(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-02-27
(45)【発行日】2024-03-06
(54)【発明の名称】組成物、銀焼結物の形成方法、接合方法、物品及び物品の製造方法
(51)【国際特許分類】
B22F 1/00 20220101AFI20240228BHJP
B22F 9/00 20060101ALI20240228BHJP
B22F 7/08 20060101ALI20240228BHJP
H01B 1/22 20060101ALI20240228BHJP
H01L 21/52 20060101ALI20240228BHJP
【FI】
B22F1/00 K
B22F9/00 B
B22F7/08 C
H01B1/22 A
H01L21/52 E
(21)【出願番号】P 2020103035
(22)【出願日】2020-06-15
【審査請求日】2022-12-08
(73)【特許権者】
【識別番号】000004178
【氏名又は名称】JSR株式会社
(74)【代理人】
【識別番号】100159499
【氏名又は名称】池田 義典
(72)【発明者】
【氏名】内山 克博
(72)【発明者】
【氏名】志保 浩司
(72)【発明者】
【氏名】森山 英樹
【審査官】池ノ谷 秀行
(56)【参考文献】
【文献】特開2012-052198(JP,A)
【文献】国際公開第2015/151136(WO,A1)
【文献】特開2019-153684(JP,A)
【文献】特開2016-000861(JP,A)
【文献】特開2015-004105(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B22F 1/00-12/90
H01B 1/22
H01L 21/52
(57)【特許請求の範囲】
【請求項1】
(A)平均粒径が20から200nm以下である銀微粒子、
(B)平均長さが5から20μmの銀粉、
(C)有機溶媒を含むことを組成物であって、
前記(A)銀微粒子と前記(B)銀粉の質量比が30:70から90:10であ
り、
前記(B)銀粉が、プレート型銀であり、前記プレート型銀の平均長さが5から20μm、厚さが60から200nmのプレート型銀微粒子であり、
さらに(D)焼結助剤として、酸無水物構造を含む化合物およびジカルボン酸から選ばれる一つ以上の化合物を含む組成物。
【請求項2】
(A)平均粒径が20から200nm以下である銀微粒子、
(B)平均長さが5から20μmの銀粉、
(C)有機溶媒を含むことを組成物であって、
前記(A)銀微粒子と前記(B)銀粉の質量比が30:70から90:10であ
り、
さらに(D)焼結助剤として、酸無水物構造を含む化合物およびジカルボン酸から選ばれる一つ以上の化合物を含み、
前記(A)銀微粒子と前記(B)銀粉の合計含有量が組成物全体において80質量%以上である組成物。
【請求項3】
(A)平均粒径が20から200nm以下である銀微粒子、
(B)平均長さが5から20μmの銀粉、
(C)有機溶媒を含むことを組成物であって、
前記(A)銀微粒子と前記(B)銀粉の質量比が30:70から90:10であ
り、
さらに(D)焼結助剤として、酸無水物構造を含む化合物を含む組成物。
【請求項4】
前記(B)銀粉が、プレート型銀であり、前記プレート型銀の平均長さが5から20μm、厚さが60から200nmのプレート型銀微粒子である請求項
2または請求項3に記載の組成物。
【請求項5】
前記(A)銀微粒子と前記(B
)銀粉の合計量を100質量部としたとき、前記(D)焼結助剤が0.01から1質量部含有されている請求項1から請求項
4のいずれか一項に記載の組成物。
【請求項6】
前記(A)銀微粒子と前記(B)銀粉の合計含有量が組成物全体において80質量%以上である請求項
1または請求項3に記載の組成物。
【請求項7】
請求項1から請求項6のいずれか一項に記載の組成物を焼結
して銀焼結物を形成する工程を有し、
得られた上記銀焼結物の体積抵抗率が1×10
-5Ω・cm以下であり、熱伝導率が132W/m・K以上である銀焼結物の形成方法。
【請求項8】
請求項1から請求項
6のいずれか
一項に記載された組成物を、金属製部材(d1)と金属製部材(d2)の間に介在させて、60℃以上250℃以下で加熱することにより、金属製部材(d1)と金属製部材(d2)を接合することを特徴とする接合方法。
【請求項9】
請求項1から請求項
6のいずれか
一項に記載された組成物を接合面に塗布する工程と、接合対象物を前記接合面に接合しながら、60℃以上から120℃以下の温度で加熱する第1の加熱工程と、前記接合対象物を120℃以下から150℃未満の温度で加熱する第2の加熱工程と、前記接合対象物を150℃以上の温度で加熱する第3の加熱工程を有する接合方法。
【請求項10】
