IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日本電気株式会社の特許一覧

特許7444153第1の装置による方法及びPCRF装置による方法
<>
  • 特許-第1の装置による方法及びPCRF装置による方法 図1
  • 特許-第1の装置による方法及びPCRF装置による方法 図2
  • 特許-第1の装置による方法及びPCRF装置による方法 図3
  • 特許-第1の装置による方法及びPCRF装置による方法 図4
  • 特許-第1の装置による方法及びPCRF装置による方法 図5
  • 特許-第1の装置による方法及びPCRF装置による方法 図6
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-02-27
(45)【発行日】2024-03-06
(54)【発明の名称】第1の装置による方法及びPCRF装置による方法
(51)【国際特許分類】
   H04W 28/24 20090101AFI20240228BHJP
   H04W 4/24 20240101ALI20240228BHJP
   H04W 72/0457 20230101ALI20240228BHJP
   H04W 88/18 20090101ALI20240228BHJP
   H04L 47/2425 20220101ALI20240228BHJP
   H04W 4/70 20180101ALN20240228BHJP
【FI】
H04W28/24
H04W4/24
H04W72/0457
H04W88/18
H04L47/2425
H04W4/70
【請求項の数】 6
(21)【出願番号】P 2021181256
(22)【出願日】2021-11-05
(62)【分割の表示】P 2020053958の分割
【原出願日】2014-12-04
(65)【公開番号】P2022028745
(43)【公開日】2022-02-16
【審査請求日】2021-11-05
(31)【優先権主張番号】P 2014002755
(32)【優先日】2014-01-09
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000004237
【氏名又は名称】日本電気株式会社
(74)【代理人】
【識別番号】100103894
【弁理士】
【氏名又は名称】家入 健
(72)【発明者】
【氏名】岩井 孝法
【審査官】伊藤 嘉彦
(56)【参考文献】
【文献】国際公開第2015/104751(WO,A1)
【文献】国際公開第2013/161233(WO,A1)
【文献】米国特許出願公開第2009/0238207(US,A1)
【文献】欧州特許出願公開第02385721(EP,A1)
【文献】国際公開第2013/161275(WO,A1)
【文献】国際公開第2013/025534(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H04L 47/2425
H04W 4/00 - 99/00
H04B 7/24 - 7/26
3GPP TSG RAN WG1-4
SA WG1-4
CT WG1,4
(57)【特許請求の範囲】
【請求項1】
第1の装置による方法であって、
コアネットワークの外部に配置され且つ前記コアネットワークと相互作用してサービスを提供する第2の装置から、バックグラウンドデータ転送のための第1の要求を受信し、
前記バックグラウンドデータ転送のための課金情報が対応する前記バックグラウンドデータ転送の最大ビットレートを前記コアネットワークにおけるPolicy and Charging Rules Function(PCRF)装置が生成するよう、前記バックグラウンドデータ転送のための第2の要求を、前記第1の要求に基づいて前記PCRF装置へ送信する、
方法。
【請求項2】
前記第1の要求は、アプリケーションのプロバイダを識別する情報を含む、請求項1に記載の方法。
【請求項3】
前記第2の要求は、前記第1の要求に含まれるパラメータを含む、請求項1または2に記載の方法。
【請求項4】
コアネットワークにおけるPolicy and Charging Rules Function(PCRF)装置による方法であって、
第1の装置によって送信されたバックグラウンドデータ転送のための第2の要求を受信し、
前記第2の要求は、前記コアネットワークの外部に配置され且つ前記コアネットワークと相互作用してサービスを提供する第2の装置から送信された、前記バックグラウンドデータ転送のための第1の要求に基づいて前記第1の装置によって送信され、
前記第2の要求における情報に基づいて、前記バックグラウンドデータ転送のための課金情報が対応する前記バックグラウンドデータ転送の最大ビットレートを生成する、
方法。
【請求項5】
前記第1の要求は、アプリケーションのプロバイダを識別する情報を含む、請求項4に記載の方法。
【請求項6】
前記第2の要求は、前記第1の要求に含まれるパラメータを含む、請求項4または5に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本出願は、無線通信システムにおけるサービス品質の制御に関する。
【背景技術】
【0002】
Third Generation Partnership Project(3GPP)は、Machine Type Communication(MTC)の標準化を検討している。MTCは、Machine-to-Machine(M2M)ネットワーク又はセンサネットワークとも呼ばれる。3GPPは、MTCのために機械及びセンサに実装される移動局(MS, UE)を“MTCデバイス”と定義している。MTCデバイスは、機械(e.g.自動販売機、ガスメータ、電気メータ、自動車、鉄道車両)及びセンサ(e.g.環境、農業、交通等に関するセンサ)等の様々な機器に搭載される。MTCデバイスは、Public Land Mobile Network(PLMN)に接続し、MTCアプリケーションサーバ(Application Server(AS))と通信を行う。MTC アプリケーションサーバは、PLMNの外部(外部ネットワーク)に配置され、MTCアプリケーションを実行し、MTCデバイスに実装されたMTC UEアプリケーションと通信する。MTC アプリケーションサーバは、一般的に、MTCサービスプロバイダ(M2Mサービスプロバイダ)によって制御される。
【0003】
3GPPは、MTC アプリケーションサーバがMTCデバイスと通信できるようにするために、Service Capability Server (SCS)及びMachine Type Communication Inter Working Function (MTC-IWF)を含むネットワークエレメント、参照点(reference point)、及び手順(procedure)を規定している(非特許文献1を参照)。なお、参照点(reference point)は、インタフェースとも呼ばれる。
【0004】
SCSは、MTCアプリケーションサーバを3GPPのPLMNに接続し、3GPPで定義されたPLMNサービスを介してMTCアプリケーションサーバがUE(つまり、MTCデバイス)と通信できるようにするエンティティである。また、SCSは、MTCアプリケーションサーバがMTC-IWFと通信できるようにする。SCSは、PLMNのオペレータ、又はMTCサービスプロバイダによって制御されることが想定されている。
【0005】
MTC-IWFは、PLMNに属するコントロールプレーンのエンティティである。MTC-IWFは、SCSとのシグナリング・インタフェース(参照点)を有するとともに、PLMN内のノード(例えば、Home Subscriber Server(HSS)、Short Message Service - Service Center(SMS-SC)、Serving GPRS Support Node (SGSN)、Mobility Management Entity(MME)、Mobile Switching Center(MSC))とのシグナリング・インタフェース(参照点)を有する。MTC-IWFは、SCSを含むM2Mサービスレイヤと3GPP PLMNとが、3GPP PLMN のトポロジの詳細を隠蔽しながら協調動作(interwork)するためのコントロールプレーンのインタフェースとして振る舞う。
【0006】
また、非特許文献2は、セクション7.4.2において、PCRF initiated IP-CAN Session Modification手順を開示している。一例において、Policy and Charging Rule Function(PCRF)は、Traffic Detection Function(TDF)によるアプリケーション・トラフィック(e.g. streaming video service、VoIP service、P2P file sharing service、specific HTTP traffic)の検出をトリガーとして、IP-CAN Session Modification手順を開始する。他の例において、PCRFは、Application Function(AF)によって供給された(provided)又は取り消された(revoked)サービス情報(例えば、優先度レベルの変更)に応答して、IP-CAN Session Modification手順を開始する。非特許文献3は、セクション4.3.1において、非特許文献2と同様のIP-CAN Session Modification手順を開示している。
【先行技術文献】
