IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 味の素株式会社の特許一覧

<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-02-27
(45)【発行日】2024-03-06
(54)【発明の名称】樹脂組成物
(51)【国際特許分類】
   C08L 63/00 20060101AFI20240228BHJP
   C08J 5/18 20060101ALI20240228BHJP
   C08K 3/00 20180101ALI20240228BHJP
   C08L 21/00 20060101ALI20240228BHJP
   H01L 23/29 20060101ALI20240228BHJP
   H01L 23/31 20060101ALI20240228BHJP
【FI】
C08L63/00 C
C08J5/18
C08K3/00
C08L21/00
H01L23/30 R
【請求項の数】 12
(21)【出願番号】P 2021186653
(22)【出願日】2021-11-16
(62)【分割の表示】P 2018165470の分割
【原出願日】2018-09-04
(65)【公開番号】P2022027768
(43)【公開日】2022-02-14
【審査請求日】2021-11-16
【前置審査】
(73)【特許権者】
【識別番号】000000066
【氏名又は名称】味の素株式会社
(74)【代理人】
【識別番号】110002147
【氏名又は名称】弁理士法人酒井国際特許事務所
(72)【発明者】
【氏名】阪内 啓之
【審査官】前田 直樹
(56)【参考文献】
【文献】特開2017-082201(JP,A)
【文献】特開2008-050235(JP,A)
【文献】特開2018-044044(JP,A)
【文献】特開2018-024774(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C08L
C08K
H01L
C08J
(57)【特許請求の範囲】
【請求項1】
(A)エポキシ樹脂(但し、(D)成分を除く。)、(B)硬化剤、(C)無機充填材及び(D)エラストマーを含む樹脂組成物であって、
(A)成分が、液状エポキシ樹脂を含み、且つ、液状エポキシ樹脂の含有量が、樹脂組成物中の樹脂成分を100質量%とした場合、10~90質量%であり、
(A)成分の含有量が、樹脂組成物中の樹脂成分を100質量%とした場合、40質量%以上であり、
(C)成分の平均粒径が、2.5μm以上であり、
(C)成分の含有量が、樹脂組成物中の不揮発成分を100質量%とした場合、70質量%以上であり、
(D)成分の含有量が、樹脂組成物中の樹脂成分を100質量%とした場合、2~25質量%であり、
樹脂組成物中の樹脂成分が、樹脂組成物を構成する不揮発成分のうち、(C)成分を除いた成分であり、
上記樹脂組成物を、180℃で90分間熱硬化させて得られる硬化物の酸素透過係数が、3cc/(atm・m・day・mm)以下であり、上記硬化物の25℃から150℃までの範囲における線熱膨張係数が、4~15ppm/℃であり、上記硬化物のJIS K7127に準拠して測定した23℃における伸び率に対する、180℃で24時間熱硬化させて得られる硬化物のJIS K7127に準拠して測定した23℃における伸び率の比が、0.7以上である、樹脂組成物。
【請求項2】
(C)成分の含有量が、樹脂組成物中の不揮発成分を100質量%とした場合、83質量%以上である、請求項1に記載の樹脂組成物。
【請求項3】
(A)成分が、固体状エポキシ樹脂を含む、請求項1又は2に記載の樹脂組成物。
【請求項4】
液状エポキシ樹脂の含有量が、樹脂組成物中の樹脂成分を100質量%とした場合、10~70質量%である、請求項1~3のいずれか1項に記載の樹脂組成物。
【請求項5】
(A)成分として含まれるエポキシ樹脂のエポキシ当量が400g/eq.以下である、請求項1~4のいずれか1項に記載の樹脂組成物。
【請求項6】
(B)成分が、フェノール系硬化剤または酸無水物系硬化剤を含む、請求項1~5のいずれか1項に記載の樹脂組成物。
【請求項7】
半導体チップパッケージの半導体チップ封止用である、請求項1~のいずれか1項に記載の樹脂組成物。
【請求項8】
請求項1~のいずれか1項に記載の樹脂組成物を含む、樹脂インク。
【請求項9】
請求項に記載の樹脂インクからなる厚み100μm以上の樹脂インク層。
【請求項10】
支持体と、上記支持体上に設けられた、請求項1~のいずれか1項に記載の樹脂組成物を含む樹脂組成物層と、を有する樹脂シート。
【請求項11】
上記樹脂組成物層の厚みが100μm以上である、請求項10に記載の樹脂シート。
【請求項12】
請求項1~のいずれか1項に記載の樹脂組成物の硬化物を含む、半導体チップパッケージ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、エポキシ樹脂及び硬化剤を含む樹脂組成物;上記樹脂組成物を含む樹脂インク;上記樹脂インクからなる樹脂インク層;上記樹脂組成物を含む樹脂組成物層を有する樹脂シート;及び上記樹脂組成物の硬化物を含む半導体チップパッケージに関する。
【背景技術】
【0002】
近年、スマートフォン、タブレット型デバイスといった小型の高機能電子機器の需要が増大しており、それに伴い、これら小型の電子機器に用いられる半導体チップパッケージ用絶縁材料も更なる高機能化が求められている。このような絶縁層は、樹脂組成物を硬化して形成されるもの等が知られている(例えば特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2017-008312号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
半導体チップパッケージ用絶縁材料は、信頼性向上のために高温処理に晒されても悪影響を受けにくいことが要求されるが、今後の小型化・薄膜化のますますの要求の高まりの中、従来の絶縁材料では改良の余地がまだまだある場合が多い。特に小型化・薄膜化の要請によって、微細配線形成やチップ実装時の安定性・歩留まり向上のためにパッケージの反り抑制の要求が高まるが、反り抑制を高めるために硬化物の柔軟性を高めようとすると、高温処理に晒された場合の機械特性の悪化をもたらしてしまい、硬化物が脆くなってしまう。そして、この反り抑制と脆化抑制を両立させることは困難であることが分かってきた。
【0005】
本発明の課題は、反り抑制および脆化抑制に優れた硬化物を得ることができる樹脂組成物を提供することにある。
【課題を解決するための手段】
【0006】
本発明の課題を達成すべく、本発明者らは鋭意検討した結果、樹脂組成物の硬化物の透過係数及び線熱膨張係数を所定の範囲内となるように調整することにより、反り抑制および脆化抑制に優れる硬化物を得ることができることを見出し、本発明を完成させるに至った。
【0007】
すなわち、本発明は以下の内容を含む。
[1] (A)エポキシ樹脂、及び(B)硬化剤を含む樹脂組成物であって、上記樹脂組成物を、180℃で90分間熱硬化させて得られる硬化物の酸素透過係数が、3cc/(atm・m・day・mm)以下であり、上記硬化物の線熱膨張係数が、4~15ppm/℃である、樹脂組成物。
[2] さらに(C)無機充填材を含有する、[1]に記載の樹脂組成物。
[3] (C)成分の含有量が、樹脂組成物中の不揮発成分を100質量%とした場合、83質量%以上である、[2]に記載の樹脂組成物。
[4] (C)成分の平均粒径が、2.5μm以上である、[2]又は[3]に記載の樹脂組成物。
[5] (A)成分が、固体状エポキシ樹脂を含む、[1]~[4]のいずれかに記載の樹脂組成物。
[6] (A)成分が、液状エポキシ樹脂を含み、且つ液状エポキシ樹脂の含有量が、樹脂組成物中の樹脂成分を100質量%とした場合、70質量%以下である、[1]~[5]のいずれかに記載の樹脂組成物。
[7] (A)成分として含まれるエポキシ樹脂のエポキシ当量が400g/eq.以下である、[1]~[6]のいずれかに記載の樹脂組成物。
[8] (B)成分が、フェノール系硬化剤または酸無水物系硬化剤を含む、[1]~[7]のいずれかに記載の樹脂組成物。
[9] さらに(D)エラストマーを含有する、[1]~[8]のいずれかに記載の樹脂組成物。
[10] (D)成分の含有量が、樹脂組成物中の樹脂成分を100質量%とした場合、30質量%以下である、[9]に記載の樹脂組成物。
[11] 樹脂組成物を、180℃で90分間熱硬化させて得られる硬化物のJIS K7127に準拠して測定した23℃における伸び率に対する、180℃で24時間熱硬化させて得られる硬化物のJIS K7127に準拠して測定した23℃における伸び率の比が、0.7以上である、[1]~[10]のいずれかに記載の樹脂組成物。
[12] 半導体チップパッケージの半導体チップ封止用である、[1]~[11]のいずれかに記載の樹脂組成物。
[13] [1]~[11]のいずれかに記載の樹脂組成物を含む、樹脂インク。
[14] [13]に記載の樹脂インクからなる厚み100μm以上の樹脂インク層。
[15] 支持体と、上記支持体上に設けられた、[1]~[11]のいずれかに記載の樹脂組成物を含む樹脂組成物層と、を有する樹脂シート。
[16] 上記樹脂組成物層の厚みが100μm以上である、[15]に記載の樹脂シート。
[17] [1]~[11]のいずれかに記載の樹脂組成物の硬化物を含む、半導体チップパッケージ。
【発明の効果】
【0008】
本発明によれば、反り抑制および脆化抑制に優れる硬化物を得ることができる樹脂組成物;上記樹脂組成物を含む樹脂インク;上記樹脂インクからなる樹脂インク層;上記樹脂組成物を含む樹脂組成物層を有する樹脂シート;及び上記樹脂組成物の硬化物を含む半導体チップパッケージを提供することができる。
【発明を実施するための形態】
【0009】
以下、本発明をその好適な実施形態に即して詳細に説明する。ただし、本発明は、下記実施形態及び例示物に限定されるものではなく、本発明の特許請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施され得る。
【0010】
<樹脂組成物>
本発明の樹脂組成物は、(A)エポキシ樹脂、及び(B)硬化剤を含む。本発明の樹脂組成物を180℃で90分間熱硬化させて得られる硬化物の透過係数は、3cc/(atm・m・day・mm)以下であり、且つ硬化物の線熱膨張係数は、4~15ppm/℃である。
【0011】
このような樹脂組成物を用いることにより、反り抑制および脆化抑制に優れた硬化物を得ることができるという本発明の所望の効果が達成できる。
【0012】
本発明の樹脂組成物は、(A)エポキシ樹脂、及び(B)硬化剤に加えて、さらに任意の成分を含んでいてもよい。任意の成分としては、例えば、(C)無機充填材、(D)エラストマー、(E)ゴム粒子、(F)硬化促進剤、(G)有機溶剤、及び(H)その他の添加剤が挙げられる。以下、樹脂組成物に含まれる各成分について詳細に説明する。
【0013】
<(A)エポキシ樹脂>
本発明の樹脂組成物は、(A)エポキシ樹脂を含有する。
【0014】
(A)エポキシ樹脂としては、例えば、ビキシレノール型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリスフェノール型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、tert-ブチル-カテコール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフトール型エポキシ樹脂、アントラセン型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、線状脂肪族エポキシ樹脂、ブタジエン構造を有するエポキシ樹脂、脂環式エポキシ樹脂、複素環式エポキシ樹脂、スピロ環含有エポキシ樹脂、シクロヘキサン型エポキシ樹脂、シクロヘキサンジメタノール型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、トリメチロール型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂等が挙げられる。エポキシ樹脂は、1種類単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
【0015】
樹脂組成物は、(A)エポキシ樹脂として、1分子中に2個以上のエポキシ基を有するエポキシ樹脂を含むことが好ましい。本発明の所望の効果を顕著に得る観点から、(A)エポキシ樹脂の不揮発成分100質量%に対して、1分子中に2個以上のエポキシ基を有するエポキシ樹脂の割合は、好ましくは50質量%以上、より好ましくは60質量%以上、特に好ましくは70質量%以上である。
【0016】
エポキシ樹脂には、温度20℃で液状のエポキシ樹脂(以下「液状エポキシ樹脂」ということがある。)と、温度20℃で固体状のエポキシ樹脂(以下「固体状エポキシ樹脂」ということがある。)とがある。一実施形態では、本発明の樹脂組成物は、エポキシ樹脂として、液状エポキシ樹脂を含む。一実施形態では、本発明の樹脂組成物は、エポキシ樹脂として、固体状エポキシ樹脂を含む。本発明の樹脂組成物は、エポキシ樹脂として、液状エポキシ樹脂のみを含んでいてもよく、或いは固体状エポキシ樹脂のみを含んでいてもよいが、液状エポキシ樹脂と固体状エポキシ樹脂とを組み合わせて含むことが好ましい。
【0017】
液状エポキシ樹脂としては、1分子中に2個以上のエポキシ基を有する液状エポキシ樹脂が好ましい。
【0018】
液状エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、ナフタレン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、エステル骨格を有する脂環式エポキシ樹脂、シクロヘキサン型エポキシ樹脂、シクロヘキサンジメタノール型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、及びブタジエン構造を有するエポキシ樹脂が好ましく、グリシジルアミン型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、及びビスフェノールF型エポキシ樹脂がより好ましい。
【0019】