前記第1および第2および第3の加熱工程において加熱する時間が30秒以上90分以下である、請求項
9に記載の接合方法。
【請求項11】
請求項1から請求項
6のいずれか一項に記載の組成物を焼結してなる焼結体を介して、金属部材同士、金属部材と半導体素子、または金属部材とLED素子が互いに接着した構造を有する物品。
【請求項12】
請求項1から請求項
6のいずれか一項に記載の組成物で接合することを特徴とする物品の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、組成物、銀焼結物の形成方法、接合方法、物品及び物品の製造方法に関する。
【背景技術】
【0002】
近年、電力損失の少ない炭化ケイ素(SiC)、窒化ガリウムのようなワイドバンドギャップ半導体を使用するパワー半導体装置の開発が盛んとなり、素子自身の耐熱性が高く、大電流による250℃以上の高温動作が可能となっている。しかし、その特性を発揮するためには、動作発熱を効率的に放熱する必要があり、導電性及び伝熱性に加え、長期高温耐熱性に優れた接合材料が求められている。
【0003】
ここで、通常、高熱伝導性を有する接合剤を得るには、銀粉、銅粉などの金属フィラー、または窒化アルミニウム、窒化ボロンなどのセラミック系フィラーなどを充填剤として有機系のバインダーに高い含有率で分散させる必要がある(例えば、特許文献1参照)。しかし、その結果、硬化物の弾性率が高くなってしまい、良好な熱伝導性と良好なリフロー性(上記リフロー処理後に剥離が生じにくいこと)を併せ持つことは困難であった。ところが、昨今、そうした要求に耐えうる接合方法の候補として、バルク体の銀よりも低温の条件下で接合を可能とする、銀ナノ粒子による接合方法が着目されるようになってきた(例えば、特許文献2参照)。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2005-113059号公報
【文献】特開2011-240406号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
銀ナノ粒子を用いて接合体を形成する際の雰囲気は、銀ナノ粒子の表面を被覆している有機物を酸化分解によって除去するため、大気中のような酸化雰囲気が要求される。したがって、銅などの基材を用いた場合には、基材である銅表面の酸化により、封止材の密着不良を引き起こす可能性があった。特に、接合体が微細になるほど、密着性が要求されるようになってきた。そのため、窒素を初めとした不活性雰囲気下で十分な接合力を発揮する接合材を提供することができれば、基材の酸化等を低減でき、接合剤の利用分野と適用可能性を飛躍的に広げることも可能になる。
しかし、銀ナノ粒子の表面を被覆している有機物がない場合、有機溶媒に銀粒子を分散させた組成物中では銀粒子間の凝集が生し、銀粒子を含む組成物の製品化の問題となっていた。
【0006】
本発明は、以上のような事情に基づいてなされたものであり、本発明の組成物から得られる銀焼結物の熱伝導性、体積低効率に優れ、せん断応力に優れることで高い接着強度を示し、組成物中の銀粒子の分散性に優れる。本発明の組成物を接合用材料として使用することで信頼性に優れた半導体装置及び電気・電子部品等の物品を提供することである。
【課題を解決するための手段】
【0007】
上記課題を解決するためになされた発明は、
(A)平均粒径が20から200nm以下である銀微粒子、(B)平均長さが5から20μmの銀粉、(C)有機溶媒を含むことを組成物であって、
前記(A)銀微粒子と前記(B)銀粉の質量比が30:70から90:10である組成物である。
【0008】
上記課題を解決するためになされた別の発明は、(A)銀微粒子と(B)銀粉と(C)有機溶媒と(D)焼結助剤の組成物を焼結せしめて生成した銀焼結物の体積抵抗率が1×10-5Ω・cm以下であり、熱伝導率が132W/m・K以上である銀焼結物の形成方法である。
【0009】
上記課題を解決するためになされたさらに別の発明は、前記組成物を金属製部材(d1)と金属製部材(d2)の間に介在させて、60℃以上250℃以下で加熱することにより、金属製部材(d1)と金属製部材(d2)を接合することを特徴とする接合方法である。
【0010】
上記課題を解決するためになされたさらに別の発明は、前記組成物を焼結してなる焼結体を介して、金属部材同士、金属部材と半導体素子、または金属部材とLED素子が互いに接着した構造を有する物品である。
【0011】
上記課題を解決するためになされたさらに別の発明は、前記組成物で接合することを特徴とする物品の製造方法である。
【発明の効果】
【0012】
本発明によれば、本発明の組成物から得られる銀焼結物の熱伝導性、体積低効率に優れ、せん断応力に優れることで高い接着強度を示し、組成物中の銀粒子の分散性に優れる。本発明の組成物を接合用材料として使用することで信頼性に優れた半導体装置及び電気・電子部品等の物品を提供することができる。
