IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社NTTドコモの特許一覧

<>
  • 特許-需要予測装置 図1
  • 特許-需要予測装置 図2
  • 特許-需要予測装置 図3
  • 特許-需要予測装置 図4
  • 特許-需要予測装置 図5
  • 特許-需要予測装置 図6
  • 特許-需要予測装置 図7
  • 特許-需要予測装置 図8
  • 特許-需要予測装置 図9
  • 特許-需要予測装置 図10
  • 特許-需要予測装置 図11
  • 特許-需要予測装置 図12
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-02-26
(45)【発行日】2024-03-05
(54)【発明の名称】需要予測装置
(51)【国際特許分類】
   G06Q 10/04 20230101AFI20240227BHJP
   G06Q 30/0202 20230101ALI20240227BHJP
【FI】
G06Q10/04
G06Q30/0202
【請求項の数】 6
(21)【出願番号】P 2021519413
(86)(22)【出願日】2020-05-08
(86)【国際出願番号】 JP2020018721
(87)【国際公開番号】W WO2020230735
(87)【国際公開日】2020-11-19
【審査請求日】2023-03-13
(31)【優先権主張番号】P 2019090439
(32)【優先日】2019-05-13
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】392026693
【氏名又は名称】株式会社NTTドコモ
(74)【代理人】
【識別番号】100088155
【弁理士】
【氏名又は名称】長谷川 芳樹
(74)【代理人】
【識別番号】100113435
【弁理士】
【氏名又は名称】黒木 義樹
(74)【代理人】
【識別番号】100121980
【弁理士】
【氏名又は名称】沖山 隆
(74)【代理人】
【識別番号】100128107
【弁理士】
【氏名又は名称】深石 賢治
(72)【発明者】
【氏名】篠田 謙司
(72)【発明者】
【氏名】山田 将人
(72)【発明者】
【氏名】深澤 佑介
【審査官】塩田 徳彦
(56)【参考文献】
【文献】国際公開第2018/079367(WO,A1)
【文献】国際公開第2017/163278(WO,A1)
【文献】米国特許第07457766(US,B1)
(58)【調査した分野】(Int.Cl.,DB名)
G06Q 10/00-99/00
(57)【特許請求の範囲】
【請求項1】
複数の需要予測モデルであって、予測モデルである各需要予測モデルが、需要に関する状態であり各需要予測モデルで異なる需要状態における需要を予測する、複数の需要予測モデルと、指定されたタイミングが各需要状態に当てはまる度合である状態度合を予測する予測モデルである状態予測モデルとを格納する格納部と、
前記格納部によって格納された複数の需要予測モデルそれぞれが予測する需要と、前記格納部によって格納された状態予測モデルが予測する状態度合とに基づいて需要を予測する予測部と、
を備え
前記予測部は、指定されたタイミングに対して複数の需要予測モデルそれぞれが予測する需要と、当該タイミングに対して状態予測モデルが予測する状態度合とに基づいて需要を予測する、
需要予測装置。
【請求項2】
状態予測モデルは、需要の確率分布であって複数の需要予測モデルそれぞれが予測する需要に基づく需要分布に基づいて生成される予測モデルである、
請求項に記載の需要予測装置。
【請求項3】
状態予測モデルは、複数の需要予測モデルそれぞれが予測する需要の、需要分布における位置に基づいて生成される予測モデルである、
請求項に記載の需要予測装置。
【請求項4】
状態予測モデルを生成する生成部をさらに備え、
前記格納部は、前記生成部によって生成された状態予測モデルを格納する、
請求項1~の何れか一項に記載の需要予測装置。
【請求項5】
前記予測部は、複数の需要予測モデルそれぞれが予測する需要に対して、状態予測モデルが予測する状態度合を重み付けすることで需要を予測する、
請求項1~の何れか一項に記載の需要予測装置。
【請求項6】
複数の需要予測モデルは、需要が定常状態における需要を予測する予測モデルと、需要が特異状態における需要を予測する予測モデルとの少なくとも一方を含む、
請求項1~の何れか一項に記載の需要予測装置。
【発明の詳細な説明】
【技術分野】
【0001】
本開示の一側面は、需要を予測する需要予測装置に関する。
【背景技術】
【0002】
下記特許文献1では、飲食店などの客数・売上を予測する客数・売上予測装置が開示されている。
【先行技術文献】
【特許文献】
【0003】
【文献】特開平05-189406号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
飲食店などの施設において来客数及び売上金額といった需要を予測することは、スタッフのシフトスケジューリング及び施設の事前準備を行う上で重要なタスクである。特に、施設運営上、イベントや天候を契機とする高需要や低需要といった特異状態の発生を事前に予測することが求められている。しかしながら、従来技術では、特異状態における正確な需要を予測することは難しかった。
