(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-02-27
(45)【発行日】2024-03-06
(54)【発明の名称】エアタンク、アウターケーシング装置、掘削装置、及び、掘削方法
(51)【国際特許分類】
E21B 4/14 20060101AFI20240228BHJP
E21B 4/16 20060101ALI20240228BHJP
B05B 7/26 20060101ALI20240228BHJP
B05B 7/04 20060101ALI20240228BHJP
B05B 17/04 20060101ALI20240228BHJP
【FI】
E21B4/14
E21B4/16
B05B7/26
B05B7/04
B05B17/04
(21)【出願番号】P 2020151006
(22)【出願日】2020-09-09
【審査請求日】2023-03-23
【早期審査対象出願】
(73)【特許権者】
【識別番号】501085234
【氏名又は名称】大智株式会社
(74)【代理人】
【識別番号】100194984
【氏名又は名称】梶原 圭太
(72)【発明者】
【氏名】古木 一功
(72)【発明者】
【氏名】古木 栄一
【審査官】高橋 雅明
(56)【参考文献】
【文献】特開2005-051006(JP,A)
【文献】特開2019-072191(JP,A)
【文献】特開2011-156458(JP,A)
【文献】特開2019-183626(JP,A)
【文献】特開2019-039158(JP,A)
【文献】特開2009-249901(JP,A)
【文献】特開2007-092447(JP,A)
【文献】特開2007-146446(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
E21B 4/14
E21B 4/16
B05B 7/26
B05B 7/04
B05B 17/04
(57)【特許請求の範囲】
【請求項1】
作動流体により稼働し、冷却能及び潤滑能を有する液体を使用する掘削装置に適用され、
タンク本体部と、
該タンク本体部に設けられ、同タンク本体部外から供給される気液混合流体であるか、又は、気体及び液体である、処理前流体を導入可能な導入部と、
該導入部を介して前記タンク本体内に導入された前記処理前流体を霧化可能な霧化部と、
前記タンク本体部に設けられ、霧化した処理後流体を導出可能な導出部と、
前記霧化部と前記導出部の間の領域に配置され、前記処理後流体が衝突可能で、衝突する前記処理後流体を更に微細化可能な二次霧化部を有する構造である拡散部と、
を備える
エアタンク。
【請求項2】
前記拡散部が、前記導入部と対向する方向が窪んだ凹球面であり、該凹球面を以て前記処理後流体を受ける処理後流体受け部を有し、
前記二次霧化部の構造が、前記凹球面に形成された微細で不定型な多数の凹凸であるか、又は、該処理後流体受け部の開口部分を覆う面状のメッシュである
請求項1に記載のエアタンク。
【請求項3】
前記霧化部が、前記導入部の前記本体部内方向の開口部近傍に設けられたメッシュ部を有する構造である
請求項1又は請求項2に記載のエアタンク。
【請求項4】
前記霧化部が、基端が前記導入部と連通すると共に、先端が前記タンク本体部内方向に突設された管部、及び、該管部の先端に設けられたメッシュ部を有する構造である
請求項1又は請求項2に記載のエアタンク。
【請求項5】
前記霧化部が、前記導入部と前記拡散部の間の領域において、同導入部を介して前記タンク本体内に導入された前記処理前流体が衝突可能に配置され、衝突する前記処理前流体を以て回転可能な風車状の風車構造部を有する構造である
請求項
1に記載のエアタンク。
【請求項6】
作動流体により稼働し、冷却能及び潤滑能を有する液体を使用するものであり、
タンク本体部、該タンク本体部に設けられ、同タンク本体部外から供給される気液混合流体であるか、又は、気体及び液体である、処理前流体を導入可能な導入部、該導入部を介して前記タンク本体内に導入された前記処理前流体を霧化可能な霧化部、前記タンク本体部に設けられ、霧化した処理後流体を導出可能な導出部、及び、前記霧化部と前記導出部の間の領域に配置され、前記処理後流体が衝突可能で、衝突する前記処理後流体を更に微細化可能な二次霧化部を有する構造である拡散部、を有するエアタンク体と、
前記導出部に接続されると共に、シリンダー、該シリンダー内に格納された単一のピストン、及び、同シリンダーの先部に取り付けられた単一の掘削ビットを有し、前記シリンダー内に供給される前記処理後流体を作動流体として駆動する前記ピストンの打撃を以て、前記掘削ビットが同シリンダーの軸方向に進退動可能であり、同処理後流体が同掘削ビットの先部から吐出される構造のシングルハンマユニット体と、
を備える
掘削装置。
【請求項7】
作動流体により稼働し、冷却能及び潤滑能を有する液体を使用するものであり、
タンク本体部、該タンク本体部に設けられ、同タンク本体部外から供給される気液混合流体であるか、又は、気体及び液体である、処理前流体を導入可能な導入部、該導入部を介して前記タンク本体内に導入された前記処理前流体を霧化可能な霧化部、前記タンク本体部に設けられ、霧化した処理後流体を導出可能な導出部、及び、前記霧化部と前記導出部の間の領域に配置され、前記処理後流体が衝突可能で、衝突する前記処理後流体を更に微細化可能な二次霧化部を有する構造である拡散部、を有するエアタンク体と、
前記導出部に接続されると共に、複数のシリンダー、該シリンダー毎に格納されたピストン、及び、同シリンダーの先部毎に取り付けられた掘削ビットを有し、前記各シリンダー内に供給される前記処理後流体を作動流体として駆動する各ピストンの打撃を以て、先部に取り付けられた各掘削ビットが進退動可能であり、同処理後流体が各掘削ビットの先部から吐出される構造のマルチハンマユニット体と、
を備える
掘削装置。
【請求項8】
作動流体により稼働し、冷却能及び潤滑能を有する液体を使用する掘削装置に適用され、
一端側に開口部が形成された筒状であり、該開口部と連通し、ハンマユニット体の外周を覆う態様で挿着可能な空間が形成されたスカート部を有する、アウターケーシング本体と、
該アウターケーシング本体内において前記スカート部の反対となる位置に内蔵され、タンク本体部、該タンク本体部に設けられ、同タンク本体部外から供給される気液混合流体であるか、又は、気体及び液体である、処理前流体を導入可能な導入部、該導入部を介して前記タンク本体内に導入された前記処理前流体を霧化可能な霧化部、前記タンク本体部に設けられ、霧化した処理後流体を導出可能な導出部、及び、前記霧化部と前記導出部の間の領域に配置され、前記処理後流体が衝突可能で、衝突する前記処理後流体を更に微細化可能な二次霧化部を有する構造である拡散部を有するエアタンク体と、
を備える
アウターケーシング装置。
【請求項9】
作動流体により稼働し、冷却能及び潤滑能を有する液体を使用するものであり、
一端側に開口部が形成された筒状であり、該開口部と連通し、シングルハンマユニット体の外周を覆う態様で挿着可能な空間が形成されたスカート部を有するアウターケーシング本体、及び、該アウターケーシング本体内において前記スカート部の反対となる位置に内蔵され、タンク本体部、該タンク本体部に設けられ、同タンク本体部外から供給される気液混合流体であるか、又は、気体及び液体である、処理前流体を導入可能な導入部、該導入部を介して前記タンク本体内に導入された前記処理前流体を霧化可能な霧化部、前記タンク本体部に設けられ、霧化した処理後流体を導出可能な導出部、及び、前記霧化部と前記導出部の間の領域に配置され、前記処理後流体が衝突可能で、衝突する前記処理後流体を更に微細化可能な二次霧化部を有する構造である拡散部を有するエアタンク体、を有するアウターケーシング装置と、
前記スカート部に挿着されると共に前記導出部に接続され、シリンダー、該シリンダー内に格納された単一のピストン、及び、同シリンダーの先部に取り付けられた単一の掘削ビットを有し、前記シリンダー内に供給される前記処理後流体を作動流体として駆動する前記ピストンの打撃を以て、前記掘削ビットが同シリンダーの軸方向に進退動可能であり、同処理後流体が同掘削ビットの先部から吐出される構造のシングルハンマユニット体と、
を備える
掘削装置。
【請求項10】
作動流体により稼働し、冷却能及び潤滑能を有する液体を使用するものであり、
一端側に開口部が形成された筒状であり、該開口部と連通し、マルチハンマユニット体の外周を覆う態様で挿着可能な空間が形成されたスカート部を有するアウターケーシング本体、及び、該アウターケーシング本体内において前記スカート部の反対となる位置に内蔵され、タンク本体部、該タンク本体部に設けられ、同タンク本体部外から供給される気液混合流体であるか、又は、気体及び液体である、処理前流体を導入可能な導入部、該導入部を介して前記タンク本体内に導入された前記処理前流体を霧化可能な霧化部、前記タンク本体部に設けられ、霧化した処理後流体を導出可能な導出部、及び、前記霧化部と前記導出部の間の領域に配置され、前記処理後流体が衝突可能で、衝突する前記処理後流体を更に微細化可能な二次霧化部を有する構造である拡散部を有するエアタンク体、を有するアウターケーシング装置と、
前記スカート部に挿着されると共に前記導出部に接続され、複数のシリンダー、該シリンダー毎に格納されたピストン、及び、同シリンダーの先部毎に取り付けられた掘削ビットを有し、前記各シリンダー内に供給される前記処理後流体を作動流体として駆動する各ピストンの打撃を以て、先部に取り付けられた各掘削ビットが進退動可能であり、同処理後流体が各掘削ビットの先部から吐出される構造のマルチハンマユニット体と、
を備える
掘削装置。
【請求項11】
タンク本体部、導入部、霧化部、二次霧化部を有する拡散部及び導出部を含むエアタンク体を有し、該エアタンク体を介して流通する作動流体により稼働すると共に、冷却能及び潤滑能を有する液体を使用する掘削装置を用いて行われ、