【非特許文献】
【0007】
【文献】3GPP TS 23.682 V11.5.0 (2013-09) “3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Architecture enhancements to facilitate communications with packet data networks and applications (Release 11)”, 2013年9月
【文献】3GPP TS 23.203 V11.11.0 (2013-09) “3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Policy and charging control architecture (Release 11)”, 2013年9月
【文献】3GPP TS 29.213 V11.8.0 (2013-09) “3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; Policy and Charging Control signalling flows and Quality of Service (QoS) parameter mapping (Release 11)”, 2013年9月
【発明の概要】
【発明が解決しようとする課題】
【0008】
本件の発明者は、MTCアプリケーションの様々なユースケースについて検討した。例えば、Public Land Mobile Network(PLMN)は、MTC アプリケーションサーバからの要求に従って、UE(MTCデバイス)の特定の通信(サービスデータフロー)のサービス品質、例えばQoSポリシー(e.g. QoS Class Identifier (QCI)、Allocation and Retention Priority (ARP)、Maximum Bit Rate (MBR)、Guaranteed Bit Rate (GBR))、を動的に調整することが考えられる。このユースケースを実現するためには、例えば、MTC-IWFは、SCSからサービス品質の要求を受信したことに応答して、特定の通信のサービス品質の制御(QoS制御)をPLMN内のネットワークエレメントに対して要求できることが望ましいかもしれない。しかしながら、非特許文献1~3は、このような制御動作又は制御手順を想定していない。
【0009】
したがって、本明細書に開示される実施形態が達成しようとする目的の1つは、SCSからのサービス品質の要求に応答して特定の通信のサービス品質の制御をPLMN内において行うことを容易にするためのMTC-IWFエンティティ、PCRFエンティティ、制御方法、及びプログラムを提供することである。その他の目的又は課題と新規な特徴は、本明細書の記述又は添付図面から明らかにされる。
【課題を解決するための手段】
【0010】
一実施形態では、MTC-IWFエンティティは制御部を含む。前記制御部は、MTCデバイスの特定通信に適用されるサービス品質の第1の要求をSCSから受信したことに応答して、前記サービス品質を前記特定通信に適用するための第2の要求をPCRFエンティティに送信するよう構成されている。
【0011】
一実施形態では、MTC-IWFエンティティにより行われる方法は、MTCデバイスの特定通信に適用されるサービス品質の第1の要求SCSから受信したことに応答して、前記サービス品質を前記特定通信に適用するための第2の要求をPCRFエンティティに送信することを含む。
【0012】
一実施形態では、プログラムは、直前の段落に記載されたMTC-IWFエンティティにより行われる方法をコンピュータに行わせるための命令群を含む。
【0013】
一実施形態では、PCRFエンティティは制御部を含む。前記制御部は、MTCデバイスの特定通信に適用されるサービス品質の要求をMTC-IWFエンティティから受信したことに応答して、前記サービス品質を前記特定通信に適用するための制御を行うよう構成されている。
【0014】
一実施形態では、PCRFエンティティにより行われる方法は、MTCデバイスの特定通信に適用されるサービス品質の要求をMTC-IWFエンティティから受信したことに応答して、前記サービス品質を前記特定通信に適用するための制御を行うことを含む。
【0015】
一実施形態では、プログラムは、直前の段落に記載されたPCRFエンティティにより行われる方法をコンピュータに行わせるための命令群を含む。
【0016】
一実施形態では、PCRFエンティティは、制御部を含む。前記制御部は、設定済みのベアラを経由して移動局により送信又は受信されるユーザトラフィックの中から特定パケットフローが検出されたことに応答して、前記特定パケットフローに適用される第1のPolicy and Charging Control(PCC)ルールをPolicy and Charging Enforcement Function(PCEF)を有するPCRFノードに供給するよう構成されている。一例において、前記移動局は、MTCデバイスであってもよい。この場合、前記制御部は、前記MTCデバイスの特定通信に適用されるサービス品質の要求をMTC-IWFエンティティから受信したことに応答して、前記第1のPCCルールを前記PCEFノードに供給してもよい。
【0017】
一実施形態では、PCRFエンティティにより行われる方法は、設定済みのベアラを経由して移動局により送信又は受信されるユーザトラフィックの中から特定パケットフローが検出されたことに応答して、前記特定パケットフローに適用される第1のPolicy and Charging Control(PCC)ルールをPolicy and Charging Enforcement Function(PCEF)を有するPCRFノードに供給することを含む。一例において、前記移動局は、MTCデバイスであってもよい。この場合、前記供給することは、前記MTCデバイスの特定通信に適用されるサービス品質の要求をMachine Type Communication Inter Working Function(MTC-IWF)エンティティから受信したことに応答して、前記第1のPCCルールを前記PCEFノードに供給することを含んでもよい。
【0018】
一実施形態では、プログラムは、直前の段落に記載されたPCRFエンティティにより行われる方法をコンピュータに行わせるための命令群を含む。
【発明の効果】
【0019】
上述の実施形態によれば、SCSからのサービス品質の要求に応答して特定の通信のサービス品質の制御をPLMN内において行うことを容易にするためのMTC-IWFエンティティ、PCRFエンティティ、制御方法、及びプログラムを提供することができる。
【図面の簡単な説明】
【0020】
図1】第1及び第2の実施形態に係る無線通信システムを示す図である。
図2】第1の実施形態に係るサービス品質の制御の一例を示すシーケンス図である。
図3】第2の実施形態に係るサービス品質の制御の一例を示すシーケンス図である。
図4】第2の実施形態に係るいくつかのエンティティ又はノードの構成例を示すブロック図である。
図5】その他の実施形態2に係る無線通信システムを示す図である。
図6】その他の実施形態2に係る動作の一例を示すシーケンス図である。
【発明を実施するための形態】
【0021】
以下では、具体的な実施形態について、図面を参照しながら詳細に説明する。各図面において、同一又は対応する要素には同一の符号が付されており、説明の明確化のため、必要に応じて重複説明は省略される。
【0022】
<第1の実施形態>
図1は、本実施形態に係る無線通信システムの構成例を示す図である。本実施形態に係る無線通信システムは、例えば、3GPPのEvolved Packet System(EPS)である。EPSは、Long Term Evolution(LTE)システムとも呼ばれる。以下では、本実施形態に係る無線通信システムがEPSである場合を例にとって説明する。しかしながら、本実施形態は、Universal Mobile Telecommunications System(UMTS)等の他の無線通信システムにも適用できる。
【0023】
UE3は、MTC UEアプリケーション31を実行し、MTCデバイスとして振る舞う。MTCデバイスとしてのUE3は、Radio Access Network(RAN)54を介してMME53に接続するとともに、MTCアプリケーションサーバ4と通信する。RAN54は、Evolved UMTS Terrestrial Radio Access Network(E-UTRAN)を含む。
【0024】
UE3は、MTCゲートウェイ・デバイスであってもよい。MTCゲートウェイ・デバイスは、3GPP移動通信機能(つまり、UEの機能)を有するとともに、パーソナル/ローカルエリア接続技術によって近隣のデバイス(例えば、センサ、radio frequency identification (RFID)タグ、カーナビゲーション装置)と接続する。パーソナル/ローカルエリア接続技術の具体例は、IEEE 802.15、ZigBee(登録商標)、Bluetooth(登録商標)、IEEE 802.11aを含む。なお、MTCゲートウェイ・デバイスに接続する近隣のデバイスは、典型的には3GPP移動通信機能を有していないデバイスであるが、3GPP移動通信機能を有するデバイス(つまり、MTCデバイス)であってもよい。
【0025】
