IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ヤフー株式会社の特許一覧

特許7443419情報処理装置、情報処理方法および情報処理プログラム
<>
  • 特許-情報処理装置、情報処理方法および情報処理プログラム 図1
  • 特許-情報処理装置、情報処理方法および情報処理プログラム 図2
  • 特許-情報処理装置、情報処理方法および情報処理プログラム 図3
  • 特許-情報処理装置、情報処理方法および情報処理プログラム 図4
  • 特許-情報処理装置、情報処理方法および情報処理プログラム 図5
  • 特許-情報処理装置、情報処理方法および情報処理プログラム 図6
  • 特許-情報処理装置、情報処理方法および情報処理プログラム 図7
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-02-26
(45)【発行日】2024-03-05
(54)【発明の名称】情報処理装置、情報処理方法および情報処理プログラム
(51)【国際特許分類】
   G06Q 30/0251 20230101AFI20240227BHJP
【FI】
G06Q30/0251
【請求項の数】 11
(21)【出願番号】P 2022082811
(22)【出願日】2022-05-20
(65)【公開番号】P2023170786
(43)【公開日】2023-12-01
【審査請求日】2022-09-16
(73)【特許権者】
【識別番号】500257300
【氏名又は名称】LINEヤフー株式会社
(74)【代理人】
【識別番号】110002147
【氏名又は名称】弁理士法人酒井国際特許事務所
(72)【発明者】
【氏名】兼平 慎一
【審査官】藤原 拓也
(56)【参考文献】
【文献】特開2017-188031(JP,A)
【文献】特開2019-045899(JP,A)
【文献】特開2022-041055(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G06Q 10/00-99/00
(57)【特許請求の範囲】
【請求項1】
複数のユーザに配信情報を配信する場合に、前記配信情報に対してコンバージョンに至る確率をユーザ毎に予測する予測部と、
予測したユーザ毎の前記確率に基づいて、前記確率が所定値未満の前記ユーザである低確率ユーザのうち、前記コンバージョンに至る前記低確率ユーザの予測数を算出する算出部と、
算出した前記低確率ユーザの予測数に基づいたコンテンツを提供する提供部と
を備え
前記算出部は、
最大値を1とする各ユーザの前記確率の合計値を前記予測数として算出する
情報処理装置。
【請求項2】
前記算出部は、
前記複数のユーザのうち、前記コンバージョンに至るユーザの予測数と、前記確率が所定値以上の前記ユーザである高確率ユーザのうち、前記コンバージョンに至る前記高確率ユーザの予測数との差分に基づいて、前記低確率ユーザの予測数を算出する
請求項1に記載の情報処理装置。
【請求項3】
前記提供部は、
前記算出部が算出した前記高確率ユーザの予測数と、前記低確率ユーザの予測数との比に関する前記コンテンツを提供する
請求項2に記載の情報処理装置。
【請求項4】
前記提供部は、
前記低確率ユーザの予測数に基づいた前記配信情報の配信方針に関する前記コンテンツを提供する
請求項1に記載の情報処理装置。
【請求項5】
前記提供部は、
前記低確率ユーザに対して前記配信情報を配信することによる配信コストと、前記低確率ユーザの予測数とに基づいて前記配信方針を決定する
請求項4に記載の情報処理装置。
【請求項6】
前記配信方針は、
前記低確率ユーザの予測数が所定値以上である場合に低確率ユーザに配信を行うことを提案する配信方針である
請求項4に記載の情報処理装置。
【請求項7】
前記配信方針は、
前記低確率ユーザの予測数が所定値未満である場合に低確率ユーザに配信を行わないことを提案する配信方針である
請求項4に記載の情報処理装置。
【請求項8】
前記予測部は、
前記ユーザの前記配信情報に対する配信許諾状況に基づいて、前記確率の予測対象となる前記ユーザを決定する
請求項1に記載の情報処理装置。
【請求項9】
前記配信情報は、
所定のコンテンツを含むメールであり、
前記コンバージョンは、
前記メールに含まれる前記コンテンツに対して所定の行動を行うことである
請求項1に記載の情報処理装置。
【請求項10】
コンピュータが実行する情報処理方法であって、