前記タンク本体部に設けた前記導入部を介し、気液混合流体であるか、又は、気体及び液体である処理前流体を、前記タンク本体部外から導入する、処理前流体の導入工程と、
該処理前流体の導入工程により導入された前記処理前流体を、前記タンク本体部内に設けた霧化部により霧化する、霧化工程と、
該霧化工程により霧化された処理後流体を、前記タンク本体部に設けた導出部を介して該タンク本体部外に導出する、処理後流体の導出工程と、
該処理後流体の導出工程により導出された前記処理後流体を作動流体とし、該作動流体で駆動する単一のピストンを以て掘削ビットが進退動可能であり、該掘削ビットの先部から前記処理後流体が吐出される構造のシングルハンマユニット体によって、対象部を打撃して掘削を行う、掘削工程と、
を備え、
前記霧化工程において、前記霧化部と前記導出部の間の領域に配置された前記拡散部に前記処理後流体が衝突し、前記二次霧化部によって衝突する前記処理後流体が更に微細化するステップを含む、
掘削方法。
【請求項12】
タンク本体部、導入部、霧化部、二次霧化部を有する拡散部及び導出部を含むエアタンク体を有し、該エアタンク体を介して流通する作動流体により稼働すると共に、冷却能及び潤滑能を有する液体を使用する掘削装置を用いて行われ、
前記タンク本体部に設けた前記導入部を介し、気液混合流体であるか、又は、気体及び液体である処理前流体を、前記タンク本体部外から導入する、処理前流体の導入工程と、
該処理前流体の導入工程により導入された前記処理前流体を、前記タンク本体部内に設けた霧化部により霧化する、霧化工程と、
該霧化工程により霧化された処理後流体を、前記タンク本体部に設けた導出部を介して該タンク本体部外に導出する、処理後流体の導出工程と、
該処理後流体の導出工程により導出された前記処理後流体を作動流体とし、該作動流体で個別に駆動する複数のピストンを以て該各ピストンに対応する各掘削ビットが進退動可能であり、該掘削ビットの先部から前記処理後流体が吐出される構造のマルチハンマユニット体によって、対象部を打撃して掘削を行う、掘削工程と、
を備え、
前記霧化工程において、前記霧化部と前記導出部の間の領域に配置された前記拡散部に前記処理後流体が衝突し、前記二次霧化部によって衝突する前記処理後流体が更に微細化するステップを含む、
掘削方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、エアタンク、アウターケーシング装置、掘削装置、及び、掘削方法に関する。更に詳しくは、供給対象となる機器に対して、冷却能及び潤滑能を有すると共に環境負荷が低減された作動流体を供給可能なものに関する。
【背景技術】
【0002】
地盤の掘削作業に使用される装置の一つとして、圧縮空気により稼働するビットの打撃力により地盤を削孔するダウンザホールハンマが挙げられる。ダウンザホールハンマは、ビットの打撃力を以て掘削作業を行うことから、生じる振動及び騒音が大きく、住宅地や都市部での工事にあたっては振動及び騒音が問題となる場合があった、
【0003】
また、掘削対象となる地盤は、地表に近いところは土砂、粘土又は砂礫層のような軟質地盤であることが多く、一方で、掘削深度が深くなるにつれて転石、玉石層のような硬質地盤が出現することがあり、このような地盤の性状によってはダウンザホールハンマの打撃力による掘削が最適でない場合もある。
【0004】
そこで、本発明者は特許文献1に示すような削孔機を提案している。特許文献1記載の削孔機は、削孔面側にウォータジェットの噴射口とハンマビットを備え、ウォータジェットによる掘削とハンマビットの打撃による掘削が可能なものである。
【0005】
特許文献1記載の削孔機によれば、一の削孔機でウォータジェットによる掘削、ハンマビットによる掘削、或いはこれらの組み合わせによる掘削を適宜選択することができるので、地盤の性状に適合した効果的な掘削工事が可能となるばかりでなく、作業現場に適合した掘削手段を採択することによって振動及び騒音の低減に寄与することができる。
【先行技術文献】
【特許文献】
【0006】
【発明の概要】
【発明が解決しようとする課題】
【0007】
ところで、特許文献1記載の削孔機において、その削孔部を構成する複数のダウンホール式駆動装置は、内部でピストンが往復動する構造であり、同ピストンを往復動させた後の圧縮空気(作動流体)がハンマビットの先部から排出される構造である。同削孔機は、その稼働時において、ピストン及びハンマビットの往復動が高速であり、円滑な動作のために、各ダウンホール式駆動装置内に圧縮空気と共に潤滑油を供給する必要がある。
【0008】
そして、特許文献1記載の削孔機を使用した地盤の削孔方法によれば、削孔作業により生じた削孔屑と削孔機から噴射したウォータジェットの水を削孔内部で混合してスラリーとし、該スラリーは、ダウンホール式駆動装置から排出された圧縮空気の圧力とウォータジェットの水圧が協働して、掘削孔の開口部から外へ排出されるものである。つまり、前述したスラリーは、潤滑油を含んだものであって産業廃棄物として処理することを要し、処理場への運搬の手間や処理コストの負担が問題となる。
【0009】
本発明は、以上の点を鑑みて創案されたものであり、ハンマユニット体等の供給対象となる機具に対して、冷却能及び潤滑能を有すると共に、環境負荷が低減された作動流体を供給可能なエアタンク、アウターケーシング装置、掘削装置、及び、掘削方法を提供することを目的とする。
【課題を解決するための手段】
【0010】
上記の目的を達成するために本発明のエアタンクは、タンク本体部と、該タンク本体部に設けられ、同タンク本体部外から供給される気液混合流体であるか、又は、気体及び液体である、処理前流体を導入可能な導入部と、該導入部を介して前記タンク本体内に導入された前記処理前流体を霧化可能な霧化部と、前記タンク本体部に設けられ、霧化した処理後流体を導出可能な導出部と、を備える(なお、本発明のエアタンクは「流体貯留部」とも換言できる)。
【0011】
ここで、本発明のエアタンクは、圧縮空気等の気体を作動流体として稼働する掘削装置に好適に適用することができ、作動流体の供給源とハンマユニット体の間に配設されるものである。なお、このエアタンクは、前述の通り掘削装置に適用することができるが、これに限定するものではなく、他の機器への適用を除外するものではない。
【0012】
タンク本体部は、その内部に、導入された処理前流体と霧化した処理後流体を一時貯留することができると共に、霧化部を設けることができる。なお、タンク本体部は、導入部と導出部を除いて気密且つ液密であると共に、圧縮空気の気圧に耐えうる耐圧性、及び、導入する液体の性質(例えば金属等に対する腐食性)に耐えうる耐液性を有する周壁から成る構造であることが好ましく、例えば、内壁に耐腐食処理等を施したステンレススチール等の金属製のもの等が挙げられる。
【0013】
導入部は、これを備えることにより、タンク本体部外から供給される処理前流体を、同タンク本体部内に導入することができる。ここで「処理前流体」の語は、気液混合体、又は、気体及び液体の各々、のいずれも含む意味で使用している。
【0014】
気液混合体は、タンク本体部の外部において、コンプレッサー等から供給される気体(例えば圧縮空気)と、水タンク等から供給される液体(例えば水)とをいわゆるラインオイラー、気液混合器等で混合したものを意味し、この場合、導入部は少なくとも1つ(2以上でもよい)設ければよい。一方、気液混合器等を使用せずに、気体及び液体の各々を導入する態様であってもよく、この場合、導入部は少なくとも2つ(3以上でもよい)設ければよい。なお、1つの導入部の内部において混合する態様を除外するものではなく、この場合、導入部には少なくとも2つ(気体と液体の各々が導入される)の導入口と、同各導入口に連通する2経路を途中で合流させて1つの経路とし、合流部分において気体と液体を気液混合体と成し、同合流後の経路に連通した導出口をタンク本体部内に開口させる態様であってもよい。
【0015】
霧化部は、タンク本体内に導入された処理前流体を霧化し、処理後流体(霧化した処理前流体)にすることができる。「霧化」の語は、処理前流体に含まれる液体(又は処理前流体に係る液体)を更に細粒化あるいは微粒化し、処理前よりも処理後の方が、含まれた液体がより微細化している霧状の処理後流体とすることを意味している。なお、霧化部は、その処理手段としてメッシュ構造や風車構造等が挙げられるが、これに限定するものではなく、例えば、超音波霧化分離を原理とする装置等の公知手段であってもよい。
【0016】
導出部は、処理後流体を導出することができる。導出された処理後流体は、例えば、導出部に接続されたハンマユニット体に供給され、処理後流体に含まれる気体は、作動流体としてハンマユニット体のピストン(「ハンマ」とも称される)を駆動させることができる。一方、処理後流体に含まれる霧化した液体は、駆動によって熱を持ったピストン等のハンマユニット体の構成部品を冷却し、且つ、潤滑作用を奏する。
【0017】
つまり、本発明のエアタンクによれば、供給対象となるハンマユニット体等の機器に対して、冷却能及び潤滑能を有すると共に環境負荷が低減された作動流体を供給することができる。
【0018】
また、霧化部と導出部の間の領域に配置され、処理後流体が衝突可能な拡散部、を更に備える場合は、同拡散部に処理後流体の気流が衝突することにより、タンク本体部内で処理後流体の流れの方向を変更させ、処理後流体を一旦タンク本体部内に拡散させることができる。この拡散により、タンク本体部内における処理後流体と処理前流体の比率が略均等となるように調整され、調整後の処理後流体が導出されるようにすることができる。また、拡散部に処理後流体が衝突することにより、処理後流体に含まれる液体を更に微粒化させることができる
【0019】
また、霧化部が、導入部の本体部内方向の開口部近傍に設けられたメッシュ部を有する構造である場合は、簡易な構造でありながら、同メッシュ部を以て衝突した処理前流体を霧化することができる。