液状エポキシ樹脂の具体例としては、DIC社製の「HP4032」、「HP4032D」、「HP4032SS」(ナフタレン型エポキシ樹脂);三菱ケミカル社製の「828US」、「jER828EL」、「825」、「エピコート828EL」(ビスフェノールA型エポキシ樹脂);三菱ケミカル社製の「jER807」、「1750」(ビスフェノールF型エポキシ樹脂);三菱ケミカル社製の「jER152」(フェノールノボラック型エポキシ樹脂);三菱ケミカル社製の「630」、「630LSD」(グリシジルアミン型エポキシ樹脂);新日鉄住金化学社製の「ZX1059」(ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂の混合品);ナガセケムテックス社製の「EX-721」(グリシジルエステル型エポキシ樹脂);ダイセル社製の「セロキサイド2021P」(エステル骨格を有する脂環式エポキシ樹脂);ダイセル社製の「PB-3600」、日本曹達社製の「JP-100」、「JP-200」(ブタジエン構造を有するエポキシ樹脂);新日鉄住金化学社製の「ZX1658」、「ZX1658GS」(液状1,4-グリシジルシクロヘキサン型エポキシ樹脂)等が挙げられる。これらは、1種類単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
【0020】
固体状エポキシ樹脂としては、1分子中に3個以上のエポキシ基を有する固体状エポキシ樹脂が好ましく、1分子中に3個以上のエポキシ基を有する芳香族系の固体状エポキシ樹脂がより好ましい。
【0021】
固体状エポキシ樹脂としては、ビキシレノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフタレン型4官能エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリスフェノール型エポキシ樹脂、ナフトール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、アントラセン型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂が好ましい。
【0022】
固体状エポキシ樹脂の具体例としては、DIC社製の「HP4032H」(ナフタレン型エポキシ樹脂);DIC社製の「HP-4700」、「HP-4710」(ナフタレン型4官能エポキシ樹脂);DIC社製の「N-690」(クレゾールノボラック型エポキシ樹脂);DIC社製の「N-695」(クレゾールノボラック型エポキシ樹脂);DIC社製の「HP-7200」(ジシクロペンタジエン型エポキシ樹脂);DIC社製の「HP-7200HH」、「HP-7200H」、「EXA-7311」、「EXA-7311-G3」、「EXA-7311-G4」、「EXA-7311-G4S」、「HP6000」(ナフチレンエーテル型エポキシ樹脂);日本化薬社製の「EPPN-502H」(トリスフェノール型エポキシ樹脂);日本化薬社製の「NC7000L」(ナフトールノボラック型エポキシ樹脂);日本化薬社製の「NC3000H」、「NC3000」、「NC3000L」、「NC3100」(ビフェニル型エポキシ樹脂);新日鉄住金化学社製の「ESN475V」(ナフトール型エポキシ樹脂);新日鉄住金化学社製の「ESN485」(ナフトールノボラック型エポキシ樹脂);三菱ケミカル社製の「YX4000H」、「YX4000」、「YL6121」(ビフェニル型エポキシ樹脂);三菱ケミカル社製の「YX4000HK」(ビキシレノール型エポキシ樹脂);三菱ケミカル社製の「YX8800」(アントラセン型エポキシ樹脂);大阪ガスケミカル社製の「PG-100」、「CG-500」;三菱ケミカル社製の「YL7760」(ビスフェノールAF型エポキシ樹脂);三菱ケミカル社製の「YL7800」(フルオレン型エポキシ樹脂);三菱ケミカル社製の「jER1010」(固体状ビスフェノールA型エポキシ樹脂);三菱ケミカル社製の「jER1031S」(テトラフェニルエタン型エポキシ樹脂)等が挙げられる。これらは、1種類単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
【0023】
(A)エポキシ樹脂として液状エポキシ樹脂と固体状エポキシ樹脂とを組み合わせて用いる場合、それらの量比(液状エポキシ樹脂:固体状エポキシ樹脂)は、質量比で、好ましくは20:1~1:20、より好ましくは10:1~1:10、特に好ましくは5:1~1:5である。液状エポキシ樹脂と固体状エポキシ樹脂との量比が斯かる範囲にあることにより、本発明の所望の効果を顕著に得ることができる。
【0024】
(A)エポキシ樹脂のエポキシ当量は、本発明の所望の効果を顕著に得る観点から、好ましくは50g/eq.以上であり、より好ましくは、70g/eq.以上である。一方で、エポキシ当量は、本発明の所望の効果を顕著に得る観点から、好ましくは、5000g/eq.以下であり、より好ましくは、2000g/eq.以下であり、さらに好ましくは、1000g/eq.以下であり、さらにより好ましくは、500g/eq.以下であり、なお一層好ましくは、400g/eq.以下であり、特に好ましくは、350g/eq.以下である。エポキシ当量は、1当量のエポキシ基を含むエポキシ樹脂の質量である。このエポキシ当量は、JIS K7236に従って測定することができる。
【0025】
(A)エポキシ樹脂の重量平均分子量(Mw)は、本発明の所望の効果を顕著に得る観点から、好ましくは100~5000、より好ましくは250~3000、さらに好ましくは400~1500である。樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により、ポリスチレン換算の値として測定できる。
【0026】
(A)エポキシ樹脂の含有量は、特に限定されるものではないが、樹脂組成物中の樹脂成分を100質量%としたとき、本発明の所望の効果を顕著に得る観点から、好ましくは20質量%以上、より好ましくは30質量%以上、さらに好ましくは40質量%以上、特に好ましくは45質量%以上である。その上限は、本発明の所望の効果を顕著に得る観点から、好ましくは90質量%以下、より好ましくは80質量%以下、さらに好ましくは70質量%以下、特に好ましくは60質量%以下である。
【0027】
なお、本明細書中「樹脂成分」とは、樹脂組成物を構成する不揮発成分のうち、後述する(C)無機充填材を除いた成分をいう。
【0028】
液状エポキシ樹脂を含む場合、液状エポキシ樹脂の含有量は、特に限定されるものではないが、樹脂組成物中の樹脂成分を100質量%としたとき、本発明の所望の効果を顕著に得る観点から、好ましくは10質量%以上、より好ましくは20質量%以上、さらに好ましくは25質量%以上、特に好ましくは30質量%以上である。その上限は、本発明の所望の効果を顕著に得る観点から、好ましくは90質量%以下、より好ましくは80質量%以下、さらに好ましくは70質量%以下、特に好ましくは60質量%以下である。
【0029】
固体状エポキシ樹脂を含む場合、固体状エポキシ樹脂の含有量は、特に限定されるものではないが、樹脂組成物中の樹脂成分を100質量%としたとき、本発明の所望の効果を顕著に得る観点から、好ましくは1質量%以上、より好ましくは5質量%以上、さらに好ましくは10質量%以上、特に好ましくは15質量%以上である。その上限は、本発明の所望の効果を顕著に得る観点から、好ましくは40質量%以下、より好ましくは30質量%以下、さらに好ましくは25質量%以下、特に好ましくは20質量%以下である。
【0030】
<(B)硬化剤>
本発明の樹脂組成物は、(B)硬化剤を含有する。
【0031】
(B)硬化剤としては、エポキシ樹脂を硬化する機能を有する限り特に限定されず、例えば、フェノール系硬化剤、ナフトール系硬化剤、酸無水物系硬化剤、活性エステル系硬化剤、ベンゾオキサジン系硬化剤、シアネートエステル系硬化剤及びカルボジイミド系硬化剤が挙げられる。硬化剤は1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。本発明の樹脂組成物の(B)硬化剤は、本発明の所望の効果を顕著に得る観点から、フェノール系硬化剤または酸無水物系硬化剤を含むものが好ましい。
【0032】
フェノール系硬化剤及びナフトール系硬化剤としては、耐熱性及び耐水性の観点から、ノボラック構造を有するフェノール系硬化剤、又はノボラック構造を有するナフトール系硬化剤が好ましい。また、被着体に対する密着性の観点から、含窒素フェノール系硬化剤又は含窒素ナフトール系硬化剤が好ましく、トリアジン骨格含有フェノール系硬化剤又はトリアジン骨格含有ナフトール系硬化剤がより好ましい。中でも、耐熱性、耐水性、及び密着性を高度に満足させる観点から、トリアジン骨格含有フェノールノボラック樹脂が好ましい。フェノール系硬化剤及びナフトール系硬化剤の具体例としては、例えば、明和化成社製の「MEH-7700」、「MEH-7810」、「MEH-7851」、日本化薬社製の「NHN」、「CBN」、「GPH」、新日鉄住金化学社製の「SN-170」、「SN-180」、「SN-190」、「SN-475」、「SN-485」、「SN-495」、「SN-375」、「SN-395」、DIC社製の「LA-7052」、「LA-7054」、「LA-3018」、「LA-3018-50P」、「LA-1356」、「TD2090」等が挙げられる。
【0033】
酸無水物系硬化剤としては、1分子内中に1個以上の酸無水物基を有する硬化剤が挙げられる。酸無水物系硬化剤の具体例としては、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチルナジック酸無水物、水素化メチルナジック酸無水物、トリアルキルテトラヒドロ無水フタル酸、ドデセニル無水コハク酸、5-(2,5-ジオキソテトラヒドロ-3-フラニル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、無水トリメリット酸、無水ピロメリット酸、ベンソフェノンテトラカルボン酸二無水物、ビフェニルテトラカルボン酸二無水物、ナフタレンテトラカルボン酸二無水物、オキシジフタル酸二無水物、3,3’-4,4’-ジフェニルスルホンテトラカルボン酸二無水物、1,3,3a,4,5,9b-ヘキサヒドロ-5-(テトラヒドロ-2,5-ジオキソ-3-フラニル)-ナフト[1,2-C]フラン-1,3-ジオン、エチレングリコールビス(アンヒドロトリメリテート)、スチレンとマレイン酸とが共重合したスチレン・マレイン酸樹脂などのポリマー型の酸無水物などが挙げられる。酸無水物系硬化剤の市販品としては、新日本理化社製の「HNA-100」、「MH-700」等が挙げられる。
【0034】
活性エステル系硬化剤としては、特に制限はないが、一般にフェノールエステル類、チオフェノールエステル類、N-ヒドロキシアミンエステル類、複素環ヒドロキシ化合物のエステル類等の反応活性の高いエステル基を1分子中に2個以上有する化合物が好ましく用いられる。当該活性エステル系硬化剤は、カルボン酸化合物及び/又はチオカルボン酸化合物とヒドロキシ化合物及び/又はチオール化合物との縮合反応によって得られるものが好ましい。特に耐熱性向上の観点から、カルボン酸化合物とヒドロキシ化合物とから得られる活性エステル系硬化剤が好ましく、カルボン酸化合物とフェノール化合物及び/又はナフトール化合物とから得られる活性エステル系硬化剤がより好ましい。カルボン酸化合物としては、例えば安息香酸、酢酸、コハク酸、マレイン酸、イタコン酸、フタル酸、イソフタル酸、テレフタル酸、ピロメリット酸等が挙げられる。フェノール化合物又はナフトール化合物としては、例えば、ハイドロキノン、レゾルシン、ビスフェノールA、ビスフェノールF、ビスフェノールS、フェノールフタリン、メチル化ビスフェノールA、メチル化ビスフェノールF、メチル化ビスフェノールS、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、カテコール、α-ナフトール、β-ナフトール、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、フロログルシン、ベンゼントリオール、ジシクロペンタジエン型ジフェノール化合物、フェノールノボラック等が挙げられる。ここで、「ジシクロペンタジエン型ジフェノール化合物」とは、ジシクロペンタジエン1分子にフェノール2分子が縮合して得られるジフェノール化合物をいう。
【0035】
具体的には、ジシクロペンタジエン型ジフェノール構造を含む活性エステル化合物、ナフタレン構造を含む活性エステル化合物、フェノールノボラックのアセチル化物を含む活性エステル化合物、フェノールノボラックのベンゾイル化物を含む活性エステル化合物が好ましく、中でもナフタレン構造を含む活性エステル化合物、ジシクロペンタジエン型ジフェノール構造を含む活性エステル化合物がより好ましい。「ジシクロペンタジエン型ジフェノール構造」とは、フェニレン-ジシクロペンタレン-フェニレンからなる2価の構造単位を表す。
【0036】
活性エステル系硬化剤の市販品としては、ジシクロペンタジエン型ジフェノール構造を含む活性エステル化合物として、「EXB9451」、「EXB9460」、「EXB9460S」、「HPC-8000」、「HPC-8000H」、「HPC-8000-65T」、「HPC-8000H-65TM」、「EXB-8000L」、「EXB-8000L-65TM」(DIC社製);ナフタレン構造を含む活性エステル化合物として「EXB9416-70BK」、「EXB-8150-65T」(DIC社製);フェノールノボラックのアセチル化物を含む活性エステル化合物として「DC808」(三菱ケミカル社製);フェノールノボラックのベンゾイル化物を含む活性エステル化合物として「YLH1026」(三菱ケミカル社製);フェノールノボラックのアセチル化物である活性エステル系硬化剤として「DC808」(三菱ケミカル社製);フェノールノボラックのベンゾイル化物である活性エステル系硬化剤として「YLH1026」(三菱ケミカル社製)、「YLH1030」(三菱ケミカル社製)、「YLH1048」(三菱ケミカル社製);等が挙げられる。
【0037】
ベンゾオキサジン系硬化剤の具体例としては、JFEケミカル社製の「JBZ-OP100D」、「ODA-BOZ」;昭和高分子社製の「HFB2006M」、四国化成工業社製の「P-d」、「F-a」などが挙げられる。
【0038】
シアネートエステル系硬化剤としては、例えば、ビスフェノールAジシアネート、ポリフェノールシアネート(オリゴ(3-メチレン-1,5-フェニレンシアネート))、4,4’-メチレンビス(2,6-ジメチルフェニルシアネート)、4,4’-エチリデンジフェニルジシアネート、ヘキサフルオロビスフェノールAジシアネート、2,2-ビス(4-シアネート)フェニルプロパン、1,1-ビス(4-シアネートフェニルメタン)、ビス(4-シアネート-3,5-ジメチルフェニル)メタン、1,3-ビス(4-シアネートフェニル-1-(メチルエチリデン))ベンゼン、ビス(4-シアネートフェニル)チオエーテル、及びビス(4-シアネートフェニル)エーテル等の2官能シアネート樹脂、フェノールノボラック及びクレゾールノボラック等から誘導される多官能シアネート樹脂、これらシアネート樹脂が一部トリアジン化したプレポリマーなどが挙げられる。シアネートエステル系硬化剤の具体例としては、ロンザジャパン社製の「PT30」及び「PT60」(いずれもフェノールノボラック型多官能シアネートエステル樹脂)、「BA230」、「BA230S75」(ビスフェノールAジシアネートの一部又は全部がトリアジン化され三量体となったプレポリマー)等が挙げられる。