なお、本明細書では、MTCデバイスの用語とMTCゲートウェイ・デバイスの用語を特に区別せずに使用する。つまり、本明細書において用いられるMTCデバイスの用語は、MTCゲートウェイ・デバイスを包含する。したがって、MTCデバイスとしてのUE3は、MTCゲートウェイ・デバイスとしてのUE3も意味する。
【0026】
MTC Inter Working Function (MTC-IWF)エンティティ1は、PLMNに属するコントロールプレーンのエンティティである。MTC-IWFエンティティ1は、シグナリング・インタフェース(参照点)を介して他のネットワーク要素と通信する。MTC-IWFエンティティ1は、SCS2を含むM2Mサービスレイヤと3GPP PLMNとが、3GPP PLMN のトポロジの詳細を隠蔽しながら協調動作(interwork)するためのコントロールプレーンのインタフェース又はゲートウェイとして振る舞う。以下では、MTC-IWFエンティティ1のシグナリング・インタフェース(参照点)及び他のネットワーク要素について説明する。
【0027】
MTC-IWFエンティティ1は、Tsp参照点を介してService Capability Server (SCS)2と通信する。SCS2は、MTCアプリケーションサーバ4をPLMNに接続し、3GPPで定義されたPLMNサービスを介してMTCアプリケーションサーバ4がUE3(つまり、MTCデバイス)と通信できるようにする。MTCアプリケーションサーバ4は、M2Mアプリケーションサーバとも呼ばれる。また、SCS2は、MTCアプリケーションサーバ4がMTC-IWFエンティティ1と通信できるようにする。SCS2は、PLMNのオペレータ、又はMTCサービスプロバイダによって制御される。SCS2は、MTCサーバ又はM2Mサーバとも呼ばれる。SCS2は、単体の独立した物理的なエンティティであってもよいし、他のネットワーク要素(例えば、MTCアプリケーションサーバ4)に付加された機能的なエンティティであってもよい。Tsp参照点は、例えば、SCS2からMTC-IWFエンティティ1へのデバイストリガーの送信要求(Device Trigger Request(DTR))の送信、MTC-IWFエンティティ1からSCS2へのデバイストリガー結果の報告のために用いられる。
【0028】
MTC-IWFエンティティ1は、S6m参照点を介してHome Subscriber Server(HSS)51と通信する。HSS51は、PLMNのコアネットワーク(i.e. EPSでのEvolved Packet Core(EPC))に配置されたコントロールプレーンのノードであり、UE3の加入者情報を管理する。S6m参照点は、例えば、MTC-IWFエンティティ1からHSS51への加入者情報の問い合わせの送信、及びHSS51からMTC-IWFエンティティ1への加入者情報の送信のために用いられる。
【0029】
MTC-IWFエンティティ1は、T5b参照点を介してMobility Management Entity(MME)53と通信する。MME53は、EPSのコアネットワークノードであり、UE3のモビリティ管理(e.g. 位置登録)、及びベアラ管理(e.g. ベアラ確立、ベアラ構成変更、ベアラ解放)などを行う。MME53は、RAN54内のノード(i.e. eNodeB)との間で制御メッセージを送受信し、UE3との間でNASメッセージを送受信する。NASメッセージは、RAN54で終端されず、RANの無線アクセス方式に依存することなく、UE3とMME53の間で透過的に送受信される。
【0030】
以上に述べたTsp、S6m、及びT5b参照点は、非特許文献1に規定されている。しかしながら、非特許文献1は、MTC-IWFエンティティ1とPCRFエンティティ5の間の参照点、及びMTC-IWFエンティティ1とDiameter Routing Agent(DRA)52の間の参照点を規定していない。
【0031】
Policy and Charging Rules Function(PCRF)エンティティ5は、EPSのコアネットワーク(i.e. EPC)に配置される制御エンティティである。PCRFエンティティ5は、UE3のサービスデータフローに適用されるべきPolicy and Charging Control(PCC)ルールを決定し、Policy and Charging Enforcement Function(PCEF)を有するP-GW56に決定されたPCCルールを送信する。PCCルールは、UE3のサービスデータフローに適用されるべきQoSポリシー、課金ルール、及びサービスデータフローを検出するためのサービスデータフロー(SDF)テンプレートを含む。さらに、PCRFエンティティ5は、Application Detection and Control(ADC)ルールをTraffic Detection Function(TDF)エンティティ57を供給する。ADCルールは、UE3によって送信又は受信されるユーザーデータ・トラフィックの中から特定のアプリケーション・トラフィック(e.g. streaming video service、VoIP service、P2P file sharing service、specific HTTP traffic)を検出するためにTDFエンティティ57において使用される。ADCルールは、アプリケーション・トラフィックを特定するために必要なOSI参照モデルのレイヤ4-7の識別情報を含む。
【0032】
PCRFエンティティ5は、P-GW56に配置されたPolicy and Charging Enforcement Function(PCEF)との間にシグナリング・インタフェース(i.e. Gx参照点)を有する。PCRFエンティティ5は、Traffic Detection Function(TDF)エンティティ57との間にシグナリング・インタフェース(i.e. Sd参照点)を有する。また、PCRFエンティティ5は、S-GW55に配置されたBearer Binding and Event Reporting Function(BBERF)との間にシグナリング・インタフェース(i.e. Gxc参照点)を有してもよい。
【0033】
さらに、PCRFエンティティ5は、MTC-IWFエンティティ1との間にシグナリング・インタフェース11を有する。シグナリング・インタフェース11は、Rx参照点であってもよい。Rx参照点は、PCRF とApplication Function(AF)の間のインタフェースである。この場合、PCRFエンティティ5は、アプリケーション・レベルのサービス情報をMTC-IWFエンティティ1から受信し、PCCルールを決定し、PCCルールをP-GW56に供給してもよい。
【0034】
Diameter Routing Agent(DRA)52は、EPSのコアネットワーク(EPC)に配置される制御エンティティである。DRA52は、コアネットワーク(EPC)内に複数のPCRFエンティティを配置することを可能とする。すなわち、DRA52は、PLMNを利用する加入者(UE3)とその加入者のIP-CANセッションに対するQoS制御及び課金制御を行うPCRFエンティティを対応付ける。DRAの機能の詳細は、3GPP TS 29.213及びIETF RFC 3588に示されている。
【0035】
DRA52は、Redirect DRAとして実装されてもよいし、Proxy DRAとして実装されてもよい。DRA52がRedirect DRAとして実装された場合、DRA52は、クライアント(e.g. Application Function(AF)、BBERFとしてのS-GW55、PCEFとしてのP-GW56、及びMTC-IWFエンティティ1)からDiameter requestメッセージを受信したことに応答して、Diameter Attribute-value pair (Diameter AVP)を返信する。DRA52にから返信されるDiameter AVP(つまり、Redirect-Host-Usage AVP)は、クライアントがDiameter requestメッセージを送信するべきPCRFエンティティを示す。DRA52がProxy DRAとして実装された場合、DRA52は、クライアント(e.g. Application Function(AF)、BBERFとしてのS-GW55、PCEFとしてのP-GW56、及びMTC-IWFエンティティ1)からDiameter requestメッセージを受信したことに応答して、そのDiameter requestメッセージを適切なPCRFエンティティに転送する。
【0036】
なお、PLMN内に配置されるPCRFエンティティが1つのみである場合、又はMTC-IWFエンティティ1がMTCデバイスとしてのUE3のIP-CANセッションを管理するPCRFエンティティ5を予め知っている場合などには、MTC-IWFエンティティ1とDRA52の間のシグナリング・インタフェース12は省略されてもよい。言い換えると、MTC-IWFエンティティ1は、DRA52とのシグナリングを行わなくてもよい。
【0037】
Serving Gateway(S-GW)55は、EPSのコアネットワークに配置されるユーザープレーンのパケット転送ノードであり、UE3のユーザーデータパケットを転送する。S-GW55は、RAN54とのゲートウェイの役割を担う。S-GW55は、RAN54(i.e. E-UTRAN)との間にユーザープレーンのトンネリング・インタフェース(i.e. S1-U参照点)を有し、P-GW56との間にユーザープレーンのトンネリング・インタフェース(i.e. S5/S8参照点)を有する。S-GW55は、MME53との間にシグナリング・インタフェース(i.e. S11参照点)を有する。
【0038】