【発明を実施するための形態】
【0013】
<組成物>
本発明の一実施形態に係る組成物は、(A)平均粒径が20から200nm以下である銀微粒子、(B)平均長さが5から20 μmの銀粉、(C)有機溶媒を含むことを組成物であって、前記(A)銀微粒子と前記(B)銀粉の質量比が30:70から90:10である組成物である。各成分等について詳説する。
【0014】
当該組成物における(A)平均粒径が20から200nm以下である銀微粒子を含むことで、組成物の有機溶媒中で銀粒子間の凝集がなく、分散性に優れ、得られる銀焼成物のせん断応力に優れることで接着強度を向上することが可能となる。
【0015】
銀粒子の平均粒子径の計測方法は、粒子径が20から1000nmの範囲となる場合、透過型電子顕微鏡にて粒子を観察し、その長径と短径を計測し、長径と短径を平均した値を一つの粒子径として算出した。これを300から400個の粒子の測定値から平均粒子径を算出した。
また粒子径が1000nmを超える場合、レーザー回折/散乱式粒子径分布測定装置を用い、体積分布におけるメジアン径として算出した。厚みに関しては、SEMにて観察し、300から400個の測定値の平均値を算出した。
【0016】
本発明で用いられる(A)銀微粒子は、通常、銀微粒子の金属表面には有機化合物による被膜層が設けられたものであるか又は該銀微粒子を有機化合物中に分散させてなるものである。このような形態とすると、含有される銀微粒子同士がその金属面を直接接触させないようにできるため、銀微粒子が凝集した塊が形成されることを低減でき、銀微粒子を個々に分散させた状態で保持できる。なお、この粒子径は、透過型電子顕微鏡(TEM)又は走査型電子顕微鏡(SEM)により取得された観察画像をデータ処理することで測定されるものである。
さらに、(A)銀微粒子の平均粒径は、球状銀微粒子の50個から100個の観察画像から計測した粒子径の個数平均粒径として算出される。この個数平均粒子径は、上記平均厚さの算出と同一にして平均値を算出すればよい。
【0017】
この銀微粒子表面の被覆層又は銀微粒子を分散させる有機化合物としては、分子量20000以下の窒素、炭素、酸素を構成要素として有する有機化合物、具体的にはアミノ基、カルボキシル基等の官能基を含む有機化合物、が用いられる。
ここで使用されるカルボキシル基を含む有機化合物としては、分子量が110から20000の有機カルボン酸から選ばれる1種以上の有機化合物が挙げられる。
例えば、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸、テトラデカン酸、エイコサン酸、ドコサン酸、2-エチルヘキサン酸、オレイン酸、リノール酸、リノレン酸、末端ジプロピオン酸ポリエチレンオキシドのようなカルボン酸が挙げられる。さらに、上記有機化合物としては、上記したカルボン酸のカルボン酸誘導体も使用できる。
【0018】
また、ここで使用されるアミノ基を含む有機化合物としては、アルキルアミン等が挙げられる。
例えば、ブチルアミン、メトキシエチルアミン、2-エトキシエチルアミン、ヘキシルアミン、オクチルアミン、3-ブトキシプロピルアミン、ノニルアミン、ドデシルアミン、ヘキサドデシルアミン、オクタデシルアミン、ココアミン、タロウアミン、水酸化タロウアミン、オレイルアミン、ラウリルアミン、及びステアリルアミン、3-アミノプロピルトリエトキシシランなどのような第1級アミン、ジココアミン、ジ水素化タロウアミン、及びジステアリルアミンなどのような第2級アミン、並びにドデシルジメチルアミン、ジドデシルモノメチルアミン、テトラデシルジメチルアミン、オクタデシルジメチルアミン、ココジメチルアミン、ドデシルテトラデシルジメチルアミン、及びトリオクチルアミンなどのような第3級アミン、その他に、ナフタレンジアミン、ステアリルプロピレンジアミン、オクタメチレンジアミン、ノナンジアミン、末端ジアミンポリエチレンオキシド、トリアミン末端ポリプロピレンオキシド、ジアミン末端ポリプロピレンオキシドなどのようなジアミンがある。
【0019】
(A)銀微粒子の平均粒径が20から200nm以下の範囲であることが好ましい。平均粒径が20nm以下の場合、焼結時に界面の数が大きくなり、電気抵抗や熱伝導率が悪化する恐れがあり、200nm以上では焼結が十分に進まず、接合強度が悪化する恐れがある。
【0020】
このような(A)銀微粒子の市販品としては、銀微粒子(三ツ星ベルト(株)製、商品名:MDot 平均粒径 90nm)、銀微粒子(DOWAエレクトロニクス(株)製、商品名:Ag nano power1 平均粒径20nm)等があげられる。
【0021】