【0020】
また、霧化部が、基端が導入部と連通すると共に、先端がタンク本体部内方向に突設された管部、及び、同管部の先端に設けられたメッシュ部を有する構造である場合は、タンク本体部内に所定長さで突設された管部の先端において、メッシュ部を以て衝突した処理前流体を霧化することができる。また、タンク本体部内に拡散部を備える場合は、同拡散部と管部の先端の距離が近いことから、処理後流体が拡散部に衝突しやすくなり、処理後流体に含まれる液体の更なる微粒化を図っている。
【0021】
また、霧化部が、導入部と拡散部の間の領域において、同導入部を介してタンク本体内に導入された処理前流体が衝突可能に配置され、衝突する処理前流体を以て回転可能な風車状の風車構造部を有する構造である場合は、タンク本体部内に有する風車構造部を以て、衝突した処理前流体を霧化すると共に、タンク本体部内における処理後流体の拡散効率を向上させ、同タンク本体部内における処理後流体と処理前流体の比率が略均等となるように調整される。なお、風車構造部は、その羽根の一部にメッシュや凹凸等の更なる微粒化処理構造を設けてもよく、この場合、メッシュ部や凹凸部等を以て衝突した処理前流体の霧化効率の更なる向上を図ることができる。
【0022】
また、拡散部が、衝突する処理後流体を更に微細化可能な二次霧化部を有する構造である場合は、二次霧化部を以て、拡散部に衝突した処理後流体に含まれる液体を更に微粒化することができる。なお、二次霧化部は、その処理手段として拡散部表面に設けられた凹凸が挙げられるが、これに限定するものではなく、例えば、メッシュ等の公知手段であってもよい。
【0023】
また、拡散部が、導入部と対向する方向が窪んだ凹球面であり、同凹球面を以て処理後流体を受ける処理後流体受け部、及び、同処理後流体受け部に形成された凹凸である二次霧化部を有する構造である場合は、処理後流体受け部を有することにより、衝突した処理後流体の気流を凹球面に沿って流れ方向を変更することができ、効率良くタンク本体部内に拡散させることができる。加えて、拡散部は、前述した二次霧化部を有することにより、処理後流体受け部に衝突した処理後流体に含まれる液体を、凹凸を以て更に微粒化することができる。
【0024】
上記の目的を達成するために本発明の掘削装置は、タンク本体部、該タンク本体部に設けられ、同タンク本体部外から供給される気液混合流体であるか、又は、気体及び液体である、処理前流体を導入可能な導入部、該導入部を介して前記タンク本体内に導入された前記処理前流体を霧化可能な霧化部、及び、前記タンク本体部に設けられ、霧化した処理後流体を導出可能な導出部を有するエアタンク体と、前記導出部に接続されると共に、シリンダー、該シリンダー内に格納された単一のピストン、及び、同シリンダーの先部に取り付けられた単一の掘削ビットを有し、前記シリンダー内に供給される前記処理後流体を作動流体として駆動する前記ピストンの打撃を以て、前記掘削ビットが同シリンダーの軸方向に進退動可能であり、同処理後流体が同掘削ビットの先部から吐出される構造のシングルハンマユニット体と、を備える。
【0025】
ここで、エアタンク体は、タンク本体部を有することにより、その内部に、導入された処理前流体と霧化した処理後流体を一時貯留することができると共に、霧化部を設けることができる。また、エアタンク体は、導入部を有することにより、タンク本体部外から供給される処理前流体を、同タンク本体部内に導入することができる。なお、処理前流体は、例えば、機外のコンプレッサーや液タンク、又は、掘削装置の一部を構成するコンプレッサー部や液タンク等により、タンク本体部内に供給される。
【0026】
加えて、エアタンク体は、霧化部を有することにより、タンク本体内に導入された処理前流体を霧化し、処理後流体(霧化した処理前流体)にすることができる。また、エアタンク体は、導出部を有することにより、処理後流体を導出することができる。導出された処理後流体は、導出部に接続されたシングルハンマユニット体に供給される。
【0027】
そして、シングルハンマユニット体は、シリンダーを有することによって、内部に単一のピストンを格納することができ、供給直後の処理後流体がシリンダー外に漏出しない構造になっている。
【0028】
シングルハンマユニット体は、ピストンを有することによって、シリンダー内に供給される処理後流体を動力源として、ピストンがシリンダー内を軸方向に往復動する。往動したピストンは、掘削ビット(例えば、掘削ビットの嵌挿された接続軸の基端部分)を打撃することで、掘削ビットに打撃力を伝達し、打撃後のピストンは、処理後流体によってシリンダーの基端方向に復動する(この復動は、例えば掘削ビットの先部側に回り込んで起きる)。このピストンの往復動は、高速且つ連続的に行われる。掘削ビットは、シリンダーの軸方向に進退動して、掘削ビットの先部(すなわち、打撃面)によって掘削対象物を打撃することができる。
【0029】
処理後流体に含まれる気体は、作動流体としてシングルハンマユニット体のピストンを駆動させることができる。一方、処理後流体に含まれる霧化した液体は、駆動によって熱を持ったピストン等のシングルハンマユニット体の構成部品を冷却し、且つ、潤滑作用を奏する。特に、処理後流体に含まれる液体が水である場合、潤滑油と比較して調達容易(作業現場での調達容易性、コスト面での調達容易性を含む)であると共に、周辺環境を汚染する可能性を更に低減することができる。つまり、前述のエアタンク体によれば、シングルハンマユニット体に対して、冷却能及び潤滑能を有すると共に環境負荷が低減された作動流体を供給することができる。
【0030】
そして、掘削ビットの先部から吐出される処理後流体は、その霧化した液体が、掘削中の孔内において掘削屑等(掘削ビットにより粉砕されたもの等)と結合する。これにより、掘削屑等がスライム状になり、掘削孔外(地上部分)への粉塵の発生、浮遊又は飛散を抑制することができる。
【0031】
なお、本発明の掘削装置は、エアタンク体とシングルハンマユニット体とが、一のケーシング体の内部に収納されて、外観上一体化した態様であってもよい。この場合、ケーシング体内面とエアタンク体外面との間に中空領域又は中空タンクを設け、同中空領域内に又は中空タンク内に不凍液又は防音材を充填してもよく、これによって防音機能を更に向上させることができる。更に、このケーシング体は、側部周面に螺旋状の突条(以下「スパイラル部」という)を設けた態様であってもよく、これにより、スライム状の掘削屑等を掘削孔から排出する機能を付与又は更に向上させることができる。
【0032】
ところで、エアタンク体が無い従来のダウンザホールハンマの場合、ダウンザホールハンマと圧縮空気等の作動流体の供給源との距離が空くと、供給源を複数台使用しない限り、ダウンザホールハンマの作動が不安定になることがある。
【0033】
しかしながら、本発明の掘削装置によれば、エアタンク体に処理前流体と処理後流体が一時貯留される構造であるため、掘削装置と作動流体の供給源との距離が長く空いたとしても、シングルハンマユニット体を稼働させるために必要な量且つ圧力の作動流体を安定的に供給することができ、これによってシングルハンマユニット体の安定的な作動が確保される。
【0034】
加えて、本発明の掘削装置では、複数台の供給源の使用が不要になるため、供給源を稼働するために必要な燃料を減少させることができ、調達及び運搬のコストの軽減、設置に必要な土地面積の低減を図ることができる。
【0035】
更に、エアタンク体が無い従来のダウンザホールハンマの場合、掘削対象の地盤によっては、作動流体の供給源に加わる負荷と無負荷のサイクルが異なることがあるが、本発明の掘削装置は、エアタンク体に処理前流体と処理後流体が一時貯留される構造であることによって負荷と無負荷とのバランスが整い、同供給源の故障可能性を低減することができる。
【0036】
更にまた、本発明の掘削装置は、エアタンク体を以てシングルハンマユニット体へ安定的に作動流体が供給されることで、例えば、ピストンの落下高を通常(150mm程度)の半分(75mm程度)に設定することができると共にピストン重量を増加させることができる。この場合、本発明のシングルハンマユニット体のピストンがショートストロークであっても、従来型のダウンザホールハンマと比較して掘削能力の差が無く、掘削時の振動及び騒音の低減を図ることができる。
【0037】
上記の目的を達成するために本発明の掘削装置は、タンク本体部、該タンク本体部に設けられ、同タンク本体部外から供給される気液混合流体であるか、又は、気体及び液体である、処理前流体を導入可能な導入部、該導入部を介して前記タンク本体内に導入された前記処理前流体を霧化可能な霧化部、及び、前記タンク本体部に設けられ、霧化した処理後流体を導出可能な導出部を有するエアタンク体と、前記導出部に接続されると共に、複数のシリンダー、該シリンダー毎に格納されたピストン、及び、同シリンダーの先部毎に取り付けられた掘削ビットを有し、前記各シリンダー内に供給される前記処理後流体を作動流体として駆動する各ピストンの打撃を以て、先部に取り付けられた各掘削ビットが進退動可能であり、同処理後流体が各掘削ビットの先部から吐出される構造のマルチハンマユニット体と、を備える。
【0038】
ここで、エアタンク体は、タンク本体部を有することにより、その内部に、導入された処理前流体と霧化した処理後流体を一時貯留することができると共に、霧化部を設けることができる。また、エアタンク体は、導入部を有することにより、タンク本体部外から供給される処理前流体を、同タンク本体部内に導入することができる。
【0039】
加えて、エアタンク体は、霧化部を有することにより、タンク本体内に導入された処理前流体を霧化し、処理後流体にすることができる。また、エアタンク体は、導出部を有することにより、処理後流体を導出することができる。導出された処理後流体は、導出部に接続されたハンマユニット体に供給される。
【0040】
