(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-02-26
(45)【発行日】2024-03-05
(54)【発明の名称】振動解析装置及び振動測定システム
(51)【国際特許分類】
G01M 13/045 20190101AFI20240227BHJP
G01H 17/00 20060101ALI20240227BHJP
G08C 19/00 20060101ALI20240227BHJP
【FI】
G01M13/045
G01H17/00 A
G08C19/00 B
(21)【出願番号】P 2019181804
(22)【出願日】2019-10-02
【審査請求日】2022-09-21
(73)【特許権者】
【識別番号】000102692
【氏名又は名称】NTN株式会社
(74)【代理人】
【識別番号】110001195
【氏名又は名称】弁理士法人深見特許事務所
(72)【発明者】
【氏名】冨永 雅也
【審査官】松岡 智也
(56)【参考文献】
【文献】国際公開第2018/173632(WO,A1)
【文献】国際公開第2006/043511(WO,A1)
【文献】特開昭62-93620(JP,A)
【文献】特開2007-278894(JP,A)
【文献】特開平10-221160(JP,A)
【文献】特開2005-233789(JP,A)
【文献】特開2006-302293(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01M13/00-13/045,99/00
G01H 1/00-17/00
(57)【特許請求の範囲】
【請求項1】
測定対象である回転体の振動を測定する測定器から測定データを受信して振動解析を行なう振動解析装置であって、
前記回転体の損傷部位に応じて周期的に発生する振動の周波数を示す損傷周波数を算出するための、前記回転体の回転周波数の係数を、複数の定数に分割して記憶するデータベース部と、
振動解析の実行時に、前記データベース部から前記複数の定数を読み出して前記係数を復元し、その復元された係数を用いて前記損傷周波数を算出する処理部とを備える振動解析装置。
【請求項2】
前記データベース部は、前記複数の定数を暗号化した暗号化データを記憶し、
前記処理部は、
前記データベース部から前記暗号化データを読み出して復号し、
復号された前記複数の定数から前記係数を復元する、請求項1に記載の振動解析装置。
【請求項3】
前記データベース部は、前記複数の定数をバイナリ形式で記憶する、請求項1に記載の振動解析装置。
【請求項4】
前記回転体は、軸受である、請求項1から
請求項3のいずれか1項に記載の振動解析装置。
【請求項5】
前記測定器と無線通信を行なう通信部をさらに備える、請求項1から
請求項4のいずれか1項に記載の振動解析装置。
【請求項6】
測定対象である回転体の振動を測定する測定器と、
前記測定器から測定データを受信して振動解析を行なう、請求項1から
請求項5のいずれか1項に記載の振動解析装置とを備える振動測定システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、振動解析装置及び振動測定システムに関し、特に、測定対象である回転体の振動を測定する測定器から測定データを受信して振動解析を行なう振動解析装置、及びそれを備える振動測定システムに関する。
【背景技術】
【0002】
特開2016-24007号公報(特許文献1)は、転がり軸受等の診断システムを開示する。この診断システムでは、情報端末器は、振動センサから入力された測定データと、診断対象物の型番と、測定時の回転速度のデータとをサーバへ送信する。サーバは、型番毎の診断対象物の諸元データ(仕様データ)を保有しており、受信した測定データを、受信した型番に対応する諸元データと、受信した回転速度のデータとを用いて処理し、診断結果を情報端末器へ返送する。そして、情報端末器は、サーバから返送された診断結果を表示する(特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1に記載の診断システムでは、サーバにおいて診断が行なわれるので、情報端末器とサーバとの間でデータの転送を行なう必要がある。そのため、ネットワーク環境を整備する必要がある。また、通信状況によっては、データ転送に時間を要し、診断結果が情報端末器に表示されるまでに時間がかかる可能性がある。
【0005】