【0005】
そこで、本開示の一側面は、かかる課題に鑑みて為されたものであり、より正確な需要を予測することができる需要予測装置を提供することを目的とする。
【課題を解決するための手段】
【0006】
上記課題を解決するため、本開示の一側面に係る需要予測装置は、複数の需要予測モデルであって、予測モデルである各需要予測モデルが、需要に関する状態であり各需要予測モデルで異なる需要状態における需要を予測する、複数の需要予測モデルと、指定されたタイミングが各需要状態に当てはまる度合である状態度合を予測する予測モデルである状態予測モデルとを格納する格納部と、格納部によって格納された複数の需要予測モデルそれぞれが予測する需要と、格納部によって格納された状態予測モデルが予測する状態度合とに基づいて需要を予測する予測部と、を備える。
【0007】
このような需要予測装置によれば、複数の需要予測モデルそれぞれが各需要予測モデルで異なる需要状態において予測した需要と、状態予測モデルが予測した各需要状態に当てはまる状態度合とに基づいて需要が予測されるため、様々な需要状態において予測した需要と各需要状態に当てはまる状態度合とが反映された、より正確な需要を予測することができる。
【発明の効果】
【0008】
本開示の一側面によれば、より正確な需要を予測することができる。
【図面の簡単な説明】
【0009】
図1】本発明の実施形態に係る需要予測装置による需要予測の概要図である。
図2】本発明の実施形態に係る需要予測装置の機能ブロック図である。
図3】需要予測モデルの学習用データのテーブル例を示す図である。
図4】需要分布のテーブル例を示す図である。
図5】高需要状態判別用の状態予測モデルの学習用データのテーブル例を示す図である。
図6】低需要状態判別用の状態予測モデルの学習用データのテーブル例を示す図である。
図7】需要予測モデルの予測用データのテーブル例を示す図である。
図8】高需要状態判別用の状態予測モデルの予測用データのテーブル例を示す図である。
図9】低需要状態判別用の状態予測モデルの予測用データのテーブル例を示す図である。
図10】本発明の実施形態に係る需要予測装置で実行される予測モデル作成処理を示すフローチャートである。
図11】本発明の実施形態に係る需要予測装置で実行される需要予測処理を示すフローチャートである。
図12】本発明の実施形態に係る需要予測装置のハードウェア構成図である。
【発明を実施するための形態】
【0010】
以下、図面とともに需要予測装置の実施形態について詳細に説明する。なお、図面の説明においては同一要素には同一符号を付し、重複する説明を省略する。また、以下の説明における実施形態は、本発明の具体例であり、特に本発明を限定する旨の記載がない限り、これらの実施形態に限定されないものとする。
【0011】
本実施形態に係る需要予測装置1は、需要を予測する(需要予測を行う)コンピュータ装置である。需要は、商品又はサービス等に対する購買力の裏付けのある欲望、又は当該欲望の社会的総量である。本実施形態では、需要として、飲食店などの施設における来客数、売上金額又は販売個数などを想定するが、これに限るものではない。
【0012】
図1を用いて需要予測装置1による需要予測の概要を、従来手法と対比しつつ説明する。図1は、需要予測装置1による需要予測の概要図である。図1に示す通り、従来手法では、学習用データとして、過去の売上実績(過去売上実績)、気象情報及びリアルタイムの人口情報(リアルタイム人口情報)を用いて学習することで、売上を予測する予測モデルを生成し、生成した予測モデルを用いて、(需要予測装置1のユーザなどに)指定されたタイミング(予測対象日時など)での売上の予測値(従来売上予測値)を算出する。従来手法では、一つの予測モデル、すなわち単一モデルを用いて需要を予測する。
【0013】
一方、需要予測装置1による需要予測では、後述の定常状態需要予測モデル及び特異状態需要予測モデルの複数の予測モデル、すなわち複数モデルを用いて、さらには後述の予測モデルである状態予測モデルを用いて、需要を予測する。より具体的には、まず、需要予測装置1は、学習用データとして過去売上実績などを用いて学習することで、需要に関する状態である需要状態が、定常的な状態、例えば平均的な需要の状態である定常状態における需要を予測する定常状態需要予測モデルを生成する。次に、需要予測装置1は、学習用データとして気象情報及びリアルタイム人口情報などを用いて学習することで、需要状態が、特異な状態、例えばイベント又は天候を契機とする高需要又は低需要といった平均的な需要の状態ではない特異状態における需要を予測する特異状態需要予測モデルを生成する。
【0014】
次に、需要予測装置1は、過去売上実績などに基づいて、過去の売上実績値の確率分布である過去売上実績値分布を生成する。次に、需要予測装置1は、定常状態需要予測モデルが算出する売上予測値及び特異状態需要予測モデルが算出する売上予測値などに基づいて、定常状態需要予測モデルが算出する売上予測値の確率分布である定常状態需要予測モデル予測値分布と、特異状態需要予測モデルが算出する売上予測値の確率分布である特異状態需要予測モデル予測値分布とを生成する。