【0039】
カルボジイミド系硬化剤の具体例としては、日清紡ケミカル社製の「V-03」、「V-07」等が挙げられる。
【0040】
硬化剤を含む場合、エポキシ樹脂と硬化剤との量比は、[エポキシ樹脂のエポキシ基の合計数]:[硬化剤の反応基の合計数]の比率で、1:0.2~1:2の範囲が好ましく、1:0.3~1:1.5がより好ましく、1:0.4~1:1.2がさらに好ましい。ここで、硬化剤の反応基とは、活性水酸基、活性エステル基等であり、硬化剤の種類によって異なる。また、エポキシ樹脂のエポキシ基の合計数とは、各エポキシ樹脂の不揮発成分質量をエポキシ当量で除した値をすべてのエポキシ樹脂について合計した値であり、硬化剤の反応基の合計数とは、各硬化剤の不揮発成分質量を反応基当量で除した値をすべての硬化剤について合計した値である。エポキシ樹脂と硬化剤との量比を斯かる範囲とすることにより、得られる硬化物の耐熱性がより向上する。
【0041】
(B)硬化剤の含有量は、特に限定されるものではないが、樹脂組成物中の樹脂成分を100質量%としたとき、本発明の所望の効果を顕著に得る観点から、好ましくは10質量%以上、より好ましくは15質量%以上、さらに好ましくは20質量%以上、特に好ましくは25質量%以上である。その上限は、本発明の所望の効果を顕著に得る観点から、好ましくは50質量%以下、より好ましくは45質量%以下、さらに好ましくは40質量%以下、特に好ましくは35質量%以下である。
【0042】
<(C)無機充填材>
本発明の樹脂組成物は、任意の成分として、さらに(C)無機充填材を含有し得る。
【0043】
(C)無機充填材の材料は特に限定されないが、例えば、シリカ、アルミナ、ガラス、コーディエライト、シリコン酸化物、硫酸バリウム、炭酸バリウム、タルク、クレー、雲母粉、酸化亜鉛、ハイドロタルサイト、ベーマイト、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、酸化マグネシウム、窒化ホウ素、窒化アルミニウム、窒化マンガン、ホウ酸アルミニウム、炭酸ストロンチウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ビスマス、酸化チタン、酸化ジルコニウム、チタン酸バリウム、チタン酸ジルコン酸バリウム、ジルコン酸バリウム、ジルコン酸カルシウム、リン酸ジルコニウム、及びリン酸タングステン酸ジルコニウム等が挙げられ、シリカが特に好適である。シリカとしては、例えば、無定形シリカ、溶融シリカ、結晶シリカ、合成シリカ、中空シリカ等が挙げられる。またシリカとしては球形シリカが好ましい。無機充填材は1種単独で用いてもよく、2種以上を組み合わせて使用してもよい。
【0044】
(C)無機充填材の市販品としては、例えば、電化化学工業社製の「UFP-30」;新日鉄住金マテリアルズ社製の「SP60-05」、「SP507-05」;アドマテックス社製の「YC100C」、「YA050C」、「YA050C-MJE」、「YA010C」;デンカ社製の「UFP-30」;トクヤマ社製の「シルフィルNSS-3N」、「シルフィルNSS-4N」、「シルフィルNSS-5N」;アドマテックス社製の「SC2500SQ」、「SO-C4」、「SO-C2」、「SO-C1」;などが挙げられる。
【0045】
(C)無機充填材の平均粒径は、本発明の所望の効果を顕著に得る観点から、好ましくは30μm以下、より好ましくは20μm以下、さらに好ましくは15μm以下、さらにより好ましくは12μm以下、特に好ましくは10μm以下である。無機充填材の平均粒径の下限は、本発明の所望の効果を顕著に得る観点から、好ましくは0.1μm以上、より好ましくは1μm以上、さらに好ましくは2μm以上、特に好ましくは2.5μm以上である。特に、樹脂シートの形態に用いる場合は、2.5μm以上であることが好ましい。無機充填材の平均粒径は、ミー(Mie)散乱理論に基づくレーザー回折・散乱法により測定することができる。具体的には、レーザー回折散乱式粒径分布測定装置により、無機充填材の粒径分布を体積基準で作成し、そのメディアン径を平均粒径とすることで測定することができる。測定サンプルは、無機充填材100mg、メチルエチルケトン10gをバイアル瓶に秤取り、超音波にて10分間分散させたものを使用することができる。測定サンプルを、レーザー回折式粒径分布測定装置を使用して、使用光源波長を青色及び赤色とし、フローセル方式で無機充填材の体積基準の粒径分布を測定し、得られた粒径分布からメディアン径として平均粒径を算出した。レーザー回折式粒径分布測定装置としては、例えば堀場製作所社製「LA-960」等が挙げられる。
【0046】
(C)無機充填材は、耐湿性及び分散性を高める観点から、アミノシラン系カップリング剤、エポキシシラン系カップリング剤、メルカプトシラン系カップリング剤、アルコキシシラン化合物、オルガノシラザン化合物、チタネート系カップリング剤などの1種以上の表面処理剤で処理されていることが好ましい。表面処理剤の市販品としては、例えば、信越化学工業社製「KBM403」(3-グリシドキシプロピルトリメトキシシラン)、信越化学工業社製「KBM803」(3-メルカプトプロピルトリメトキシシラン)、信越化学工業社製「KBE903」(3-アミノプロピルトリエトキシシラン)、信越化学工業社製「KBM573」(N-フェニル-3-アミノプロピルトリメトキシシラン)、信越化学工業社製「SZ-31」(ヘキサメチルジシラザン)、信越化学工業社製「KBM103」(フェニルトリメトキシシラン)、信越化学工業社製「KBM-4803」(長鎖エポキシ型シランカップリング剤)、信越化学工業社製「KBM-7103」(3,3,3-トリフルオロプロピルトリメトキシシラン)等が挙げられる。
【0047】
表面処理剤による表面処理の程度は、無機充填材の分散性向上の観点から、所定の範囲に収まることが好ましい。具体的には、無機充填材100質量部は、0.2質量部~5質量部の表面処理剤で表面処理されていることが好ましく、0.2質量部~3質量部で表面処理されていることが好ましく、0.3質量部~2質量部で表面処理されていることが好ましい。
【0048】
表面処理剤による表面処理の程度は、無機充填材の単位表面積当たりのカーボン量によって評価することができる。無機充填材の単位表面積当たりのカーボン量は、無機充填材の分散性向上の観点から、0.02mg/m以上が好ましく、0.1mg/m以上がより好ましく、0.2mg/m以上がさらに好ましい。一方、樹脂ワニスの溶融粘度やシート形態での溶融粘度の上昇を防止する観点から、1mg/m以下が好ましく、0.8mg/m以下がより好ましく、0.5mg/m以下がさらに好ましい。
【0049】
(C)無機充填材の単位表面積当たりのカーボン量は、表面処理後の無機充填材を溶剤(例えば、メチルエチルケトン(MEK))により洗浄処理した後に測定することができる。具体的には、溶剤として十分な量のMEKを表面処理剤で表面処理された無機充填材に加えて、25℃で5分間超音波洗浄する。上澄液を除去し、固形分を乾燥させた後、カーボン分析計を用いて無機充填材の単位表面積当たりのカーボン量を測定することができる。カーボン分析計としては、堀場製作所社製「EMIA-320V」等を使用することができる。
【0050】
(C)無機充填材の比表面積は、本発明の効果をより向上させる観点から、好ましくは1m/g以上、より好ましくは1.5m/g以上、特に好ましくは2m/g以上である。上限に特段の制限は無いが、好ましくは50m/g以下、45m/g以下又は40m/g以下である。無機充填材の比表面積は、BET法に従って、比表面積測定装置(マウンテック社製Macsorb HM-1210)を使用して試料表面に窒素ガスを吸着させ、BET多点法を用いて比表面積を算出することで得られる。
【0051】
(C)無機充填材を含有する場合、(C)無機充填材の含有量は、特に限定されるものではないが、樹脂組成物中の不揮発成分を100質量%としたとき、本発明の所望の効果を顕著に得る観点から、好ましくは70質量%以上、より好ましくは80質量%以上、さらに好ましくは83質量%以上、特に好ましくは85質量%以上である。その上限は、本発明の所望の効果を顕著に得る観点から、好ましくは95質量%以下、より好ましくは90質量%以下、さらに好ましくは88質量%以下である。
【0052】
<(D)エラストマー>
本発明の樹脂組成物は、任意の成分として、さらに(D)エラストマーを含有し得る。
【0053】
本発明において(D)エラストマーは柔軟性を有する樹脂を意味し、有機溶剤に溶解する不定形の樹脂成分であり、ゴム弾性を有する樹脂または他の成分と重合してゴム弾性を示す樹脂が好ましい。ゴム弾性としては、例えば、日本工業規格(JIS K7161)に準拠し、温度25℃、湿度40%RHにて、引っ張り試験を行った場合に、1GPa以下の弾性率を示す樹脂が挙げられる。
【0054】
一実施形態において、(D)成分は、分子内にポリブタジエン構造、ポリシロキサン構造、ポリ(メタ)アクリレート構造、ポリアルキレン構造、ポリアルキレンオキシ構造、ポリイソプレン構造、ポリイソブチレン構造、及びポリカーボネート構造から選択される1種以上の構造を有する樹脂であることが好ましく、本発明の所望の効果をより発揮する観点から、ポリブタジエン構造及びポリカーボネート構造から選択される1種以上の構造を有する樹脂であることがより好ましい。なお、「(メタ)アクリレート」とは、メタクリレート及びアクリレートを指す。
【0055】
また、別の一実施形態において、(D)成分は、ガラス転移温度(Tg)が25℃以下の樹脂及び25℃以下で液状である樹脂から選択される1種以上であることが好ましい。ガラス転移温度(Tg)が25℃以下である樹脂のガラス転移温度は、好ましくは20℃以下、より好ましくは15℃以下である。ガラス転移温度の下限は特に限定されないが、通常-15℃以上とし得る。また、25℃で液状である樹脂としては、好ましくは20℃以下で液状である樹脂、より好ましくは15℃以下で液状である樹脂である。
【0056】
より好適な一実施形態として、(D)成分は、ガラス転移温度が25℃以下、及び25℃で液状である樹脂から選択される1種以上であり、且つ分子内にポリブタジエン構造、ポリシロキサン構造、ポリ(メタ)アクリレート構造、ポリアルキレン構造、ポリアルキレンオキシ構造、ポリイソプレン構造、ポリイソブチレン構造、及びポリカーボネート構造から選択される1種以上の構造を有する樹脂が好ましい。
【0057】
ポリブタジエン構造は、ブタジエンを重合して形成される構造だけでなく、当該構造に水素添加して形成される構造も含む。また、ブタジエン構造は、その一部のみが水素添加されていてもよく、その全てが水素添加されていてもよい。さらに、ポリブタジエン構造は、(D)成分において、主鎖に含まれていてもよく、側鎖に含まれていてもよい。
【0058】
ポリブタジエン樹脂の好ましい例としては、水素化ポリブタジエン骨格含有樹脂、ヒドロキシ基含有ポリブタジエン樹脂、フェノール性水酸基含有ポリブタジエン樹脂、カルボキシ基含有ポリブタジエン樹脂、酸無水物基含有ポリブタジエン樹脂、エポキシ基含有ポリブタジエン樹脂、イソシアネート基含有ポリブタジエン樹脂、ウレタン基含有ポリブタジエン樹脂等が挙げられる。中でも、フェノール性水酸基含有ポリブタジエン樹脂が更に好ましい。ここで、「水素化ポリブタジエン骨格含有樹脂」とは、ポリブタジエン骨格の少なくとも一部が水素化された樹脂をいい、必ずしもポリブタジエン骨格が完全に水素化された樹脂である必要はない。水素化ポリブタジエン骨格含有樹脂としては、例えば、水素化ポリブタジエン骨格含有エポキシ樹脂等が挙げられる。また、フェノール性水酸基含有ポリブタジエン樹脂としては、ポリブタジエン構造を有し、かつフェノール性水酸基を有する樹脂等が挙げられる。
【0059】
ポリブタジエン構造を分子内に有する樹脂であるポリブタジエン樹脂の具体例としては、クレイバレー社製の「Ricon 657」(エポキシ基含有ポリブタジエン)、「Ricon 130MA8」、「Ricon 130MA13」、「Ricon 130MA20」、「Ricon 131MA5」、「Ricon 131MA10」、「Ricon 131MA17」、「Ricon 131MA20」、「Ricon 184MA6」(酸無水物基含有ポリブタジエン)、「GQ-1000」(水酸基、カルボキシル基導入ポリブタジエン)、「G-1000」、「G-2000」、「G-3000」(両末端水酸基ポリブタジエン)、「GI-1000」、「GI-2000」、「GI-3000」(両末端水酸基水素化ポリブタジエン)、ダイセル社製の「PB3600」、「PB4700」(ポリブタジエン骨格エポキシ化合物)、「エポフレンドA1005」、「エポフレンドA1010」、「エポフレンドA1020」(スチレンとブタジエンとスチレンブロック共重合体のエポキシ化合物)、ナガセケムテックス社製の「FCA-061L」(水素化ポリブタジエン骨格エポキシ化合物)、「R-45EPT」(ポリブタジエン骨格エポキシ化合物)等が挙げられる。
【0060】
また、好ましいポリブタジエン樹脂の例としては、ヒドロキシル基末端ポリブタジエン、ジイソシアネート化合物及び多塩基酸またはその無水物を原料とする線状ポリイミド(特開2006-37083号公報、国際公開第2008/153208号に記載のポリイミド)も挙げられる。該ポリイミド樹脂のポリブタジエン構造の含有率は、好ましくは60質量%~95質量%、より好ましくは75質量%~85質量%である。該ポリイミド樹脂の詳細は、特開2006-37083号公報、国際公開第2008/153208号の記載を参酌することができ、この内容は本明細書に組み込まれる。
【0061】
ヒドロキシル基末端ポリブタジエンの数平均分子量は、本発明の所望の効果を発揮する観点から、好ましくは500~5,000、より好ましくは1,000~3,000である。ヒドロキシル基末端ポリブタジエンの水酸基当量は、本発明の所望の効果を発揮する観点から、好ましくは250~1,250である。
【0062】
ジイソシアネート化合物としては、例えば、トルエン-2,4-ジイソシアネート、トルエン-2,6-ジイソシアネート、キシリレンジイソシアネート、ジフェニルメタンジイソシアネート等の芳香族ジイソシアネート;ヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート;イソホロンジイソシアネート等の脂環式ジイソシアネートが挙げられる。これらの中で芳香族ジイソシアネートが好ましく、トルエン-2,4-ジイソシアネートがより好ましい。
【0063】