さらに、S-GW55は、Bearer Binding and Event Reporting Function(BBERF)を有してもよい。BBERFとしてのS-GW55は、PCRFエンティティ5からQoSルールを受信し、QoSルールに基づいて制御されるべきUE3のサービスデータフロー(つまり、IPパケットフロー)を検出し、検出されたサービスデータフローをQoSルールに対応した適切なIP-CANベアラ(EPSベアラ)に対応づける。さらに、BBERFとしてのS-GW55は、PCRFエンティティ5によってインストールされたイベントトリガーに基づいて、PCRFエンティティ5にイベントを報告する。
【0039】
Packet Data Network Gateway(P-GW)56は、EPSのコアネットワーク(EPC)に配置されるユーザープレーンのパケット転送ノードであり、UE3のユーザーデータパケットを転送する。P-GW56は、外部Packet Data Network(PDN)とのゲートウェイの役割を担い、UE3に外部PDNとのコネクティビティを提供する。外部PDNは、例えばSCS2及びMTCアプリケーションサーバ4を含む。さらに、P-GW56は、Charging Trigger Function (CTF)、Charging Data Function (CDF)、及びPolicy and Charging Enforcement Function(PCEF)を有する。PCEFとしてのP-GW56は、PCRFエンティティ5から供給されたPolicy and Charging Control(PCC)ルールに従って、UE3のサービスデータフロー(つまり、IPパケットフロー)単位でのQuality of Service(QoS)制御およびフローベースのベアラ課金(Flow Based bearer Charging(FBC))を行う。FBCは、P-GW56が有するCTF、CDF、及びPCEFによって実現される。
【0040】
つまり、P-GW56は、SDFテンプレート又はTraffic Flow Template(TFT)を用いてUE3によって送信又は受信される複数のサービスデータフローを区別するともに、各サービスデータフローを各サービスデータフローのQoSに対応したEPSベアラ(IP Connectivity Access Network(IP-CAN)ベアラ)にマッピングする。さらに、P-GW56は、Charging Data Record(CDR)の生成及びクローズをトリガーする課金対象イベント(chargeable event)としてサービスデータフローを監視し、サービスデータフローのパケット数をカウントし、サービスデータフローに関する課金情報を含むCDRを生成する。なお、課金対象イベントは、通信ネットワークのリソース又はサービスを利用するアクテビティを意味する。課金対象イベントは、例えば、user to user communication (e.g. a single call, a data communication session or a short message)、user to network communication (e.g. service profile administration)、inter-network communication (e.g. transferring calls, signaling, or short messages)、又はmobility (e.g. roaming or inter-system handover) である。CDRは、フォーマットされた課金情報(e.g. 通話時間、データ転送量など)を意味する。
【0041】
Traffic Detection Function(TDF)エンティティ57は、deep packet inspection(DPI)機能を有する。TDFエンティティ57は、Sd参照点を介してPCRFエンティティ5からApplication Detection and Control(ADC)ルールを受信し、ADCルールに従ってユーザパケットに対するディープパケットインスペクションを実行し、ADCルールによって指定されたアプリケーション・トラフィック(e.g. streaming video service、VoIP service、P2P file sharing service、specific HTTP traffic)を検出する。そして、TDFエンティティ57は、Sd参照点を介して、アプリケーション・トラフィックの検出結果をPCRFエンティティ5に報告する。TDFエンティティ57の機能は、PCEFと一緒に配置(collocate)されてもよい。言い換えると、TDFエンティティ57は、P-GW56に配置されてもよい。さらに言い換えると、P-GW56は、PCEF enhanced with ADCを有してもよい。
【0042】
続いて以下では、UE3の特定通信のサービス品質の制御について説明する。図1の例では、MTC-IWFエンティティ1は、PCRFエンティティ5との間にシグナリング・インタフェース(参照点)11を有する。MTC-IWFエンティティ1は、Tsp参照点を介してSCS2から第1のQoS要求を受信したことに応答して、シグナリング・インタフェース11を介してPCRFエンティティ5に第2のQoS要求を送信する。
【0043】
SCS2からMTC-IWFエンティティ1に送られる第1のQoS要求は、MTCデバイスとしてのUE3の特定通信に適用されるサービス品質を要求する。UE3の特定通信は、特定の通信相手との通信、特定プロトコルの通信、又は特定アプリケーションのトラフィックであってもよい。言い換えると、UE3の特定通信は、OSI参照モデルのレイヤ3-7のいずれかの識別情報又はこれらの組み合わせによって特定されてもよい。
【0044】
第1のQoS要求は、サービス品質を指定するために、QoS Class Identifier (QCI)、Allocation and Retention Priority (ARP)、Maximum Bit Rate (MBR) 、Guaranteed Bit Rate (GBR)、及び優先度レベル(e.g. high priority、medium priority、low priorityなど)のうち少なくとも1つを示してもよい。また、第1のQoS要求は、UE3の特定通信を指定するために、アプリケーション名(e.g. YouTube(登録商標)、Skype(登録商標))を含んでもよい。また、第1のQoS要求は、UE3の特定通信のパケットフローを特定するための送信元アドレス、宛先アドレス、ポート番号、及びプロトコル識別子のうち少なくとも1つを含んでもよい。さらにまた、第1のQoS要求は、特定通信の利用用途(e.g. background通信、ソフトウェアの自動アップデート、自動検針(automatic meter reading))を示してもよい。
【0045】
第1のQoS要求は、対象のUE3を指定するために、UE3に関連付けられた外部識別子(External ID)を含んでもよい。外部識別子は、SCS2及びMTCアプリケーションサーバ4を含むPLMNの外部においてUE3を識別するために使用される。外部識別子は、例えば、Mobile Subscriber ISDN Number(MSISDN)であってもよい。
【0046】
第1のQoS要求は、送信元のSCS2を示すために、SCS2の識別子を含んでもよい。また、SCS2から送られる複数の第1のQoS要求を区別するために、第1のQoS要求は、トランザクション識別子(e.g. シーケンス番号)を含んでもよい。
【0047】
一方、MTC-IWFエンティティ1からPCRFエンティティ5に送られる第2のQoS要求は、サービス品質を指定するために、第1のQoSと同様の情報を示してもよい。すなわち、第2のQoS要求は、QCI、ARP、MBR、GBR、及び優先度レベルのうち少なくとも1つを示してもよい。また、第2のQoS要求は、UE3の特定通信のパケットフローを特定するための送信元アドレス、宛先アドレス、ポート番号、及びプロトコル識別子のうち少なくとも1つを含んでもよい。さらにまた、第2のQoS要求は、特定通信の利用用途を示してもよい。
【0048】
第2のQoS要求は、対象のUE3を指定するために、UE3に関連付けられた内部識別子(Internal ID)を含んでもよい。内部識別子は、PLMN内でUE3を識別するために使用される。内部識別子は、例えば、International Mobile Subscriber Identity(IMSI)であってもよい。MTC-IWFエンティティ1は、UE3の内部識別子を取得するために、UE3の外部識別子に対応する内部識別子をHSS51に問い合わせてもよい。
【0049】
PLMN内に複数のPCRFエンティティ5が配置されている場合、MTC-IWFエンティティ1は、UE3のサービスデータフローを管理しているPCRFエンティティ5を複数のPCRFエンティティ5の中から選択しなければならない。したがって、MTC-IWFエンティティ5は、DRA52との間で制御メッセージを交換し、適切なPCRFエンティティ5のアドレスをDRA52から取得してもよい。
【0050】
PCRFエンティティ5は、第2のQoS要求をMTC-IWFエンティティ1から受信したことに応答して、第2のQoS要求によって要求されたサービス品質をUE3の特定通信に適用するための制御を行う。第2のQoS要求によって要求されたサービス品質をUE3の特定通信に適用するために、PCRFエンティティ5は、PCEFを有するP-GW56及びTDFを有するエンティティ57のうち少なくとも一方を制御すればよい。