そして、マルチハンマユニット体は、シリンダーを有することによって、各内部にピストンを格納することができ、供給直後の処理後流体がシリンダー外に漏出しない構造になっている。
【0041】
マルチハンマユニット体は、ピストンを有することによって、シリンダー内に供給される処理後流体を動力源として、ピストンがシリンダー内を軸方向に往復動する。往動したピストンは、掘削ビットを打撃することで、掘削ビットに打撃力を伝達し、打撃後のピストンは、処理後流体によってシリンダーの基端方向に復動する。このピストンの往復動は、高速且つ連続的に行われる。複数の掘削ビットは、各々のシリンダーの軸方向に進退動して、各掘削ビットの先部によって掘削対象物を打撃することができる。
【0042】
処理後流体に含まれる気体は、作動流体としてマルチハンマユニット体の各ピストンを駆動させ、一方で、処理後流体に含まれる霧化した液体は、駆動によって熱を持ったピストン等のマルチハンマユニット体の構成部品を冷却し、且つ、潤滑作用を奏する。特に、処理後流体に含まれる液体が水である場合、潤滑油と比較して調達容易であると共に、周辺環境を汚染する可能性を更に低減することができる。つまり、前述のエアタンク体によれば、マルチハンマユニット体に対して、冷却能及び潤滑能を有すると共に環境負荷が低減された作動流体を供給することができる。
【0043】
そして、掘削ビットの先部から吐出される処理後流体は、その霧化した液体が、掘削中の孔内において掘削屑等と結合してスライム状になり、掘削孔外への粉塵の発生、浮遊又は飛散を抑制することができる。
【0044】
なお、本発明の掘削装置は、エアタンク体とマルチハンマユニット体とが、一のケーシング体の内部に収納されて、外観上一体化した態様であってもよい。このケーシング体は、その内面とエアタンク体外面との間に中空領域又は中空タンクを設けてもよく、同中空タンク等内に不凍液又は防音材を充填した場合は、防音機能を更に向上させることができる。更に、このケーシング体は、側部周面にスパイラル部を設けた態様であってもよく、この場合、スライム状の掘削屑等を掘削孔から排出する機能を付与又は更に向上させることができる。
【0045】
前述の通り、本発明の掘削装置によれば、エアタンク体に処理前流体と処理後流体が一時貯留される構造であるため、掘削装置と作動流体の供給源との距離が長く空いたとしても、マルチハンマユニット体を稼働させるために必要な量且つ圧力の作動流体を安定的に供給することができ、これによってマルチハンマユニット体の安定的な作動が確保される。併せて、複数台の供給源の使用が不要になり、必要な燃料の低減化、調達及び運搬のコストの軽減、設置に必要な土地面積の低減を図ることができる。更に、前述の通り、作動流体の供給源に加わる負荷と無負荷のサイクルのバランスが整い、同供給源の故障可能性を低減することができる。
【0046】
更にまた、本発明の掘削装置は、マルチハンマユニット体を採用しており、ロータリーテーブル等を使用して掘削装置を回転させて作業することによって、複数の掘削ビットの打撃力を以て掘削対象面を満遍なく掘削することができる。これにより、同じ掘削面積を掘削可能なシングルハンマ体での施工と比較して、掘削能力がより高く、掘削時の振動及び騒音の低減を図ることができる。
【0047】
上記の目的を達成するために本発明のアウターケーシング装置は、一端側に開口部が形成された筒状であり、該開口部と連通し、ハンマユニット体の外周を覆う態様で挿着可能な空間が形成されたスカート部を有する、アウターケーシング本体と、該アウターケーシング本体内において前記スカート部の反対となる位置に内蔵され、タンク本体部、該タンク本体部に設けられ、同タンク本体部外から供給される気液混合流体であるか、又は、気体及び液体である、処理前流体を導入可能な導入部、該導入部を介して前記タンク本体内に導入された前記処理前流体を霧化可能な霧化部、及び、前記タンク本体部に設けられ、霧化した処理後流体を前記スカート部方向に導出可能な導出部を有するエアタンク体と、を備える。
【0048】
ここで、本発明のアウターケーシング装置は、圧縮空気等の気体を作動流体として稼働するハンマユニット体と組み合わせることにより、エアタンク体を備える掘削装置として運用することができる。「ハンマユニット体」としては、前述した構造のシングルハンマユニット体及びマルチハンマユニット体が挙げられる。
【0049】
そして、同アウターケーシング装置は、ハンマユニット体に対して着脱可能であるため、一体型の掘削装置と比較して、運搬時に分離させることで一度に運ぶ重量を軽減することができ、保管時や運搬時における長手方向の嵩を小さくすることができる。また、同アウターケーシング装置は、ハンマユニット体に対して着脱可能であるため、一体型の掘削装置と比較して、分解メンテナンスがしやすく、アウターケーシング装置又はハンマユニット体の一方が故障した際に、故障した一方のみを取り替えれば済むため、運用効率が良い。
【0050】
アウターケーシング本体は、前述のスカート部を有することにより、開口部を通じて同スカート部内の空間にハンマユニット体を挿着することができる。挿着されたハンマユニット体は、その外周がスカート部により覆われるため、ハンマユニット体の側部周面が直接露出しないように保護されることになり、特に、掘削作業中に、孔の内壁との摩擦によってハンマユニット体の側部周面が磨損することを防止することができる。なお、「ハンマユニット体の外周を覆う態様」は、ハンマユニット体の外周の全部を覆う態様が好適であるが、ハンマユニット体の外周の一部を覆う態様であってもよい。
【0051】
更に、アウターケーシング本体は、エアタンク体を内蔵していることにより、内蔵されたエアタンク体は、その周面が直接露出しないように保護されることになり、特に、掘削作業中に、孔の内壁との摩擦によってエアタンク体の側部周面が磨損することを防止することができる。
【0052】
エアタンク体は、タンク本体部の内部に、導入された処理前流体と霧化した処理後流体を一時貯留することができると共に、霧化部を設けることができる。また、エアタンク体は、導入部を有することにより、タンク本体部外から供給される処理前流体を、同タンク本体部内に導入することができる。更にまた、エアタンク体は、霧化部を有することにより、タンク本体内に導入された処理前流体を霧化し、処理後流体にすることができる。
【0053】
そして、エアタンク体は、導出部を有することによって、処理後流体をスカート部方向に導出することができる。導出された処理後流体は、スカート部に挿着されるハンマユニット体に供給され、処理後流体に含まれる気体は、作動流体としてハンマユニット体のピストンを駆動させることができる。一方、処理後流体に含まれる霧化した液体は、駆動によって熱を持ったピストン等のハンマユニット体の構成部品を冷却し、且つ、潤滑作用を奏する。
【0054】
つまり、本発明のアウターケーシング装置によれば、挿着されるハンマユニット体に対して、冷却能及び潤滑能を有すると共に環境負荷が低減された作動流体を供給することができる。また、同アウターケーシング装置によれば、エアタンク体に処理前流体と処理後流体が一時貯留される構造であるため、作動流体の供給源との距離が長く空いたとしても、ハンマユニット体を稼働させるために必要な量且つ圧力の作動流体を安定的に供給することができ、これによってハンマユニット体の安定的な作動が確保される。
【0055】
併せて、同アウターケーシング装置によれば、複数台の供給源の使用が不要になり、供給源設置に関し、必要な燃料の低減化、調達及び運搬のコストの軽減、設置に必要な土地面積の低減を図ることができる。更に、同アウターケーシング装置によれば、作動流体の供給源に加わる負荷と無負荷のサイクルのバランスが整い、同供給源の故障可能性を低減することができる。
【0056】
なお、挿着されるハンマユニット体がシングルハンマユニット体である場合、安定的に作動流体が供給されることで、例えば、ピストンの落下高を通常(150mm程度)の半分(75mm程度)に設定可能且つピストン重量を増加させることができる。この場合、シングルハンマユニット体のピストンがショートストロークであっても、従来型のダウンザホールハンマと比較して掘削能力の差が無く、掘削時の振動及び騒音の低減を図ることができる。また、挿着されるハンマユニット体がマルチハンマユニット体である場合、ロータリーテーブル等を使用して掘削装置を回転させて作業することによって、複数の掘削ビットの打撃力を以て掘削対象面を満遍なく掘削することができる。これにより、同じ掘削面積を掘削可能なシングルハンマ体での施工と比較して、掘削能力がより高く、掘削時の振動及び騒音の低減を図ることができる。
【0057】
なお、本発明のアウターケーシング装置は、アウターケーシング本体の内面とエアタンク体外面との間に中空領域又は中空タンクを設け、同中空領域内に又は中空タンク内に不凍液又は防音材を充填した態様であってもよく、これによって防音機能を更に向上させることができる。
【0058】
上記の目的を達成するために本発明の掘削装置は、一端側に開口部が形成された筒状であり、該開口部と連通し、シングルハンマユニット体の外周を覆う態様で挿着可能な空間が形成されたスカート部を有するアウターケーシング本体、及び、該アウターケーシング本体内において前記スカート部の反対となる位置に内蔵され、タンク本体部、該タンク本体部に設けられ、同タンク本体部外から供給される気液混合流体であるか、又は、気体及び液体である、処理前流体を導入可能な導入部、該導入部を介して前記タンク本体内に導入された前記処理前流体を霧化可能な霧化部、及び、前記タンク本体部に設けられ、霧化した処理後流体を前記スカート部方向に導出可能な導出部を有するエアタンク体、を有するアウターケーシング装置と、前記スカート部に挿着されると共に前記導出部に接続され、シリンダー、該シリンダー内に格納された単一のピストン、及び、同シリンダーの先部に取り付けられた単一の掘削ビットを有し、前記シリンダー内に供給される前記処理後流体を作動流体として駆動する前記ピストンの打撃を以て、前記掘削ビットが同シリンダーの軸方向に進退動可能であり、同処理後流体が同掘削ビットの先部から吐出される構造のシングルハンマユニット体と、を備える。