多塩基酸またはその無水物としては、例えば、エチレングリコールビストリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸、ビフェニルテトラカルボン酸、ナフタレンテトラカルボン酸、5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-シクロヘキセン-1,2-ジカルボン酸、3,3’-4,4’-ジフェニルスルホンテトラカルボン酸等の四塩基酸およびこれらの無水物、トリメリット酸、シクロヘキサントリカルボン酸等の三塩基酸およびこれらの無水物、1,3,3a,4,5,9b-ヘキサヒドロ-5-(テトラヒドロ-2,5-ジオキソ-3-フラニル)-ナフト(1,2-C)フラン-1,3-ジオン等が挙げられる。
【0064】
ポリシロキサン構造は、シロキサン結合を含む構造であり、例えばシリコーンゴムに含まれる。ポリシロキサン構造は、(D)成分において、主鎖に含まれていてもよく、側鎖に含まれていてもよい。
【0065】
ポリシロキサン構造を分子内に有する樹脂であるポリシロキサン樹脂の具体例としては、信越シリコーン社製の「SMP-2006」、「SMP-2003PGMEA」、「SMP-5005PGMEA」、アミン基末端ポリシロキサン、四塩基酸無水物を原料とする線状ポリイミド(国際公開第2010/053185号)等が挙げられる。
【0066】
ポリ(メタ)アクリレート構造は、アクリル酸又はアクリル酸エステルを重合して形成される構造であり、メタクリル酸又はメタクリル酸エステルを重合して形成される構造も含む。(メタ)アクリレート構造は、(D)成分において、主鎖に含まれていてもよく、側鎖に含まれていてもよい。
【0067】
ポリ(メタ)アクリレート構造を分子内に有する樹脂であるポリ(メタ)アクリレート樹脂の好ましい例としては、ヒドロキシ基含有ポリ(メタ)アクリレート樹脂、フェノール性水酸基含有ポリ(メタ)アクリレート樹脂、カルボキシ基含有ポリ(メタ)アクリレート樹脂、酸無水物基含有ポリ(メタ)アクリレート樹脂、エポキシ基含有ポリ(メタ)アクリレート樹脂、イソシアネート基含有ポリ(メタ)アクリレート樹脂、ウレタン基含有ポリ(メタ)アクリレート樹脂等が挙げられる。
【0068】
ポリ(メタ)アクリレート樹脂の具体例としては、ナガセケムテックス社製のテイサンレジン「SG-70L」、「SG-708-6」、「WS-023」、「SG-700AS」、「SG-280TEA」(カルボキシ基含有アクリル酸エステル共重合体樹脂、酸価5~34mgKOH/g、重量平均分子量40万~90万、Tg-30℃~5℃)、「SG-80H」、「SG-80H-3」、「SG-P3」(エポキシ基含有アクリル酸エステル共重合体樹脂、エポキシ当量4761~14285g/eq、重量平均分子量35万~85万、Tg11℃~12℃)、「SG-600TEA」、「SG-790」」(ヒドロキシ基含有アクリル酸エステル共重合体樹脂、水酸基価20~40mgKOH/g、重量平均分子量50万~120万、Tg-37℃~-32℃)、根上工業社製の「ME-2000」、「W-116.3」(カルボキシ基含有アクリル酸エステル共重合体樹脂)、「W-197C」(水酸基含有アクリル酸エステル共重合体樹脂)、「KG-25」、「KG-3000」(エポキシ基含有アクリル酸エステル共重合体樹脂)等が挙げられる。
【0069】
ポリアルキレン構造は、所定の炭素原子数を有することが好ましい。ポリアルキレン構造の具体的な炭素原子数は、好ましくは2以上、より好ましくは3以上、特に好ましくは5以上であり、好ましくは15以下、より好ましくは10以下、特に好ましくは6以下である。また、ポリアルキレン構造は、(D)成分において、主鎖に含まれていてもよく、側鎖に含まれていてもよい。
【0070】
ポリアルキレンオキシ構造は、所定の炭素原子数を有することが好ましい。ポリアルキレンオキシ構造の具体的な炭素原子数は、好ましくは2以上、好ましくは3以上、より好ましくは5以上であり、好ましくは15以下、より好ましくは10以下、特に好ましくは6以下である。ポリアルキレンオキシ構造は、(D)成分において、主鎖に含まれていてもよく、側鎖に含まれていてもよい。
【0071】
ポリアルキレン構造を分子内に有する樹脂であるポリアルキレン樹脂及びポリアルキレンオキシ構造を分子内に有する樹脂であるポリアルキレンオキシ樹脂の具体例としては、旭化成せんい社製の「PTXG-1000」、「PTXG-1800」、三菱ケミカル社製の「YX-7180」(エーテル結合を有するアルキレン構造を含有する樹脂)、DIC Corporation社製の「EXA-4850-150」、「EXA-4816」、「EXA-4822」、ADEKA社製の「EP-4000」、「EP-4003」、「EP-4010」、「EP-4011」、新日本理化社製の「BEO-60E」、「BPO-20E」、三菱ケミカル社製の「YL7175」、「YL7410」等が挙げられる。
【0072】
ポリイソプレン構造は、(D)成分において、主鎖に含まれていてもよく、側鎖に含まれていてもよい。ポリイソプレン構造を分子内に有する樹脂であるポリイソプレン樹脂の具体例としては、クラレ社製の「KL-610」、「KL-613」等が挙げられる。
【0073】
ポリイソブチレン構造は、(D)成分において、主鎖に含まれていてもよく、側鎖に含まれていてもよい。ポリイソブチレン構造を分子内に有する樹脂であるポリイソブチレン樹脂の具体例としては、カネカ社製の「SIBSTAR-073T」(スチレン-イソブチレン-スチレントリブロック共重合体)、「SIBSTAR-042D」(スチレン-イソブチレンジブロック共重合体)等が挙げられる。
【0074】
ポリカーボネート構造は、(D)成分において、主鎖に含まれていてもよく、側鎖に含まれていてもよい。
【0075】
ポリカーボネート構造を分子内に有する樹脂であるポリカーボネート樹脂の好ましい例としては、ヒドロキシ基含有ポリカーボネート樹脂、フェノール性水酸基含有ポリカーボネート樹脂、カルボキシ基含有ポリカーボネート樹脂、酸無水物基含有ポリカーボネート樹脂、エポキシ基含有ポリカーボネート樹脂、イソシアネート基含有ポリカーボネート樹脂、ウレタン基含有ポリカーボネート樹脂等が挙げられる。
【0076】
ポリカーボネート樹脂の具体例としては、旭化成ケミカルズ社製の「T6002」、「T6001」(ポリカーボネートジオール)、クラレ社製の「C-1090」、「C-2090」、「C-3090」(ポリカーボネートジオール)等が挙げられる。
【0077】
また、好ましいポリカーボネート樹脂の例としては、ヒドロキシル基末端ポリカーボネート、ジイソシアネート化合物及び多塩基酸またはその無水物を原料とする線状ポリイミドも挙げられる。該線状ポリイミドは、ウレタン構造およびポリカーボネート構造を有する。該ポリイミド樹脂のポリカーボネート構造の含有率は、好ましくは60質量%~95質量%、より好ましくは75質量%~85質量%である。該ポリイミド樹脂の詳細は、国際公開第2016/129541号の記載を参酌することができ、この内容は本明細書に組み込まれる。
【0078】
ヒドロキシル基末端ポリカーボネートの数平均分子量は、本発明の所望の効果を発揮する観点から、好ましくは500~5,000、より好ましくは1,000~3,000である。ヒドロキシル基末端ポリカーボネートの水酸基当量は、本発明の所望の効果を発揮する観点から、好ましくは250~1,250である。
【0079】
(D)成分は、さらにイミド構造を有することが好ましい。イミド構造を有することにより、(D)成分の耐熱性を高めクラック耐性を効果的に高めることができる。
【0080】
(D)成分は、直鎖状、分枝状、及び環状のいずれの構造であってもよいが、本発明の所望の効果を発揮する観点から、直鎖状であることが好ましい。
【0081】
(D)成分は、さらに(A)成分と反応できる官能基を有することが好ましい。この官能基には、加熱によって現れる反応基も含まれる。(D)成分が官能基を有することにより、樹脂組成物の硬化物の機械的強度を向上させることができる。
【0082】
官能基としては、カルボキシ基、ヒドロキシ基、酸無水物基、フェノール性水酸基、エポキシ基、イソシアネート基、およびウレタン基などが挙げられる。中でも、本発明の効果を顕著に得る観点から、官能基としては、ヒドロキシル基、酸無水物基、フェノール性水酸基、エポキシ基、イソシアネート基及びウレタン基から選択される1種以上の官能基を有することが好ましく、フェノール性水酸基が特に好ましい。
【0083】
(D)成分は、1種類単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
【0084】
(D)成分は、本発明の所望の効果を発揮する観点から、高分子量であることが好ましい。(D)成分の具体的な数平均分子量Mnは、好ましくは4000以上、より好ましくは4500以上、更に好ましくは5000以上、特に好ましくは5500以上であり、好ましくは100000以下、より好ましくは95000以下、特に好ましくは90000以下である。(D)成分の数平均分子量Mnが前記の範囲にあることにより、本発明の所望の効果を顕著に得ることができる。(D)成分の数平均分子量Mnは、GPC(ゲル浸透クロマトグラフィー)を使用して測定されるポリスチレン換算の数平均分子量である。
【0085】
また、(D)成分の具体的な重量平均分子量は、本発明の所望の効果を顕著に得る観点から、好ましくは5500~100000であり、より好ましくは10000~90000であり、さらに好ましくは15000~80000である。(D)成分の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により測定されるポリスチレン換算の重量平均分子量である。
【0086】
(D)成分が官能基を有する場合、(D)成分の官能基当量は、好ましくは100以上、より好ましくは200以上、更に好ましくは1000以上、特に好ましくは2500以上であり、好ましくは50000以下、より好ましくは30000以下、更に好ましくは10000以下、特に好ましくは5000以下である。官能基当量は、1グラム当量の官能基を含む樹脂のグラム数である。例えば、エポキシ基当量は、JIS K7236に従って測定することができる。また、例えば、水酸基当量はJIS K1557-1に従って測定した水酸基価でKOHの分子量を割ることで算出することができる。
【0087】
(D)エラストマーを含有する場合、(D)エラストマーの含有量は、特に限定されるものではないが、樹脂組成物中の樹脂成分を100質量%としたとき、本発明の所望の効果を顕著に得る観点から、好ましくは2質量%以上、より好ましくは5質量%以上、さらに好ましくは8質量%以上、特に好ましくは9質量%以上である。その上限は、本発明の所望の効果を顕著に得る観点から、好ましくは40質量%以下、より好ましくは35質量%以下、さらに好ましくは30質量%以下、特に好ましくは25質量%以下である。
【0088】
<(E)ゴム粒子>
本発明の樹脂組成物は、任意の成分として、さらに(E)ゴム粒子を含有し得る。
【0089】
樹脂組成物は、(E)ゴム粒子を含む。本発明における(E)ゴム粒子は、ゴム成分の分子量を有機溶剤及び樹脂成分に溶解しない水準まで大きくし、粒子状とすることで製造できる。そのため有機溶剤に溶解せず、エポキシ樹脂や硬化剤などの他の成分とも相溶しないため、樹脂ワニス中及び樹脂組成物中において分散状態で存在できる。通常、ゴム弾性を有する有機充填材として機能する。この(E)ゴム粒子を含むことにより、樹脂組成物の硬化物の低温時での密着性を改善することができる。また、(E)成分を樹脂組成物に含ませることによりタック性を小さくすることができ、樹脂組成物の硬化物の取り扱い性を向上させることができる。さらに、(E)成分により、通常は、絶縁層の弾性率を低くしたり伸びに対する耐性を高めたりすることができる。
【0090】
(E)ゴム粒子の例を挙げると、コアシェル型ゴム粒子、架橋アクリロニトリルブタジエンゴム粒子、架橋スチレンブタジエンゴム粒子、アクリルゴム粒子などが挙げられる。中でも、本発明の所望の効果を顕著に得る観点から、コアシェル型ゴム粒子が好ましい。
【0091】
コアシェル型ゴム粒子は、当該粒子の表面にあるシェル層と、そのシェル層の内部にあるコア層とを含むゴム粒子である。例えば、相対的に高いガラス転移温度を有する重合体で形成されたシェル層と、相対的に低いガラス転移温度を有する重合体で形成されたコア層とを含むコアシェル型ゴム粒子が挙げられる。中でも、シェル層がガラス状重合体で形成され、コア層がゴム状重合体で形成されたコアシェル型ゴム粒子が好ましい。このようなコアシェル型ゴム粒子は、シェル層によって、ゴム粒子の凝集を抑制したりゴム粒子の樹脂成分への分散性を高めたりでき、且つ、コア層によって、優れたゴム弾性を発揮することができる。コアシェル型ゴム粒子は、例えば、各層に対応した1種類又は2種類以上のモノマーを、複数段階に分けてシード重合することによって製造できる。
【0092】
コアシェル型ゴム粒子は、シェル層及びコア層のみを含む2層構造を有していてもよいが、更に任意の層を含む3層以上の構造を有していてもよい。例えば、コアシェル型ゴム粒子は、シェル層とコア層との間に任意の層を含んでいてもよく、コア層の内部に任意の層を含んでいてもよい。具体例を挙げると、コアシェル型ゴム粒子は、ガラス状重合体で形成されたシェル層と、ゴム状重合体で形成されたコア層と、コア層の内部にガラス状重合体で形成された任意の層とを含む3層構造を有していてもよい。
【0093】
前記のコアシェル型ゴム粒子において、ガラス状重合体としては、ポリメチルメタクリレート等のアクリル系重合体;ポリスチレン、ポリメチルメタクリレート・スチレン共重合、スチレン・ジビニルベンゼン共重合体等のスチレン系重合体;などが挙げられる。中でも、アクリル系重合体が好ましく、ポリメチルメタクリレートが特に好ましい。他方、ゴム状ポリマーとしては、ブチルアクリレート等のアクリルモノマーの単独重合体又は共重合体などのアクリルゴム;ポリブタジエン、ブタジエン・スチレン共重合体等のブタジエンゴム;イソプレンゴム;ブチルゴム;などが挙げられる。中でも、アクリルゴム及びブタジエンゴムが好ましく、アクリルゴムが特に好ましい。ここで、前記の用語「アクリルモノマー」には、アクリル酸エステル、メタクリル酸エステル、及びこれらの組み合わせが包含される。
【0094】
コアシェル型ゴム粒子の具体例としては、アイカ工業社製のスタフィロイド「AC3832」、「AC3816N」、「IM401-改7-17」;三菱ケミカル社製の「メタブレンKW-4426」;ダウ・ケミカル日本社製のパラロイド「EXL-2655」などが挙げられる。
【0095】
架橋アクリロニトリルブタジエンゴム(NBR)粒子の具体例としては、JSR社製「XER-91」(平均粒子径0.5μm);などが挙げられる。架橋スチレンブタジエンゴム(SBR)粒子の具体例としては、JSR社製「XSK-500」(平均粒子径0.5μm);などが挙げられる。アクリルゴム粒子の具体例としては、三菱ケミカル社製のメタブレン「W300A」(平均粒子径0.1μm)、「W450A」(平均粒子径0.2μm);などが挙げられる。
【0096】
(E)ゴム粒子は、1種類単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