【0051】
具体的には、PCRFエンティティ5は、第2のQoS要求に示されたサービス品質、UE3の識別子、及び特定通信の識別情報(e.g. アプリケーション名、送信元アドレス、宛先アドレス、ポート番号、若しくはプロトコル識別子、又はこれらの組み合わせ)に基づいてPCCルールを生成し、生成されたPCCルールをP-GW56に供給してもよい。このPCCルールのP-GW56への供給は、UE3に関するIP-CANセッションの修正(modification)を引き起こす。IP-CANセッションの修正は、例えば、既に設定されているIP-CANベアラ(EPSベアラ)のQoSのアップデート、又はSDFテンプレート若しくはTraffic Flow Template(TFT)のアップデートを含む。また、UE3の特定通信のサービスデータフロー(IPパケットフロー)に適用されるQoSポリシーが既に設定されているEPSベアラのQoSポリシーと異なる場合、IP-CANベアラの修正は、UE3の特定通信のサービスデータフローを転送するための新たな個別ベアラ(dedicated EPS bearer)の生成であってもよい。
【0052】
また、PCRFエンティティ5は、第2のQoS要求に示された特定通信の識別情報(e.g. アプリケーション名)に基づいてADCルールを生成し、生成されたPCCルールをTDFエンティティ57に供給してもよい。そして、設定済みのEPSベアラを経由してUE3により送信又は受信されるユーザトラフィックの中から特定通信のパケットフローが検出されたことに応答して、特定通信のパケットフローに適用されるPCCルールを生成してもよい。例えば第2のQoS要求においてUE3の特定通信がOSI参照モデルのレイヤ5-7の情報(e.g. アプリケーション名)によって指定されている場合、PCRFエンティティ5は、第2のQoS要求に含まれる情報のみから十分なPCCルールを生成することができない可能性がある。なぜなら、UE3の通信相手のIPアドレス等のPCCルール(具体的にはSDFテンプレート又はTFT)に必要なレイヤ3及び4の情報が不明であるためである。このため、PCRFエンティティ5は、TDFエンティティ57のdeep packet inspection(DPI)機能を利用し、UE3のユーザーデータフローの中から特定通信のトラフィック(つまり、特定アプリケーションのトラフィック)を検出してもよい。これにより、PCRFエンティティ5は、PCCルールの決定に必要な情報、つまりUE3の通信相手のIPアドレス及びポート番号といったレイヤ3及び4の情報を得ることができる。
【0053】
図2は、SCS2からの要求に基づくUE3のサービス品質制御(QoS制御)の一例を示すシーケンス図である。ステップS101では、SCS2は、Tsp参照点を介して、第1のQoS要求をMTC-IWFエンティティ1に送信する。第1のQoS要求は、制御対象のUE3を特定するためにUE3の外部識別子(External ID)を含む。さらに第1のQoS要求は、UE3の特定通信を特定するための情報、例えばアプリケーション名、ポート番号若しくは通信相手のIPアドレス又はこれらの組み合わせ、を示す。さらにまた、第1のQoS要求は、要求されるサービス品質を特定するための情報、例えばQCI、ARP、MBR、GBR若しくは優先度レベル又はこれらの組み合わせ、を示す。
【0054】
ステップS102では、MTC-IWFエンティティ1は、SCS2からの第1のQoS要求の受信に応答して、第1のQoS要求において示されたUE3の外部識別子に対応する内部識別子をHSS1に問い合わせる。MTC-IWFエンティティ1は、UE3の外部識別子に対応する加入者情報をHSS51に要求すればよい。なお、UE3の内部識別子がMTC-IWFエンティティ1において既知である場合、ステップS102は省略されてもよい。
【0055】
ステップS103では、MTC-IWFエンティティ1は、UE3のIP-CANセッションを管理しているPCRFエンティティ5をDRA52に問い合わせる。MTC-IWFエンティティ1は、UE3のIP-CANセッションを管理しているPCRFエンティティ5のアドレスをDRA52に要求すればよい。なお、PLMN内に配置されたPCRFエンティティ5が1つのみである場合、又はMTCデバイスとしてのUE3を管理するPCRFエンティティ5をMTC-IWFエンティティ1が既に知っている場合は、ステップS103は省略されてもよい。
【0056】
ステップS104では、MTC-IWFエンティティ1は、シグナリング・インタフェース11を介して、第2のQoS要求をPCRFエンティティ5に送信する。図2の例では、第2のQoS要求は、制御対象のUE3を特定するためにUE3の内部識別子(Internal ID)を含む。さらに第2のQoS要求は、UE3の特定通信を特定するための情報、例えばアプリケーション名、ポート番号若しくは通信相手のIPアドレス又はこれらの組み合わせ、を示す。さらにまた、第2のQoS要求は、要求されるサービス品質を特定するための情報、例えばQCI、ARP、MBR、GBR若しくは優先度レベル又はこれらの組み合わせ、を示す。
【0057】
ステップS105では、PCRFエンティティ5は、MTC-IWFエンティティ1から第2のQoS要求を受信したことに応答して、UE3の特定通信に適用されるべきPCCルールを決定する。当該PCCルールは、UE3の特定通信に関するパケットフローを特定するためのSDFテンプレート(i.e. パケットフィルタ)、QoS制御のための情報(e.g. QCI、ARP、MBR、GBR)を含む。さらに、当該PCCルールは、UE3の特定通信に対する課金制御のための情報(e.g. Charging key、Charging method、Measurement method)を含んでもよい。ステップS106では、PCRFエンティティ5は、決定されたPCCルールをUE3の特定通信に施行するために、決定されたPCCルールをP-GW56(PCEF)に送信する。
【0058】
ステップS107では、PCEFとしてのP-GW56は、PCCルールを受信したことに応答して、PCCルールをUE3の通信に適用する。具体的には、P-GW56は、PCCルールの受信に応答して、IP-CAN Session Modification procedureを開始する。上述したように、IP-CANセッションの修正は、例えば、既に設定されているIP-CANベアラ(EPSベアラ)のQoSのアップデート、又はSDFテンプレート若しくはTraffic Flow Template(TFT)のアップデートであってもよい。また、UE3の特定通信に関するサービスデータフロー(IPパケットフロー)に適用されるQoSポリシーが既に設定されているEPSベアラのQoSポリシーと異なる場合、IP-CANベアラの修正は、UE3の特定通信のサービスデータフローを転送するための新たな個別ベアラ(dedicated EPS bearer)の生成であってもよい。
【0059】
上述したことから理解されるように、本実施形態では、MTC-IWFエンティティ1及びPCRFエンティティ5は、SCS2からのサービス品質(QoS)の要求に基づいて、UE3の特定通信(e.g. 特定のアプリケーション・トラフィック)のサービス品質(QoS)を調整するよう動作する。したがって、本実施形態は、SCS2からのサービス品質の要求に応答してUE3の特定通信のサービス品質の制御をPLMN内において容易に行うことができる。
【0060】
<第2の実施形態>
本実施形態では、SCS2からの要求に基づくUE3のサービス品質制御(QoS制御)に関する他の具体例を説明する。本実施形態に係る無線通信システムの構成例は、図1と同様である。
【0061】
図3は、SCS2からの要求に基づくUE3のサービス品質制御(QoS制御)の一例を示すシーケンス図である。図3の例では、SCS2から送信される第1のQoS要求及びMTC-IWFエンティティ1から送信される第2のQoS要求において、UE3の特定通信がOSI参照モデルのレイヤ5-7の情報(e.g. アプリケーション名)によって指定される。したがって、PCRFエンティティ5は、UE3のユーザーデータフローの中から特定通信のトラフィック(つまり、特定アプリケーションのトラフィック)を検出するために、TDFエンティティ57のdeep packet inspection(DPI)機能を利用する。これにより、PCRFエンティティ5は、PCCルールの決定に必要な情報、つまりUE3の特定通信に関するレイヤ3及び4の情報(e.g. UE3の通信相手のIPアドレス及びポート番号)を得ることができる。
【0062】
ステップS201では、SCS2は、Tsp参照点を介して、第1のQoS要求をMTC-IWFエンティティ1に送信する。第1のQoS要求は、UE3の特定通信を特定するためのレイヤ5-7の情報(e.g. アプリケーション名)を含む。また、図2に関して説明されたのと同様に、第1のQoS要求は、UE3の外部識別子(External ID)、及び要求されるサービス品質を特定するための情報(e.g. QCI、ARP、MBR、GBR若しくは優先度レベル)を含んでもよい。
【0063】
ステップS202では、MTC-IWFエンティティ1は、シグナリング・インタフェース11を介して、第2のQoS要求をPCRFエンティティ5に送信する。第2のQoS要求は、UE3の特定通信を特定するためのレイヤ5-7の情報(e.g. アプリケーション名)を含む。また、図2に関して説明されたのと同様に、第2のQoS要求は、UE3の内部識別子(Internal ID)、及び要求されるサービス品質を特定するための情報(e.g. QCI、ARP、MBR、GBR若しくは優先度レベル)を含んでもよい。また、ステップS202に先立って、HSS51への問い合わせ及びDRA52への問い合わせ(図2のステップS102及びS103)が行われてもよい。