【0015】
次に、需要予測装置1は、(需要予測装置1のユーザなどに)指定されたタイミング(予測対象日時など)に対して定常状態需要予測モデルが算出する売上予測値yと、指定されたタイミングに対して特異状態需要予測モデルが算出する売上予測値yと、過去売上実績値分布上での売上予測値y及び売上予測値yの相対位置と、定常状態需要予測モデル予測値分布上での売上予測値y及び売上予測値yの相対位置と、特異状態需要予測モデル予測値分布上での売上予測値y及び売上予測値yの相対位置となどを用いて学習することで、指定されたタイミングが定常状態及び特異状態の各需要状態に当てはまる度合である状態度合(重み)を予測する状態予測モデルを生成する。
【0016】
次に、需要予測装置1は、売上予測値y及び売上予測値yに対して、状態予測モデルが算出する状態度合w及びwであって、特異状態のうち、定常状態と比べて高い需要の状態である高需要状態に当てはまる状態度合w、及び、特異状態のうち、定常状態と比べて低い需要の状態である低需要状態に当てはまる状態度合wを、重み付け和によるアンサンブルを行うことで、売上の予測値である新売上予測値yを算出する。例えば、新売上予測値yの算出は以下の式に基づいてもよい。
y=((w+(1-w)y)+(w+(1-w)y))/2
ここで、y及びyは以下の式に基づく。
=max(y,y
=min(y,y
【0017】
なお、状態予測モデルを生成する際に、定常状態に対して、大きな上振れが発生する場合を「1」とラベリングし、大きな下振れが発生する場合を「-1」とラベリングし、「1」かそうでないかを分類予測するモデルと、「-1」かそうでないかを分類予測するモデルを作成し、それぞれが予測時に出力するスコアをw及びwとしてもよい。
【0018】
従来手法の単一モデルでは、定常状態及び特異状態の需要の予測精度の両立は困難であるため、需要予測装置1では予測モデルを定常状態需要予測モデル及び特異状態需要予測モデルに分離している。需要予測装置1では、予測対象日時が定常状態又は特異状態のどちらをとる可能性が高いかを別の予測(分類)モデルである状態予測モデルで予測し、その予測値(状態度合)を重みとした和で新売上予測値を導く。なお、分離後の予測モデルは2つに限らず、3つ以上であってもよい。
【0019】
以上が、需要予測装置1による需要予測の概要の説明である。続いて、需要予測装置1の詳細について説明する。
【0020】
図1は、需要予測装置1の機能ブロック図である。図1に示す通り、需要予測装置1は、情報格納部10(格納部)、定常状態需要予測モデル生成部11、特異状態需要予測モデル生成部12、需要分布生成部13、状態予測モデル生成部14(生成部)及び需要予測部15(予測部)を含んで構成される。
【0021】
需要予測装置1の各機能ブロックは、需要予測装置1内にて機能することを想定しているが、これに限るものではない。例えば、需要予測装置1の機能ブロックの一部は、需要予測装置1とは異なるコンピュータ装置であって、需要予測装置1とネットワーク接続されたコンピュータ装置内において、需要予測装置1と情報を適宜送受信しつつ機能してもよい。また、需要予測装置1の一部の機能ブロックは無くてもよいし、複数の機能ブロックを一つの機能ブロックに統合してもよいし、一つの機能ブロックを複数の機能ブロックに分解してもよい。
【0022】
以下、図2に示す需要予測装置1の各機能ブロックについて説明する。
【0023】
情報格納部10は、複数(2つ以上)の需要予測モデルであって、予測モデルである各需要予測モデルが、需要に関する状態であり各需要予測モデルで異なる需要状態における需要を予測する、複数の需要予測モデルを格納する。複数の需要予測モデルは、需要が定常状態における需要を予測する予測モデルと、需要が特異状態における需要を予測する予測モデルとの少なくとも一方を含んでもよい。本実施形態において、情報格納部10は、定常状態需要予測モデル及び特異状態需要予測モデルを格納する。定常状態需要予測モデルが対象とする需要状態である定常状態と、特異状態需要予測モデルが対象とする需要状態である特異状態とは異なる。情報格納部10は、需要予測装置1のユーザの指示に基づき、定常状態需要予測モデルを予め格納してもよいし、後述の定常状態需要予測モデル生成部11によって生成された定常状態需要予測モデルを格納してもよい。同様に、情報格納部10は、需要予測装置1のユーザの指示に基づき、特異状態需要予測モデルを予め格納してもよいし、後述の特異状態需要予測モデル生成部12によって生成された特異状態需要予測モデルを格納してもよい。
【0024】
情報格納部10は、指定されたタイミングが各需要状態に当てはまる度合である状態度合を予測する予測モデルである状態予測モデルを格納する。より具体的には、情報格納部10は、(需要予測装置1のユーザなどに)指定されたタイミング(予測対象日時など)が、各需要状態である定常状態及び特異状態に当てはまる状態度合を予測する状態予測モデルを格納する。情報格納部10は、需要予測装置1のユーザの指示に基づき、状態予測モデルを予め格納してもよいし、後述の状態予測モデル生成部14によって生成された状態予測モデルを格納してもよい。
【0025】
情報格納部10は、その他にも、需要予測装置1内での各処理に必要な情報を格納してもよいし、当該各処理で生成された情報を格納してもよい。