そこで、サーバを用いずに、情報端末器において診断を行なうことが考えられる。情報端末器において診断を行なうには、測定対象の諸元データ、又は諸元データから所定の演算式を用いて算出される係数データ(具体的には、測定対象の損傷部位に応じて周期的に発生する振動の周波数を示す損傷周波数を算出するための、測定対象の回転周波数の係数であって、測定対象の回転周波数が単位周波数であるときの損傷周波数に相当)を情報端末器が保有する必要がある。この場合、測定対象の諸元は、メーカのノウハウが詰まったものであるため、諸元データ、又は諸元データから算出される上記係数データの漏洩防止に十分に配慮する必要がある。
【0006】
それゆえに、本発明の目的は、測定対象である回転体の振動を測定する測定器から測定データを受信して振動解析を行なう振動解析装置において、測定対象の諸元データ、又は諸元データから算出される係数データの漏洩を防止することである。
【課題を解決するための手段】
【0007】
本発明のある局面に従う振動解析装置は、測定対象である回転体の振動を測定する測定器から測定データを受信して振動解析を行なう振動解析装置であって、データベース部と、処理部とを備える。データベース部は、回転体の損傷部位に応じて周期的に発生する振動の周波数を示す損傷周波数を算出するための、回転体の回転周波数の係数を、複数の定数に分割して記憶する。処理部は、振動解析の実行時に、データベース部から複数の定数を読み出して回転周波数の係数を復元し、その復元された係数を用いて損傷周波数を算出する。
【0008】
回転体の損傷周波数を算出するための、回転体の回転周波数の係数は、回転体の諸元の情報を含むものであるところ、この振動解析装置においては、当該係数が、複数の定数に分割されてデータベース部に記憶されている。そして、振動解析の実行時に、データベース部から複数の定数が読み出されて回転周波数の係数が復元され、復元された係数を用いて損傷周波数が算出される。これにより、データベース部に記憶されているデータが仮に外部に漏洩した場合に、回転体の諸元が解明されるのを防止することができる。したがって、この振動解析装置によれば、測定対象である回転体の諸元データの漏洩を防止することができる。
【0009】
好ましくは、データベース部は、上記の複数の定数を暗号化した暗号化データを記憶する。処理部は、データベース部から暗号化データを読み出して復号し、復号された複数の定数から係数を復元する。
【0010】
好ましくは、データベース部は、複数の定数をバイナリ形式で記憶する。
また、本発明の他の局面に従う振動解析装置は、測定対象である回転体の振動を測定する測定器から測定データを受信して振動解析を行なう振動解析装置であって、データベース部と、処理部とを備える。データベース部は、回転体の諸元データを暗号化した暗号化データを記憶する。処理部は、振動解析の実行時に、データベース部から暗号化データを読み出して復号し、復号された諸元データを用いて、回転体の損傷部位に応じて周期的に発生する振動の周波数を示す損傷周波数を算出する。
【0011】
この振動解析装置においては、損傷周波数の算出に用いられる回転体の諸元データは、暗号化されてデータベース部に記憶されている。そして、振動解析の実行時に、データベース部から暗号化データが読み出されて復号され、復号された諸元データを用いて、回転体の損傷部位に応じて周期的に発生する振動の周波数を示す損傷周波数が算出される。これにより、データベース部に記憶されているデータが仮に外部に漏洩した場合に、回転体の諸元が解明されるのを防止することができる。したがって、この振動解析装置によれば、測定対象である回転体の諸元データの漏洩を防止することができる。
【0012】
好ましくは、データベース部は、バイナリ形式の諸元データを暗号化した暗号化データを記憶する。
【0013】
好ましくは、回転体は、軸受である。
好ましくは、振動解析装置は、測定器と無線通信を行なう通信部をさらに備える。
【0014】
また、本発明の振動測定システムは、測定対象である回転体の振動を測定する測定器と、測定器から測定データを受信して振動解析を行なう上記の振動解析装置とを備える。
【発明の効果】
【0015】
本発明によれば、測定対象である回転体の振動を測定する測定器から測定データを受信して振動解析を行なう振動解析装置において、測定対象の諸元データの漏洩を防止することができる。
【図面の簡単な説明】
【0016】
【
図1】本発明の実施の形態1に従う振動測定システムを示す図である。
【
図4】設定部により設定される情報の一例を示す図である。
【
図5】データベース部に記憶されているデータの一例を示す図である。
【
図6】測定器における処理の手順の一例を示すフローチャートである。
【