複数のユーザに配信情報を配信する場合に、前記配信情報に対してコンバージョンに至る確率をユーザ毎に予測する予測工程と、
予測したユーザ毎の前記確率に基づいて、前記確率が所定値未満の前記ユーザである低確率ユーザのうち、前記コンバージョンに至る前記低確率ユーザの予測数を算出する算出工程と、
算出した前記低確率ユーザの予測数に基づいたコンテンツを提供する提供工程と
を含み、
前記算出工程は、
最大値を1とする各ユーザの前記確率の合計値を前記予測数として算出する
情報処理方法。
【請求項11】
複数のユーザに配信情報を配信する場合に、前記配信情報に対してコンバージョンに至る確率をユーザ毎に予測する予測手順と、
予測したユーザ毎の前記確率に基づいて、前記確率が所定値未満の前記ユーザである低確率ユーザのうち、前記コンバージョンに至る前記低確率ユーザの予測数を算出する算出手順と、
算出した前記低確率ユーザの予測数に基づいたコンテンツを提供する提供手順と
をコンピュータに実行させ
前記算出手順は、
最大値を1とする各ユーザの前記確率の合計値を前記予測数として算出する
情報処理プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、情報処理装置、情報処理方法および情報処理プログラムに関する。
【背景技術】
【0002】
従来、広告やメール等といった配信情報を配信する場合に、配信対象の全てのユーザのうち、配信情報に対してコンバージョンに至るユーザ数(CV数)を予測する技術がある(例えば、特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2020-187697号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、従来の技術では、配信対象すべてに対して配信情報を配信することを前提としており、例えば、CVに至る可能性が低いユーザが多数存在する場合には、かかるユーザに対して配信情報を配信することでCV数をある程度獲得できるものの、CVに至る可能性が低いユーザが少数である場合には、獲得できるCV数が少ないにも関わらず配信情報が配信されるおそれがあった。このように、従来は、配信情報を適切に配信する点で改善の余地があった。
【0005】
本願は、上記に鑑みてなされたものであって、適切な配信を行うことができる情報処理装置、情報処理方法および情報処理プログラムを提供することを目的とする。
【課題を解決するための手段】
【0006】
本願に係る情報処理装置は、予測部と、算出部と、提供部とを備える。前記予測部は、複数のユーザに配信情報を配信する場合に、前記配信情報に対してコンバージョンに至る確率をユーザ毎に予測する。前記算出部は、予測したユーザ毎の前記確率に基づいて、前記確率が所定値未満の前記ユーザである低確率ユーザのうち、前記コンバージョンに至る前記低確率ユーザの予測数を算出する。前記提供部は、算出した前記低確率ユーザの予測数に基づいたコンテンツを提供する。
【発明の効果】
【0007】
実施形態の一態様によれば、適切な配信を行うことができるという効果を奏する。
【図面の簡単な説明】
【0008】
図1図1は、実施形態に係る情報処理装置が実行する処理を示す図である。
図2図2は、実施形態に係る情報処理システムの構成例を示す図である。
図3図3は、実施形態に係る情報処理装置の構成例を示す図である。
図4図4は、ユーザ情報の一例を示す図である。
図5図5は、モデル情報の一例を示す図である。
図6図6は、実施形態に係る情報処理装置が実行する情報処理の処理手順を示すフローチャートである。
図7図7は、ハードウェア構成の一例を示す図である。
【発明を実施するための形態】
【0009】
以下に、本願に係る情報処理装置、情報処理方法および情報処理プログラムを実施するための形態(以下、「実施形態」と記載する)について図面を参照しつつ詳細に説明する。なお、この実施形態により本願に係る情報処理装置、情報処理方法および情報処理プログラムが限定されるものではない。また、以下の各実施形態において同一の部位には同一の符号を付し、重複する説明は省略される。
【0010】
(実施形態)
まず、図1を用いて、実施形態に係る情報処理装置が実行する処理について説明する。図1は、実施形態に係る情報処理装置が実行する処理を示す図である。なお、図1では、実施形態に係る情報処理装置1を含む情報処理システムSの動作例を示している。
【0011】