【0026】
定常状態需要予測モデル生成部11は、定常状態需要予測モデル及び特異状態需要予測モデルを含む需要予測モデルの学習用データ(過去のデータ)を用いて学習することで、定常状態需要予測モデルを生成し、生成した定常状態需要予測モデルを情報格納部10によって格納させる。図3は、需要予測モデルの学習用データのテーブル例を示す図である。図3に示す通り、需要予測モデルの学習用データは、店舗(を識別する店舗名)と、期間と、当該店舗周辺における当該期間の30分前の在圏人数(リアルタイム人口情報)と、当該店舗周辺における当該期間の雨量と、当該店舗周辺における当該期間の風量と、当該店舗における当該期間の1年前の同週同曜日の売上平均(1年前同週同曜日売上平均)と、当該店舗における当該期間の3ヶ月前の同週同曜日の売上平均(3ヶ月前同週同曜日売上平均)と、当該店舗における当該期間の売上金額の実績値とが対応付いている。需要予測モデルの学習用データのうち、雨量及び風量は気象情報であり、1年前同週同曜日売上平均及び3ヶ月前の同週同曜日の売上平均は売上実績統計量であり、気象情報及び売上実績統計量は学習用特徴量である。
【0027】
定常状態需要予測モデル生成部11は、需要予測モデルの学習用データを用いて学習することで、任意のタイミングでの売上金額の予測値を算出することができる定常状態需要予測モデルを生成する。定常状態需要予測モデル生成部11は、需要予測モデルの学習用データのうち、周期的な成分(特徴量。図3のテーブル例の列に対応)の周期成分である、1年前同週同曜日売上平均及び3ヶ月前の同週同曜日の売上平均を主に用いて学習することで、定常状態における需要を予測する定常状態需要予測モデルしてもよい。なお、定常状態需要予測モデル生成部11は、周期成分に加え、周期成分以外の1つ以上の成分も加えて学習してもよい。
【0028】
特異状態需要予測モデル生成部12は、需要予測モデルの学習用データを用いて学習することで、特異状態需要予測モデルを生成し、生成した特異状態需要予測モデルを情報格納部10によって格納させる。図3に示す需要予測モデルの学習用データを用いて説明すると、特異状態需要予測モデル生成部12は、需要予測モデルの学習用データを用いて学習することで、任意のタイミングでの売上金額の予測値を算出することができる特異状態需要予測モデルを生成する。特異状態需要予測モデル生成部12は、需要予測モデルの学習用データのうち、短期的に変動する成分の短期的変動成分である、30分前の在圏人数、雨量及び風量を主に用いて学習することで、特異状態における需要を予測する特異状態需要予測モデルしてもよい。なお、特異状態需要予測モデル生成部12は、短期的変動成分に加え、短期的変動成分以外の1つ以上の成分も加えて学習してもよい。
【0029】
需要分布生成部13は、需要の確率分布である需要分布を生成し、生成した需要分布を情報格納部10によって格納させる。需要分布生成部13は、複数の需要予測モデルそれぞれが予測する需要に基づいて需要分布を生成してもよい。需要分布は、例えば、ある店舗のある曜日のある時刻の需要の確率分布であって、x軸が売上でy軸が頻度の2次元グラフで示されてもよい。
【0030】
需要分布生成部13は、過去売上実績などに基づいて、過去の売上実績値の確率分布である過去売上実績値分布を生成する。例えば2016年1月1日から2018年12月31日までの学習データとして、各種人口統計データ、気象データ及び売上データを持っているときに、2016年1月1日から2017年12月31日までの学習データを学習として利用し、2018年1月1日から2018年12月31日までの売上を予測したいとする。その場合、需要分布生成部13は、2016年1月1日から2017年12月31日までの売上実績を用いて過去売上実績値分布を生成する。
【0031】
需要分布生成部13は、情報格納部10によって格納された定常状態需要予測モデルが算出する売上予測値及び情報格納部10によって格納された特異状態需要予測モデルが算出する売上予測値などに基づいて、定常状態需要予測モデル予測値分布及び特異状態需要予測モデル予測値分布を生成する。上記の学習データの例で言えば、需要分布生成部13は、2016年1月1日から2017年12月31日までの学習データを用いて定常状態需要予測モデルが算出する売上予測値と、当該学習データを用いて特異状態需要予測モデルが算出する売上予測値とを用いて、定常状態需要予測モデル予測値分布及び特異状態需要予測モデル予測値分布を生成する。本来の予測対象である2018年1月1日から2018年12月31日の売上予測値は、需要分布の生成には用いない。
【0032】
なお、店舗の売上の多寡は、各店舗各時刻各曜日ごとで変化する。例えば、イベント近隣店舗の12時と、閑静な住宅街付近店舗の15時とを同じ尺度でとらえると、後者は常に低需要帯に属してしまうことになる。そこで、需要分布生成部13が需要分布を作成する際には、同店舗の同時刻同曜日というような条件を与えた上で作成するものとする。
【0033】