図7】携帯情報端末における処理の手順の一例を示すフローチャートである。
【
図8】実施の形態2における携帯情報端末の構成例を示す図である。
【
図9】実施の形態2の携帯情報端末における処理の手順の一例を示すフローチャートである。
【
図10】振動測定システムの他の構成を示す図である。
【発明を実施するための形態】
【0017】
以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一又は相当部分には同一符号を付してその説明は繰り返さない。
【0018】
[実施の形態1]
図1は、本発明の実施の形態1に従う振動測定システムを示す図である。
図1を参照して、振動測定システム10は、測定器20と、携帯情報端末30とを備える。
【0019】
測定器20は、測定対象である転がり軸受15に生じる振動を測定するための機器であり、振動を検出するための加速度センサ(図示せず)を含んで構成される。測定器20は、携帯情報端末30と無線通信可能に構成されており、携帯情報端末30から測定開始信号を受信すると、転がり軸受15に生じる振動を加速度センサによって検出する。そして、測定器20は、加速度センサにより検出された加速度データを携帯情報端末30へ送信する。
【0020】
携帯情報端末30は、本発明における「振動解析装置」であり、測定器20から測定データ(振動の加速度データ)を受信して、転がり軸受15に生じている振動の解析を行なう。携帯情報端末30は、振動測定システム10を利用するユーザが利用可能な端末であり、たとえばスマートフォンやタブレット等である。携帯情報端末30上で動作するアプリケーションソフトによって、携帯情報端末30を「振動解析装置」として用いることができる。
【0021】
図2は、測定器20の構成を示す図である。
図2を参照して、測定器20は、加速度センサ102と、アンチエイリアシングフィルタ104と、A/D変換器106と、マイクロコンピュータ108と、メモリ110と、通信モジュール112とを含む。
【0022】
加速度センサ102は、測定対象である転がり軸受15(
図1)を内蔵するハウジング等に取り付けられ、転がり軸受15に生じる振動の加速度を検出して出力する。アンチエイリアシングフィルタ104は、A/D変換器106におけるA/D変換時に発生するエイリアシング誤差を抑制するためのローパスフィルタである。A/D変換器106は、アンチエイリアシングフィルタ104を通過した測定信号(アナログ信号)をデジタル信号に変換する。
【0023】
マイクロコンピュータ108は、A/D変換器106によりデジタル信号に変換された加速度データを受け、メモリ110へ出力する。そして、所定量のデータがメモリ110に蓄積されると、マイクロコンピュータ108は、蓄積されたデータをメモリ110から読み出して、測定器20による測定データとして通信モジュール112により携帯情報端末30へ送信する。
【0024】
メモリ110は、A/D変換器106によりデジタル信号に変換された加速度データをマイクロコンピュータ108から受けて一時的に記憶する。通信モジュール112は、測定器20が携帯情報端末30と無線通信を行なうための無線モジュールである。
【0025】
図3は、携帯情報端末30の構成を示す図である。
図3を参照して、携帯情報端末30は、設定部202と、通信部204と、分析部206と、データベース(DB)部208と、判定部210と、表示部212と、中央処理部214とを含む。
【0026】
設定部202は、測定対象である転がり軸受15(
図1)に関する情報を設定する。本実施の形態1では、設定される情報は、携帯情報端末30の画面からユーザにより入力されるものとするが、予めDB部208に記憶しておいて、振動測定システム10による振動測定の開始時にDB部208から読み出してもよい。転がり軸受15に関する情報は、転がり軸受15の軸受型番、測定器20による測定時の転がり軸受15の回転速度又は回転周波数等である。
【0027】
なお、本実施の形態1では、振動測定システム10により振動測定可能な各種軸受について、軸受の損傷部位を特定するための損傷周波数を、軸受の諸元データを用いて所定の演算式により算出するための、軸受の回転周波数の係数に関するデータ(当該係数を分割した複数の定数)が軸受型番に対応付けられてDB部208に格納されている(詳細は後述)。そして、設定部202により設定される軸受型番に対応するデータがDB部208から読み出され、読み出されたデータに基づいて、損傷周波数が算出され、損傷部位が特定される。
【0028】