図1に示すように、実施形態に係る情報処理システムSは、情報処理装置1と、ユーザ端末100と、依頼元端末200とを含む。ユーザ端末100は、配信情報の配信対象となるユーザが所持する端末装置である。依頼元端末200は、配信情報の配信を依頼する依頼ユーザが所持する端末装置である。
【0012】
実施形態に係る情報処理システムSでは、配信情報に対してコンバージョン(以下、CV)に至る確率(以下、CV確率)をユーザ毎に予測し、CV確率が所定値未満の低確率ユーザのうち、CVに至る低確率ユーザの予測数を算出し、算出した低確率ユーザの予測数に基づいたコンテンツを提供する。
【0013】
配信情報は、例えば、依頼ユーザが行う事業の広告に関するメールや、依頼ユーザが行う事業に関する広告である。また、CVは、メールの場合には、メールに含まれる広告等のコンテンツに対して所定の行動(キャンペーンに参加登録等)を行うことであり、広告の場合には、広告された商品やサービス等の利用である。
【0014】
具体的には、情報処理装置1は、まず、配信情報に対してCVに至るCV確率をユーザ毎に予測する(ステップS1)。例えば、情報処理装置1は、ユーザ情報を入力することで、CV確率を示すスコアを出力するモデルを用いてCV確率を予測する。かかるモデルは、例えば、ユーザ情報と、過去の配信情報に対してCVに至ったか否かの情報とをデータセットとして学習することで生成される。
【0015】
つづいて、情報処理装置1は、予測したユーザ毎のCV確率に基づいて、CV確率が所定値未満のユーザである低確率ユーザのうち、配信情報に対してCVに至る低確率ユーザの予測数を算出する(ステップS2)。
【0016】
例えば、情報処理装置1は、配信対象となった複数のユーザすべてのうち、CVに至るユーザの予測数と、CV確率が所定値以上のユーザである高確率ユーザのうち、CVに至る高確率ユーザの予測数との差分に基づいて、低確率ユーザの予測数を算出する。複数のユーザすべてを基にした予測数と、高確率ユーザの予測数とは、例えば、最大値を1とする各ユーザのCV確率の合計値として算出される。
【0017】
つづいて、情報処理装置1は、算出した予測数に基づいたコンテンツを生成する(ステップS3)。例えば、情報処理装置1は、低確率ユーザの予測数を示すコンテンツを生成する。また、情報処理装置1は、高確率ユーザの予測数と、低確率ユーザの予測数との比を示すコンテンツを生成する。また、情報処理装置1は、低確率ユーザの予測数、または、上記した比に基づいた配信情報の配信方針に関するコンテンツを生成する。配信方針は、例えば、低確率ユーザに対して配信情報を配信することによる配信コストと、低確率ユーザの予測数とに基づいて決定される。つまり、配信方針は、低確率ユーザに配信情報を配信した場合に、配信コストに見合ったCV数(CVを行ったユーザ数)を獲得できるか否かに関する方針を含む。
【0018】
つづいて、情報処理装置1は、生成したコンテンツを依頼元端末200を介して依頼ユーザに提供する(ステップS4)。つづいて、依頼元端末200は、依頼ユーザの指示に従って、低確率ユーザへ配信情報の配信を依頼する(ステップS5)。
【0019】
つづいて、情報処理装置1は、依頼ユーザの指示に従ってユーザへ配信情報を配信する(ステップS6)。情報処理装置1は、依頼ユーザから低確率ユーザへの配信依頼があった場合には、高確率ユーザおよび低確率ユーザに対して配信情報を配信する。また、情報処理装置1は、依頼ユーザから高確率ユーザのみへの配信依頼(すなわち、低確率ユーザへの配信不要の依頼)があった場合には、高確率ユーザのみへ配信情報を配信する。
【0020】
このように、実施形態に係る情報処理装置1では、低確率ユーザ、言い換えれば、CV確率が低いことにより配信対象外のユーザの予測数に関するコンテンツを提供する。これにより、依頼ユーザは、低確率ユーザの予測数により、低確率ユーザへの配信が配信コストに見合うか否かを判断して低確率ユーザへの配信依頼を行うことができる。
【0021】
なお、情報処理装置1は、依頼ユーザからの指示に従って低確率ユーザへの配信を行う否かを決定する例を示したが、例えば、低確率ユーザの予測数に基づいて低確率ユーザへの配信を行う否かを自動で決定してもよい。例えば、情報処理装置1は、低確率ユーザの予測数が所定数以上である場合や、高確率ユーザおよび低確率ユーザの比において、低確率ユーザの値が所定値以上である場合に、低確率ユーザへの配信を行う。
【0022】