本発明における(B)銀粉は、前記(A)銀微粒子と粒子径が大きく異なり、平均長さが5から20μmの銀粉である。前記(B)銀粉は、球状粒子とは異なり、プレート型銀であってもよい。前記プレート型銀は、平均長さが5から20μm、厚さが60から200nmのプレート型である。このようなプレート型銀は、微粒子粒子球状の一つの金属結晶面を大きく成長させて得られ、厚みの均一なプレート状の薄片状粒子である。長さがミクロンオーダーで厚みが数ナノメートル程度であり、三角形板状、六角形板状、切頂三角形板状などの形状を有している。また、その上面が[111]面で広く覆われていてもよい。
【0022】
(B)銀粉として、平均長さが5から20μmの銀粉で球状の銀粒子としては、福田金属箔粉工業(株)製、商品名Ag-HWQ、平均粒径5μm(球状)、商品名Ag-HWQ、平均粒径15μm(球状)、トクセン工業(株)製、商品名M612、平均粒径6から12μm(プレート状)等が挙げられる。
平均粒子径は、レーザー回折散乱式粒度分布測定法によって得られる一次粒子径の数平均粒子径として算出できる。
このよう粒子径が大きい銀粒子を含むことで、組成物の焼結によって得られる銀焼結物のせん断応力をさらに向上することが可能となる。
【0023】
この(B)銀粉のうち、プレート型銀は、平均長さが5から20μmである。平均長さこの範囲とするとで、銀焼結物のせん断応力を向上することが可能となり、接着強度が高くすることができる。
さらに、このようなプレート型銀を含む組成物は、ノズルの詰まり、半導体素子の組立て時のチップの歪などを抑制できる。ここで、平均長さはとは、レーザー回折式粒度分布測定装置で測定して得られた体積基準の粒度分布曲線における50%積算値(50%粒子径)を指す。また、厚さは、10から200nmであってもよい。
この厚さは、透過型電子顕微鏡(TEM)又は走査型電子顕微鏡(SEM)により取得された観察画像をデータ処理することで測定されるものである。さらに、この厚さの平均厚さが上記範囲内であればよい。この平均厚さは、下記のようにして個数平均厚さとして算出される。
【0024】
プレート型銀の厚さの算出法は、先ず、プレート型銀微粒子の50個から100個の観察画像から計測した厚さの範囲(最大厚さ:x1、最小厚さ:xn+1)をn分割し、それぞれの厚さの区間を、[xj、xj+1](j=1,2,・・・・,n)とする。この場合の分割は対数スケール上での等分割となる。また、対数スケールに基づいてそれぞれの厚さ区間での代表厚さは、下記式で表される。
【数1】
【0025】
さらにrj(j=1,2,・・・・,n)を、区間[xj、xj+1]に対応する相対量(差分%)とし、全区間の合計を100%とすると、対数スケール上での平均値μは下記式で計算できる。
【数2】
このμは、対数スケール上の数値であり、厚さとしての単位を持たないので、厚さの単位に戻すために10μすなわち10のμ乗を計算する。この10μを個数平均厚さとする。
【0026】
また、厚み方向に垂直な方向の長辺が厚みの8から150倍の範囲内であってもよく、10から50倍であってもよい。さらに、厚み方向に垂直な方向の短辺が厚みの1から100倍の範囲内であってもよく、3から50倍であってもよい。
【0027】
以上のような(B)銀粉は、100から250℃で自己焼結可能である。このように100から250℃で自己焼結する銀を含有することで、熱硬化時に銀の流動性が向上する。その結果、(A)の銀粒子と(B)銀粉同士の接点がより多くなる。
さらに、(A)の銀粒子と(B)銀粉同士の接点がより多くなることで接点の面積が大きくなり、導電性、せん断応力が格段に向上する。
なお、ここで自己焼結可能であるとは加圧もしくは添加剤等を加えなくても、融点よりも低い温度での加熱で焼結することをいう。
【0028】
組成物は、単結晶のプレート型銀を含むことで、低温で硬化しても良好な導電性を確保でき、組成物の焼結によって得られる銀焼結物のせん断応力を向上することから、前記プレート型銀を含むことは、より好ましい。
【0029】
このような(B)プレート型銀としては、例えば、トクセン工業株式会社製のM612(商品名;中心粒子径6から12μm、粒子厚み60から100nm、融点250℃)、M27(商品名;中心粒子径2から7μm、粒子厚み60から100nm、融点200℃)、M13(商品名;中心粒子径1から3μm、粒子厚み40から60nm、融点200℃)、N300(商品名;中心粒子径0.3から0.6μm、粒子厚み50nm以下、融点150℃)、などが挙げられる。これらのプレート型銀は、単独で用いてもよく、組み合わせて用いてもよい。特に、充填率を向上するために、例えば上述のプレート型銀微粒子のうち、M27、M13などの比較的大きな銀微粒子に、N300などの粒径の小さなものを組み合わせて用いてもよい。
【0030】