図4は、需要分布生成部13によって生成された需要分布のテーブル例を示す図である。図4に示す通り、需要分布は、店舗と、曜日と、時刻と、当該店舗周辺における当該曜日当該時刻の定常状態需要予測モデル予測値分布の下側閾値及び上側閾値と、当該店舗周辺における当該曜日当該時刻の特異状態需要予測モデル予測値分布の下側閾値及び上側閾値と、当該店舗周辺における当該曜日当該時刻の過去売上実績値分布の下側閾値及び上側閾値とが対応付いている。ここで、上側閾値とは、各分布にとって高需要帯とみなされるx軸方向(売上)の閾値である。下側閾値とは、各分布にとって低需要帯とみなされるx軸方向の閾値である。それぞれの閾値の算出方法としては、例えば、各分布の平均mと標準偏差σを計算し、「m+1.2σ」の値を上側閾値、「m-1.2σ」の値を下側閾値とする。これにより、高需要帯及び低需要帯が定義され、特異状態の判別(分類)において、正解の値が高需要帯に存在しているのか、あるいは低需要帯に存在しているのかを判別することができる。
【0034】
状態予測モデル生成部14は、状態予測モデルを生成する。状態予測モデルは、需要分布(例えば、定常状態需要予測モデル予測値分布、特異状態需要予測モデル予測値分布及び過去売上実績値分布)に基づいて生成される予測モデルであってもよい。状態予測モデルは、複数の需要予測モデル(例えば、定常状態需要予測モデル及び特異状態需要予測モデル)それぞれが予測する需要の、需要分布における位置に基づいて生成される予測モデルであってもよい。状態予測モデル生成部14は、状態予測モデルを生成するにあたり、状態予測モデルの学習用データを生成してもよい。状態予測モデル生成部14は、生成した状態予測モデルの学習用データ及び状態予測モデルを、情報格納部10によって格納させてもよい。
【0035】
図5は、状態予測モデル生成部14によって生成された、高需要状態判別用の状態予測モデルの学習用データのテーブル例を示す図である。図5に示す通り、高需要状態判別用の状態予測モデルの学習用データは、店舗と、期間と、過去売上実績値分布におけるyの相対位置及びyの相対位置と、定常状態需要予測モデル予測値分布におけるyの相対位置及びyの相対位置と、特異状態需要予測モデル予測値分布におけるyの相対位置及びyの相対位置と、y及びyの差分(y-y)と、目的変数である、売上正解の過去売上実績値分布における相対位置とが対応付いている。ここで、yは、上述した通り、指定されたタイミング(予測対象日時など)に対して定常状態需要予測モデルが算出する売上予測値yである。同様に、yは、指定されたタイミングに対して特異状態需要予測モデルが算出する売上予測値yである。また、相対位置は、図4のテーブル例に示す各分布において、売上予測値yが上側閾値以上であれば「1」とし、下側閾値以下であれば「-1」とし、上側閾値と下側閾値との間であれば「0」とする。すなわち、相対位置は3値となる。また、目的変数は、対応する店舗に存在するPOS(Point Of Sales)システムに登録された対応する期間の売上ログを需要予測装置1経由又は手動で取得し、取得したデータに対して集計処理を需要予測装置1で自動で行うことによって正解データを算出し、状態予測モデル生成部14により過去売上実績値分布において相対位置を算出し、低需要状態と中需要状態を「0」とし、高需要状態を「1」としたものである。
【0036】
図6は、状態予測モデル生成部14によって生成された、低需要状態判別用の状態予測モデルの学習用データのテーブル例を示す図である。図5に示すテーブル例との差分について説明すると、図6に示すテーブル例のうち、目的変数は、算出した相対位置について、高需要状態と中需要状態を「0」とし、低需要状態を「1」としたものである。
【0037】
本実施形態では、状態予測モデル生成部14によって作成する状態予測モデルの学習用データは、高需要状態判別用の状態予測モデル及び低需要状態判別用の状態予測モデルの別々に作成し、それぞれ2値分類の学習を行い、予測時点において分類スコアを算出しているが、分けずに1つの状態予測モデルとして作成、学習及び算出してもよい。
【0038】
状態予測モデル生成部14は、生成した状態予測モデルの学習用データを用いて学習することで、状態予測モデルを生成する。例えば、状態予測モデル生成部14は、上述の通り作成した高需要状態判別用の状態予測モデルの学習用データを用いて学習することで、指定されたタイミングが高需要状態である確率(状態度合)を予測する状態予測モデルを生成する。また例えば、状態予測モデル生成部14は、上述の通り作成した低需要状態判別用の状態予測モデルの学習用データを用いて学習することで、指定されたタイミングが低需要状態である確率(状態度合)を予測する状態予測モデルを生成する。
【0039】
需要予測部15は、情報格納部10によって格納された複数の需要予測モデル(例えば、定常状態需要予測モデル及び特異状態需要予測モデル)それぞれが予測する需要と、情報格納部10によって格納された状態予測モデルが予測する状態度合とに基づいて需要を予測する。需要予測部15は、指定されたタイミングに対して複数の需要予測モデルそれぞれが予測する需要と、当該タイミングに対して状態予測モデルが予測する状態度合とに基づいて需要を予測してもよい。需要予測部15は、複数の需要予測モデルそれぞれが予測する需要に対して、状態予測モデルが予測する状態度合を重み付けすることで需要を予測してもよい。需要予測部15は、予測した需要を需要予測装置1のユーザに出力(表示)してもよいし、ネットワークを介して他のコンピュータ装置に出力してもよい。