次に、図2を用いて、実施形態に係る情報処理システムSの構成例について説明する。図2は、実施形態に係る情報処理システムSの構成例を示すブロック図である。図2に示すように、実施形態に係る情報処理システムSは、情報処理装置1と、複数のユーザ端末100とがネットワークNに対して有線又は無線により接続される。ネットワークNは、例えば、インターネット、WAN(Wide Area Network)、LAN(Local Area Network)等のネットワークである。
【0023】
情報処理装置1は、実施形態に係る情報処理方法を実行するサーバ装置である。情報処理装置1は、ユーザ毎のCV確率を予測し、CV確率が所定値未満の低確率ユーザのうち、CVに至る低確率ユーザの予測数を算出し、算出した低確率ユーザの予測数に基づいたコンテンツを提供する。
【0024】
また、情報処理装置1は、複数のユーザ端末100と連携し、各ユーザ端末100に対して、各種アプリケーション(以下、アプリ)等に対するAPI(Application Programming Interface)サービス等と、各種データを提供する情報処理装置であり、サーバ装置やクラウドシステム等により実現される。
【0025】
また、情報処理装置1は、各ユーザ端末100に対して、オンラインで何らかのWebサービスを提供する情報処理装置であってもよい。例えば、情報処理装置1は、Webサービスとして、インターネット接続、検索サービス、SNS(Social Networking Service)、電子商取引(EC:Electronic Commerce)、電子決済、オンラインゲーム、オンラインバンキング、オンライントレーディング、宿泊・チケット予約、動画・音楽配信、ニュース、地図、ルート検索、経路案内、路線情報、運行情報、天気予報等のサービスを提供してもよい。実際には、情報処理装置1は、上記のようなWebサービスを提供する各種サーバと連携し、Webサービスを仲介してもよいし、Webサービスの処理を担当してもよい。
【0026】
ユーザ端末100は、配信情報の配信対象となるユーザが所持する端末装置である。ユーザ端末100は、スマートフォン、デスクトップ型PC、ノート型PC、タブレット型PC等の任意のタイプの端末装置を用いることができる。ユーザ端末100は、情報処理装置1等へ各種情報を送信したり、情報処理装置1等から提供される情報を受信したりする。
【0027】
依頼元端末200は、配信情報の配信を依頼する依頼ユーザが所持する端末装置である。依頼元端末200は、スマートフォン、デスクトップ型PC、ノート型PC、タブレット型PC等の任意のタイプの端末装置を用いることができる。依頼元端末200は、情報処理装置1等へ各種情報を送信したり、情報処理装置1等から提供される情報を受信したりする。
【0028】
依頼元端末200は、例えば、情報処理装置1に対して配信情報の原稿を送信するとともに、希望するCV数や、配信料金(広告料等)を送信する。
【0029】
次に、図3を参照して、情報処理装置1の構成例について説明する。
【0030】
図3は、実施形態に係る情報処理装置1の構成例を示す図である。図3に示されるように、情報処理装置1は、通信部2と、制御部3と、記憶部4とを有する。制御部3は、取得部31と、予測部32と、算出部33と、生成部34と、提供部35と、配信部36とを備える。記憶部4は、ユーザ情報41と、モデル情報42とを記憶する。
【0031】
通信部2は、例えば、NIC(Network Interface Card)等によって実現される。通信部2は、有線または無線によりネットワーク網と接続される。
【0032】
制御部3は、コントローラ(controller)であり、例えば、CPU(Central Processing Unit)、MPU(Micro Processing Unit)等のプロセッサによって、情報処理装置1内部の記憶装置に記憶されている各種プログラム(情報処理プログラムの一例に相当)がRAM等を作業領域として実行されることにより実現される。また、制御部3は、コントローラ(controller)であり、例えば、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、GPGPU(General Purpose Graphic Processing Unit)等の集積回路により実現されてもよい。
【0033】
記憶部4は、例えば、RAM(Random Access Memory)、フラッシュメモリ(Flash Memory)等の半導体メモリ素子、または、ハードディスク、光ディスク等の記憶装置によって実現される。
【0034】