【0059】
ここで、本発明の掘削装置は、アウターケーシング装置とシングルハンマユニット体と組み合わせることにより、エアタンク体を備える掘削装置として運用することができる。そして、同掘削装置は、アウターケーシング装置とシングルハンマユニット体とが着脱可能であるため、一体型の掘削装置と比較して、運搬時に分離させることで一度に運ぶ重量を軽減することができ、保管時や運搬時における長手方向の嵩を小さくすることができる。また、同掘削装置は、アウターケーシング装置とシングルハンマユニット体とが着脱可能であるため、一体型の掘削装置と比較して、分解メンテナンスがしやすく、アウターケーシング装置又はシングルハンマユニット体の一方が故障した際に、故障した一方のみを取り替えれば済むため、運用効率が良い。
【0060】
アウターケーシング本体は、前述のスカート部を有することにより、開口部を通じて同スカート部内の空間にシングルハンマユニット体を挿着することができる。挿着されたシングルハンマユニット体は、その外周がスカート部により覆われて、側部周面が直接露出しないように保護される。これにより、特に、掘削作業中に、孔の内壁との摩擦によってシングルハンマユニット体の側部周面が磨損することを防止することができる。更に、アウターケーシング本体は、内蔵されたエアタンク体についても、その周面が直接露出しないように保護し、特に、掘削作業中に、孔の内壁との摩擦によってエアタンク体の側部周面が磨損することを防止することができる。
【0061】
エアタンク体は、タンク本体部の内部に、導入された処理前流体と霧化した処理後流体を一時貯留することができると共に、霧化部を設けることができる。また、エアタンク体は、導入部を有することにより、タンク本体部外から供給される処理前流体を、同タンク本体部内に導入することができる。更にまた、エアタンク体は、霧化部を有することにより、タンク本体内に導入された処理前流体を霧化し、処理後流体にすることができる。また、エアタンク体は、導出部を有することによって、処理後流体をスカート部方向に導出することができる。導出された処理後流体は、導出部に接続されたシングルハンマユニット体に供給される。なお、アウターケーシング装置は、アウターケーシング本体の内面とエアタンク体外面との間に中空領域又は中空タンクを設け、同中空領域内に又は中空タンク内に不凍液又は防音材を充填した態様であってもよい。
【0062】
そして、シングルハンマユニット体は、シリンダーを有することによって、内部に単一のピストンを格納することができ、供給直後の処理後流体がシリンダー外に漏出しない構造になっている。また、シングルハンマユニット体は、ピストンを有することによって、シリンダー内に供給される処理後流体を動力源として、ピストンがシリンダー内を軸方向に往復動する。
【0063】
往動したピストンは、掘削ビットを打撃することで、掘削ビットに打撃力を伝達し、打撃後のピストンは、処理後流体によってシリンダーの基端方向に復動する。このピストンの往復動は、高速且つ連続的に行われる。掘削ビットは、シリンダーの軸方向に進退動して、掘削ビットの先部によって掘削対象物を打撃することができる。
【0064】
処理後流体に含まれる気体は、作動流体としてシングルハンマユニット体のピストンを駆動させることができる。一方、処理後流体に含まれる霧化した液体は、駆動によって熱を持ったピストン等のシングルハンマユニット体の構成部品を冷却し、且つ、潤滑作用を奏する。特に、処理後流体に含まれる液体が水である場合、潤滑油と比較して調達容易であると共に、周辺環境を汚染する可能性を更に低減することができる。つまり、前述のエアタンク体によれば、シングルハンマユニット体に対して、冷却能及び潤滑能を有すると共に環境負荷が低減された作動流体を供給することができる。
【0065】
そして、掘削ビットの先部から吐出される処理後流体は、その霧化した液体が、掘削中の孔内において掘削屑等と結合することで、掘削屑等がスライム状になり、掘削孔外への粉塵の発生、浮遊又は飛散を抑制することができる。
【0066】
このように、本発明の掘削装置によれば、エアタンク体に処理前流体と処理後流体が一時貯留される構造であるため、掘削装置と作動流体の供給源との距離が長く空いたとしても、シングルハンマユニット体を稼働させるために必要な量且つ圧力の作動流体を安定的に供給することができ、これによってシングルハンマユニット体の安定的な作動が確保される。
【0067】
併せて、同掘削装置によれば、複数台の供給源の使用が不要になり、供給源設置に関し、必要な燃料の低減化、調達及び運搬のコストの軽減、設置に必要な土地面積の低減を図ることができる。更に、同掘削装置によれば、作動流体の供給源に加わる負荷と無負荷のサイクルのバランスが整い、同供給源の故障可能性を低減することができる。
【0068】
更にまた、同掘削装置は、エアタンク体を以てシングルハンマユニット体へ安定的に作動流体が供給されることで、例えば、ピストンの落下高を通常(150mm程度)の半分(75mm程度)に設定可能且つピストン重量を増加させることができる。この場合、本発明のシングルハンマユニット体のピストンがショートストロークであっても、従来型のダウンザホールハンマと比較して掘削能力の差が無く、掘削時の振動及び騒音の低減を図ることができる。
【0069】
上記の目的を達成するために本発明の掘削装置は、一端側に開口部が形成された筒状であり、該開口部と連通し、マルチハンマユニット体の外周を覆う態様で挿着可能な空間が形成されたスカート部を有するアウターケーシング本体、及び、該アウターケーシング本体内において前記スカート部の反対となる位置に内蔵され、タンク本体部、該タンク本体部に設けられ、同タンク本体部外から供給される気液混合流体であるか、又は、気体及び液体である、処理前流体を導入可能な導入部、該導入部を介して前記タンク本体内に導入された前記処理前流体を霧化可能な霧化部、及び、前記タンク本体部に設けられ、霧化した処理後流体を前記スカート部方向に導出可能な導出部を有するエアタンク体、を有するアウターケーシング装置と、前記スカート部に挿着されると共に前記導出部に接続され、複数のシリンダー、該シリンダー毎に格納されたピストン、及び、同シリンダーの先部毎に取り付けられた掘削ビットを有し、前記各シリンダー内に供給される前記処理後流体を作動流体として駆動する各ピストンの打撃を以て、先部に取り付けられた各掘削ビットが進退動可能であり、同処理後流体が各掘削ビットの先部から吐出される構造のマルチハンマユニット体と、を備える。
【0070】
ここで、本発明の掘削装置は、アウターケーシング装置とマルチハンマユニット体と組み合わせることにより、エアタンク体を備える掘削装置として運用することができる。そして、同掘削装置は、アウターケーシング装置とマルチハンマユニット体とが着脱可能であるため、一体型の掘削装置と比較して、運搬時に分離させることで一度に運ぶ重量を軽減することができ、保管時や運搬時における長手方向の嵩を小さくすることができる。また、同掘削装置は、アウターケーシング装置とマルチハンマユニット体とが着脱可能であるため、一体型の掘削装置と比較して、分解メンテナンスがしやすく、アウターケーシング装置又はマルチハンマユニット体の一方が故障した際に、故障した一方のみを取り替えれば済むため、運用効率が良い。
【0071】
アウターケーシング本体は、前述のスカート部を有することにより、開口部を通じて同スカート部内の空間にマルチハンマユニット体を挿着することができる。挿着されたマルチハンマユニット体は、その外周がスカート部により覆われて、側部周面が直接露出しないように保護される。これにより、特に、掘削作業中に、孔の内壁との摩擦によってマルチハンマユニット体の側部周面が磨損することを防止することができる。更に、アウターケーシング本体は、内蔵されたエアタンク体についても、その周面が直接露出しないように保護し、特に、掘削作業中に、孔の内壁との摩擦によってエアタンク体の側部周面が磨損することを防止することができる。
【0072】
エアタンク体は、タンク本体部の内部に、導入された処理前流体と霧化した処理後流体を一時貯留することができると共に、霧化部を設けることができる。また、エアタンク体は、導入部を有することにより、タンク本体部外から供給される処理前流体を、同タンク本体部内に導入することができる。更にまた、エアタンク体は、霧化部を有することにより、タンク本体内に導入された処理前流体を霧化し、処理後流体にすることができる。また、エアタンク体は、導出部を有することによって、処理後流体をスカート部方向に導出することができる。導出された処理後流体は、導出部に接続されたマルチハンマユニット体に供給される。なお、アウターケーシング装置は、アウターケーシング本体の内面とエアタンク体外面との間に中空領域又は中空タンクを設け、同中空領域内に又は中空タンク内に不凍液又は防音材を充填した態様であってもよい。
【0073】
そして、マルチハンマユニット体は、シリンダーを有することによって、各内部にピストンを格納することができ、供給直後の処理後流体がシリンダー外に漏出しない構造になっている。マルチハンマユニット体は、ピストンを有することによって、シリンダー内に供給される処理後流体を動力源として、ピストンがシリンダー内を軸方向に往復動する。
【0074】
往動したピストンは、掘削ビットを打撃することで、掘削ビットに打撃力を伝達し、打撃後のピストンは、処理後流体によってシリンダーの基端方向に復動する。このピストンの往復動は、高速且つ連続的に行われる。複数の掘削ビットは、各々のシリンダーの軸方向に進退動して、各掘削ビットの先部によって掘削対象物を打撃することができる。
【0075】