本発明の組成物は、(A)銀微粒子と(B)銀粉の使用割合は、これらの合計量を100としたとき、質量比が30:70から90:10であってもよく、40:40から70:30の範囲でもよい。このような使用割合の範囲で(A)銀微粒子と(B)銀粉を含むことで、組成物から得られる銀焼結物の熱伝導性、体積低効率に優れ、さらに、せん断応力に優れることで高い接着強度を示しことが可能となる。
【0031】
(C)有機溶媒
(C)有機溶媒は、還元剤として機能する溶剤であれば公知の溶剤を用いることができる。この溶剤としては、アルコールであってもよく、例えば、脂肪族多価アルコールであってもよい。脂肪族多価アルコールとしては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロビレングリコール、1,4-ブタンジオール、グリセリン、ポリエチレングリコールなどのグリコール類などを挙げることができる。これらの溶剤は、単独で又は二種以上組み合わせて使用できる。
【0032】
(C)有機溶媒としては、還元剤として機能するアルコール溶剤がペースト硬化(焼結)時の熱処理により高温となることでアルコールの還元力を増大させ、銀粉及び銀微粒子中に一部存在している酸化銀及び金属基板上の酸化金属(例えば、酸化銅)がアルコールによって還元され、純粋な金属となる。その結果、より緻密で導電性が高く、基板との密着性の高い硬化膜の形成ができていると考えられる。また、半導体素子と金属基板に挟まれていることでペースト硬化時の熱処理中にアルコールが一部還流状態となり、溶剤であるアルコールが気化により系中から直ちに失われることがない。このため、溶剤の沸点以上の組成物の硬化温度であっても酸化金属がより効率的に還元されるようになる。
【0033】
(C)有機溶媒の沸点は、具体的には、100から300℃であってもよく、150から290℃であってもよい。沸点が100℃以上であると、揮発する溶剤量が低減されるため、組成物の還元能力が維持される。このため、安定した接着強度を得ることができる。また、沸点が300℃以下であると、焼結後組成物中に残存する溶剤量が少なくなり緻密な焼結体が得られる。
【0034】
(C)有機溶媒の配合量は、(A)銀微粒子と(B)プレート型銀の合計量を100質量部としたとき、7から20質量部であってもよい。溶剤を7質量部以上含むと、塗布時に作業性が良好な粘度とすることができる。溶剤の含有量が20質量部以下、つまり(A)銀微粒子と前記(B)銀粉の合計含有量が組成物全体において80質量%以上あると、組成物中で銀微粒子、プレート型銀が凝集することを防止することが可能となる。
【0035】
(D)焼結助剤
(D)焼結助剤として、酸無水物構造を化合物は、上記(A)銀微粒子の焼結を促進するもの又は焼結して得られる焼結体を緻密化するものであれば、特に限定されるものではない。この(D)焼結助剤としては、オキソ酸2分子が脱水縮合した構造を有するものであり、例えば、複数のカルボキシル基を有する化合物のカルボキシル基が分子内で脱水縮合した構造を有するものであればよい。
またこのような酸無水物構造を含む化合物であって、一部加水分解し、ジカルボン酸構造を有していてもよい。
【0036】
特に、カルボン酸無水物は銀微粒子表面への配位能が高いため、銀微粒子表面の保護基と置換し、銀微粒子表面にカルボン酸無水物が配位する。カルボン酸無水物が表面に配位した銀微粒子は良好な分散性を示す。さらに、カルボン酸無水物が揮発性に優れていることから、良好な低温焼結性を発現する。
【0037】
この(D)焼結助剤としては、具体的には、無水酢酸、プロピオン酸無水物、酪酸無水物、イソ酪酸無水物、吉草酸無水物、トリメチル酢酸無水物、ヘキサン酸無水物、ヘプタン酸無水物、デカン酸無水物、ラウリン酸無水物、ミリスチン酸無水物、パルミチン酸無水物、ステアリン酸無水物、ドコサン酸無水物、クロトン酸無水物、メタクリル酸無水物、オレイン酸無水物、リノール酸無水物、クロロ酢酸無水物、ヨード酢酸無水物、ジクロロ酢酸無水物、トリフルオロ酢酸無水物、クロロジフルオロ酢酸無水物、トリクロロ酢酸無水物、ペンタフルオロプロピオン酸無水物、ヘプタフルオロ酪酸無水物、無水コハク酸、メチルコハク酸無水物、2,2-ジメチルコハク酸無水物、イタコン酸無水物、無水マレイン酸、グルタル酸無水物、ジグリコール酸無水物、安息香酸無水物、フェニルコハク酸無水物、フェニルマレイン酸無水物、ホモフタル酸無水物、イサト酸無水物、無水フタル酸、テトラフルオロフタル酸無水物、テトラブロモフタル酸無水物等が挙げられる。これらの中でも、芳香族を含まない化合物がボイド発生のおそれがなく低温焼結性に優れている
【0038】
(D)焼結助剤の融点は40から150℃の範囲にあってもよい。融点がこの範囲にあると組成物の保存安定性、塗布時の作業性、加熱時の焼結性が良好となる。(D)焼結助剤の沸点は100から300℃であってもよく、100から275℃であってもよい。沸点がこの範囲にあるとボイド発生のおそれがない。このような酸無水物を焼結助剤として配合することにより、接着性、熱伝導性、リフロー剥離耐性に優れる組成物を得ることができる。