ユーザ情報41は、配信情報の配信対象となるユーザに関する情報である。図4は、ユーザ情報41の一例を示す図である。図4に示すように、ユーザ情報41は、「ユーザID」、「ユーザ情報」、「CV確率」等の項目を含む。
【0035】
「ユーザID」は、ユーザを識別する識別情報である。「ユーザ情報」は、ユーザに関する情報である。「ユーザ情報」は、例えば、ユーザの属性に関する属性情報や、行動情報等を含む。属性情報は、サイコグラフィック属性や、デモグラフィック属性等を含む。行動情報は、ユーザのネットワーク上における行動(検索行動や、購買行動等)を含む。「CV確率」は、後述する予測部32によって予測されるCV確率の情報である。CV確率は、配信情報の種別(メールや、広告等)毎に予測される。
【0036】
モデル情報42は、CV確率を予測するためのモデルに関する情報であり、後述する予測部32によって用いられるモデルの情報である。図5は、モデル情報42の一例を示す図である。図5に示すように、モデル情報42は、「モデルID」、「種別」、「モデル情報」等の項目を含む。
【0037】
「モデルID」は、モデルを識別する識別情報である。「種別」は、モデルが予測する対象の配信情報の種別を示す情報である。「モデル情報」は、モデルに関する情報であり、例えば、モデルが要求する入力や、モデルからの出力(スコア等)、重み値等の情報を含む。
【0038】
次に、情報処理装置1の制御部3の各機能(取得部31、予測部32、算出部33、生成部34、提供部35および配信部36)について説明する。
【0039】
取得部31は、配信情報の配信対象であるユーザに関するユーザ情報を取得する。取得部31は、取得したユーザ情報をユーザ情報41として記憶部4に記憶する。
【0040】
予測部32は、配信情報に対してユーザがCVに至るCV確率をユーザ毎に予測する。具体的には、予測部32は、モデル情報42におけるモデルに取得部31が取得したユーザ情報を入力し、モデルから出力されるスコアに基づいてCV確率を予測する。
【0041】
なお、予測部32は、ユーザの配信情報に対する配信許諾状況に基づいて、CV確率の予測対象となるユーザを決定してもよい。具体的には、予測部32は、配信情報の配信停止依頼を受けたユーザを除いたユーザをCV確率の予測対象として決定する。
【0042】
算出部33は、予測部32が予測したユーザ毎のCV確率に基づいて、CV確率が所定値未満のユーザである低確率ユーザのうち、CVに至る低確率ユーザの予測数を算出する。
【0043】
具体的には、まず、算出部33は、CV確率を予測した各ユーザを、CV確率が所定値以上の高確率ユーザと、CV確率が所定値未満の低確率ユーザに分別する。
【0044】
つづいて、算出部33は、配信対象となった複数のユーザすべてのうち、CVに至るユーザの予測数と、CV確率が所定値以上のユーザである高確率ユーザのうち、CVに至る高確率ユーザの予測数との差分を低確率ユーザの予測数として算出する。
【0045】
なお、複数のユーザすべてを基にした予測数と、高確率ユーザの予測数とは、例えば、最大値を1とする各ユーザのCV確率の合計値として算出される。
【0046】
また、算出部33は、各低確率ユーザのCV確率の合計値を低確率ユーザの予測数として算出してもよい。
【0047】
生成部34は、算出部33が算出した低確率ユーザの予測数に基づいたコンテンツを生成する。例えば、生成部34は、低確率ユーザの予測数を示すコンテンツを生成する。また、生成部34は、高確率ユーザの予測数と、低確率ユーザの予測数との比を示すコンテンツを生成する。
【0048】
また、生成部34は、低確率ユーザの予測数、または、上記した比に基づいた配信情報の配信方針に関するコンテンツを生成する。配信方針は、例えば、低確率ユーザに対して配信情報を配信することによる配信コストと、低確率ユーザの予測数とに基づいて決定される。
【0049】
つまり、配信方針は、低確率ユーザに配信情報を配信した場合に、配信コストに見合ったCV数(CVを行ったユーザ数)を獲得できるか否かに関する方針を含む。
【0050】
配信コストは、例えば、配信数や配信環境の維持費(通信環境の維持費や、サーバ維持費、ユーザ管理費等)に基づいて算出可能である。
【0051】
また、生成部34は、低確率ユーザの予測数(または上記した比)が所定値(または上記した比が所定値)以上である場合に低確率ユーザに配信を行うことを提案する配信方針を決定する。
【0052】
また、生成部34は、低確率ユーザの予測数(または上記した比)が所定値(または上記した比が所定値)未満である場合に低確率ユーザに配信を行わないことを提案する配信方針を決定する。