【0040】
需要予測部15は、定常状態需要予測モデルが需要を予測する際に、予測用データを適用する。図7は、需要予測モデルの予測用データのテーブル例を示す図である。需要予測部15は、例えば、予測用特徴量として、指定されたタイミングに関連する1年前同週同曜日売上平均及び3ヶ月前同週同曜日売上平均を入力し、(図3の売上金額実績値に対応する)売上金額予測値は空欄として定常状態需要予測モデルに適用することで、定常状態における指定されたタイミングでの売上金額実績値が予測される。
【0041】
需要予測部15は、特異状態需要予測モデルが需要を予測する際に、予測用データを適用する。需要予測部15は、例えば、予測用特徴量として、指定されたタイミングに関連する雨量(天気予報などに基づいて取得)、風量(天気予報などに基づいて取得)を入力し、(図3の売上金額実績値に対応する)売上金額予測値は空欄として特異状態需要予測モデルに適用することで、特異状態における指定されたタイミングでの売上金額実績値が予測される。
【0042】
需要予測部15は、状態予測モデルが状態度合を予測する際に、予測用データを適用する。図8は、高需要状態判別用の状態予測モデルの予測用データのテーブル例を示す図である。需要予測部15は、図8に示す通り、図5に示す学習用データと同様であり、指定されたタイミングに関連し、(図5の目的変数に対応する)上側確率は空欄とした予測用データを状態予測モデルに適用することで、指定されたタイミングでの上側確率(高需要状態の状態度合)が予測される。図9は、低需要状態判別用の状態予測モデルの予測用データのテーブル例を示す図である。需要予測部15は、図9に示す通り、図6に示す学習用データと同様であり、指定されたタイミングに関連し、(図6の目的変数に対応する)下側確率は空欄とした予測用データを状態予測モデルに適用することで、指定されたタイミングでの下側確率(低需要状態の状態度合)が予測される。
【0043】
需要予測部15は、上述の通り予測された、指定されたタイミングでの、定常状態における売上金額実績値、特異状態における売上金額実績値、高需要状態の状態度合、及び、低需要状態の状態度合を、上述した新売上予測値yの算出式のように、重み付け和によるアンサンブルを行うことで需要を予測してもよい。
【0044】
続いて、図10に示すフローチャートを用いて、需要予測装置1で実行される予測モデル作成方法の処理について説明する。
【0045】
まず、定常状態需要予測モデル生成部11により、定常状態需要予測モデルが生成される(ステップS1)。次に、特異状態需要予測モデル生成部12により、特異状態需要予測モデルが生成される(ステップS2)。次に、需要分布生成部13により、S1で生成された定常状態需要予測モデル及びS2で生成された特異状態需要予測モデルに基づいて、需要分布が生成される(ステップS3)。次に、状態予測モデル生成部14により、S3にて生成された需要分布に基づいて、状態予測モデルが生成される(ステップS4)。なお、S1とS2の順番は逆でもよい。
【0046】
次に、図11に示すフローチャートを用いて、需要予測装置1で実行される需要予測方法の処理について説明する。
【0047】
まず、需要予測部15により、(予め生成及び格納された)定常状態需要予測モデルを用いた、指定されたタイミングでの定常状態における需要の予測が行われる(ステップS10)。次に、需要予測部15により、(予め生成及び格納された)特異状態需要予測モデルを用いた、指定されたタイミングでの特異状態における需要の予測が行われる(ステップS11)。次に、需要予測部15により、(予め生成及び格納された)状態予測モデルを用いた、指定されたタイミングが定常状態及び特異状態に当てはまる状態度合の予測が行われる(ステップS12)。次に、需要予測部15により、S10にて予測された需要と、S11にて予測された予測と、S12にて予測された状態度合に基づいて需要が予測される(ステップS13)。
【0048】
次に、本実施形態のように構成された需要予測装置1の作用効果について説明する。
【0049】
本実施形態の需要予測装置1によれば、情報格納部10により、定常状態需要予測モデル、特異状態需要予測モデル及び状態予測モデルが格納され、需要予測部15により、格納された定常状態需要予測モデル及び特異状態需要予測モデルそれぞれが予測する需要と、格納された状態予測モデルが予測する状態度合とに基づいて需要が予測される。このような需要予測装置1によれば、定常状態需要予測モデル及び特異状態需要予測モデルそれぞれが各需要予測モデルで異なる需要状態(定常状態及び特異状態)において予測した需要と、状態予測モデルが予測した各需要状態に当てはまる状態度合とに基づいて需要が予測されるため、定常状態及び特異状態において予測した需要と各需要状態に当てはまる状態度合とが反映された、より正確な需要を予測することができる。
【0050】
また、本実施形態の需要予測装置1によれば、需要予測部15により、指定されたタイミングに対して定常状態需要予測モデル及び特異状態需要予測モデルそれぞれが予測する需要と、当該タイミングに対して状態予測モデルが予測する状態度合とに基づいて需要が予測されてもよい。このような需要予測装置1によれば、例えば需要を予測したい任意のタイミングでの需要を予測することができる。