【0097】
(E)ゴム粒子は、通常、樹脂組成物の硬化物の靱性を高める作用を有する。よって、(E)ゴム粒子を含む樹脂組成物の硬化物で形成された絶縁層は、機械的強度により優れる。また、(E)ゴム粒子は、通常、応力緩和作用を有する。よって、(E)ゴム粒子を含む樹脂組成物の硬化物で形成された絶縁層は、その形成時に生じる内部応力が(E)ゴム粒子によって緩和される。したがって、絶縁層の残留応力を小さくできるので、これによっても、絶縁層の機械的強度をより高めることができ、さらなる脆化抑制を可能とする。よって、低温であっても絶縁層の剥離(デラミネーション)を抑制することができる。
【0098】
(E)ゴム粒子の平均粒子径は、好ましくは0.005μm以上、より好ましくは0.01μm以上であり、好ましくは1μm以下、より好ましくは0.6μm以下である。(E)ゴム粒子の平均粒子径は、動的光散乱法を用いて測定できる。具体的には、適切な有機溶剤にゴム粒子を超音波等の方法により均一に分散させ、濃厚系粒径アナライザー(大塚電子社製「FPAR-1000」)を用いて、ゴム粒子の粒径分布を質量基準で作成し、そのメディアン径を平均粒子径として測定できる。
【0099】
(E)ゴム粒子を含有する場合、(E)ゴム粒子の含有量は、特に限定されるものではないが、樹脂組成物中の樹脂成分を100質量%としたとき、本発明の所望の効果を顕著に得る観点から、好ましくは40質量%以下、より好ましくは30質量%以下、さらに好ましくは20質量%以下である。
【0100】
<(F)硬化促進剤>
本発明の樹脂組成物は、任意の成分として、さらに(F)硬化促進剤を含有し得る。
【0101】
(F)硬化促進剤としては、例えば、リン系硬化促進剤、アミン系硬化促進剤、イミダゾール系硬化促進剤、グアニジン系硬化促進剤、金属系硬化促進剤等が挙げられる。中でも、リン系硬化促進剤、アミン系硬化促進剤、イミダゾール系硬化促進剤、金属系硬化促進剤が好ましく、リン系硬化促進剤、イミダゾール系硬化促進剤がより好ましい。硬化促進剤は、1種類単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
【0102】
リン系硬化促進剤としては、例えば、トリフェニルホスフィン、ホスホニウムボレート化合物、テトラフェニルホスホニウムテトラフェニルボレート、ブチルホスホニウムテトラフェニルボレート、テトラブチルホスホニウムデカン酸塩、(4-メチルフェニル)トリフェニルホスホニウムチオシアネート、テトラフェニルホスホニウムチオシアネート、ブチルトリフェニルホスホニウムチオシアネート、メチルトリブチルホスホニウムジメチルホスフェート等が挙げられる。
【0103】
アミン系硬化促進剤としては、例えば、トリエチルアミン、トリブチルアミン等のトリアルキルアミン、4-ジメチルアミノピリジン(DMAP)、ベンジルジメチルアミン、2,4,6,-トリス(ジメチルアミノメチル)フェノール、1,8-ジアザビシクロ(5,4,0)-ウンデセン等が挙げられる。
【0104】
イミダゾール系硬化促進剤としては、例えば、2-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2,3-ジヒドロ-1H-ピロロ[1,2-a]ベンズイミダゾール、1-ドデシル-2-メチル-3-ベンジルイミダゾリウムクロライド、2-メチルイミダゾリン、2-フェニルイミダゾリン等のイミダゾール化合物及びイミダゾール化合物とエポキシ樹脂とのアダクト体が挙げられる。
【0105】
イミダゾール系硬化促進剤としては、市販品を用いてもよく、例えば、三菱ケミカル社製の「P200-H50」等が挙げられる。
【0106】
グアニジン系硬化促進剤としては、例えば、ジシアンジアミド、1-メチルグアニジン、1-エチルグアニジン、1-シクロヘキシルグアニジン、1-フェニルグアニジン、1-(o-トリル)グアニジン、ジメチルグアニジン、ジフェニルグアニジン、トリメチルグアニジン、テトラメチルグアニジン、ペンタメチルグアニジン、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、1-メチルビグアニド、1-エチルビグアニド、1-n-ブチルビグアニド、1-n-オクタデシルビグアニド、1,1-ジメチルビグアニド、1,1-ジエチルビグアニド、1-シクロヘキシルビグアニド、1-アリルビグアニド、1-フェニルビグアニド、1-(o-トリル)ビグアニド等が挙げられる。
【0107】
金属系硬化促進剤としては、例えば、コバルト、銅、亜鉛、鉄、ニッケル、マンガン、スズ等の金属の、有機金属錯体又は有機金属塩が挙げられる。有機金属錯体の具体例としては、コバルト(II)アセチルアセトナート、コバルト(III)アセチルアセトナート等の有機コバルト錯体、銅(II)アセチルアセトナート等の有機銅錯体、亜鉛(II)アセチルアセトナート等の有機亜鉛錯体、鉄(III)アセチルアセトナート等の有機鉄錯体、ニッケル(II)アセチルアセトナート等の有機ニッケル錯体、マンガン(II)アセチルアセトナート等の有機マンガン錯体等が挙げられる。有機金属塩としては、例えば、オクチル酸亜鉛、オクチル酸錫、ナフテン酸亜鉛、ナフテン酸コバルト、ステアリン酸スズ、ステアリン酸亜鉛等が挙げられる。
【0108】
(F)硬化促進剤を含有する場合、(F)硬化促進剤の含有量は、特に限定されるものではないが、樹脂組成物中の樹脂成分を100質量%としたとき、本発明の所望の効果を顕著に得る観点から、好ましくは0.001質量%以上、より好ましくは0.01質量%以上、さらに好ましくは0.1質量%以上、特に好ましくは0.4質量%以上である。その上限は、本発明の所望の効果を顕著に得る観点から、好ましくは10質量%以下、より好ましくは5質量%以下、さらに好ましくは2質量%以下、特に好ましくは1質量%以下である。
【0109】
<(G)有機溶剤>
本発明の樹脂組成物は、任意の成分として、さらに(G)有機溶剤を含有し得る。
【0110】
有機溶剤としては、例えば、アセトン、メチルエチルケトン及びシクロヘキサノン等のケトン系溶剤;酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート、エチルジグリコールアセテート等のエステル系溶剤;セロソルブ及びブチルカルビトール等のカルビトール溶剤;ベンゼン、トルエン、キシレン、エチルベンゼン、トリメチルベンゼン等の芳香族炭化水素系溶剤;ジメチルホルムアミド、ジメチルアセトアミド(DMAc)及びN-メチルピロリドン等のアミド系溶剤等を挙げることができる。有機溶剤は、1種単独で用いてもよく、2種以上を任意の比率で組み合わせて用いてもよい。
【0111】
(G)有機溶剤を含有する場合、(G)有機溶剤の含有量は、特に限定されるものではないが、樹脂組成物全体を100質量%としたとき、本発明の所望の効果を得る観点から、好ましくは50質量%以下、より好ましくは40質量%以下、さらに好ましくは30質量%以下、特に好ましくは20質量%以下である。その下限は、特に限定されるものではない。
【0112】
<(H)その他の添加剤>
樹脂組成物は、上述した成分以外に、任意の成分として、更にその他の添加剤を含んでいてもよい。このような添加剤としては、例えば、熱可塑性樹脂、バインダー、難燃剤、増粘剤、消泡剤、レベリング剤、有機金属化合物、着色剤、密着性付与剤等の樹脂添加剤;重合開始剤などが挙げられる。これらの添加剤は、1種類単独で用いてもよく、2種類以上を組み合わせて用いてもよい。それぞれの含有量は当業者であれば適宜設定できる。
【0113】
<樹脂組成物の製造方法>
本発明の樹脂組成物は、例えば、配合成分を、回転ミキサーなどの撹拌装置を用いて撹拌し、均一に分散させることにより製造できる。
【0114】
<樹脂組成物の特性>
本発明の樹脂組成物は、それを180℃で90分間熱硬化させて得られる硬化物の酸素透過係数が、3cc/(atm・m・day・mm)以下であるという特徴を有する。酸素透過係数は、本発明の樹脂組成物を180℃で90分間熱硬化させて得られる硬化物の酸素透過率を測定し、その値を硬化物の厚みで除することにより算出を行う。酸素透過率を測定方法及び酸素透過係数の算出方法としては、具体的に、実施例に記載されている方法を用いることができる。180℃で90分間熱硬化させて得られる硬化物の酸素透過係数は、好ましくは2.5cc/(atm・m・day・mm)以下であり、より好ましくは2.0cc/(atm・m・day・mm)以下であり、さらに好ましくは1.5cc/(atm・m・day・mm)以下である。下限に特段の制限は無く、通常好ましくは0.01cc/(atm・m・day・mm)以上であり、より好ましくは0.2cc/(atm・m・day・mm)以上である。
【0115】
本発明の樹脂組成物は、それを180℃で90分間熱硬化させて得られる硬化物の線熱膨張係数が、4~15ppm/℃であるという特徴を有する。測定方法としては、具体的に、実施例に記載されている方法を用いることができる。本発明の樹脂組成物を180℃で90分間熱硬化させて得られる硬化物の線熱膨張係数は、好ましくは12ppm/℃以下であり、より好ましくは10ppm/℃以下であり、さらに好ましくは8.5ppm/℃以下である。下限は、好ましくは3.5ppm/℃以上であり、より好ましくは4.5ppm/℃以上であり、さらに好ましくは5.5ppm/℃以上である。
【0116】
線熱膨張係数及び酸素透過係数は、それぞれ、一般的に、樹脂組成物に含まれ得る各成分の種類や配合量により調節できることが当業者に知られている。
【0117】
本発明の樹脂組成物は、酸素透過係数及び線熱膨張係数が上記の所定範囲にあることにより、脆化抑制及び反りが抑制された硬化物を得ることができる。ここで、脆化は、高温下での伸び率低下を指標としている。
【0118】
具体的に、本発明の樹脂組成物によれば、それを用いて、実施例に記載の方法に基づき、12インチシリコンウエハ上に、樹脂組成物の硬化物を形成して、試料基板を作製し、試料基板を35℃、260℃及び35℃の順で加熱及び冷却した際に、実施例に記載の方法で測定される反り量を、好ましくは2.0mm未満にでき、より好ましくは1.5mm未満にでき、さらに好ましくは1.0mm未満にできる。
【0119】
また、本発明の樹脂組成物によれば、それを、180℃で90分間熱硬化させて得られる硬化物のJIS K7127に準拠して測定した23℃における伸び率に対する、180℃で24時間熱硬化させて得られる硬化物のJIS K7127に準拠して測定した23℃における伸び率の比を、好ましくは0.70以上にでき、より好ましくは0.73以上にでき、さらに好ましくは0.75以上にできる。
【0120】
<樹脂組成物の用途>
本発明の樹脂組成物の硬化物は、上述した利点により、半導体の封止層及び絶縁層に有用である。よって、この樹脂組成物は、半導体封止用又は絶縁層用の樹脂組成物として用いることができる。
【0121】
例えば、本発明の樹脂組成物は、半導体チップパッケージの絶縁層を形成するための樹脂組成物(半導体チップパッケージの絶縁層用の樹脂組成物)、及び、回路基板(プリント配線板を含む。)の絶縁層を形成するための樹脂組成物(回路基板の絶縁層用の樹脂組成物)として、好適に使用することができる。
【0122】
また、例えば、本発明の樹脂組成物は、半導体チップパッケージの半導体チップを封止するための樹脂組成物(半導体チップ封止用の樹脂組成物)として、好適に使用することができる。
【0123】
本発明の樹脂組成物の硬化物で形成された封止層又は絶縁層を適用できる半導体チップパッケージとしては、例えば、FC-CSP、MIS-BGAパッケージ、ETS-BGAパッケージ、Fan-out型WLP(Wafer Level Package)、Fan-in型WLP、Fan-out型PLP(Panel Level Package)、Fan-in型PLPが挙げられる。
【0124】
また、本発明の樹脂組成物は、アンダーフィル材として用いてもよく、例えば、半導体チップを基板に接続した後に用いるMUF(Molding Under Filling)の材料として用いてもよい。
【0125】
さらに、本発明の樹脂組成物は、樹脂シート、プリプレグ等のシート状積層材料、ソルダーレジスト等のための樹脂インク等の液状材料、ダイボンディング材、穴埋め樹脂、部品埋め込み樹脂等、樹脂組成物が用いられる広範な用途に使用できる。
【0126】
<樹脂インク(樹脂ワニス)>
本発明の樹脂インクは、樹脂組成物を含む。樹脂組成物の成分に有機溶剤を含有させることにより、粘度を調整して、塗布性を向上させることができる。
【0127】
本発明の樹脂インクは、例えば、ソルダーレジストインクとしてプリント配線板等の回路基板に塗布して使用することができる。塗布の際には、ダイコーター等の塗布装置を用いることができる。塗布して形成される樹脂インク層の厚みは、好ましくは600μm以下、より好ましくは500μm以下である。樹脂インク層の厚みの下限は、好ましくは1μm以上、5μm以上、より好ましくは10μm以上、さらに好ましくは50μm以上、特に好ましくは100μm以上でありうる。
【0128】
また、本発明の樹脂インクは、好ましくは1μm以上、5μm以上、より好ましくは10μm以上、さらに好ましくは50μm以上、特に好ましくは100μm以上の厚みの硬化物を得るためのものである。
【0129】
<樹脂シート>
本発明の樹脂シートは、支持体と、該支持体上に設けられた樹脂組成物層と、を有する。樹脂組成物層は、本発明の樹脂組成物を含む層であり、通常は、樹脂組成物で形成されている。
【0130】
樹脂組成物層の厚みは、薄型化の観点から、好ましくは600μm以下、より好ましくは500μm以下である。樹脂組成物層の厚さの下限は、好ましくは1μm以上、5μm以上、より好ましくは10μm以上、さらに好ましくは50μm以上、特に好ましくは100μm以上でありうる。
【0131】
また、樹脂組成物層を硬化させて得られる硬化物の厚みは、好ましくは1μm以上、5μm以上、より好ましくは10μm以上、さらに好ましくは50μm以上、特に好ましくは100μm以上である。
【0132】
支持体としては、例えば、プラスチック材料からなるフィルム、金属箔、離型紙が挙げられ、プラスチック材料からなるフィルム、金属箔が好ましい。
【0133】
支持体としてプラスチック材料からなるフィルムを使用する場合、プラスチック材料としては、例えば、ポリエチレンテレフタレート(以下「PET」と略称することがある。)、ポリエチレンナフタレート(以下「PEN」と略称することがある。)等のポリエステル;ポリカーボネート(以下「PC」と略称することがある。);ポリメチルメタクリレート(以下「PMMA」と略称することがある。)等のアクリルポリマー;環状ポリオレフィン;トリアセチルセルロース(以下「TAC」と略称することがある。);ポリエーテルサルファイド(以下「PES」と略称することがある。);ポリエーテルケトン;ポリイミド;等が挙げられる。中でも、ポリエチレンテレフタレート、ポリエチレンナフタレートが好ましく、安価なポリエチレンテレフタレートが特に好ましい。