【0053】
提供部35は、生成したコンテンツを依頼元端末200を介して依頼ユーザに提供する。
【0054】
配信部36は、依頼ユーザの指示に従ってユーザへ配信情報を配信する。配信部36は、依頼ユーザから低確率ユーザへの配信依頼があった場合には、高確率ユーザおよび低確率ユーザに対して配信情報を配信する。また、配信部36は、依頼ユーザから高確率ユーザのみへの配信依頼(すなわち、低確率ユーザへの配信不要の依頼)があった場合には、高確率ユーザのみへ配信情報を配信する。
【0055】
次に、図6を用いて、実施形態に係る情報処理装置1が実行する情報処理の処理手順について説明する。図6は、実施形態に係る情報処理装置1が実行する情報処理の処理手順を示すフローチャートである。
【0056】
図6に示すように、制御部3は、まず、ユーザからユーザ端末100を介してユーザ情報を取得し、ユーザ情報41に記憶する(ステップS101)。
【0057】
つづいて、制御部3は、モデル情報42のモデルに、ユーザ情報を入力し、モデルから出力された情報に基づいて、配信情報に対するCV確率をユーザ毎に予測する(ステップS102)。
【0058】
つづいて、制御部3は、予測したCV確率に基づいて、CV確率が所定値以上の高確率ユーザと、CV確率が所定値未満の低確率ユーザとに分別する(ステップS103)。
【0059】
つづいて、制御部3は、ユーザ毎のCV確率に基づいて、配信対象となったすべてのユーザのうち、CVに至るユーザのCV予測数を算出する(ステップS104)。
【0060】
つづいて、制御部3は、ユーザ毎のCV確率に基づいて、高確率ユーザのうち、CVに至る高確率ユーザのCV予測数を算出する(ステップS105)。
【0061】
つづいて、制御部3は、ステップS104で算出したCV予測数と、ステップS105で算出したCV予測数との差分により、低確率ユーザのうち、CVに至る低確率ユーザのCV予測数を算出する(ステップS106)。
【0062】
つづいて、制御部3は、ステップS104~ステップS106で算出したCV予測数に基づいたコンテンツを生成する(ステップS107)。
【0063】
つづいて、制御部3は、生成したコンテンツを、例えば、依頼元端末200を介して依頼ユーザへ提供し(ステップS108)、処理を終了する。
【0064】
〔その他〕
また、上記実施形態において説明した各処理のうち、自動的に行われるものとして説明した処理の一部を手動的に行うこともできる。あるいは、手動的に行われるものとして説明した処理の全部または一部を公知の方法で自動的に行うこともできる。この他、上記文書中や図面中で示した処理手順、具体的名称、各種のデータやパラメータを含む情報については、特記する場合を除いて任意に変更することができる。例えば、各図に示した各種情報は、図示した情報に限られない。
【0065】
また、図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散・統合の具体的形態は図示のものに限られず、その全部または一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。
【0066】
例えば、図3に示した記憶部4の一部又は全部は、各装置によって保持されるのではなく、ストレージサーバ等に保持されてもよい。この場合、各装置は、ストレージサーバにアクセスすることで、各種情報を取得する。
【0067】
〔ハードウェア構成〕
また、上述してきた実施形態に係る情報処理装置1は、例えば図7に示すような構成のコンピュータ1000によって実現される。図7は、ハードウェア構成の一例を示す図である。コンピュータ1000は、出力装置1010、入力装置1020と接続され、演算装置1030、一次記憶装置1040、二次記憶装置1050、出力IF(Interface)1060、入力IF1070、ネットワークIF1080がバス1090により接続された形態を有する。
【0068】
演算装置1030は、一次記憶装置1040や二次記憶装置1050に格納されたプログラムや入力装置1020から読み出したプログラム等に基づいて動作し、各種の処理を実行する。一次記憶装置1040は、RAM等、演算装置1030が各種の演算に用いるデータを一時的に記憶するメモリ装置である。また、二次記憶装置1050は、演算装置1030が各種の演算に用いるデータや、各種のデータベースが登録される記憶装置であり、ROM(Read Only Memory)、HDD(Hard Disk Drive)、フラッシュメモリ等により実現される。