また、設定部202は、判定部210において測定対象である転がり軸受15の振動状態を判定するための判定基準値をさらに設定する。この判定基準値についても、本実施の形態1では、携帯情報端末30の画面からユーザにより入力されるものとするが、予めDB部208に記憶しておいて、振動測定システム10による振動測定の開始時にDB部208から読み出してもよい。
【0029】
通信部204は、携帯情報端末30が測定器20と無線通信を行なうためのユニットであり、無線モジュールによって構成される。通信部204は、中央処理部214からの指示に従って、振動測定システム10による振動測定の開始時に測定開始信号を測定器20へ送信する。また、通信部204は、測定器20から送信されてくる測定データ(加速度データ)を受信する。
【0030】
分析部206は、通信部204により受信した測定データ(加速度データ)の周波数分析を実行する。一例として、分析部206は、通信部204により受信した時系列の加速度データに対して高速フーリエ変換(FFT)処理を行ない、測定データ(加速度データ)の周波数スペクトルを生成する。
【0031】
DB部208は、測定対象である転がり軸受15のBPFI(Ball Pass Frequency of Inner ring、内輪通過周波数)、BPFO(Ball Pass Frequency of Outer ring、外輪通過周波数)、及びBSF(Ball Spin Frequency、転動体回転周波数)をそれぞれ算出するための、軸の回転周波数の係数に関するデータを軸受型番に対応付けて記憶している。
【0032】
詳しくは、この実施の形態1では、サーバを用いることなく、携帯情報端末30において損傷部位の特定が行なわれる。そのため、測定対象である転がり軸受15のBPFI、BPFO、BSFを算出するための、軸受の回転周波数の係数を携帯情報端末30において保有しておく必要がある。
【0033】
転がり軸受15のBPFI、BPFO、BSFは、転がり軸受15の各種諸元、及び測定時の軸受の内輪軸の回転周波数f0から、以下の式(1)~(3)を用いて算出することができる。
【0034】
【0035】
ここで、Dは軸受のピッチ円直径、dは転動体の直径、αは転動体の接触角、Zは転動体の数を示し、各値は、転がり軸受15の諸元に相当するものである。
【0036】
回転周波数f0は、測定条件に相当するものであり、設定部202により設定されるか、設定部202により回転速度が設定される場合には、設定された回転速度から算出される。回転周波数f0の係数Cin,Cout,Crolは、転がり軸受15の諸元(軸受のピッチ円直径D、転動体の直径d、転動体の接触角α、転動体の数Z)から算出される。
【0037】
このように、携帯情報端末30においてBPFI、BPFO、BSFを算出するには、転がり軸受15の諸元データ(軸受のピッチ円直径D、転動体の直径d、転動体の接触角α、転動体の数Z)、又は諸元データから算出される上記係数Cin,Cout,Crolを携帯情報端末30において保有しておく必要がある。
【0038】
しかしながら、測定対象の諸元は、メーカのノウハウが詰まったものであるため、諸元データ、或いは諸元データから算出される係数Cin,Cout,Crolの漏洩防止に十分に配慮する必要がある。
【0039】
そこで、本実施の形態1に従う振動測定システム10では、係数Cin,Cout,Crolの各々が、複数の定数に分割されて携帯情報端末30のDB部208に記憶されている。たとえば、係数Cin,Cout,Crolは、以下の式(4)~(6)に示される定数Ca~Cdに分割されてDB部208に記憶される。
【0040】
【0041】
ここで、定数Ca~Cdは、以下のとおりである。
【0042】
【0043】
このように、諸元データから算出される係数Cin,Cout,Crolを複数の定数Ca~Cdに分割してDB部208に格納しておくことにより、DB部208に記憶されたデータが仮に外部に漏洩した場合に、測定対象である転がり軸受15の諸元が解明されるのを防止することができる。
【0044】
中央処理部214は、設定部202により設定された、転がり軸受15に関する情報に基づいて、測定時における転がり軸受15のBPFI、BPFO、BSFを算出する。具体的には、中央処理部214は、設定部202により設定された軸受型番に対応する複数の定数Ca~CdをDB部208から読み出し、読み出された複数の定数Ca~Cdから上記の式(4)~(6)によって係数Cin,Cout,Crolを復元する。そして、中央処理部214は、復元された係数Cin,Cout,Crolと、設定部202により設定された回転速度(又は回転周波数)とから、上記の式(1)~(3)を用いてBPFI、BPFO、BSFを算出する。
