて、1つまたは複数の細長い機能的特徴40は、さらに、ステップ106において、犠牲繊維を除去して、1つまたは複数の細長いチャネルを残すことによって形成される。犠牲繊維を除去して細長いチャネルを形成することは、上記で参照した、同一出願人による米国特許第10,384,981号および代理人案件番号328251-1を有する米国特許出願において論じられている。
【0057】
代替の実施形態では、1つまたは複数の細長い機能的特徴40は、さらに、ステップ104において説明するような高密度化の前に複数の犠牲繊維を除去することによって形成される。
【0058】
一実施形態では、1つまたは複数の細長い機能的特徴40のそれぞれの内部中空部分は、構成要素10、50に冷却、および任意選択により絶縁をもたらすために冷却剤または他の流体を向けて通過させることができるのに十分な大きさで構成要素10、50内に開いている。一実施形態では、犠牲繊維のレイアップ中、1つまたは複数の繊維が、冷却流体の投与のための入口48を形成するようにレイアップされる。セラミックマトリックス複合材プライ44内に形成された高密度化されたマトリックス材料は、冷却剤または他の流体の流れを実質的に防止する障害物を入口形成部に対向して形成し、より具体的には、構成要素10、50の内部にある入口48の対向する端部に閉鎖構造として1つまたは複数の細長い機能的特徴40を形成する。一実施形態では、ステップ108において構成要素10、50内に開口部を機械加工するか、または別の形で形成して、1つまたは複数の細長い機能的特徴40に対する出口46を提供し、そこに流れを通過させ、冷却チャネル42を形成する。一実施形態では、障害物は所定の場所に留まって、ステップ112において1つまたは複数の絶縁チャネル80を形成する。任意選択のステップ110では、1つまたは複数のフィルム冷却貫通孔70が、CMC構成要素10、50内に形成されて翼の表面への冷却流体流の追加の流れをもたらし、追加の冷却をもたらす。
【0059】
したがって、1つまたは複数の機能的特徴が内部に形成されるCMCプリフォームで構成されるCMC構成要素が、開示される。1つまたは複数の機能的特徴を本明細書に説明するように形成することにより、冷却チャネルのネットワークまたは冷却回路が、任意の所与のプライの強度低減を抑え、冷却チャネルがCMC繊維を切断することなく向きを変えることを可能にしながら、CMCプライ内に形成される。加えて、1つまたは複数の機能的特徴を本明細書に説明するように形成することにより、絶縁チャネルのネットワークをCMCプライ内に形成することができる。前に示したように、冷却回路の設計は、凹みに対する強さをより大きくし、冷却チャネルをCMCプリフォーム内で広げることによって熱応力を低減する。加えて、冷却チャネルを組み込みことにより、より均一な温度分布がもたらされる。追加のフィルム冷却貫通孔は、表面を十分に冷却するために必要とされ得る。1つまたは複数の機能的特徴は、レイアップ中にCMC構成要素内に形成され、それぞれのプライ内でCMC繊維と位置合わせされる。最も簡単な実施形態では、1つまたは複数の機能的特徴は、交互配向されたプライ内に配置された、複数のプライのそれぞれのプライ内の繊維と位置合わせされる。より複雑な配置では、1つまたは複数の機能的特徴は、複雑なネットワークを形成することができ、それによって機能的特徴は、それぞれのプラットフォームまたはバンドに連結するための1つまたは複数の転換部を備えて構成され、および/または複数の出口に流体的に結合された単一の機能的特徴を提供するように構成される。
【0060】
1つまたは複数の実施形態を参照して本発明を説明してきたが、本発明の範囲から逸脱することなく、さまざまな変更を加え、要素に関して等価物を代用してもよいことが当業者に理解されるであろう。加えて、本発明の本質的範囲から逸脱することなく、多くの改変形態を加えて特定の状況または材料を本発明の教示に適応させることができる。したがって、本発明が、本発明を実施するように企図された最良の形態として開示する特定の実施形態に限定されず、本発明が、付属の特許請求の範囲内に入るすべての実施形態を含むことが意図される。
【0061】
本発明のさらなる態様は、以下の項の主題によって提供される。
【0062】
[項1] セラミックマトリックス複合材構成要素であって、