【0134】
支持体として金属箔を使用する場合、金属箔としては、例えば、銅箔、アルミニウム箔等が挙げられる。中でも、銅箔が好ましい。銅箔としては、銅の単金属からなる箔を用いてもよく、銅と他の金属(例えば、スズ、クロム、銀、マグネシウム、ニッケル、ジルコニウム、ケイ素、チタン等)との合金からなる箔を用いてもよい。
【0135】
支持体は、樹脂組成物層と接合する面に、マット処理、コロナ処理、帯電防止処理等の処理が施されていてもよい。
【0136】
また、支持体としては、樹脂組成物層と接合する面に離型層を有する離型層付き支持体を使用してもよい。離型層付き支持体の離型層に使用する離型剤としては、例えば、アルキド樹脂、ポリオレフィン樹脂、ウレタン樹脂、及びシリコーン樹脂からなる群から選択される1種以上の離型剤が挙げられる。離型剤の市販品としては、例えば、アルキド樹脂系離型剤である、リンテック社製の「SK-1」、「AL-5」、「AL-7」等が挙げられる。また、離型層付き支持体としては、例えば、東レ社製の「ルミラーT60」;帝人社製の「ピューレックス」;ユニチカ社製の「ユニピール」;等が挙げられる。
【0137】
支持体の厚さは、5μm~75μmの範囲が好ましく、10μm~60μmの範囲がより好ましい。なお、離型層付き支持体を使用する場合、離型層付き支持体全体の厚さが上記範囲であることが好ましい。
【0138】
樹脂シートは、例えば、樹脂組成物を、ダイコーター等の塗布装置を用いて支持体上に塗布して、製造することができる。また、必要に応じて、樹脂組成物を有機溶剤に溶解して樹脂ワニスを調製し、この樹脂ワニスを塗布して樹脂シートを製造してもよい。溶剤を用いることにより、粘度を調整して、塗布性を向上させることができる。樹脂ワニスを用いた場合、通常は、塗布後に樹脂ワニスを乾燥させて、樹脂組成物層を形成する。
【0139】
乾燥は、加熱、熱風吹きつけ等の公知の方法により実施してよい。乾燥条件は、樹脂組成物層中の有機溶剤の含有量が、通常10質量%以下、好ましくは5質量%以下となるように乾燥させる。樹脂ワニス中の有機溶剤の沸点によっても異なるが、例えば30質量%~60質量%の有機溶剤を含む樹脂ワニスを用いる場合、50℃~150℃で3分~10分間乾燥させることにより、樹脂組成物層を形成することができる。
【0140】
樹脂シートは、必要に応じて、支持体及び樹脂組成物層以外の任意の層を含んでいてもよい。例えば、樹脂シートにおいて、樹脂組成物層の支持体と接合していない面(即ち、支持体とは反対側の面)には、支持体に準じた保護フィルムが設けられていてもよい。保護フィルムの厚さは、例えば、1μm~40μmである。保護フィルムにより、樹脂組成物層の表面へのゴミ等の付着やキズを防止することができる。樹脂シートが保護フィルムを有する場合、保護フィルムを剥がすことによって樹脂シートは使用可能となる。また、樹脂シートは、ロール状に巻きとって保存することが可能である。
【0141】
樹脂シートは、半導体チップパッケージの製造において絶縁層を形成するため(半導体チップパッケージの絶縁用樹脂シート)に好適に使用できる。例えば、樹脂シートは、回路基板の絶縁層を形成するため(回路基板の絶縁層用樹脂シート)に使用できる。このような基板を使ったパッケージの例としては、FC-CSP、MIS-BGAパッケージ、ETS-BGAパッケージが挙げられる。
【0142】
また、樹脂シートは、半導体チップを封止するため(半導体チップ封止用樹脂シート)に好適に使用することができる。適用可能な半導体チップパッケージとしては、例えば、Fan-out型WLP、Fan-in型WLP、Fan-out型PLP、Fan-in型PLP等が挙げられる。
【0143】
また、樹脂シートを、半導体チップを基板に接続した後に用いるMUFの材料に用いてもよい。
【0144】
さらに、樹脂シートは高い絶縁信頼性が要求される他の広範な用途に使用できる。例えば、樹脂シートは、プリント配線板等の回路基板の絶縁層を形成するために好適に使用することができる。
【0145】
<回路基板>
本発明における回路基板は、本発明の樹脂組成物の硬化物により形成された絶縁層を含む。この回路基板は、例えば、下記の工程(1)及び工程(2)を含む製造方法によって、製造できる。
(1)基材上に、樹脂組成物層を形成する工程。
(2)樹脂組成物層を熱硬化して、絶縁層を形成する工程。
【0146】
工程(1)では、基材を用意する。基材としては、例えば、ガラスエポキシ基板、金属基板(ステンレスや冷間圧延鋼板(SPCC)など)、ポリエステル基板、ポリイミド基板、BTレジン基板、熱硬化型ポリフェニレンエーテル基板等の基板が挙げられる。また、基材は、当該基材の一部として表面に銅箔等の金属層を有していてもよい。例えば、両方の表面に剥離可能な第一金属層及び第二金属層を有する基材を用いてもよい。このような基材を用いる場合、通常、回路配線として機能できる配線層としての導体層が、第二金属層の第一金属層とは反対側の面に形成される。このような金属層を有する基材としては、例えば、三井金属鉱業社製のキャリア銅箔付極薄銅箔「Micro Thin」が挙げられる。
【0147】
また、基材の一方又は両方の表面には、導体層が形成されていてもよい。以下の説明では、基材と、この基材表面に形成された導体層とを含む部材を、適宜「配線層付基材」ということがある。導体層に含まれる導体材料としては、例えば、金、白金、パラジウム、銀、銅、アルミニウム、コバルト、クロム、亜鉛、ニッケル、チタン、タングステン、鉄、スズ及びインジウムからなる群から選択される1種以上の金属を含む材料が挙げられる。導体材料としては、単金属を用いてもよく、合金を用いてもよい。合金としては、例えば、上記の群から選択される2種以上の金属の合金(例えば、ニッケル・クロム合金、銅・ニッケル合金及び銅・チタン合金)が挙げられる。中でも、導体層形成の汎用性、コスト、パターニングの容易性の観点から、単金属としてのクロム、ニッケル、チタン、アルミニウム、亜鉛、金、パラジウム、銀若しくは銅;及び、合金としてのニッケル・クロム合金、銅・ニッケル合金、銅・チタン合金の合金;が好ましい。その中でも、クロム、ニッケル、チタン、アルミニウム、亜鉛、金、パラジウム、銀若しくは銅の単金属;及び、ニッケル・クロム合金;がより好ましく、銅の単金属が特に好ましい。
【0148】
導体層は、例えば配線層として機能させるために、パターン加工されていてもよい。この際、導体層のライン(回路幅)/スペース(回路間の幅)比は、特に制限されないが、好ましくは20/20μm以下(即ちピッチが40μm以下)、より好ましくは10/10μm以下、さらに好ましくは5/5μm以下、よりさらに好ましくは1/1μm以下、特に好ましくは0.5/0.5μm以上である。ピッチは、導体層の全体にわたって同一である必要はない。導体層の最小ピッチは、例えば、40μm以下、36μm以下、又は30μm以下であってもよい。
【0149】
導体層の厚さは、回路基板のデザインによるが、好ましくは3μm~35μm、より好ましくは5μm~30μm、さらに好ましくは10μm~20μm、特に好ましくは15μm~20μmである。
【0150】
導体層は、例えば、基材上にドライフィルム(感光性レジストフィルム)を積層する工程、フォトマスクを用いてドライフィルムに対して所定の条件で露光及び現像を行ってパターンを形成してパターンドライフィルムを得る工程、現像したパターンドライフィルムをめっきマスクとして電解めっき法等のメッキ法によって導体層を形成する工程、及び、パターンドライフィルムを剥離する工程を含む方法によって、形成できる。ドライフィルムとしては、フォトレジスト組成物からなる感光性のドライフィルムを用いることができ、例えば、ノボラック樹脂、アクリル樹脂等の樹脂で形成されたドライフィルムを用いることができる。基材とドライフィルムとの積層条件は、後述する基材と樹脂シートとの積層の条件と同様でありうる。ドライフィルムの剥離は、例えば、水酸化ナトリウム溶液等のアルカリ性の剥離液を使用して実施することができる。
【0151】
基材を用意した後で、基材上に、樹脂組成物層を形成する。基材の表面に導体層が形成されている場合、樹脂組成物層の形成は、導体層が樹脂組成物層に埋め込まれるように行うことが好ましい。
【0152】
樹脂組成物層の形成は、例えば、樹脂シートと基材とを積層することによって行われる。この積層は、例えば、支持体側から樹脂シートを基材に加熱圧着することにより、基材に樹脂組成物層を貼り合わせることで、行うことができる。樹脂シートを基材に加熱圧着する部材(以下、「加熱圧着部材」ということがある。)としては、例えば、加熱された金属板(SUS鏡板等)又は金属ロール(SUSロール等)等が挙げられる。なお、加熱圧着部材を樹脂シートに直接プレスするのではなく、基材の表面凹凸に樹脂シートが十分に追随するよう、耐熱ゴム等の弾性材を介してプレスするのが好ましい。
【0153】
基材と樹脂シートとの積層は、例えば、真空ラミネート法により実施してよい。真空ラミネート法において、加熱圧着温度は、好ましくは60℃~160℃、より好ましくは80℃~140℃の範囲である。加熱圧着圧力は、好ましくは0.098MPa~1.77MPa、より好ましくは0.29MPa~1.47MPaの範囲である。加熱圧着時間は、好ましくは20秒間~400秒間、より好ましくは30秒間~300秒間の範囲である。積層は、好ましくは圧力13hPa以下の減圧条件下で実施する。
【0154】
積層の後に、常圧下(大気圧下)、例えば、加熱圧着部材を支持体側からプレスすることにより、積層された樹脂シートの平滑化処理を行ってもよい。平滑化処理のプレス条件は、上記積層の加熱圧着条件と同様の条件とすることができる。なお、積層と平滑化処理は、真空ラミネーターを用いて連続的に行ってもよい。
【0155】
また、樹脂組成物層の形成は、例えば、圧縮成型法によって行うことができる。成型条件は、後述する半導体チップパッケージの封止層を形成する工程における樹脂組成物層の形成方法と同様な条件を採用してもよい。
【0156】
基材上に樹脂組成物層を形成した後、樹脂組成物層を熱硬化して、絶縁層を形成する。樹脂組成物層の熱硬化条件は、樹脂組成物の種類によっても異なるが、硬化温度は通常120℃~240℃の範囲(好ましくは150℃~220℃の範囲、より好ましくは170℃~200℃の範囲)、硬化時間は5分間~120分間の範囲(好ましくは10分間~100分間、より好ましくは15分間~90分間)である。
【0157】
樹脂組成物層を熱硬化させる前に、樹脂組成物層に対して、硬化温度よりも低い温度で加熱する予備加熱処理を施してもよい。例えば、樹脂組成物層を熱硬化させるのに先立ち、通常50℃以上120℃未満(好ましくは60℃以上110℃以下、より好ましくは70℃以上100℃以下)の温度にて、樹脂組成物層を、通常5分間以上(好ましくは5分間~150分間、より好ましくは15分間~120分間)、予備加熱してもよい。
【0158】
以上のようにして、絶縁層を有する回路基板を製造できる。また、回路基板の製造方法は、更に、任意の工程を含んでいてもよい。
例えば、樹脂シートを用いて回路基板を製造した場合、回路基板の製造方法は、樹脂シートの支持体を剥離する工程を含んでいてもよい。支持体は、樹脂組成物層の熱硬化の前に剥離してもよく、樹脂組成物層の熱硬化の後に剥離してもよい。
【0159】
回路基板の製造方法は、例えば、絶縁層を形成した後で、その絶縁層の表面を研磨する工程を含んでいてもよい。研磨方法は特に限定されない。例えば、平面研削盤を用いて絶縁層の表面を研磨することができる。
【0160】
回路基板の製造方法は、例えば、導体層を層間接続する工程(3)、いわゆる絶縁層に穴あけをする工程を含んでいてもよい。これにより絶縁層にビアホール、スルーホール等のホールを形成することができる。ビアホールの形成方法としては、例えば、レーザー照射、エッチング、メカニカルドリリング等が挙げられる。ビアホールの寸法や形状は回路基板の出デザインに応じて適宜決定してよい。なお、工程(3)は、絶縁層の研磨又は研削によって層間接続を行ってもよい。
【0161】
ビアホールの形成後、ビアホール内のスミアを除去する工程を行うことが好ましい。この工程は、デスミア工程と呼ばれることがある。例えば、絶縁層上への導体層の形成をめっき工程により行う場合には、ビアホールに対して、湿式のデスミア処理を行ってもよい。また、絶縁層上への導体層の形成をスパッタ工程により行う場合には、プラズマ処理工程などのドライデスミア工程を行ってもよい。さらに、デスミア工程によって、絶縁層に粗化処理が施されてもよい。
【0162】
また、絶縁層上に導体層を形成する前に、絶縁層に対して、粗化処理を行ってもよい。この粗化処理によれば、通常、ビアホール内を含めた絶縁層の表面が粗化される。粗化処理としては、乾式及び湿式のいずれの粗化処理を行ってもよい。乾式の粗化処理の例としては、プラズマ処理等が挙げられる。また、湿式の粗化処理の例としては、膨潤液による膨潤処理、酸化剤による粗化処理、及び、中和液による中和処理をこの順に行う方法が挙げられる。
【0163】
ビアホールを形成後、絶縁層上に導体層を形成する。ビアホールが形成された位置に導体層を形成することで、新たに形成された導体層と基材表面の導体層とが導通して、層間接続が行われる。導体層の形成方法は、例えば、めっき法、スパッタ法、蒸着法などが挙げられ、中でもめっき法が好ましい。好適な実施形態では、セミアディティブ法、フルアディティブ法等の適切な方法によって絶縁層の表面にめっきして、所望の配線パターンを有する導体層を形成する。また、樹脂シートにおける支持体が金属箔である場合、サブトラクティブ法により、所望の配線パターンを有する導体層を形成することができる。形成される導体層の材料は、単金属でもよく、合金でもよい。また、この導体層は、単層構造を有していてもよく、異なる種類の材料の層を2層以上含む複層構造を有していてもよい。
【0164】
ここで、絶縁層上に導体層を形成する実施形態の例を、詳細に説明する。絶縁層の表面に、無電解めっきにより、めっきシード層を形成する。次いで、形成されためっきシード層上に、所望の配線パターンに対応して、めっきシード層の一部を露出させるマスクパターンを形成する。露出しためっきシード層上に、電解めっきにより電解めっき層を形成した後、マスクパターンを除去する。その後、不要なめっきシード層をエッチング等の処理により除去して、所望の配線パターンを有する導体層を形成できる。なお、導体層を形成する際、マスクパターンの形成に用いるドライフィルムは、上記ドライフィルムと同様である。
【0165】
回路基板の製造方法は、基材を除去する工程(4)を含んでいてもよい。基材を除去することにより、絶縁層と、この絶縁層に埋め込まれた導体層とを有する回路基板が得られる。この工程(4)は、例えば、剥離可能な金属層を有する基材を用いた場合に、行うことができる。
【0166】
<半導体チップパッケージ>
本発明の第一実施形態に係る半導体チップパッケージは、上述した回路基板と、この回路基板に搭載された半導体チップとを含む。この半導体チップパッケージは、回路基板に半導体チップを接合することにより、製造することができる。