【0064】
ステップS203では、PCRFエンティティ5は、第2のQoS要求の受信に応答して、UE3のユーザーデータフローの中から特定通信のトラフィック(つまり、特定アプリケーションのトラフィック)を検出ために利用されるADCルールを決定する。当該ADCルールは、制御対象のUE3の識別子(e.g. IPアドレス)、及び検出されるべきアプリケーションの識別子(e.g. アプリケーション名)を含む。ステップS204では、PCRFエンティティ5は、決定されたADCルールをTDFエンティティ57に供給する。
【0065】
ステップS205では、TDFエンティティ57は、受信したADCルールに従って特定アプリケーション・トラフィックを検出するために、UE3のユーザーデータフローに対するDPIを開始する。そしてステップS206では、TDFエンティティ57は、特定アプリケーション・トラフィックを検出したことに応答して、検出レポートをPCRFエンティティ5に送信する。検出レポートは、特定アプリケーション・トラフィックに関するレイヤ3及び4の情報(e.g. UE3の通信相手のIPアドレス及びポート番号)を含む。
【0066】
ステップS207では、PCRFエンティティ5は、TDFエンティティ57からの検出レポートに基づいて、UE3の特定通信に適用されるべきPCCルールを決定する。当該PCCルールは、UE3の特定通信に関するパケットフローを特定するためのSDFテンプレート(i.e. パケットフィルタ)、QoS制御のための情報(e.g. QCI、ARP、MBR、GBR)を含む。さらに、当該PCCルールは、UE3の特定通信に対する課金制御のための情報(e.g. Charging key、Charging method、Measurement method)を含んでもよい。ステップS208では、PCRFエンティティ5は、決定されたPCCルールをUE3の特定通信に施行するために、決定されたPCCルールをP-GW56(PCEF)に送信する。
【0067】
ステップS209では、PCEFとしてのP-GW56は、PCCルールを受信したことに応答して、PCCルールをUE3の通信に適用する。具体的には、P-GW56は、PCCルールの受信に応答して、IP-CAN Session Modification procedureを開始する。
【0068】
図4は、本実施形態に係るMTC-IWFエンティティ1、PCRFエンティティ5、P-GW56、及びTDFエンティティ57の構成例を示すブロック図である。図4の例では、MTC-IWFエンティティ1は、制御部101を有する。制御部101は、SCS2から第1のQoS要求を受信したことに応答して、PCRFエンティティ5に第2のQoS要求を送信するよう構成されている。
【0069】
図4の例では、PCRFエンティティ5は、制御部501を有する。制御部501は、第2のQoS要求を受信したことに応答して、UE3の特定アプリケーション・トラフィックを検出するためのADCルールを決定し、決定されたADCルールをTDFエンティティ57に供給するよう構成されている。さらに、制御部501は、UE3の特定アプリケーション・トラフィックに関する検出レポートをTDFエンティティ57から受信したことに応答して、UE3の特定アプリケーション・トラフィックに適用されるPCCルールを決定し、決定されたPCCルールをP-GW56に供給するよう構成されている。
【0070】
図4の例では、TDFエンティティ57は、シグナリング部571及び検出部572を含む。シグナリング部571は、PCRFエンティティ5(制御部501)からADCルールを受信し、ADCルールに基づいて検出されたアプリケーション・トラフィックに関する検出レポートを送信するよう構成されている。検出部572は、ADCルールにおいて指定されたアプリケーション・トラフィックを検出するために、UE3のユーザーデータ・トラフィックに対するDPIを実行するよう構成されている。
【0071】
図4の例では、P-GW56は、シグナリング部561及びパケット処理部562を含む。シグナリング部561は、PCRFエンティティ5(制御部501)からPCCルールを受信するよう構成されている。パケット処理部562は、PCCルールにおいて指定されたサービスデータフロー及びQoSポリシーを、IP-CANベアラ(EPSベアラ)に適用するよう構成されている。すなわち、パケット処理部562は、UE3との個別ベアラのQoSポリシーを修正し、UE3との個別ベアラに適用されるSDFテンプレート及びTFTを修正し、又はUE3に向けて新たな個別EPSベアラを確立するよう構成されている。
【0072】
本実施形態によれば、SCS2は、第1のQoS要求において、サービス要求の対象とされるUE3の特定通信をOSI参照モデルのレイヤ5-7の情報によって指定することができる。例えば、サービス要求の対象とされるUE3の特定通信は、第1のQoS要求において、アプリケーション名(e.g. YouTube(登録商標)、Skype(登録商標))によって指定されてもよい。また、他の例では、UE3の特定通信は、第1のQoS要求において、特定通信の利用用途(e.g. background通信、ソフトウェアの自動アップデート、自動検針(automatic meter reading))によって指定されてもよい。これにより、SCS2は、PLMN(MTC-IWFエンティティ1)に対してQoS要求を行う際に、QoS要求の対象となるUE3の特定通信を上位レイヤ(レイヤ5-7)の情報を用いて柔軟に指定することができる。
【0073】
<その他の実施形態1>
PLMN内に複数のHSS51が配置される場合、MTC-IWFエンティティ1は、UE3の内部識別子を問い合わせるべきHSS51を特定するためにHSS検索を実行してもよい。一例では、MTCデバイスとしてのUE3の加入者情報を管理するHSS51のアドレスが予めMTC-IWFエンティティ1に設定されてもよい。他の例では、MTC-IWFエンティティ1は、Subscription Locator Function(SLF)又はDiameter Routing Agent(DRA)を利用してもよい。
【0074】
上述した第2の実施形態では、レイヤ5-7情報によるアプリケーションの指定を含むQoS要求に基づくPCCルールの適用について説明した。すなわち、第2の実施形態に係るPCRFエンティティ5は、レイヤ5-7情報によるアプリケーションの指定を含むQoS要求に応答して、TDFによるDPIを利用し、これによりPCCルール(SDFテンプレート)の決定に必要なレイヤ3及び4情報を取得する。このPCRFエンティティ5の動作は、SCS2又はMTC-IWFエンティティ1とは異なる他のノード又はエンティティ(e.g. Application Function)からのQoS要求に対して行われてもよい。これにより、ノード又はエンティティ(e.g. Application Function)は、PCRFエンティティ5に対してQoS要求を行う際に、QoS要求の対象となるUE3の特定通信を上位レイヤ(レイヤ5-7)の情報を用いて柔軟に指定することができる。
【0075】
上述した第2の実施形態では、TDFエンティティ57がアプリケーション・トラフィックの検出を行う例について説明した。しかしながら、アプリケーション・トラフィックを検出するために常にDPIを実行することは、TDFエンティティ57の処理負荷を増大させるかもしれない。したがって、PCRFエンティティ5は、ADCルールと共に、DPIが実行されるべき期間、言い換えるとADCルールが施行されるべき期間、をTDFエンティティ57に通知してもよい。さらに、DPIが実行されるべき期間(ADCルールが施行されるべき期間)は、SCS2からMTC-IWFエンティティ1に送られる第1のQoS要求、及びMTC-IWFエンティティ1からPCRFエンティティ5に送られる第2のQoS要求において指定されてもよい。すなわち、第1及び第2のQoS要求は、UE3の特定通信に対して特別なQoSポリシーが適用される期間を指定してもよい。これにより、SCS2は希望する期間(時間帯)において特別なQoSポリシーの適用を受けることができ、さらにTDFエンティティ57の負荷を軽減することができる。
【0076】
第1及び第2の実施形態で説明されたMTC-IWFエンティティ1、SCS2、UE3、PCRFエンティティ5、S-GW55、P-GW56、及びTDFエンティティ57等の動作は、少なくとも1つのプロセッサ(e.g. マイクロプロセッサ、Micro Processing Unit(MPU)、Central Processing Unit(CPU))を含むコンピュータにプログラムを実行させることによって実現されてもよい。具体的には、図2及び図3等を用いて説明されたアルゴリズムをコンピュータに行わせるための命令群を含む1又は複数のプログラムをコンピュータに供給すればよい。
【0077】
このプログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、Compact Disc Read Only Memory(CD-ROM)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、Programmable ROM(PROM)、Erasable PROM(EPROM)、フラッシュROM、Random Access Memory(RAM))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