【0039】
(D)焼結助剤の使用量は、(A)銀微粒子と(B)プレート型銀の合計量を100としたとき、0.01から5質量部の範囲であり、より好ましくは0.01から1の範囲である。このような使用割合の範囲で(D)焼結助剤を含むことで、熱伝導性、体積低効率に優れた銀焼結物を得ることができる。
【0040】
その他の任意成分について、本発明の組成物は、本開示の作用を阻害しない範囲で、必要に応じて以下に示す任意成分を含むことができる。エポキシ系樹脂、マレイミド系樹脂、シアネート系樹脂、アクリル系樹脂等の熱硬化性樹脂、熱ラジカル重合開始剤、硬化促進剤、ゴム、シリコーン等の低応力化剤、カップリング剤、消泡剤、界面活性剤、着色剤(顔料、染料)、各種重合禁止剤、酸化防止剤、溶剤、その他の各種添加剤を、必要に応じて配合することができる。これらの各添加剤はいずれも1種を単独で使用してもよく、2種以上を混合して使用してもよい。
【0041】
このような添加剤としては、エポキシシラン、メルカプトシラン、アミノシラン、アルキルシラン、クレイドシラン、ビニルシラン、スルフィドシランなどのシランカップリング剤、またはチタネートカップリング剤、アルミニウムカップリング剤、アルミニウム/ジルコニウムカップリング剤などのカップリング剤、カーボンブラックなどの着色剤、シリコーンオイル、シリコーンゴムなどの固形低応力化成分、ハイドロタルサイトなどの無機イオン交換体、などが挙げられる。
【0042】
組成物の製造方法は、上記した(A)、(B)、(C)の各必須成分、及び(D)成分や必要に応じて配合される任意成分、その他カップリング剤等の添加剤及び溶剤等を十分に混合する。次いで、ディスパース、ニーダー、3本ロールミル等により混練処理を行う。さらに、脱泡することにより、調製することができる。
【0043】
このようにして得られる組成物は、高熱伝導性、熱放散性に優れる。そのため、素子または放熱部材の基板等への接合材料として使用すると、装置内部の熱の外部への放散性が改善され、製品特性を安定させることができる。
【0044】
銀焼結物の形成方法について
本発明の組成物を基材上に塗布する。塗布方法としては特に限定されず、例えばインクジェット法、スプレー法、ディスペンス法、スタンピング法、ロールコート法、回転塗布法(スピンコート法)、スリットダイ塗布法、バー塗布法等の適宜の方法を採用することができる。塗布後のプレベークの条件は、各成分の種類、配合割合等によっても異なるが、例えば80℃以上250℃以下、より好ましくは200℃以下の温度で1分以上10分以下の加熱時間とすればよい。
【0045】
前記工程で得られた塗布膜をホットプレート、オーブン等の加熱装置を用いて焼結することにより、銀焼結物を得ることができる。加熱温度の上限としては、300℃が好ましく、200℃がより好ましい。上記加熱温度を上記下限以上とすることにより、基材への接着強度に優れた銀焼結物をえることができる。加熱時間は、加熱機器の種類により異なるが、例えばホットプレート上で加熱する場合には5分以上30分以下、オーブン中で加熱する場合には10分以上90分以下とすればよい。なお、加熱は、空気中で行っても、窒素、アルゴン等の不活性ガス雰囲気中で行ってもよい。また、2回以上の加熱工程を行うステップベーク法を用いることも可能である。
このような工程で得られた銀焼結物は、体積抵抗率が1×10-5Ω・cm以下であり、熱伝導率が132W/m・K以上である銀焼結物をえることができる。
【0046】
接合方法について
本開示の接合方法は、本開示の組成物を接合面に塗布する工程と、接合対象物を前記接合面に接合しながら、60℃以上から120℃以下の温度で加熱する第1の加熱工程と、前記接合対象物を120℃以下から150℃未満の温度で加熱する第2の加熱工程と、前記接合対象物を150℃以上の温度で加熱する第3の加熱工程を有する接合方法である。
【0047】
接合面に塗布する工程は、部材上に均一に塗布できる方法であれば特に限定されるものではない。例えばスクリーン印刷、フレキソ印刷、オフセット印刷、グラビア印刷、およびグラビアオフセット印刷等の各種印刷法、ディスペンサー等が挙げられる。
部材としては、金属部材、プラスチック部材、セラミック部材、半導体素子が挙げられる。例えば、金属部材としては、銅基板、金基板、アルミ基板等を挙げることができる。
プラスチック材料としては、例えば、ポリイミド、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリカーボネート、ポリエチレンナフタレート等を挙げることができる。セラミック材料としては、例えば、ガラス、シリコン等を挙げることができる。