高密度体を形成するスタック構成の複数の長手方向に延びるセラミックマトリックス複合材プライと、
前記高密度体内に形成され、前記複数の長手方向に延びるセラミックマトリックス複合材プライと位置合わせする1つまたは複数の細長い機能的特徴であって、前記1つまたは複数の細長い機能的特徴のそれぞれは、流体源からの冷却流体の流れと流体連通する入口を含む、1つまたは複数の細長い機能的特徴と、
前記1つまたは複数の細長い機能的特徴の少なくとも1つから前記セラミックマトリックス複合材構成要素の外面の近位の出口まで、前記複数の長手方向に延びるセラミックマトリックス複合材プライを切開する1つまたは複数の孔とを備える、セラミックマトリックス複合材構成要素。
【0063】
[項2] 前記セラミックマトリックス複合材構成要素の内面から前記セラミックマトリックス複合材構成要素の前記外面の近位の出口まで、前記複数の長手方向に延びるセラミックマトリックス複合材プライを切開する1つまたは複数のフィルム冷却貫通孔をさらに備える、任意の前項に記載のセラミックマトリックス複合材構成要素。
【0064】
[項3] 前記1つまたは複数の細長い機能的特徴の少なくとも1つが、絶縁チャネルを形成するために、流体源からの冷却流体の流れを前記細長い機能的特徴内に保持するように構成される、任意の前項に記載のセラミックマトリックス複合材構成要素。
【0065】
[項4] 前記1つまたは複数の細長い機能的特徴が、前記複数の長手方向に延びるセラミックマトリックス複合材プライの複数のプライ内に構成される、任意の前項に記載のセラミックマトリックス複合材構成要素。
【0066】
[項5] 前記1つまたは複数の孔が、前記セラミックマトリックス複合材をレーザ穿孔する、放電機械加工する、切断する、または機械加工することの1つまたは複数によって形成される、任意の前項に記載のセラミックマトリックス複合材構成要素。
【0067】
[項6] 前記1つまたは複数のフィルム冷却貫通孔が、前記セラミックマトリックス複合材をレーザ穿孔する、放電機械加工する、切断する、または機械加工することの1つまたは複数によって形成される、任意の前項に記載のセラミックマトリックス複合材構成要素。
【0068】
[項7] 前記1つまたは複数の細長い機能的特徴が、前記複数の長手方向に延びるセラミックマトリックス複合材プライのレイアップ中に形成される、任意の前項に記載のセラミックマトリックス複合材構成要素。
【0069】
[項8] 前記セラミックマトリックス複合材構成要素が、高温ガス経路タービン構成要素である、任意の前項に記載のセラミックマトリックス複合材構成要素。
【0070】
[項9] 前記高温ガス経路タービン構成要素が、燃焼器ライナ、ブレード、シュラウド、ノズル、ノズル端壁、およびブレードプラットフォームからなる群から選択される、任意の前項に記載のセラミックマトリックス複合材構成要素。
【0071】
[項10] セラミックマトリックス複合材構成要素であって、
高密度体を形成するスタック構成の複数の長手方向に延びるセラミックマトリックス複合材プライと、
前記高密度体内に形成された1つまたは複数の細長い機能的特徴であって、前記1つまたは複数の細長い機能的特徴のそれぞれが、流体源からの冷却流体の流れと流体連通する入口を含む、1つまたは複数の細長い機能的特徴と、
前記1つまたは複数の細長い機能的特徴の少なくとも1つから前記セラミックマトリックス複合材の外面の近位の出口まで、前記複数の長手方向に延びるセラミックマトリックス複合材プライを切開して少なくとも1つの冷却チャネルを形成する、1つまたは複数の孔とを備え、
前記1つまたは複数の細長い機能的特徴の少なくとも1つが、絶縁チャネルを形成するために、前記流体源からの流体の前記流れを前記細長い機能的特徴内に保持するように構成される、セラミックマトリックス複合材構成要素。
【0072】
[項11] 前記セラミックマトリックス複合材構成要素の内面から前記セラミックマトリックス複合材構成要素の前記外面の近位の出口まで、前記複数の長手方向に延びるセラミックマトリックス複合材プライを切開する1つまたは複数のフィルム冷却貫通孔をさらに備える、任意の前項に記載のセラミックマトリックス複合材構成要素。
【0073】