【0045】
また、中央処理部214は、分析部206により得られる加速度データの周波数スペクトルにおけるピークについて、ピーク毎に部位を特定する。詳しくは、ピークの周波数(以下「ピーク周波数」と称する。)がBPFI及びその高次成分と一致するピークについては、内輪に欠陥が生じているものと特定される。また、ピーク周波数がBPFO及びその高次成分と一致するピークについては、外輪に欠陥が生じているものと特定され、ピーク周波数がBSF及びその高次成分と一致するピークについては、転動体に欠陥が生じているものと特定される。
【0046】
また、ピーク周波数が軸の回転周波数及びその高次成分と一致するピークについては、軸のアンバランスが生じているものと特定され、ピーク周波数が回転周波数の2倍の周波数及びその高次成分と一致するピークについては、ミスアライメントが生じているものと特定される。このように、本実施の形態1では、ピークに対応する部位について、BPFI、BPFO、BSFに対応する軸受の部位(内輪、外輪、転動体)だけでなく、軸のアンバランスやミスアライメント等の軸受そのもの以外の部位も特定される。
【0047】
判定部210は、ピーク周波数のピーク値(加速度)、及び設定部202により設定された判定基準値に基づいて、ピーク毎に振動状態を判定する。たとえば、判定部210は、ピーク値が判定基準値を超えるピークについては「危険」と判定する。また、判定部210は、たとえば、ピーク値が判定基準値よりも低いけれども判定基準値の8割を超えるピークについては「注意」と判定し、ピーク値が判定基準値の8割よりも低いピークについては「良好」と判定する。
【0048】
表示部212は、部位が特定されたピークについて、ピーク値、部位、及び判定部210の判定結果(「危険」「注意」「良好」等)を携帯情報端末30の画面に表示する。
【0049】
図4は、設定部202により設定される情報の一例を示す図である。設定部202により設定される情報は、携帯情報端末30の画面からユーザが入力可能であり、この
図4には、当該情報をユーザが入力するための携帯情報端末30の画面が示されている。
【0050】
図4を参照して、入力部310からは、測定対象である転がり軸受15(
図1)の軸受型番を入力することができる。
【0051】
入力部320からは、測定時の軸の回転速度(min-1)を入力することができる。なお、この振動測定システム10では、測定器20による測定時の軸の回転速度を検出するセンサは設けられていないため、測定に際し回転速度の情報を入手して入力部320から入力する必要があるが、回転速度センサが付属している場合には、入力部320は不要である。また、入力部320において、測定時の軸の回転速度に代えて、測定時の軸の回転周波数を入力するようにしてもよい。
【0052】
入力部330からは、判定部210において用いられる判定基準値(加速度)を入力することができる。なお、本実施の形態1では、判定基準値は、ピーク周波数に拘わらず一律の値としている。
【0053】
図5は、DB部208に記憶されているデータの一例を示す図である。
図5を参照して、DB部208には、振動測定システム10により振動測定可能な軸受毎に、BPFI、BPFO、BSFを算出するための係数Cin,Cout,Crolを分割した複数の定数Ca~Cdが軸受型番に対応付いて記憶されている。このような定数Ca~Cdであれば、仮に携帯情報端末30の外部に漏洩したとしても、軸受の諸元が解明されるのを防止することができる。
【0054】
図6は、測定器20における処理の手順の一例を示すフローチャートである。
図6とともに
図2を参照して、測定器20の電源がオンされると、マイクロコンピュータ108は、所定の初期化処理を実行する(ステップS10)。初期化処理では、たとえば、通信モジュール112と携帯情報端末30との間の通信確立や、メモリ110のデータクリア等が行なわれる。
【0055】
次いで、マイクロコンピュータ108は、携帯情報端末30から測定開始信号を受信したか否かを判定する(ステップS20)。そして、測定開始信号が受信されると(ステップS20においてYES)、マイクロコンピュータ108は、アンチエイリアシングフィルタ104を通過し、かつ、A/D変換器106によりデジタル変換された加速度センサ102の出力をA/D変換器106から読み込む(ステップS30)。
【0056】