処理後流体に含まれる気体は、作動流体としてマルチハンマユニット体の各ピストンを駆動させ、一方で、処理後流体に含まれる霧化した液体は、駆動によって熱を持ったピストン等のマルチハンマユニット体の構成部品を冷却し、且つ、潤滑作用を奏する。特に、処理後流体に含まれる液体が水である場合、潤滑油と比較して調達容易であると共に、周辺環境を汚染する可能性を更に低減することができる。つまり、前述のエアタンク体によれば、マルチハンマユニット体に対して、冷却能及び潤滑能を有すると共に環境負荷が低減された作動流体を供給することができる。
【0076】
そして、掘削ビットの先部から吐出される処理後流体は、その霧化した液体が、掘削中の孔内において掘削屑等と結合してスライム状になり、掘削孔外への粉塵の発生、浮遊又は飛散を抑制することができる。
【0077】
このように、本発明の掘削装置によれば、エアタンク体に処理前流体と処理後流体が一時貯留される構造であるため、掘削装置と作動流体の供給源との距離が長く空いたとしても、マルチハンマユニット体を稼働させるために必要な量且つ圧力の作動流体を安定的に供給することができ、これによってマルチハンマユニット体の安定的な作動が確保される。
【0078】
併せて、同掘削装置によれば、複数台の供給源の使用が不要になり、供給源設置に関し、必要な燃料の低減化、調達及び運搬のコストの軽減、設置に必要な土地面積の低減を図ることができる。更に、同掘削装置によれば、作動流体の供給源に加わる負荷と無負荷のサイクルのバランスが整い、同供給源の故障可能性を低減することができる。
【0079】
更にまた、同掘削装置は、マルチハンマユニット体を採用しており、ロータリーテーブル等を使用して掘削装置を回転させて作業することによって、複数の掘削ビットの打撃力を以て掘削対象面を満遍なく掘削することができる。これにより、同じ掘削面積を掘削可能なシングルハンマ体での施工と比較して、掘削能力がより高く、掘削時の振動及び騒音の低減を図ることができる。
【0080】
上記の目的を達成するために本発明の掘削方法は、エアタンク体のタンク本体部に設けた導入部を介し、気液混合流体であるか、又は、気体及び液体である処理前流体を、同タンク本体部外から導入する、処理前流体の導入工程と、該処理前流体の導入工程により導入された前記処理前流体を、前記タンク本体内に設けた霧化部により霧化する、霧化工程と、該霧化工程により霧化された処理後流体を、前記タンク本体部に設けた導出部を介して同タンク本体部外に導出する、処理後流体の導出工程と、該処理後流体の導出工程により導出された前記処理後流体を作動流体とし、該作動流体で駆動する単一のピストンを以て、前記掘削ビットが進退動可能であり、同処理後流体が同掘削ビットの先部から吐出される構造のシングルハンマユニット体によって、対象部の掘削を行う、掘削工程と、を備える。
【0081】
ここで、前述の掘削方法は、処理前流体の導入工程において、導入部を介し、処理前流体をタンク本体部外から導入する。なお、処理前流体の導入工程から処理後流体の導出工程の間、エアタンク体は、タンク本体部内に、導入された処理前流体と霧化した処理後流体を一時貯留することができる。
【0082】
加えて、同掘削方法は、霧化工程において、タンク本体内に導入された処理前流体を霧化し、処理後流体にする。同掘削方法は、処理後流体の導出工程において、エアタンク体外へ処理後流体を導出し、導出された処理後流体はシングルハンマユニット体に供給される。
【0083】
更に、同掘削方法は、掘削工程において、処理後流体の導出工程により導出された処理後流体を作動流体とし、同作動流体で駆動する単一のピストンを以て掘削ビットが進退動可能な構造のシングルハンマユニット体によって、対象部の掘削を行う。
【0084】
シングルハンマユニット体は、供給される処理後流体を動力源として、ピストンがシングルハンマユニット体の軸方向に往復動する。往動したピストンは、掘削ビットを打撃することで、掘削ビットに打撃力を伝達し、打撃後のピストンは、処理後流体によってシングルハンマユニット体の基端方向に復動する。このピストンの往復動は、高速且つ連続的に行われ、掘削ビットの先部によって掘削対象物を打撃することができる。
【0085】
前述の掘削方法は、処理後流体に含まれる気体が、作動流体としてシングルハンマユニット体のピストンを駆動させ、一方で、処理後流体に含まれる霧化した液体が、駆動によって熱を持ったピストン等のシングルハンマユニット体の構成部品を冷却し、且つ、潤滑作用を奏する。特に、処理後流体に含まれる液体が水である場合、潤滑油と比較して調達容易であると共に、周辺環境を汚染する可能性を更に低減する。つまり、同掘削方法によれば、シングルハンマユニット体に対して冷却及び潤滑の各効果を付与すると共に、環境負荷が低減された作動流体を供給する。
【0086】
そして、掘削ビットの先部から吐出される処理後流体は、その霧化した液体が、掘削中の孔内において掘削屑等と結合して掘削屑等をスライム状にし、掘削孔外への粉塵の発生、浮遊又は飛散を抑制する。
【0087】
本発明の掘削方法によれば、エアタンク体に処理前流体と処理後流体が一時貯留されるため、掘削装置と作動流体の供給源との距離が長く空いたとしても、シングルハンマユニット体を稼働させるために必要な量且つ圧力の作動流体が安定的に供給され、これによってシングルハンマユニット体の安定的な作動が確保される。併せて、同掘削方法によれば、複数台の供給源の使用が不要になり、供給源に関し、必要な燃料の低減化、調達及び運搬のコストの軽減、設置に必要な土地面積の低減を図ることができる。更に、同掘削方法によれば、作動流体の供給源に加わる負荷と無負荷のサイクルのバランスが整い、同供給源の故障可能性を低減することができる。
【0088】
上記の目的を達成するために本発明の掘削方法は、エアタンク体のタンク本体部に設けた導入部を介し、気液混合流体であるか、又は、気体及び液体である処理前流体を、同タンク本体部外から導入する、処理前流体の導入工程と、該処理前流体の導入工程により導入された前記処理前流体を、前記タンク本体内に設けた霧化部により霧化する、霧化工程と、該霧化工程により霧化された処理後流体を、前記タンク本体部に設けた導出部を介して同タンク本体部外に導出する、処理後流体の導出工程と、 該処理後流体の導出工程により導出された前記処理後流体を作動流体とし、該作動流体で個別に駆動する複数のピストンを以て該各ピストンに対応する各掘削ビットが進退動可能な構造のマルチハンマユニット体によって、対象部の掘削を行う、掘削工程と、を備える。
【0089】
ここで、前述の掘削方法は、処理前流体の導入工程において、導入部を介し、処理前流体をタンク本体部外から導入する。なお、処理前流体の導入工程から処理後流体の導出工程の間、エアタンク体は、タンク本体部内に、導入された処理前流体と霧化した処理後流体を一時貯留することができる。
【0090】
加えて、同掘削方法は、霧化工程において、タンク本体内に導入された処理前流体を霧化し、処理後流体にする。同掘削方法は、処理後流体の導出工程において、エアタンク体外へ処理後流体を導出し、導出された処理後流体はマルチハンマユニット体に供給される。
【0091】
マルチハンマユニット体は、供給される処理後流体を動力源として、各ピストンがマルチハンマユニット体の軸方向に往復動する。往動した各ピストンは、各ピストンに対応する各掘削ビットを打撃することで、各掘削ビットに打撃力を伝達し、打撃後の各ピストンは、処理後流体によってマルチハンマユニット体の基端方向に復動する。このピストンの往復動は、高速且つ連続的に行われ、各掘削ビットの先部によって掘削対象物を打撃することができる。
【0092】
前述の掘削方法は、処理後流体に含まれる気体が、作動流体としてマルチハンマユニット体の各ピストンを駆動させ、一方で、処理後流体に含まれる霧化した液体が、駆動によって熱を持ったピストン等のマルチハンマユニット体の構成部品を冷却し、且つ、潤滑作用を奏する。特に、処理後流体に含まれる液体が水である場合、潤滑油と比較して調達容易であると共に、周辺環境を汚染する可能性を更に低減する。つまり、同掘削方法によれば、マルチハンマユニット体に対して冷却及び潤滑の各効果を付与すると共に、環境負荷が低減された作動流体を供給する。
【0093】
そして、掘削ビットの先部から吐出される処理後流体は、その霧化した液体が、掘削中の孔内において掘削屑等と結合して掘削屑等をスライム状にし、掘削孔外への粉塵の発生、浮遊又は飛散を抑制する。
【0094】
本発明の掘削方法によれば、エアタンク体に処理前流体と処理後流体が一時貯留されるため、掘削装置と作動流体の供給源との距離が長く空いたとしても、マルチハンマユニット体を稼働させるために必要な量且つ圧力の作動流体が安定的に供給され、これによってマルチハンマユニット体の安定的な作動が確保される。併せて、同掘削方法によれば、複数台の供給源の使用が不要になり、供給源に関し、必要な燃料の低減化、調達及び運搬のコストの軽減、設置に必要な土地面積の低減を図ることができる。更に、同掘削方法によれば、作動流体の供給源に加わる負荷と無負荷のサイクルのバランスが整い、同供給源の故障可能性を低減することができる。
【0095】
更にまた、同掘削方法は、マルチハンマユニット体を採用しており、ロータリーテーブル等を使用してマルチハンマユニット体を回転させて作業することによって、複数の掘削ビットの打撃力を以て掘削対象面を満遍なく掘削することができる。これにより、同じ掘削面積を掘削可能なシングルハンマ体での施工と比較して、掘削能力がより高く、掘削時の振動及び騒音の低減を図ることができる。
【発明の効果】
【0096】
本発明のエアタンク、アウターケーシング装置、掘削装置、及び、掘削方法によれば、ハンマユニット体等の供給対象となる機具に対して、冷却能及び潤滑能を有すると共に、環境負荷が低減された作動流体を供給することができる。
【図面の簡単な説明】
【0097】
【
図1】本発明に係る掘削装置(第1実施形態)を示す説明図である。
【
図2】
図1に係る掘削装置において、本発明のアウターケーシング装置と、シングルハンマユニット体とに分離した断面説明図である。
【
図3】(a)は
図1に係る掘削装置及び