【0051】
また、本実施形態の需要予測装置1によれば、状態予測モデルは、需要の確率分布であって定常状態需要予測モデル及び特異状態需要予測モデルそれぞれが予測する需要に基づく需要分布に基づいて生成される予測モデルであってもよい。このような需要予測装置1によれば、外部要因としての需要分布を利用して需要を予測することができるため、より正確な需要を予測することができる。
【0052】
また、本実施形態の需要予測装置1によれば、状態予測モデルは、定常状態需要予測モデル及び特異状態需要予測モデルそれぞれが予測する需要の、需要分布における位置に基づいて生成される予測モデルであってもよい。このような需要予測装置1によれば、需要分布における位置は容易に算出可能であるため、より高速に需要を予測することができる。
【0053】
また、本実施形態の需要予測装置1によれば、状態予測モデル生成部14により、状態予測モデルが生成され、情報格納部10により、生成された状態予測モデルが格納されてもよい。このような需要予測装置1によれば、任意のタイミングで容易に状態予測モデルを生成又は更新することができるため、需要をタイムリーに予測することができる。
【0054】
また、本実施形態の需要予測装置1によれば、需要予測部15により、定常状態需要予測モデル及び特異状態需要予測モデルそれぞれが予測する需要に対して、状態予測モデルが予測する状態度合を重み付けすることで需要が予測されてもよい。このような需要予測装置1によれば、定常状態における需要と特異状態における需要とがそれぞれの状態度合に応じて重み付けされるため、定常状態での需要だけでなく、高需要又は低需要といった特異状態での需要についてもより正確に予測することができる。
【0055】
また、本実施形態の需要予測装置1によれば、複数の需要予測モデルとして、需要が定常状態における需要を予測する定常状態需要予測モデルと、需要が特異状態における需要を予測する特異状態需要予測モデルとの少なくとも一方が含まれてもよい。このような需要予測装置1によれば、定常状態における需要又は特異状態における需要を考慮した、より正確な需要を予測することができる。
【0056】
従来より、過去の需要実績データに基づき、未来の需要を推定する手法が提案されていた。しかしながら、全体精度を考慮(維持)しながらも,高需要又は低需要といった特異状態における需要(値)を的確に予測することは難しかった。本実施形態の需要予測装置1によれば、全体精度を考慮(維持)しつつ,高需要又は低需要といった特異状態での需要(値)についても的確な予測が可能となる。
【0057】
需要予測装置1は以下のような構成としてもよい。すなわち、少なくとも、過去の需要値を用いて定常状態における需要値を数値予測する第1モデルと、直近の来店期待人数(及び気象予報)を用いて特異状態における需要値を数値予測する第2モデルと、さらに、予測対象日時が定常状態となるか特異状態となるかを分類予測する第3モデルとを持ち、第3モデルによる分類予測結果として出力される特異状態発生確率を重みとして、第1モデル出力値と第2モデル出力値の重み付け和を計算し需要予測値として出力する装置。また、第3モデルの説明変数(特徴量)として,第1モデル出力値と第2モデル出力値のそれぞれについて、過去に蓄積された需要値分布および第1モデル出力値分布および第2モデル出力値分布における相対位置を用いてもよい。
【0058】
需要予測装置1は、特異状態判定スコアを用いた回帰値のアンサンブルによる高需要・低需要予測精度向上技術に関する。
【0059】
なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
【0060】
機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。
【0061】
例えば、本開示の一実施の形態における需要予測装置1などは、本開示の需要予測の処理を行うコンピュータとして機能してもよい。図12は、本開示の一実施の形態に係る需要予測装置1のハードウェア構成の一例を示す図である。上述の需要予測装置1は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
【0062】
なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。需要予測装置1のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
【0063】
需要予測装置1における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
【0064】
プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述の定常状態需要予測モデル生成部11、特異状態需要予測モデル生成部12、需要分布生成部13、状態予測モデル生成部14及び需要予測部15などは、プロセッサ1001によって実現されてもよい。
【0065】