【0078】
<その他の実施形態2>
ここでは、上述した第1及び第2の実施形態とは異なる新たな実施形態について説明する。ここで説明される新たな実施形態は、上述した第1及び第2の実施形態とは独立して実施されることができ、第1及び第2の実施形態とは異なる課題を解決することができる。
【0079】
図5は、本実施形態に係る本実施形態に係る無線通信システムの構成例を示す図である。MTCデバイス61は、PLMN62に接続することができ、PLMN62を介してMTCサーバ63と通信することができる。MTCデバイス61は、MTC UEアプリケーションを実行するUEと呼ぶこともできる。MTCデバイス61は、MTCゲートウェイ・デバイスであってもよい。
【0080】
Public Land Mobile Network(PLMN)62は、例えば、3GPPネットワーク、つまりUniversal Mobile Telecommunications System(UMTS)又はEvolved Packet System(EPS)である。PKMN62は、Radio Access Network(RAN)及びコアネットワークを含む。より具体的に述べると、PLMN62は、RANノードとしての基地局、コアネットワークのコントロールプレーン・エンティティとしての移動管理ノード(e.g. MME、又はSGSNのコントロールプレーン機能)、及びコアネットワークのユーザープレーン・エンティティとしてのデータ転送ノード(e.g. P-GW、S-GW、GGSN、又はSGSNのユーザープレーン機能)を含む。さらに、PLMN62は、MTCサーバ63を含むM2MサービスレイヤがPLMN62と協調動作(interwork)できるようにするために、Machine Type Communication Inter Working Function (MTC-IWF)エンティティを含んでもよい。
【0081】
MTCサーバ63は、M2Mアプリーション64をPLMN62に接続し、PLMN62により提供されるサービスを介してM2Mアプリーション64がMTCデバイス61と通信できるようにする。MTCサーバ63は、Service Capability Server(SCS)又はM2Mサーバとも呼ばれる。
【0082】
M2Mアプリケーション64は、PLMN62の外部(外部ネットワーク)に配置され、M2Mアプリケーション(MTCアプリケーション)を実行し、MTCデバイス61に実装されたMTC UEアプリケーションと通信する。M2Mアプリケーション64は、一般的に、M2Mサービスプロバイダ(MTCサービスプロバイダ)によって制御される。M2Mアプリケーション64は、M2Mアプリケーションサーバ又はMTCアプリケーションサーバとも呼ばれる。
【0083】
以下では、本実施形態のMTCデバイス61、PLMN62、及びMTCサーバ63の動作についてさらに詳しく説明する。PLMN62は、MTCデバイス61のPLMN62へのアタッチ(ステップS601)に応答して、MTCデバイス61がPLMN62にアタッチしたことをMTCサーバ63に通知するよう動作する(ステップS602)。なお、MTCデバイス61がPLMN62にアタッチすることは、PLMN62においてMTCデバイス61のモビリティ管理が開始されることを意味する。例えば、EPSの場合、MTCデバイス61は、PLMN62内のMMEに登録され、EPS Mobility Management (EMM)-DEREGISTERED状態からEMM-REGISTERED状態に遷移する。つまり、MTCデバイス61がPLMN62にアタッチすると、ページングによってMTCデバイス61に到達することができるようになる。したがって、PLMN62は、ページングによってMTCデバイス61に到達できることを通知すると言い換えることもできる。
【0084】
MTCサーバ63は、MTCデバイス61のアタッチ通知(S602)をPLMN62にから受信することで、MTCデバイス61との通信を行えることを認識できる。したがって、MTCサーバ63は、MTCデバイス61との通信を開始してもよい(ステップS603)。
【0085】
ステップS601~S603の動作は、MTCサーバ63がPLMN62を介してMTCデバイス61と通信可能である期間を十分に正確に把握できないケースで特に有効である。例えば、消費電力を低減するために、MTCデバイス61が、殆どの時間で通信モジュールの動作を停止しているケースが考えられる。この場合、MTCデバイス61は、MTCサーバ63により設定されたwake/sleepスケジュールを有してもよい。wake/sleepスケジュールは、wake期間とsleep期間を定める。wake期間では、MTCデバイス61は、PLMN62にアタッチし、PLMN62を介してMTCサーバ63と通信することができる。sleep期間では、MTCデバイス61は、PLMN62からデタッチしており、PLMN62からのページングに反応することができず、したがってMTCサーバ63はMTCデバイス61と通信することができない。
【0086】
MTCデバイス61は、何らかの要因に応じてsleep期間内でもPLMN62と通信してもよい。しかしながら、MTCサーバ63は、予め定められたwake期間を除いて、MTCデバイス61がPLMN62にアタッチしていること(つまり、MTCデバイス61との通信を開始できること)を知ることができない。さらに、MTCデバイス61は、送信するべきデータが存在しない場合、又は所定の送信条件が成立していない場合に、wake期間であってもPLMN62にアタッチしないことが考えられる。さらにまた、MTCデバイス61が有する内部クロックは、十分に正確ではない可能性があり、したがってMTCデバイス61が有するwake/sleepスケジュールは、MTCサーバ63が有するwake/sleepスケジュールと十分に同期していないおそれがある。これらの場合、MTCサーバ63は、MTCデバイス61がPLMN62にアタッチしていること(つまり、MTCデバイス61との通信を開始できること)を正確に知ることができない。
【0087】
したがって、上述したように、MTCデバイス61がPLMN62にアタッチしていること(つまり、MTCデバイス61との通信を開始できること)をPLMN62からMTCサーバ63に通知することで、MTCサーバ63がMTCデバイス61と通信する機会を増やすことができる。
【0088】
本実施形態が有効に適用できる例として、MTCデバイス61が河川の水位計に結合され、測定された水位をMTCサーバ63又はMTCアプリケーション64に報告する場合が考えられる。MTCデバイス61は、短いwake期間(e.g. 1分)と、長いsleep期間(e.g. 6時間)をMTCサーバ63から設定されてもよい。さらに、MTCデバイス61は、測定された水位が所定の閾値を上回った場合にのみ新たな測定結果を報告してもよい。水位が正常である限り、MTCデバイス61は、長期間(e.g. 数ヶ月)にわたって測定結果を報告しないかもしれない。
【0089】
しかしながら、1つの又はいくつかの水位計(MTCデバイス61)から測定結果が報告され且つその測定結果が水害の発生が憂慮される値であるととき、現況をより詳細に把握するために他の水位計(MTCデバイス61)の測定結果を速やかに且つ頻繁に得られることが好ましい。この場合、関係する(e.g. 同一河川の)全てのMTCデバイス61のwake/sleepスケジュールを速やかに更新できることが好ましい。上述したステップS601~S603の動作によれば、MTCサーバ62は、MTCデバイス61との通信(つまり、mobile terminated方向の通信)が開始可能であることを正確に把握できるから、測定結果の報告がなされないMTCデバイス62に対しても新たなwake/sleepスケジュールを速やかに送信することができる。
【0090】
図6は、図5を用いて説明したステップS601~S603の動作の具体例を示すシーケンス図である。図6の例では、PLMN62は、MME621及びMTC-IWFエンティティ622を含む。ステップS701では、MTCデバイス61は、MME621にATTACH REQUESTを送信し、MME621との間でアタッチ手順を開始する。ステップS702では、MME621は、MTCデバイス61のPLMN62へのアタッチを示す通知をMTC-IWFエンティティ622に送信する。ステップS703では、MTC-IWFエンティティ622は、MME621からの通知に応答して、MTCデバイス61のPLMN62へのアタッチを示す通知をMTCサーバ63に送信する。ステップS704では、MTCサーバ62は、PLMN62を介してMTCデバイス61に新たなwake/sleepスケジュールを送信する。新たなwake/sleepスケジュールは、例えば、電子メール、Short Message Service(SMS)メッセージ、又はMultimedia Messaging Service(MMS)メッセージによって送信されてもよい。
【0091】
さらに、上述した実施形態は本件発明者により得られた技術思想の適用に関する例に過ぎない。すなわち、当該技術思想は、上述した実施形態のみに限定されるものではなく、種々の変更が可能であることは勿論である。
【0092】
例えば、上記の実施形態の一部又は全部は、以下の付記のようにも記載され得るが、以下には限られない。
【0093】
(付記1)