[項12] 前記1つまたは複数の孔が、前記セラミック複合材料をレーザ穿孔する、放電機械加工する、切断する、または機械加工することの1つまたは複数によって形成される、任意の前項に記載のセラミックマトリックス複合材構成要素。
【0074】
[項13] 前記1つまたは複数の機能的特徴が、前記複数の長手方向に延びるセラミックマトリックス複合材プライのレイアップ中に形成される、任意の前項に記載のセラミックマトリックス複合材構成要素。
【0075】
[項14] 前記セラミックマトリックス複合材構成要素が、高温ガス経路タービン構成要素である、任意の前項に記載のセラミックマトリックス複合材構成要素。
【0076】
[項15] 前記高温ガス経路タービン構成要素が、燃焼器ライナ、ブレード、シュラウド、ノズル、ノズル端壁、およびブレードプラットフォームからなる群から選択される、任意の前項に記載のセラミックマトリックス複合材構成要素。
【0077】
[項16] セラミックマトリックス複合材(CMC)製品を形成する方法であって、
マトリックス前駆体、複数の強化繊維、および複数の犠牲繊維を含むCMCプリフォームを形成するステップと、
1つまたは複数の細長い機能的特徴が冷却流体流源と流体連通して前記CMCプリフォーム内に形成されるように、前記複数の犠牲繊維を除去するステップ、または
流体含浸材を前記CMCプリフォームに加えるステップであって、それによって前記CMCプリフォームを高密度化し、複数の長手方向に延びるセラミックマトリックス複合材プライを画定する、ステップの一方を実行するステップと、
1つまたは複数の細長い機能的特徴が冷却流体流源と流体連通して前記CMCプリフォーム内に形成されるように前記複数の犠牲繊維を除去するステップ、または
流体含浸材を前記CMCプリフォームに加えるステップであって、それによって前記CMCプリフォームを高密度化し、複数の長手方向に延びるセラミックマトリックス複合材プライを画定する、ステップの他方を実行するステップと、
前記1つまたは複数の細長い機能的特徴の少なくとも1つから前記セラミックマトリックス複合材構成要素の外面の近位の出口まで、前記複数の長手方向に延びるセラミックマトリックス複合材プライを切開する1つまたは複数の孔を形成するステップであって、それによって前記流体源から前記セラミックマトリックス複合材構成要素の外部までの流体の流れをもたらし、1つまたは複数の冷却チャネルを形成する、ステップとを含む、方法。
【0078】
[項17] 前記1つまたは複数の細長い機能的特徴の少なくとも1つが、絶縁チャネルを形成するために、前記流体源からの前記流体の流れを前記細長い機能的特徴内に保持するように構成される、任意の前項に記載の方法。
【0079】
[項18] 前記セラミックマトリックス複合材構成要素の前記内面の近位の入口から前記セラミックマトリックス複合材構成要素の前記外面の近位の出口まで、前記複数の長手方向に延びるセラミックマトリックス複合材プライを切開する1つまたは複数のフィルム冷却貫通孔を形成するステップをさらに含む、任意の前項に記載の方法。
【0080】
[項19] 前記セラミックマトリックス複合材構成要素が、高温ガス経路タービン構成要素である、任意の前項に記載の方法。
【0081】
[項20] 前記高温ガス経路タービン構成要素が、ライナ、ブレード、シュラウド、ノズル、燃焼器、ノズル端壁、およびブレードプラットフォームからなる群から選択される、任意の前項に記載の方法。
【符号の説明】
【0082】
10 セラミックマトリックス複合材構成要素
11 外面
12 タービンノズルセグメント
13 内面
14 タービン翼
16 高温排気ガス、高温ガス経路の流れ
18 翼圧力側
20 翼吸引側
22 外側バンド
23 内側バンド
24 翼前縁
26 翼後縁
28 前方端
30 後方端
32 プレナム
40 機能的特徴
42 冷却チャネル
44 セラミックマトリックス複合材(CMC)プライ
46 冷却チャネル出口
47 孔
48 入口
50 CMC構成要素
52 タービンロータセグメント
53 翼先端
54 ありつぎ部
56 翼プラットフォーム
58 全長
60 冷却マニホールド
62 冷却流体流、冷却流体
64 追加の冷却流体流
70 フィルム冷却貫通孔
72 入口
74 出口
80 絶縁チャネル
100 方法
C 翼弦