マイクロコンピュータ108は、A/D変換器106から読み込んだデータをメモリ110に一時的に保存する(ステップS40)。そして、マイクロコンピュータ108は、取得されたデータが所定数に達したか否かを判定し(ステップS50)、取得データが所定数に達していなければ(ステップS50においてNO)、ステップS30,S40の処理を繰り返す。
【0057】
ステップS50において取得データが所定数に達したと判定されると(ステップS50においてYES)、マイクロコンピュータ108は、取得データをメモリ110から読み出して、通信モジュール112により携帯情報端末30へデータを送信する(ステップS60)。
【0058】
次いで、マイクロコンピュータ108は、測定を終了する終了操作がユーザにより行なわれたか否かを判定する(ステップS70)。なお、終了操作は、携帯情報端末30において行なわれ、たとえば、携帯情報端末30から測定終了信号を受信すると、終了操作が行なわれたものと判定される。
【0059】
終了操作が行なわれていないと判定されたときは(ステップS70においてNO)、ステップS20へ処理が戻される。一方、終了操作が行なわれたと判定されると(ステップS70においてYES)、エンドへ処理が移行して、測定器20における一連の処理が終了する。
【0060】
図7は、携帯情報端末30における処理の手順の一例を示すフローチャートである。
図7とともに
図3を参照して、測定器20を用いた振動測定を行なうためのアプリケーションソフトが携帯情報端末30上で起動され、当該アプリケーションソフトにおいて測定の開始が指示されると、中央処理部214は、所定の初期化処理を実行する(ステップS110)。初期化処理では、たとえば、通信部204と測定器20との間の通信確立や、所定のリセット処理等が行なわれる。
【0061】
次いで、中央処理部214からの指示に従って、設定部202により、測定対象である転がり軸受15の軸受型番、測定時の回転速度(又は回転周波数)、測定データに基づいて振動状態を判定するための判定基準値等が設定される(ステップS115)。上記の各設定値は、携帯情報端末30の画面からユーザにより入力される。
【0062】
次いで、中央処理部214は、設定された軸受型番に対応する軸受の定数Ca~Cd(分割定数)をDB部208から読み出し、読み出された定数Ca~Cdから上記の式(4)~(6)によって係数Cin,Cout,Crolを復元する(ステップS120)。
【0063】
そして、中央処理部214は、復元された係数Cin,Cout,Crolと、ステップS115において設定された回転速度から算出される回転周波数とから、上記の式(1)~(3)を用いて、測定対象である転がり軸受15のBPFI、BPFO、BSFを算出する(ステップS122)。その後、中央処理部214は、通信部204を通じて測定器20へ測定開始信号を送信する(ステップS125)。
【0064】
測定開始信号が測定器20へ送信されると、中央処理部214は、測定器20から測定データ(加速度データ)を受信したか否かを判定する(ステップS130)。そして、測定器20から測定データが受信されると(ステップS130においてYES)、中央処理部214は、受信された測定データをメモリ(図示せず)に保存する(ステップS135)。
【0065】
次いで、中央処理部214は、測定器20から受信した測定データが所定数に達したか否かを判定し(ステップS140)、データが所定数に達していなければ(ステップS140においてNO)、ステップS130,S135の処理を繰り返す。
【0066】
ステップS140においてデータが所定数に達したと判定されると(ステップS140においてYES)、中央処理部214は、メモリからデータを読み出して、分析部206により、測定器20により測定されたデータ(加速度データ)の周波数分析を実行する(ステップS145)。具体的には、測定器20により測定された時系列の加速度データに対して高速フーリエ変換(FFT)処理が行なわれ、測定された加速度データの周波数スペクトルが得られる。
【0067】
次いで、中央処理部214は、得られた周波数スペクトルにおけるピークについて、ピーク周波数が、BPFI、BPFO、BSF、及びそれらの高次成分のいずれと一致するか、或いは、軸の回転周波数、その2倍の周波数、及びそれらの高次成分のいずれと一致するかによって、ピークが、内輪、外輪、転動体、軸のアンバランス、ミスアライメント等のいずれの欠陥によるものかを特定する。そして、中央処理部214は、特定された各部位について、判定部210により、ステップS115において設定された判定基準値に基づいて、各部位の振動状態を判定する(ステップS150)。
【0068】