設定済みのベアラを経由して移動局により送信又は受信されるユーザトラフィックの中から特定パケットフローが検出されたことに応答して、前記特定パケットフローに適用される第1のPolicy and Charging Control(PCC)ルールをPolicy and Charging Enforcement Function(PCEF)を有するPCRFノードに供給する制御部を備える、
Policy and Charging Rule Function(PCRF)エンティティ。
【0094】
(付記2)
前記第1のPCCルールは、前記ユーザトラフィックに適用される第2のPCCルールと異なる、付記1に記載のPCRFエンティティ。
【0095】
(付記3)
前記第1のPCCルールの前記PCEFノードへの供給は、前記特定パケットフローを転送するための新たな個別ベアラの生成を引き起こす、付記1又は2に記載のPCRFエンティティ。
【0096】
(付記4)
前記制御部は、
前記特定パケットフローを検出するためのApplication Detection and Control(ADC)ルールをTraffic Detection Function(TDF)を有するTDFノードに供給し、
前記TDFノードによる前記特定パケットフローの検出に応答して、前記第1のPCCルールを前記PCEFノードに供給する、
付記1~3のいずれか1項に記載のPCRFエンティティ。
【0097】
(付記5)
前記ADCルールは、前記特定パケットフローを指定するためのアプリケーション名を含み、
前記第1のPCCルールは、前記アプリケーション名に基づいて前記特定パケットフローに関して前記TDFノードにおいて検出された送信元アドレス、宛先アドレス、ポート番号、及びプロトコル識別子のうち少なくとも1つを示す、
付記4に記載のPCRFエンティティ。
【0098】
(付記6)
前記移動局は、Machine Type Communication(MTC)デバイスであり、
前記制御部は、前記MTCデバイスの特定通信に適用されるサービス品質の要求をMachine Type Communication Inter Working Function(MTC-IWF)エンティティから受信したことに応答して、前記第1のPCCルールを前記PCEFノードに供給する、
付記1~3のいずれか1項に記載のPCRFエンティティ。
【0099】
(付記7)
前記移動局は、Machine Type Communication(MTC)デバイスであり、
前記制御部は、前記MTCデバイスの特定通信に適用されるサービス品質の要求をMachine Type Communication Inter Working Function(MTC-IWF)エンティティから受信したことに応答して、前記ADCルールを前記TDFノードに供給する、
付記4又は5に記載のPCRFエンティティ。
【0100】
(付記8)
前記制御部は、前記ADCルールが施行される期間を前記TDFノードに通知する、付記4、5、又は7に記載のPCRFエンティティ。
【0101】
(付記9)
前記要求は、前記特定通信に前記サービス品質が適用される期間の指定を含み、
前記制御部は、前記サービス品質が適用される期間に基づいて決定された前記ADCルールが施行される期間を前記TDFノードに通知する、付記7に記載のPCRFエンティティ。
【0102】
(付記10)
設定済みのベアラを経由して移動局により送信又は受信されるユーザトラフィックの中から特定パケットフローが検出されたことに応答して、前記特定パケットフローに適用される第1のPolicy and Charging Control(PCC)ルールをPolicy and Charging Enforcement Function(PCEF)を有するPCRFノードに供給することを備える、
Policy and Charging Rule Function(PCRF)エンティティにより行われる制御方法。
【0103】
(付記11)
前記第1のPCCルールは、前記ユーザトラフィックに適用される第2のPCCルールと異なる、付記10に記載の制御方法。
【0104】
(付記12)
前記第1のPCCルールの前記PCEFノードへの供給は、前記特定パケットフローを転送するための新たな個別ベアラの生成を引き起こす、付記10又は11に記載の制御方法。
【0105】
(付記13)
前記供給することは、
前記特定パケットフローを検出するためのApplication Detection and Control(ADC)ルールをTraffic Detection Function(TDF)を有するTDFノードに送信すること、及び
前記TDFノードによる前記特定パケットフローの検出に応答して、前記第1のPCCルールを前記PCEFノードに供給すること、
を含む、
付記10~12のいずれか1項に記載の制御方法。
【0106】
(付記14)
前記ADCルールは、前記特定パケットフローを指定するためのアプリケーション名を含み、
前記第1のPCCルールは、前記アプリケーション名に基づいて前記特定パケットフローに関して前記TDFノードにおいて検出された送信元アドレス、宛先アドレス、ポート番号、及びプロトコル識別子のうち少なくとも1つを示す、
付記13に記載の制御方法。
【0107】
(付記15)
前記移動局は、Machine Type Communication(MTC)デバイスであり、
前記供給することは、前記MTCデバイスの特定通信に適用されるサービス品質の要求をMachine Type Communication Inter Working Function(MTC-IWF)エンティティから受信したことに応答して、前記第1のPCCルールを前記PCEFノードに供給することを含む、
付記10~12のいずれか1項に記載の制御方法。
【0108】
(付記16)
前記移動局は、Machine Type Communication(MTC)デバイスであり、
前記送信することは、前記MTCデバイスの特定通信に適用されるサービス品質の要求をMachine Type Communication Inter Working Function(MTC-IWF)エンティティから受信したことに応答して、前記ADCルールを前記TDFノードに送信することを含む、
付記13又は14に記載の制御方法。
【0109】
(付記17)
Policy and Charging Rule Function(PCRF)に関する制御方法をコンピュータに行わせるためのプログラムであって、
前記制御方法は、設定済みのベアラを経由して移動局により送信又は受信されるユーザトラフィックの中から特定パケットフローが検出されたことに応答して、前記特定パケットフローに適用される第1のPolicy and Charging Control(PCC)ルールをPolicy and Charging Enforcement Function(PCEF)を有するPCRFノードに供給することを備える、
プログラム。
【0110】
(付記18)
Public Land Mobile Network(PLMN)に配置されるネットワークノードであって、
Machine Type Communication(MTC)デバイスが前記PLMNにアタッチしたことに応答して、前記MTCデバイスとの通信が可能であることを示す通知を前記PLMNの外部に配置されたMTCサーバに送信する制御部を備えるネットワークノード。
【0111】
(付記19)
前記ネットワークノードは、Machine Type Communication Inter Working Function(MTC-IWF)エンティティである、付記18に記載のネットワークノード。
【0112】
(付記20)
Public Land Mobile Network(PLMN)に配置されるネットワークノードにより行われる方法であって、
Machine Type Communication(MTC)デバイスが前記PLMNにアタッチしたことに応答して、前記MTCデバイスとの通信が可能であることを示す通知を前記PLMNの外部に配置されたMTCサーバに送信することを備える方法。
【0113】
(付記21)
前記ネットワークノードは、Machine Type Communication Inter Working Function(MTC-IWF)エンティティである、付記20に記載の方法。
【0114】
この出願は、2014年1月9日に出願された日本出願特願2014-002755を基礎とする優先権を主張し、その開示の全てをここに取り込む。
【符号の説明】
【0115】
1 Machine Type Communication Inter Working Function (MTC-IWF)エンティティ
2 Service Capability Server (SCS)
3 User Equipment(UE)
4 MTC アプリケーションサーバ
11、12 シグナリング・インタフェース(又は参照点)
31 MTC UE アプリケーション
51 Home Subscriber Server(HSS)
52 Diameter Routing Agent(DRA)
53 Mobility Management Entity(MME)
54 Radio Access Network(RAN)
55 Serving Gateway(S-GW)
56 Packet Data Network Gateway(P-GW)
57 Traffic Detection Function(TDF)
101 制御部
501 制御部
561 シグナリング部
562 パケット処理部
571 シグナリング部
572 検出部
図1
図2
図3
図4
図5
図6