【0069】
出力IF1060は、モニタやプリンタといった各種の情報を出力する出力装置1010に対し、出力対象となる情報を送信するためのインタフェースであり、例えば、USB(Universal Serial Bus)やDVI(Digital Visual Interface)、HDMI(登録商標)(High Definition Multimedia Interface)といった規格のコネクタにより実現される。また、入力IF1070は、マウス、キーボード、およびスキャナ等といった各種の入力装置1020から情報を受信するためのインタフェースであり、例えば、USB等により実現される。
【0070】
なお、入力装置1020は、例えば、CD(Compact Disc)、DVD(Digital Versatile Disc)、PD(Phase change rewritable Disk)等の光学記録媒体、MO(Magneto-Optical disk)等の光磁気記録媒体、テープ媒体、磁気記録媒体、または半導体メモリ等から情報を読み出す装置であってもよい。また、入力装置1020は、USBメモリ等の外付け記憶媒体であってもよい。
【0071】
ネットワークIF1080は、ネットワークNを介して他の機器からデータを受信して演算装置1030へ送り、また、ネットワークNを介して演算装置1030が生成したデータを他の機器へ送信する。
【0072】
演算装置1030は、出力IF1060や入力IF1070を介して、出力装置1010や入力装置1020の制御を行う。例えば、演算装置1030は、入力装置1020や二次記憶装置1050からプログラムを一次記憶装置1040上にロードし、ロードしたプログラムを実行する。
【0073】
例えば、コンピュータ1000が情報処理装置1として機能する場合、コンピュータ1000の演算装置1030は、一次記憶装置1040上にロードされたプログラムを実行することにより、制御部3の機能を実現する。
【0074】
〔効果〕
上述してきたように、実施形態に係る情報処理装置1は、予測部32と、算出部33と、提供部35とを備える。予測部32は、複数のユーザに配信情報を配信する場合に、配信情報に対してコンバージョンに至る確率をユーザ毎に予測する。算出部33は、予測したユーザ毎の確率に基づいて、確率が所定値未満のユーザである低確率ユーザのうち、コンバージョンに至る低確率ユーザの予測数を算出する。提供部35は、算出した低確率ユーザの予測数に基づいたコンテンツを提供する。このような構成により、適切な配信を行うことができる。
【0075】
以上、本願の実施形態のいくつかを図面に基づいて詳細に説明したが、これらは例示であり、発明の開示の欄に記載の態様を始めとして、当業者の知識に基づいて種々の変形、改良を施した他の形態で本発明を実施することが可能である。
【0076】
〔その他〕
また、上記実施形態において説明した各処理のうち、自動的に行われるものとして説明した処理の全部または一部を手動的に行うこともでき、あるいは、手動的に行われるものとして説明した処理の全部または一部を公知の方法で自動的に行うこともできる。この他、上記文書中や図面中で示した処理手順、具体的名称、各種のデータやパラメータを含む情報については、特記する場合を除いて任意に変更することができる。例えば、各図に示した各種情報は、図示した情報に限られない。
【0077】
また、図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散・統合の具体的形態は図示のものに限られず、その全部または一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。
【0078】
また、上述してきた実施形態に記載した各処理は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。
【0079】
また、上記してきた「部(section、module、unit)」は、「手段」や「回路」などに読み替えることができる。例えば、制御部3は、制御手段や制御回路に読み替えることができる。
【符号の説明】
【0080】
1 情報処理装置
2 通信部
3 制御部
4 記憶部
31 取得部
32 予測部
33 算出部
34 生成部
35 提供部
36 配信部
41 ユーザ情報
42 モデル
100 ユーザ端末
200 依頼元端末
S 情報処理システム
図1
図2
図3
図4
図5
図6
図7