図2に係るアウターケーシング装置において格納された、本発明のエアタンクを示す断面視説明図であり、(b)は(a)に示す拡散部の拡大説明図である。
【
図4】
図1に係る掘削装置における処理前流体及び処理後流体の流通を示す縦断面視説明図である。
【
図5】
図1に係る掘削装置の使用状態(掘削方法)の説明図である。
【
図6】
図3(a)に示すエアタンクの他の例(変形例1)であり、同エアタンクの構造及びその内部における処理後流体の流通を示す縦断面視説明図である。
【
図7】
図3(a)に示すエアタンクの他の例(変形例2)であり、同エアタンクの構造及びその内部における処理後流体の流通を示す縦断面視説明図である。
【
図8】(a)は
図3(b)に示す拡散部の他の例(変形例3)の斜視図であり、(b)は
図2に示すアウターケーシング装置の他の例(変形例4)の斜視図であり、(c)は
図2に示すアウターケーシング装置の他の例(変形例5)の斜視図である。
【
図9】本発明に係る掘削装置(第2実施形態)を示す説明図である。
【
図10】
図1に係る掘削装置において、本発明のアウターケーシング装置と、マルチハンマユニット体とに分離した断面説明図である。
【
図11】
図10に係る掘削装置における処理前流体及び処理後流体の流通を示す縦断面視説明図である。
【
図12】
図10に係る掘削装置の使用状態(掘削方法)の説明図である。
【
図13】(a)は本発明に係る掘削装置(第3実施形態)を示す説明図であり、(b)は本発明に係る掘削装置(第4実施形態)を示す説明図である。
【発明を実施するための形態】
【0098】
図1~
図13を参照して、本発明の実施の形態を更に詳細に説明する。なお、以下の説明は、〔第1実施形態〕、〔変形例1〕、〔変形例2〕、〔変形例3〕、〔変形例4〕、〔変形例5〕、〔第2実施形態〕、〔第3実施形態〕、そして、〔第4実施形態〕の順序により行う。また、図面各図における符号は、煩雑さを軽減し理解を容易にする範囲内で付しており、同一符号が付される複数の同等物についてはその一部にのみ符号を付す場合がある。
【0099】
〔第1実施形態〕
(掘削装置1)
図1~5を参照する。掘削装置1は、アウターケーシング装置2とシングルハンマユニット体4を備える。各部について、以下で詳述する。
【0100】
(アウターケーシング装置2)
アウターケーシング装置2は、アウターケーシング本体20及びエアタンク体3を有する。なお、この「エアタンク体」は前述した本発明に係る「エアタンク」と同義である。
【0101】
アウターケーシング本体20は、その一端側(
図1で下側)に開口部211が形成された円筒状であり、他端側(
図1で上側)に、作業時おいて上方に連結する部材(吊下軸体82やスイベル等)との連結に使用する、連結ジョイント220が設けられている。アウターケーシング本体20は、
図1、
図2で下側となる領域がスカート部210であり、
図1、
図2で上側となる領域(前述のスカート部の反対となる位置)にエアタンク体3が内蔵されている。
【0102】
スカート部210は、その内部に開口部211と連通した中空部212が形成されている。中空部212は、シングルハンマユニット体4を挿着可能な広さに設けられており、挿着時において、スカート部210はシングルハンマユニット体4の外周を覆う態様となる。
【0103】
連結ジョイント220は、基部がアウターケーシング本体20の開口部211と反対側の端面に固着された六角柱状であって、先部に開口部221が形成されている。また、連結ジョイント220は、その軸方向に沿って通気可能な通気路222が設けられている。通気路222の一端は開口部221であり、他端は導入部32内と連通している。
【0104】
(エアタンク体3)
エアタンク体3は、アウターケーシング本体20内においてスカート部210の反対となる位置に内蔵され(
図1~2におけるアウターケーシング装置2の上部側)、タンク本体部31、導入部32、霧化部33、拡散部34、及び、導出部35を有する(
図3参照)。アウターケーシング本体20内面とエアタンク体31外面との間には、中空領域301が設けられ、中空領域301内に不凍液が充填されている(
図3(a)参照)。
【0105】
タンク本体部31は、略円筒体のステンレススチール製であり、導入部32と導出部35を除いて気密且つ液密であると共に、圧縮空気の気圧に耐えうる耐圧性を有する。また、タンク本体部31は、その内壁面に耐液層を形成している。
【0106】
導入部32は、タンク本体部31に設けられた管状であり、、連結ジョイント220の通気路222と連通している。導入部32から導入する処理前流体は、圧縮空気と水の気液混合流体である。
【0107】
霧化部33は、管部331、及び、メッシュ部332を有する構造である。管部331は、その基端(
図1~3で管部331の上部側)が導入部32(の通気路222と反対側端部)と連通し、先端(
図1~3で管部331の下部側)がタンク本体部31内方向に突設している。メッシュ部332は、管部331先端を覆うように設けられている。
【0108】
拡散部34は、霧化部33と導出部35の間の領域に配置された略高杯形状であって、処理後流体が衝突可能な形状である反射部分341と、脚部分342を有する。反射部分341は、上方に向けて開口した椀状であり、内面全体に微細で不定型な凹凸が多数形成されている(
図3(b)右上の拡大部分参照。同凹凸は、前述の二次霧化部に相当し、以下、同部分について「二次霧化部343」と称する)。脚部分342は、内部が中空で、内外に貫通して処理後流体が通過可能な通気孔が複数形成されている。
【0109】
導出部35は、タンク本体部31下部(
図1~3でタンク本体部31の下部側)に開口した管状であり、霧化した処理後流体をスカート部210方向に導出可能に設けられている。また、導出部35は、拡散部34の直下に設けられ、タンク本体部31側の開口部分が脚部分342の内側領域に収まっている。
【0110】
(シングルハンマユニット体4)
シングルハンマユニット体4は、スカート部210に挿着されると共に導出部35に接続され、シリンダー40、シリンダー40内に格納された単一のピストン41、及び、シリンダー40の先部に取り付けられた単一の掘削ビット42を有する。そして、シングルハンマユニット体4は、シリンダー40内に供給される処理後流体を作動流体として駆動するピストン41の打撃を以て、掘削ビット42がシリンダー40の軸方向に進退動し、処理後流体が掘削ビット42の先部から吐出される構造である。
【0111】
より詳しくは、シングルハンマユニット体4は、円筒形であるシリンダー40内を、軸方向に往復動するピストン41(
図3、
図4参照)を有し、そのほかにも、いずれも符号を省略するが、チェックバルブ、エアディストリビュータ、バルブスプリング、メイクアップリング、O-リング、ピストンリタイナーリング、ビットリティーナリング等を有する構造であり、公知のダウンザホールハンマの駆動機構(例えば、特開昭61-92288号公報記載)とほぼ同様の構造である。
【0112】
シングルハンマユニット体4は、圧縮空気の圧力を上げるとピストン41の往復動の速度が速く(即ち、打撃速度が速く)なる一方、圧縮空気の圧力を下げるとピストン41の往復動の速度が遅く(即ち、打撃速度が遅く)なる構造であり、打撃速度を容易に調節することができる。
【0113】
本実施形態において、処理前流体は、圧縮空気と水の気液混合流体であるが、これに限定するものではなく、例えば、気体及び液体が個別の流路を経由して、導入部の内部で混合される態様であるか、あるいは、タンク本体部31の導入部近傍で混合される態様であってもよい。
【0114】
本実施形態において、メッシュ部332は、1インチ当たり2.5~16の範囲内であることが好ましく、更に好ましくは4~10の範囲内であることが更に好ましい。1インチ当たり2.5未満であると、処理前流体に含まれる液体の微細化効率が低下すると共に異物通過の可能性があり、一方、12を超えると、処理前流体に含まれる液体の微細化効率は高まるが、通過効率が低下し高圧の処理前流体によるメッシュ部の破損可能性が高まり、メンテナンスの頻度が増える為である。
【0115】
本実施形態では、タンク本体部31は、内壁に耐腐食処理等を施したステンレススチール製であるが、これに限定するものではなく、前述の構造であれば、他の金属製又は複合素材等であってもよい。
【0116】
本実施形態では、拡散部34は、略高杯形状であるが、これに限定するものではなく、例えば、有蓋無底筒形状等であってもよい。また、反射部分341は、前述の形状であるが、これに限定するものではなく、例えば、皿状や凸面状であってもよい。また、二次霧化部343は、その態様が前述の通りであるが、これに限定するものではなく、例えば、形成される凹凸は内面の一部であってもよいし定型であってもよく、更に凹凸に代えて、反射部分341の一部又は全部にファインメッシュを設けるような態様であってもよい。
【0117】
(作 用)
図1~5を参照して、掘削装置1の作用効果及び掘削装置1を使用した掘削方法を説明する。なお、掘削装置1を使用した掘削方法において、次に説明するクレーン車8等を使用する。
【0118】
(クレーン車8)
図5を参照する。クレーン車8は、ブーム81と、ブーム81の先部に設けられた吊下軸体82と、自走可能な車体83を有する、クレーン車8は、掘削装置1を、掘削ビット42を下向き(即ち、地面向き)に、且つ、掘削装置1の軸方向が地面Gに対して垂直又は略鉛直な状態となるように吊り下げ可能なものである。なお、クレーン車8と共に、コンプレッサーC、水タンクW及び気液混合器Mを使用する。
図5では、便宜的にクレーン車8の近傍にコンプレッサーC、水タンクW及び気液混合器Mを記載しているが、離れた位置に配置されるものであってもよい。また、コンプレッサーC、水タンクWは1台のみ図示しているが、複数台使用する態様を除外するものではない。
【0119】