たとえば、判定部210は、ピーク値が判定基準値を超えるピークについては「危険」と判定する。また、判定部210は、ピーク値が判定基準値よりも低いけれども判定基準値の8割を超えるピークについては「注意」と判定し、ピーク値が判定基準値の8割よりも低いピークについては「良好」と判定する。
【0069】
そして、中央処理部214は、表示部212により、ステップS150の判定結果、ピーク値、ピーク周波数、及び部位を、周波数スペクトルの波形とともに携帯情報端末30の画面に表示する(ステップS155)。
【0070】
次いで、中央処理部214は、測定を終了する終了操作がユーザにより行なわれたか否かを判定する(ステップS160)。終了操作が行なわれていないと判定されたときは(ステップS160においてNO)、ステップS115へ処理が戻される。一方、終了操作が行なわれたと判定されると(ステップS160においてYES)、エンドへ処理が移行して、携帯情報端末30における一連の処理が終了する。
【0071】
以上のように、この実施の形態1では、BPFI、BPFO、BSFを算出するための係数Cin,Cout,Crolが複数の定数Ca~Cdに分割されてDB部208に記憶されている。そして、振動解析の実行時に、DB部208から定数Ca~Cdが読み出されて係数Cin,Cout,Crolが復元され、復元された係数Cin,Cout,Crolを用いてBPFI、BPFO、BSFが算出される。これにより、DB部208に記憶されているデータ(定数Ca~Cd)が仮に携帯情報端末30の外部に漏洩した場合に、振動測定システム10で測定可能な軸受の諸元が解明されるのを防止することができる。したがって、この実施の形態1によれば、軸受の諸元データの漏洩を防止することができる。
【0072】
また、この実施の形態1によれば、測定器20と携帯情報端末30とは、無線により通信が行なわれるので、ユーザは、測定器20を測定対象に設置しさえすれば、無線通信が可能な範囲で場所を選ばずに振動解析結果を確認することができる。
【0073】
[実施の形態2]
実施の形態1では、BPFI、BPFO、BSFの算出に用いられる係数Cin,Cout,Crolの各々を複数の定数Ca~Cdに分割してDB部208に記憶しておくものとしたが、この実施の形態2では、測定対象である転がり軸受15の諸元データ(軸受のピッチ円直径D、転動体の直径d、転動体の接触角α、転動体の数Z等)を暗号化してDB部208に記憶しておく。そして、測定時に、暗号化された諸元データがDB部208から読み出されて復号され、BPFI、BPFO、BSFが算出される。
【0074】
この実施の形態2に従う振動測定システムの全体構成は、
図1から
図3に示した実施の形態1と同様である。
【0075】
図8は、実施の形態2における携帯情報端末30の構成を示す図である。
図8を参照して、実施の形態2における携帯情報端末30は、
図3に示した実施の形態1における携帯情報端末30において、暗号処理部216をさらに含む。
【0076】
本実施の形態2では、振動測定システム10により振動測定可能な各種軸受について、所定の暗号方式に従って暗号化された諸元データが軸受型番に対応付けられてDB部208に格納されている。暗号方式は、共通鍵暗号方式であってもよいし、公開鍵暗号方式であってもよい。また、暗号化は、各種諸元に対して同一の鍵暗号を用いて行なってもよいし、諸元毎に異なる鍵暗号を用いて行なってもよい。暗号方式には、公知の各種手法を用いることができる。
【0077】
そして、暗号処理部216は、中央処理部214からの指示に従って、設定部202により設定された軸受型番に対応する諸元データ(暗号化データ)をDB部208から読み出し、暗号方式に従う鍵暗号を用いて、読み出された諸元データを復号する。
【0078】
中央処理部214は、暗号処理部216により復号された諸元データと、設定部202により設定された回転速度(又は回転周波数)とから、上記の式(1)~(3)を用いてBPFI、BPFO、BSFを算出する。BPFI、BPFO、BSFを算出した後の中央処理部214の処理は、実施の形態1と同じである。
【0079】
図9は、実施の形態2の携帯情報端末30における処理の手順の一例を示すフローチャートである。
図9とともに
図3を参照して、実施の形態2においても、測定器20を用いた振動測定を行なうためのアプリケーションソフトが携帯情報端末30上で起動され、当該アプリケーションソフトにおいて測定の開始が指示されると、中央処理部214は、所定の初期化処理を実行する(ステップS210)。その後、設定部202により、測定対象である転がり軸受15の軸受型番、測定時の回転速度(又は回転周波数)、測定データに基づいて振動状態を判定するための判定基準値等が設定される(ステップS215)。このステップS210,S215において実行される処理は、