半導体素子としては、公知の半導体素子であればよく、例えば、トランジスタ、ダイオード等があげられるシリコン(ケイ素)やゲルマニウムのほかに、ヒ化ガリウム、リン化ガリウム、硫化カドミウムなどが用いられるが、特に、炭化ケイ素や窒化ガリウム、酸化ガリウム等のパワーデバイス素子を接合する際に好適に用いることができる。LED素子等の発光素子の種類は特に限定されるものではなく、例えば、MOCVD法とうによって基板上に窒化インジウム,窒化アルミニウム,窒化ガリウム、窒化インジウムガリウム(InGaN)、窒化アルミニウムガリウム(AlGaN)、窒化インジウムガリウムアルミニウム(InGaAlN)等の窒化物半導体を発光層として形成させたものを挙げることができる。
第1の部材及び第2の部材は、同じ種類だけではなく、異なる種類の部材であってもよい。上記部材は、接合強度を大きくするため適宜コロナ処理、メッキ等で加工してもよい。
【0048】
次いで、接合対象物を前記接合面に接合しながら、60℃以上から120℃以下の温度で加熱する第1の加熱工程と、前記接合対象物を120℃以下から150℃未満の温度で加熱する第2の加熱工程とを有する。
このように2段階で比較的低温で加熱すること、急激に検加熱することによる銀膜の内部ひずみを低減することができ、結果として銀焼結物のせん断応力の向上が可能となる。
【0049】
前記工程の後、前記接合対象物を150℃以上の温度で加熱する第3の加熱工程を有する。本工程における焼成条件は、適宜変更されるが、例えば、大気圧下、窒素雰囲気、真空中、加圧または還元雰囲気で150から300℃の条件を挙げることができる。
焼成装置としては、熱風オーブン、赤外線オーブン、リフローオーブン、マイクロウエーブオーブンおよび光焼成装置等が挙げられる。光焼成装置の場合、照射する光の種類は特に限定されないが、例えば、水銀灯、メタルハライドランプ、ケミカルランプ、キセノンランプ、カーボンアーク灯、レーザー光等が挙げられる。これら装置を適宜単独でまたは複数用いることができる。
【0050】
本接合方法によって得られた接合部材は、高熱伝導性、熱放散性に優れる。そのため、素子または放熱部材の基板等への接合材料として使用すると、装置内部の熱の外部への放散性が改善され、製品特性を安定させることができる。接合する部材の種類は特に限定されず、金属部材、電子素子、プラスチック材料、セラミック材料等を挙げることができる。
金属部材同士、金属部材と半導体素子、金属部材と素子とを接合することが好ましい。即ち、金属部材同士、金属部材と半導体素子、または金属部材とLED素子等の発光素子との間に、本発明の接合用ペーストを挟み、加熱し、(C)有機溶剤を除去すると共に、(A)銀粒子の少なくとも一部を溶融し、焼結体を形成し、金属部材同士、金属部材と半導体素子、または金属部材とLED素子との間を、前記焼結体で接合することが可能となる。
【0051】
次に、物品について説明する。本開示の物品は、半導体装置及び電気・電子部品である。
本開示の半導体装置は、上記した組成物を用いて、半導体素子を素子支持部材となる基板上に接着してなるものである。すなわち、ここで組成物はダイアタッチペーストとして使用され、この組成物を介して半導体素子と基板とが接着し、固定される。
【0052】
ここで、半導体素子は、公知の半導体素子であればよく、例えば、トランジスタ、ダイオード等が挙げられる。さらに、この半導体素子としては、LED等の発光素子が挙げられる。また、発光素子の種類は特に制限されるものではなく、例えば、MOCVD法等によって基板上にInN、AlN、GaN、InGaN、AlGaN、InGaAlN等の窒化物半導体を発光層として形成させたものも挙げられる。また、素子支持部材は、銅、銀メッキ銅、PPF(プリプレーティングリードフレーム)、ガラスエポキシ、セラミックス等が挙げられる。
【0053】
本開示の半導体装置及び電気・電子部品は、上記した組成物を使用することで、半導体素子を金属メッキ処理されていない基材に接合することもできる。このようにして得られた半導体装置は、実装後の温度サイクルに対する接続信頼性が従来に比べ飛躍的に向上したものとなる。また、電気抵抗値が十分小さく経時変化が少ないため、長時間の駆動でも出力の経時的減少が少なく長寿命であるという利点がある。
【0054】
また、本開示の電気・電子部品は、上記した組成物を用いて、発熱部材に放熱部材を接着してなるものである。すなわち、ここで組成物は放熱部材接着用材料として使用され、この組成物を介して放熱部材と発熱部材とが接着し、固定される。
【実施例】
【0055】
以下、本発明について実施例を用いて更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」および「部」は、特に断らない限り、質量基準である。
【0056】