【0167】
回路基板と半導体チップとの接合条件は、半導体チップの端子電極と回路基板の回路配線とが導体接続できる任意の条件を採用できる。例えば、半導体チップのフリップチップ実装において使用される条件を採用できる。また、例えば、半導体チップと回路基板との間に、絶縁性の接着剤を介して接合してもよい。
【0168】
接合方法の例としては、半導体チップを回路基板に圧着する方法が挙げられる。圧着条件としては、圧着温度は通常120℃~240℃の範囲(好ましくは130℃~200℃の範囲、より好ましくは140℃~180℃の範囲)、圧着時間は通常1秒間~60秒間の範囲(好ましくは5秒間~30秒間)である。
【0169】
また、接合方法の他の例としては、半導体チップを回路基板にリフローして接合する方法が挙げられる。リフロー条件は、120℃~300℃の範囲としてもよい。
【0170】
半導体チップを回路基板に接合した後、半導体チップをモールドアンダーフィル材で充填してもよい。このモールドアンダーフィル材として、上述した樹脂組成物を用いてもよく、また、上述した樹脂シートを用いてもよい。
【0171】
本発明の第二実施形態に係る半導体チップパッケージは、半導体チップと、この半導体チップを封止する前記樹脂組成物の硬化物とを含む。このような半導体チップパッケージでは、通常、樹脂組成物の硬化物は封止層として機能する。第二実施形態に係る半導体チップパッケージとしては、例えば、Fan-out型WLPが挙げられる。
【0172】
このような半導体チップパッケージの製造方法は、
(A)基材に仮固定フィルムを積層する工程、
(B)半導体チップを、仮固定フィルム上に仮固定する工程、
(C)半導体チップ上に封止層を形成する工程、
(D)基材及び仮固定フィルムを半導体チップから剥離する工程、
(E)半導体チップの基材及び仮固定フィルムを剥離した面に、絶縁層としての再配線形成層を形成する工程、
(F)再配線形成層上に、導体層としての再配線層を形成する工程、並びに、
(G)再配線層上にソルダーレジスト層を形成する工程、
を含む。また、前記の半導体チップパッケージの製造方法は、
(H)複数の半導体チップパッケージを、個々の半導体チップパッケージにダイシングし、個片化する工程
を含んでいてもよい。
【0173】
(工程(A))
工程(A)は、基材に仮固定フィルムを積層する工程である。基材と仮固定フィルムとの積層条件は、回路基板の製造方法における基材と樹脂シートとの積層条件と同様でありうる。
【0174】
基材としては、例えば、シリコンウェハー;ガラスウェハー;ガラス基板;銅、チタン、ステンレス、冷間圧延鋼板(SPCC)等の金属基板;FR-4基板等の、ガラス繊維にエポキシ樹脂等をしみこませ熱硬化処理した基板;BT樹脂等のビスマレイミドトリアジン樹脂からなる基板;などが挙げられる。
【0175】
仮固定フィルムは、半導体チップから剥離でき、且つ、半導体チップを仮固定することができる任意の材料を用いうる。市販品としては、日東電工社製「リヴァアルファ」等が挙げられる。
【0176】
(工程(B))
工程(B)は、半導体チップを、仮固定フィルム上に仮固定する工程である。半導体チップの仮固定は、例えば、フリップチップボンダー、ダイボンダー等の装置を用いて行うことができる。半導体チップの配置のレイアウト及び配置数は、仮固定フィルムの形状、大きさ、目的とする半導体チップパッケージの生産数等に応じて適切に設定できる。例えば、複数行で、かつ複数列のマトリックス状に半導体チップを整列させて、仮固定してもよい。
【0177】
(工程(C))
工程(C)は、半導体チップ上に封止層を形成する工程である。封止層は、上述した樹脂組成物の硬化物によって形成する。封止層は、通常、半導体チップ上に樹脂組成物層を形成する工程と、この樹脂組成物層を熱硬化させて封止層を形成する工程とを含む方法で形成する。
【0178】
樹脂組成物の優れた圧縮成型性を活用して、樹脂組成物層の形成は、圧縮成型法によって行うことが好ましい。圧縮成型法では、通常、半導体チップ及び樹脂組成物を型に配置し、その型内で樹脂組成物に圧力及び必要に応じて熱を加えて、半導体チップを覆う樹脂組成物層を形成する。
【0179】
圧縮成型法の具体的な操作は、例えば、下記のようにしうる。圧縮成型用の型として、上型及び下型を用意する。また、前記のように仮固定フィルム上に仮固定された半導体チップに、樹脂組成物を塗布する。樹脂組成物を塗布された半導体チップを、基材及び仮固定フィルムと一緒に、下型に取り付ける。その後、上型と下型とを型締めして、樹脂組成物に熱及び圧力を加えて、圧縮成型を行う。
【0180】
また、圧縮成型法の具体的な操作は、例えば、下記のようにしてもよい。圧縮成型用の型として、上型及び下型を用意する。下型に、樹脂組成物を載せる。また、上型に、半導体チップを、基材及び仮固定フィルムと一緒に取り付ける。その後、下型に載った樹脂組成物が上型に取り付けられた半導体チップに接するように上型と下型とを型締めし、熱及び圧力を加えて、圧縮成型を行う。
【0181】
成型条件は、樹脂組成物の組成により異なり、良好な封止が達成されるように適切な条件を採用できる。例えば、成型時の型の温度は、樹脂組成物が優れた圧縮成型性を発揮できる温度が好ましく、好ましくは80℃以上、より好ましくは100℃以上、特に好ましくは120℃以上であり、好ましくは200℃以下、より好ましくは170℃以下、特に好ましくは150℃以下である。また、成形時に加える圧力は、好ましくは1MPa以上、より好ましくは3MPa以上、特に好ましくは5MPa以上であり、好ましくは50MPa以下、より好ましくは30MPa以下、特に好ましくは20MPa以下である。キュアタイムは、好ましくは1分以上、より好ましくは2分以上、特に好ましくは5分以上であり、好ましくは60分以下、より好ましくは30分以下、特に好ましくは20分以下である。通常、樹脂組成物層の形成後、型は取り外される。型の取り外しは、樹脂組成物層の熱硬化前に行ってもよく、熱硬化後に行ってもよい。
【0182】
樹脂組成物層の形成は、樹脂シートと半導体チップとを積層することによって行ってもよい。例えば、樹脂シートの樹脂組成物層と半導体チップとを加熱圧着することにより、半導体チップ上に樹脂組成物層を形成することができる。樹脂シートと半導体チップとの積層は、通常、基材の代わりに半導体チップを用いて、回路基板の製造方法における樹脂シートと基材との積層と同様にして行うことができる。
【0183】
半導体チップ上に樹脂組成物層を形成した後で、この樹脂組成物層を熱硬化させて、半導体チップを覆う封止層を得る。これにより、樹脂組成物の硬化物による半導体チップの封止が行われる。樹脂組成物層の熱硬化条件は、回路基板の製造方法における樹脂組成物層の熱硬化条件と同じ条件を採用してもよい。さらに、樹脂組成物層を熱硬化させる前に、樹脂組成物層に対して、硬化温度よりも低い温度で加熱する予備加熱処理を施してもよい。この予備加熱処理の処理条件は、回路基板の製造方法における予備加熱処理と同じ条件を採用してもよい。
【0184】
(工程(D))
工程(D)は、基材及び仮固定フィルムを半導体チップから剥離する工程である。剥離方法は、仮固定フィルムの材質に応じた適切な方法を採用することが望ましい。剥離方法としては、例えば、仮固定フィルムを加熱、発泡又は膨張させて剥離する方法が挙げられる。また、剥離方法としては、例えば、基材を通して仮固定フィルムに紫外線を照射して、仮固定フィルムの粘着力を低下させて剥離する方法が挙げられる。
【0185】
仮固定フィルムを加熱、発泡又は膨張させて剥離する方法において、加熱条件は、通常、100℃~250℃で1秒間~90秒間又は5分間~15分間である。また、紫外線を照射して仮固定フィルムの粘着力を低下させて剥離する方法において、紫外線の照射量は、通常、10mJ/cm2~1000mJ/cm2である。
【0186】
(工程(E))
工程(E)は、半導体チップの基材及び仮固定フィルムを剥離した面に、絶縁層としての再配線形成層を形成する工程である。
【0187】
再配線形成層の材料は、絶縁性を有する任意の材料を用いることができる。中でも、半導体チップパッケージの製造のしやすさの観点から、感光性樹脂及び熱硬化性樹脂が好ましい。また、この熱硬化性樹脂として、本発明の樹脂組成物を用いてもよい。
【0188】
再配線形成層を形成した後、半導体チップと再配線層とを層間接続するために、再配線形成層にビアホールを形成してもよい。
【0189】
再配線形成層の材料が感光性樹脂である場合のビアホールの形成方法では、通常、再配線形成層の表面に、マスクパターンを通して活性エネルギー線を照射して、照射部の再配線形成層を光硬化させる。活性エネルギー線としては、例えば、紫外線、可視光線、電子線、X線等が挙げられ、特に紫外線が好ましい。紫外線の照射量及び照射時間は、感光性樹脂に応じて適切に設定できる。露光方法としては、例えば、マスクパターンを再配線形成層に密着させて露光する接触露光法、マスクパターンを再配線形成層に密着させずに平行光線を使用して露光する非接触露光法、などが挙げられる。
【0190】
再配線形成層を光硬化させた後で、再配線形成層を現像し、未露光部を除去して、ビアホールを形成する。現像は、ウェット現像、ドライ現像のいずれを行ってもよい。現像の方式としては、例えば、ディップ方式、パドル方式、スプレー方式、ブラッシング方式、スクラッピング方式等が挙げられ、解像性の観点から、パドル方式が好適である。
【0191】
再配線形成層の材料が熱硬化性樹脂である場合のビアホールの形成方法としては、例えば、レーザー照射、エッチング、メカニカルドリリング等が挙げられる。中でも、レーザー照射が好ましい。レーザー照射は、炭酸ガスレーザー、UV-YAGレーザー、エキシマレーザー等の光源を用いる適切なレーザー加工機を用いて行うことができる。
【0192】
ビアホールの形状は、特に限定されないが、一般的には円形(略円形)とされる。ビアホールのトップ径は、好ましくは50μm以下、より好ましくは30μm以下、さらに好ましくは20μm以下であり、好ましくは3μm以上、好ましくは10μm以上、より好ましくは15μm以上である。ここで、ビアホールのトップ径とは、再配線形成層の表面でのビアホールの開口の直径をいう。
【0193】
(工程(F))
工程(F)は、再配線形成層上に、導体層としての再配線層を形成する工程である。再配線形成層上に再配線層を形成する方法は、回路基板の製造方法における絶縁層上への導体層の形成方法と同様でありうる。また、工程(E)及び工程(F)を繰り返し行い、再配線層及び再配線形成層を交互に積み上げて(ビルドアップ)もよい。
【0194】
(工程(G))
工程(G)は、再配線層上にソルダーレジスト層を形成する工程である。ソルダーレジスト層の材料は、絶縁性を有する任意の材料を用いることができる。中でも、半導体チップパッケージの製造のしやすさの観点から、感光性樹脂及び熱硬化性樹脂が好ましい。また、熱硬化性樹脂として、本発明の樹脂組成物を用いてもよい。
【0195】
また、工程(G)では、必要に応じて、バンプを形成するバンピング加工を行ってもよい。バンピング加工は、半田ボール、半田めっきなどの方法で行うことができる。また、バンピング加工におけるビアホールの形成は、工程(E)と同様に行うことができる。
【0196】
(工程(H))
半導体チップパッケージの製造方法は、工程(A)~(G)以外に、工程(H)を含んでいてもよい。工程(H)は、複数の半導体チップパッケージを個々の半導体チップパッケージにダイシングし、個片化する工程である。半導体チップパッケージを個々の半導体チップパッケージにダイシングする方法は特に限定されない。
【0197】
<半導体装置>
半導体装置は、半導体チップパッケージを備える。半導体装置としては、例えば、電気製品(例えば、コンピューター、携帯電話、スマートフォン、タブレット型デバイス、ウェラブルデバイス、デジタルカメラ、医療機器、及びテレビ等)及び乗物(例えば、自動二輪車、自動車、電車、船舶及び航空機等)等に供される各種半導体装置が挙げられる。
【実施例
【0198】
以下、本発明を実施例により具体的に説明する。本発明はこれらの実施例に限定されるものではない。なお、以下において、量を表す「部」及び「%」は、別途明示のない限り、それぞれ「質量部」及び「質量%」を意味する。
【0199】
<合成例1:エラストマーの合成>
撹拌装置、温度計及びコンデンサーを備えたフラスコに、溶剤としてエチルジグリコールアセテートを368.41g、ソルベッソ150(登録商標)(芳香族系溶剤、エクソンモービル社製)を368.41g仕込み、ジフェニルメタンジイソシアネートを100.1g(0.4モル)とポリカーボネートジオール(数平均分子量:約2000、水酸基当量:1000、不揮発分:100%、クラレ(株)製「C-2015N」)400g(0.2モル)を仕込んで70℃で4時間反応を行った。次いでノニルフェノールノボラック樹脂(水酸基当量229.4g/eq、平均4.27官能、平均計算分子量979.5g/モル)195.9g(0.2モル)とエチレングリコールビスアンヒドロトリメリテート41.0g(0.1モル)とを仕込み、2時間かけて150℃に昇温し、12時間反応させた。FT-IRにより2250cm-1のNCOピークの消失の確認を行った。NCOピーク消失の確認をもって反応の終点とみなし、反応物を室温まで降温してから100メッシュの濾布で濾過して、ポリカーボネート構造を有する樹脂(不揮発成分50質量%)を得た。得られた樹脂(エラストマー)の数平均分子量は6,100であった。
【0200】
<実施例1>
合成例1で合成したエラストマー(不揮発成分50質量%)4部、ゴム粒子(ダウケミカルカンパニー製「PARALOID EXL-2655」)2部、ナフタレン型エポキシ樹脂(新日鉄住金化学(株)製「ESN-475V」、エポキシ当量約332g/eq.)3部、液状エポキシ樹脂(新日鉄住金化学(株)製「ZX1059」、ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂との1:1混合品(質量比)、エポキシ当量169g/eq.)6部、トリアジン骨格含有フェノールノボラック系硬化剤(DIC(株)製「LA-7054」、水酸基当量125、不揮発成分60%のMEK溶液)8.3部、シリカA(平均粒径3μm,比表面積4m/g,KBM573で表面処理されているもの)125部、硬化促進剤(2-フェニル-4-メチルイミダゾール、四国化成工業(株)製「2P4MZ」)0.1部、メチルエチルケトン(MEK)10部、シクロヘキサノン8部を混合し、高速回転ミキサーで均一に分散して、樹脂ワニス1を調製した。
【0201】
<実施例2>