また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、定常状態需要予測モデル生成部11、特異状態需要予測モデル生成部12、需要分布生成部13、状態予測モデル生成部14及び需要予測部15は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されても良い。
【0066】
メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施の形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
【0067】
ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
【0068】
通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の定常状態需要予測モデル生成部11、特異状態需要予測モデル生成部12、需要分布生成部13、状態予測モデル生成部14及び需要予測部15などは、通信装置1004によって実現されてもよい。
【0069】
入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
【0070】
また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
【0071】
また、需要予測装置1は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
【0072】
情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。
【0073】
本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、NR(new Radio)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。
【0074】
本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
【0075】
情報等は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
【0076】
入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
【0077】
判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
【0078】
本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
【0079】
以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
【0080】
ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
【0081】
また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
【0082】
本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
【0083】
なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。
【0084】
本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
【0085】
また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
【0086】
上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。
【0087】
本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
【0088】
「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
【0089】
本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
【0090】
本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
【0091】
上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。
【0092】
本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
【0093】
本開示において、例えば、英語でのa、an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
【0094】
本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
【符号の説明】
【0095】
1…需要予測装置、10…情報格納部、11…定常状態需要予測モデル生成部、12…特異状態需要予測モデル生成部、13…需要分布生成部、14…状態予測モデル生成部、15…需要予測部。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12