図7のステップS110,S115で実行される処理と同じである。
【0080】
次いで、設定された軸受型番に対応する軸受の諸元データ(暗号化データ)がDB部208から読み出され、暗号処理部216により、所定の暗号方式に従う鍵暗号を用いて、暗号化された諸元データが復号される(ステップS220)。
【0081】
そして、中央処理部214は、復号された諸元データと、ステップS215において設定された回転速度から算出される回転周波数とから、上記の式(1)~(3)を用いて、測定対象である転がり軸受15のBPFI、BPFO、BSFを算出する(ステップS222)。
【0082】
ステップS222においてBPFI、BPFO、BSFが算出されると、ステップS225へ処理が移行される。ステップS225~S255の処理は、それぞれ
図7のステップS125~S155の処理と同じであるため、説明を繰り返さない。
【0083】
ステップS255において表示部212による表示が行なわれると、中央処理部214は、測定を終了する終了操作がユーザにより行なわれたか否かを判定する(ステップS260)。終了操作が行なわれていないと判定されたときは(ステップS260においてNO)、ステップS215へ処理が戻される。一方、終了操作が行なわれたと判定されると(ステップS260においてYES)、エンドへ処理が移行して、携帯情報端末30における一連の処理が終了する。
【0084】
以上のように、この実施の形態2では、測定対象である転がり軸受15の諸元データが暗号化されてDB部208に記憶されている。そして、振動解析の実行時に、暗号化された諸元データがDB部208から読み出されて復号され、復号された諸元データを用いてBPFI、BPFO、BSFが算出される。これにより、DB部208に記憶されているデータ(暗号化された諸元データ)が仮に携帯情報端末30の外部に漏洩した場合に、振動測定システム10で測定可能な軸受の諸元が解明されるのを防止することができる。したがって、この実施の形態2によっても、軸受の諸元データの漏洩を防止することができる。
【0085】
また、この実施の形態2によっても、測定器20と携帯情報端末30とは、無線により通信が行なわれるので、ユーザは、測定器20を測定対象に設置しさえすれば、無線通信が可能な範囲で場所を選ばずに振動解析結果を確認することができる。
【0086】
なお、上記の実施の形態2では、測定対象の諸元データが暗号化されてDB部208に記憶されているものとしたが、BPFI、BPFO、BSFを算出するための係数Cin,Cout,Crolを暗号化してDB部208に記憶してもよいし、実施の形態1で説明した、係数Cin,Cout,Crolを分割した複数の定数Ca~Cdを暗号化してDB部208に記憶してもよい。
【0087】
また、上記の実施の形態1において、複数の定数Ca~Cdをバイナリ形式でDB部208に記憶してもよい。これによっても、DB部208に記憶されたデータが仮に携帯情報端末30の外部に漏洩した場合に、振動測定システム10で測定可能な軸受の諸元が解明されるのを防止することができる。
【0088】
さらに、上記の実施の形態2において、バイナリ形式の諸元データを暗号化してDB部208に記憶してもよい。或いは、バイナリ形式の係数Cin,Cout,Crol、又はバイナリ形式の複数の定数Ca~Cdを暗号化してDB部208に記憶してもよい。
【0089】
なお、上記の各実施の形態では、測定器20と携帯情報端末30とは、無線により通信が行なわれるものとしたが、
図10に示されるように、測定器20と携帯情報端末30とを通信線40で接続し、通信線40を通じて測定器20と携帯情報端末30との間で通信を行なってもよい。
【0090】
今回開示された実施の形態は、全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
【符号の説明】
【0091】
10 振動測定システム、15 測定対象(転がり軸受)、20 測定器、30 携帯情報端末、40 通信線、102 加速度センサ、104 アンチエイリアシングフィルタ、106 A/D変換器、108 マイクロコンピュータ、110 メモリ、112 通信モジュール、202 設定部、204 通信部、206 分析部、208 DB部、210 判定部、212 表示部、214 中央処理部、216 暗号処理部、310~330 入力部。