合成例1で合成したエラストマー(不揮発成分50質量%)8部、ナフタレン型エポキシ樹脂(新日鉄住金化学(株)製「ESN-475V」、エポキシ当量約332g/eq.)3部、液状エポキシ樹脂(新日鉄住金化学(株)製「ZX1059」、ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂との1:1混合品(質量比)、エポキシ当量169g/eq.)6部、トリアジン骨格含有フェノールノボラック系硬化剤(DIC(株)製「LA-7054」、水酸基当量125、不揮発成分60%のMEK溶液)8.3部、シリカA(平均粒径3μm,比表面積4m/g,KBM573で表面処理されているもの)125部、硬化促進剤(2-フェニル-4-メチルイミダゾール、四国化成工業(株)製「2P4MZ」)0.1部、メチルエチルケトン(MEK)10部、シクロヘキサノン8部を混合し、高速回転ミキサーで均一に分散して、樹脂ワニス2を調製した。
【0202】
<実施例3>
合成例1で合成したエラストマー(不揮発成分50質量%)4部、液状エポキシ樹脂(新日鉄住金化学(株)製「ZX1059」、ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂との1:1混合品(質量比)、エポキシ当量169g/eq.)6部、グリシジルアミン型エポキシ樹脂(三菱ケミカル社製「630」、エポキシ当量90~105g/eq.)6部、酸無水物系硬化剤(新日本理化社製「MH-700」、4-メチルヘキサヒドロ無水フタル酸/ヘキサヒドロ無水フタル酸=70/30)7部、シリカB(平均粒径9μm,比表面積5m/g,KBM573で表面処理されているもの)140部、硬化促進剤(メチルトリ-n-ブチルホスホニウムジメチルホスフェート、日本化学工業社製「ヒシコーリンPX-4MP」)0.1部、メチルエチルケトン(MEK)10部、シクロヘキサノン8部を混合し、高速回転ミキサーで均一に分散して、樹脂ワニス3を調製した。
【0203】
<比較例1>
合成例1で合成したエラストマー(不揮発成分50質量%)14部、ゴム粒子(ダウケミカルカンパニー製「PARALOID EXL-2655」)2部、ナフタレン型エポキシ樹脂(新日鉄住金化学(株)製「ESN-475V」、エポキシ当量約332g/eq.)2部、液状エポキシ樹脂(新日鉄住金化学(株)製「ZX1059」、ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂との1:1混合品(質量比)、エポキシ当量169g/eq.)4部、トリアジン骨格含有フェノールノボラック系硬化剤(DIC(株)製「LA-7054」、水酸基当量125、不揮発成分60%のMEK溶液)5部、シリカA(平均粒径3μm,比表面積4m/g,KBM573で表面処理されているもの)125部、硬化促進剤(2-フェニル-4-メチルイミダゾール、四国化成工業(株)製「2P4MZ」)0.1部、メチルエチルケトン(MEK)10部、シクロヘキサノン8部を混合し、高速回転ミキサーで均一に分散して、樹脂ワニス4を調製した。
【0204】
<比較例2>
合成例1で合成したエラストマー(不揮発成分50質量%)4部、ゴム粒子(ダウケミカルカンパニー製「PARALOID EXL-2655」)2部、液状エポキシ樹脂(新日鉄住金化学(株)製「ZX1059」、ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂との1:1混合品(質量比)、エポキシ当量169g/eq.)6部、ポリアルキレンオキシ構造を分子内に有する樹脂であるポリアルキレンオキシ樹脂(DIC社製「EXA-4816」、エポキシ当量403g/eq.)3部、トリアジン骨格含有フェノールノボラック系硬化剤(DIC(株)製「LA-7054」、水酸基当量125、不揮発成分60%のMEK溶液)8.3部、シリカA(平均粒径3μm,比表面積4m2/g,KBM573で表面処理されているもの)125部、硬化促進剤(2-フェニル-4-メチルイミダゾール、四国化成工業(株)製「2P4MZ」)0.1部、メチルエチルケトン(MEK)10部、シクロヘキサノン8部を混合し、高速回転ミキサーで均一に分散して、樹脂ワニス5を調製した。
【0205】
<比較例3>
ナフタレン型エポキシ樹脂(新日鉄住金化学(株)製「ESN-475V」、エポキシ当量約332g/eq.)2部、液状エポキシ樹脂(日本曹達社製「JP-100」、エポキシ当量190~210g/eq.)7部、液状エポキシ樹脂(新日鉄住金化学(株)製「ZX1059」、ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂との1:1混合品(質量比)、エポキシ当量169g/eq.)8部、トリアジン骨格含有フェノールノボラック系硬化剤(DIC(株)製「LA-7054」、水酸基当量125、不揮発成分60%のMEK溶液)5部、シリカA(平均粒径3μm,比表面積4m/g,KBM573で表面処理されているもの)125部、硬化促進剤(2-フェニル-4-メチルイミダゾール、四国化成工業(株)製「2P4MZ」)0.1部、メチルエチルケトン(MEK)10部、シクロヘキサノン8部を混合し、高速回転ミキサーで均一に分散して、樹脂ワニス6を調製した。
【0206】
<試験例1:酸素透過率>
実施例及び比較例で製造した樹脂ワニスそれぞれについて、樹脂組成物層を形成する工程と、その樹脂組成物層を180℃90分の加熱により熱硬化させる工程と、により、酸素透過率の測定を測定するための硬化シートA又はBを準備した。具体的には下記のとおりである。
【0207】
(樹脂シートAの作製)
支持体として、アルキド樹脂系離型剤(リンテック社製「AL-5」)で離型処理したPETフィルム(東レ社製「ルミラーR80」、厚み38μm、軟化点130℃、「離型PET」)を用意した。
【0208】
実施例1及び2並びに比較例1~3で製造した樹脂ワニス1、2及び4~6それぞれを離型PET上に、乾燥後の樹脂組成物層の厚みが150μmとなるよう、ダイコーターにて均一に塗布し、70℃から95℃で2分間乾燥することにより、離型PET上に樹脂組成物層を備えるシートを得た。次いで、当該シートの支持体と接合していない面に、保護フィルムとしてポリプロピレンフィルム(王子エフテックス社製「アルファンMA-411」、厚み15μm)の粗面を、樹脂組成物層と接合するように積層した。これにより、離型PET(支持体)、樹脂組成物層、及び保護フィルムの順からなる5種の樹脂シートAを得た。
【0209】
(硬化シートAの作製)
5種の樹脂シートAそれぞれから保護フィルムを剥がし、バッチ式真空加圧ラミネーター(ニッコー・マテリアルズ社製、2ステージビルドアップラミネーター、CVP700)を用いて、樹脂組成物層が接するように2枚の樹脂シートAをラミネートした。ラミネートは、30秒間減圧して気圧を13hPa以下とし、130℃、圧力0.74MPaにて45秒間圧着させることにより実施した。そして、一方の面の離型PETを剥がし、180℃、90分の硬化条件で樹脂組成物層を硬化後、他方の面の離型PETを剥がし、5種の硬化シートAを作製した。
【0210】
(硬化シートBの作製)
表面に離型処理を施されたSUS板上に、実施例3で製造した樹脂ワニス3を、コンプレッションモールド装置(金型温度:130℃、圧力:6MPa、キュアタイム:10分)を用いて圧縮成型して、厚さ300μmの樹脂組成物層を形成した。SUS板を剥がし、樹脂組成物層を180℃90分の加熱により熱硬化させて、樹脂組成物の硬化シートBを得た。
【0211】
(酸素透過率の測定及び酸素透過係数の算出)
酸素透過率測定装置(MOCON社製、OX-TRAN2/21)を用いてJIS-K7126(等圧法)に準じ、23℃、0%RHの雰囲気下で5種の硬化シートAおよび硬化シートBそれぞれの酸素透過率を測定した。なおRHとは、相対湿度を表す。また、5種の硬化シートAおよび硬化シートBそれぞれについて得られた酸素透過率をもとに、厚みで除することにより酸素透過係数(cc/(atm・m・day・mm))を算出した。結果を下記表1に示す。
【0212】
<試験例2:線熱膨張係数(CTE)>
実施例及び比較例で製造した樹脂ワニスそれぞれについて、樹脂組成物層を形成する工程と、その樹脂組成物層を180℃90分の加熱により熱硬化させる工程と、により、線熱膨張係数を測定するための評価用硬化物A又はBを準備した。具体的には下記のとおりである。
【0213】
(評価用硬化物Aの作製)
表面に離型処理を施されたSUS板上に、実施例3で製造した樹脂ワニス3を、コンプレッションモールド装置(金型温度:130℃、圧力:6MPa、キュアタイム:10分)を用いて圧縮成型して、厚さ300μmの樹脂組成物層を形成した。SUS板を剥がし、樹脂組成物層を180℃90分の加熱により熱硬化させて、樹脂組成物の評価用硬化物Aを得た。
【0214】
(樹脂シートBの作製)
離型剤処理されたPETフィルム(リンテック社製「501010」、厚み38μm、240mm角)の離型剤未処理面に、ガラス布基材エポキシ樹脂両面銅張積層板(パナソニック社製「R5715ES」、厚み0.7mm、255mm角)を重ね四辺をポリイミド接着テープ(幅10mm)で固定した(以下、「固定PETフィルム」ということがある。)。
【0215】
実施例1及び2並びに比較例1~3で製造した樹脂ワニス1、2及び4~6それぞれを上記「固定PETフィルム」の離型処理面上に乾燥後の樹脂組成物層の厚さが100μmとなるようにダイコーターにて塗布し、80℃~120℃(平均100℃)で10分間乾燥し5種の樹脂シートBを得た。
【0216】
(評価用硬化物Bの作製)
5種の樹脂シートBをそれぞれ180℃のオーブンに投入後90分間の硬化条件で樹脂組成物層を熱硬化させた。
【0217】
熱硬化後、ポリイミド接着テープを剥がし、硬化物をガラス布基材エポキシ樹脂両面銅張積層板から取り外し、更にPETフィルム(リンテック社製「501010」)も剥離して、5種のシート状の評価用硬化物Bを得た。
【0218】
(線熱膨張係数の測定)
評価用硬化物A及び5種の評価用硬化物Bそれぞれを、幅5mm、長さ15mmに切断して、試験片を得た。この試験片について、熱機械分析装置(リガク社製「Thermo Plus TMA8310」)を用いて、引張加重法にて熱機械分析を行った。詳細には、試験片を前記熱機械分析装置に装着した後、荷重1g、昇温速度5℃/分の測定条件にて、連続して2回測定を行った。そして、2回目の測定において、25℃から150℃までの範囲における平面方向の線熱膨張係数(ppm/℃)を算出した。結果を下記表1に示す。
【0219】
<試験例3:反り評価>
実施例及び比較例で製造した樹脂ワニスそれぞれについて、シリコンウエハ上に樹脂組成物層を形成する工程と、その樹脂組成物層を180℃90分の加熱により熱硬化させる工程と、により、反り評価のための試料基板A又はBを準備した。具体的には下記のとおりである。
【0220】
(試料基板Aの作製)
試験例1で作製した5種の樹脂シートAそれぞれを、バッチ式真空加圧ラミネーター((株)名機製作所製「MVLP-500」)を用いて、樹脂組成物層の第1の主面が12インチシリコンウエハ(厚み775μm)と接合するように、12インチシリコンウエハ上に積層した。積層は、30秒間減圧して気圧を13hPa以下とした後、100℃、圧力0.74MPaにて30秒間圧着することにより実施した。積層を2回実施し、厚さ300μmの樹脂組成物層を形成した。その後、180℃で90分間加熱して、樹脂組成物層を熱硬化させた。これにより、シリコンウエハと樹脂組成物層の硬化物とを含む5種の試料基板Aを得た。
【0221】
(試料基板Bの作製)
実施例3に関しては、樹脂ワニス3を12インチシリコンウエハ(厚み775μm)上にコンプレッションモールド装置(金型温度:130℃、圧力:6MPa、キュアタイム:10分)を用いて圧縮成型した。その後、180℃90分間加熱して樹脂組成物層を熱硬化させた。これにより、シリコンウエハと樹脂組成物層(300μm)の硬化物とを含む試料基板Bを得た。
【0222】
(反り評価)
5種の試料基板A及び試料基板Bそれぞれを、35℃、260℃、35℃の順で加熱・冷却し、それにより生じた反り量を、シャドウモアレ測定装置(Akorometrix社製「ThermoireAXP」)を用いて測定した。測定は、電子情報技術産業協会規格のJEITA EDX-7311-24に準拠して行った。具体的には、測定領域の試料基板面の全データについて最小二乗法を用いて求めた仮想平面を基準面として、該基準面から垂直方向の最小値と最大値との差を反り量として求めた。反り量が2mm未満を「○」とし、2mm以上を「×」として「反り」を評価した。
【0223】
<試験例4:伸び率評価>
実施例及び比較例で製造した樹脂ワニスそれぞれについて、樹脂組成物層を形成する工程と、その樹脂組成物層を180℃90分の加熱により熱硬化させる工程と、熱硬化させて得られる硬化物層を切り出す工程と、により、伸び率を評価するための試験片A又はBを準備した。具体的には下記のとおりである。
【0224】
(試験片Aの作製)
表面に離型処理を施されたSUS板上に、実施例3で製造した樹脂ワニス3を、コンプレッションモールド装置(金型温度:130℃、圧力:6MPa、キュアタイム:10分)を用いて圧縮成型して、厚さ100μmの樹脂組成物層を形成した。SUS板を剥がし、樹脂組成物層を大気中で180℃90分または180℃24時間の加熱により熱硬化させて、樹脂組成物の硬化物層を得た。この硬化物層をダンベル状1号形に切り出し、1つの樹脂組成物に対して2種(硬化条件:180℃90分及び180℃24時間)の試験片Aを得た。
【0225】
(試験片Bの作製)
試験例2で得た樹脂シートBを180℃のオーブンに投入後90分間または24時間の硬化条件で樹脂組成物層を熱硬化させた。
【0226】
熱硬化後、ポリイミド接着テープを剥がし、硬化物をガラス布基材エポキシ樹脂両面銅張積層板から取り外し、更にPETフィルム(リンテック社製「501010」)も剥離して、シート状の硬化物を得た。得られた硬化物をダンベル状1号形に切り出し、1つの樹脂シートBに対して2種(硬化条件:180℃90分及び180℃24時間)の試験片Bを得た。
【0227】
(伸び率評価)
試験片A及びB各2種(硬化条件:180℃90分及び180℃24時間)についてそれぞれ、オリエンテック社製引張試験機「RTC-1250A」を用いて伸び測定を行い、23℃における伸び率を求めた。測定は、JIS K7127に準拠して実施した。この操作を3回行い伸び率の平均値(%)を算出した。
【0228】
さらに、得られた伸び率の値から180℃90分硬化後の伸び率に対する180℃24時間硬化後の伸び率の比を算出した。さらに、得られた伸び率の比が0.70未満のものを「×」、0.70以上のものを「〇」として「脆さ」を評価した。得られた伸び率の比の値が高いほど脆化が抑制されていることを意味する。結果を下記表1に示す。
【0229】
【表1】
【0230】
以上の結果から、(A)エポキシ樹脂、及び(B)硬化剤を含む樹脂組成物であって、樹脂組成物を、180℃で90分間熱硬化させて得られる硬化物の酸素透過係数が、3cc/(atm・m・day・mm)以下であり、硬化物の線熱膨張係数が、4~15ppm/℃である樹脂組成物であれば、本発明の所望の効果が得られることがわかった。