(実施例1から10、比較例1から5)
表1の配合に従って各成分を混合し、ロールで混練し、組成物を得た。得られた組成物を以下の方法で評価した。その結果を表1及び表2に併せて示す。なお、実施例及び比較例で用いた材料は、下記の通りの市販品を使用した。
【0057】
(A1)銀微粒子(三ツ星ベルト(株)製、商品名MDot、平均粒径90nm、球状)
(A2)銀微粒子(DOWAエレクトロニクス(株)製、商品名Ag nano Power1、平均粒径20nm、球状)
(B1)銀粉(福田金属箔粉工業(株)製、商品名Ag-HWQ、平均粒径5μm、球状)
(B2)銀粉(福田金属箔粉工業(株)製、商品名Ag-HWQ、平均粒径15μm、球状)
(B3)銀粉(トクセン工業(株)製、商品名M612,平均粒径6から12μm、厚さ60から100nm、プレート状)
(B4)銀粉(トクセン工業(株)製、商品名M13,平均粒径1から3μm、厚さ40から60μm、プレート状)
(B5)銀粉(福田金属箔粉工業(株)製、商品名Ag-HWQ、平均粒径2μm、球状)
(C)溶剤(エチレングリコール、東京化成工業(株)製)
(D1)焼結助剤(無水マレイン酸、和光純薬工業(株)製)
(D2)焼結助剤(無水酢酸、和光純薬工業(株)製)
(D3)焼結助剤(ジグリコール酸、和光純薬工業(株)製)
【0058】
<熱伝導率の測定>
100W低圧水銀ランプ(SEN CORPORATION製 PROCESSOR PL16-110)を用いて親水化処理したガラス基板(厚み1mm)にペースト組成物をスクリーン印刷法によりウエット厚み100μmとなるように塗布し、ホットプレートを用いて120℃で30分、その後200℃で60分熱処理した。
この銀焼結体の熱拡散率をベテル社のサーモウエーブアナライザ(TA3)を用いて測定し、さらにティー・エイ・インスツルメントジャパン社製の示差走査熱量測定装置(Discovery DSC)で測定した比熱と、焼結体の密度の値を用いて、計算式(1)に従い、熱伝導率を算出した。結果を表1に示す。
式(1) 熱伝導率(W/m・K)=熱拡散率(m2/s)×密度(kg/cm3)×比熱(J/kg・K)
なお、評価結果は以下の基準に従い、判断した。
◎:170W/m・K以上
〇:150W/m・K以上、170W/m・K未満
△:150 W/m・K未満
【0059】
<体積抵抗率の測定>
100W低圧水銀ランプ(SEN CORPORATION製 PROCESSOR PL16-110)を用いて親水化処理したガラス基板(厚み1mm)にペースト組成物をスクリーン印刷法によりウエット厚み100μmとなるように塗布した。ホットプレートを用いて120℃で30分、その後200℃で60分熱処理し、焼結膜の空気面を4端子4探針法(MISTUBISHI CHEMICAL ANALYTECH製 Loresta-AX)を用いて測定した。
なお、評価結果は以下の基準に従い、判断した。結果を表1に示す。
◎:10μΩcm未満
〇:10μΩcm以上
【0060】
<せん断応力の評価>
組成物をNi-Pd/Auメッキした銅フレーム(Pd-PPF)にマスクを用いて5mm×5mmの大きさにウエット膜厚100μmで塗布した。その上に5mm×5mmの接合面に金蒸着層を設けた裏面金チップをマウントし、ホットプレートを用いて120℃で30分、その後200℃で60分熱処理し、引張圧縮試験機(ミネビアミツミ製LTS-1kNB-S50)を用いて銀焼結体の接着強度(せん断応力)を5mm/min.の試験速度で測定した。
なお、評価結果は以下の基準に従い、判断した。結果を表1に示す。
◎:10MPa以上
〇:7MPa以上、10MPa未満
△:7MPa未満
【0061】
【0062】
以上の結果より、本発明の組成物は所定の銀粒子の組み合わせをとすることにより、熱伝導率、電気伝導率、接着強度に優れることが分かった。
また、本発明の組成物は、無加圧で接合する際でも優れた熱伝導率、電気伝導率、接着強度を得ることが可能であり、炭化ケイ素、窒化ガリウム、酸化ガリウムのようなワイドバンドギャップパワー65半導体や、高輝度LED、μLEDなどの接合材料として使用することで信頼性に優れた半導体装置および電気・電子機器を製造することができる。
【0063】
(実施例11から17)
実施例1および実施例5の組成物を用い、表2のとおり接合条件温度を種々変更することで熱伝導率の測定、体積抵抗率の測定、せん断応力の評価を行った。結果を表2に示す。
【0064】
【0065】
以上の結果より、本発明の組成物は所定の加熱条件で接合することで、さらに優れた熱伝導率、電気伝導率、接着強度を得ることが可能であり、炭化ケイ素、化ガリウム、酸化ガリウムのようなワイドバンドギャップパワー半導体や、高輝度LED、μLEDなどの接合材料として使用することで信頼性に優れた半導体装置および電気・電子機器を製造することができる。