吊下軸体82は、ブーム81から繰り出されるワイヤ(符号省略)によって吊り下げる高さが調節される。また、吊下軸体82にはホースH1が接続されており、このホースH1を介して気液混合器Mから処理前流体が供給される。そして、気液混合器Mは、別経路のホース(符号省略)を介してコンプレッサーC及び水タンクWと接続され、コンプレッサーCからは圧縮空気が、水タンクWからは水が、それぞれ供給され、気液混合器M内で、気液混合して処理前流体を成す。
【0120】
掘削装置1は、アウターケーシング装置2とシングルハンマユニット体4と組み合わせることにより、エアタンク体3を備える掘削装置として運用することができる(
図1~2参照)。そして、掘削装置1は、アウターケーシング装置2とシングルハンマユニット体4とが着脱可能であるため、一体型の掘削装置と比較して、運搬時に分離させることで一度に運ぶ重量を軽減することができ、保管時や運搬時における長手方向の嵩を小さくすることができ、更に、一体型の掘削装置と比較して、分解メンテナンスがしやすく、アウターケーシング装置2又はシングルハンマユニット体4の一方が故障した際に、故障した一方のみを取り替えれば済むため、運用効率が良い。
【0121】
アウターケーシング装置2は、スカート部210の開口部211を通じて、中空部212にシングルハンマユニット体4を挿着することができる。スカート部210は、挿着されたシングルハンマユニット体4の外周を覆い、側部周面が直接露出しないように保護する。これにより、特に、掘削作業中に、掘削孔の内壁との摩擦によってシングルハンマユニット体4の側部周面が磨損することを防止し、更に、内蔵されたエアタンク体3についても、その周面が直接露出しないように保護し、特に、掘削作業中に、掘削孔の内壁との摩擦によってエアタンク体3の側部周面が磨損することも防止する(
図5参照)。
【0122】
エアタンク体3は、ホースH1及び吊下軸体82とこれに連通する導入部32を通じて供給される処理前流体をタンク本体部31の内部に導入し、後述する霧化した処理後流体と共に、一時貯留することができる。なお、本実施形態の「処理前流体」は、掘削装置1の機外において、コンプレッサーCから供給される圧縮空気と、水タンクWから供給される水とを、気液混合器で混合して成る、圧縮空気と粒状の水の気液混合流体である。
【0123】
霧化部33の管部331を通過した処理前流体は、先端のメッシュ部332に衝突して含まれる水の粒が更に細粒化(霧化)し、処理後流体となる。ここで、管部331は、タンク本体部31内において所定長さで突設しており、拡散部34と管部331の先端の距離が近いので、処理後流体は拡散部34の反射部分341に効率良く衝突する。処理後流体が反射部分341に衝突した際に、反射部分341に設けられた二次霧化部343にぶつかることで、処理後流体に含まれる粒状の水が更に微粒化して細かな霧状になる(
図3(b)の右下の模式図を参照)。
【0124】
そして、反射部分341に衝突した処理後流体は、拡散部34と反対の方向(
図4で上方向)に跳ね返るような気流となって、タンク本体部31内を循環及び拡散し、タンク本体部31内における処理後流体と処理前流体の比率が略均等となるように調整される。調整された処理後流体は、拡散部34方向に再度戻り、脚部分342に形成された孔を通過して脚部分342内に流入し、導出部35を通じてタンク本体部31外(スカート部210の方向)に導出される。
【0125】
なお、中空領域301内に充填された不凍液は、エアタンク体31内で生じる一連の作動音の漏出を抑制し、静粛性を向上させている。
【0126】
導出された処理後流体は、導出部35に接続されたシングルハンマユニット体4に供給される。そして、シングルハンマユニット体4は、シリンダー40内にピストン41を格納し、供給直後の処理後流体はシリンダー40外に漏出しない。また、ピストン41は、処理後流体を動力源とし、シリンダー40内を軸方向に往復動する。往動したピストン41は、掘削ビット42を打撃して打撃力を伝達する。そして、打撃後のピストン41は、処理後流体によってシリンダー40の基端方向に復動する。このピストン41の往復動は、高速且つ連続的に行われる。掘削ビット42は、シリンダー40の軸方向に進退動し、その先部によって掘削対象物である地面や掘削孔の底を打撃する。
【0127】
より詳しくは、シリンダー40に流入した処理後流体が、まずピストン41の側面位置に形成されたスリット(符号省略)を通過してシリンダー40の先端側(
図2でシリンダー40の下側)に回り、これにより、ピストン41がシリンダー40の基端側(
図2でシリンダー40の上側)へ移動する(「ピストン41が上昇する(又は跳ね上がる)」とも換言できる)。
【0128】
次に、このピストン41の移動に伴って、掘削ビット42の接続軸421基端(
図2における接続軸421上端)とピストン41先端(
図2におけるピストン41の下端)との間に隙間が生じ、この隙間からピストン41を押し上げた処理後流体がピストン41内部に流入する。そして、ピストン41に流入した処理後流体は、接続軸421基端の開口部から流入して接続軸421内を通過し、掘削ビット42先部の孔から排出される。
【0129】
処理後流体の排出後、ピストン41は、シリンダー40の先端側(
図2の下側)へ移動(下降又は落下)する。この動作の繰り返しによりピストン41が往復動し、ピストン41が先端側へ移動し衝突した際の衝撃で掘削ビット42へ打撃力が加わり、この打撃力によって掘削ビット42が稼動する。
【0130】
処理後流体に含まれる気体は、作動流体としてシングルハンマユニット体4のピストン41を駆動させる。一方、処理後流体に含まれる霧化した液体は、駆動によって熱を持ったピストン41等のシングルハンマユニット体4の構成部品を冷却し、且つ、潤滑作用を奏する。特に、処理後流体に含まれる液体が水であるので、作業現場近傍で調達することが容易であると共に、周辺環境を汚染する可能性を更に低減することができる。つまり、前述したエアタンク体3を備える掘削装置1(アウターケーシング装置2)によれば、シングルハンマユニット体4に対して、冷却能及び潤滑能を有すると共に環境負荷が低減された作動流体を供給することができる。
【0131】
そして、掘削ビット42の先部から吐出される処理後流体は、その霧化した液体が、掘削中の孔内において掘削屑等と結合して掘削屑等がスライム状になり、掘削孔外への粉塵の発生、浮遊又は飛散を抑制する。
【0132】
このように、掘削装置1によれば、エアタンク体3に処理前流体と処理後流体が一時貯留される構造であるため、掘削装置1と作動流体の供給源(特にコンプレッサーC)との距離が長く空いたとしても、シングルハンマユニット体4を稼働させるために必要な量且つ圧力の作動流体を安定的に供給することができ、これによってシングルハンマユニット体4の安定的な作動が確保される。
【0133】
併せて、掘削装置1によれば、複数台のコンプレッサーC(供給源)の使用が不要になり、供給源に関し、必要な燃料の低減化、調達及び運搬のコストの軽減、設置に必要な土地面積の低減を図ることができる。更に、掘削装置1によれば、作動流体のコンプレッサーCに加わる負荷と無負荷のサイクルのバランスが整い、コンプレッサーCの故障可能性を低減することができる。
【0134】
なお、掘削装置1は、エアタンク体3を以てシングルハンマユニット体4へ安定的に作動流体が供給されることで、例えば、ピストン41の落下高を通常(150mm程度)の半分(75mm程度)に設定することが可能となり、且つピストン重量を増加させることができる。この場合、シングルハンマユニット体4のピストン41がショートストロークであっても、従来型のダウンザホールハンマと比較して掘削能力の差が無く、掘削時の振動及び騒音の低減を図ることができる。
【0135】
本実施形態では、クレーンとして移動式のクレーン車8を使用しているが、これに限定するものではなく、例えば、固定式のクレーンであってもよい。また、掘削装置1を回転させるロータリーテーブルを併用あるいは代替使用してもよい。また、本実施形態では、特に図示していないが、掘削装置1は、連結ジョイント220に、必要な数の延長体を順次接続して、全体の長さを延長しながら掘削作業を行うことができる。これにより、掘削孔が深くなっても作業を進めることができる。延長体としては、例えば、ケーシング内に通気管を有するものや、ケリーロッド等が挙げられ、エアタンク3の導入部32を通じて処理前流体が供給される。
【0136】
〔変形例1〕
図6に示すエアタンク体3aは、
図3(a)に示すエアタンクの他の態様(変形例1)であり、
図6を参照して変形例1について説明する。なお、エアタンク体3aは、後述する相違点を除き、第1実施形態のエアタンク体3と同様であるため、その構造及び作用効果の説明は省略する。
【0137】
(エアタンク体3a)
エアタンク体3aは、タンク本体部31、導入部32、霧化部33a、拡散部34、及び、導出部35を有し、霧化部33aの構成が霧化部33と相違する(
図6参照)。霧化部33aは、メッシュ部332aが、導入部32のタンク本体部31側の開口部を覆うように設けられている。なお、タンク本体部31、導入部32、拡散部34及び導出部35については、第1実施形態のエアタンク体3と同様であるため、その構造及び作用効果の説明は省略する。
【0138】
エアタンク体3aによれば、第1実施形態のエアタンク体3と異なり、管部331がタンク本体部31内方向に突設していないため、より簡易な構造で生産効率が向上しており、また、メッシュ部332aを通過直後の処理後流体の拡散方向がよりワイドになる。
【0139】
〔変形例2〕
図7に示すエアタンク体3bは、
図3(a)に示すエアタンクの他の態様(変形例2)であり、
図7を参照して変形例2について説明する。なお、エアタンク体3bは、後述する相違点を除き、第1実施形態のエアタンク体3と同様であるため、その構造及び作用効果の説明は省略する。
【0140】
(エアタンク体3b)
エアタンク体3bは、タンク本体部31、導入部32b、霧化部33b、拡散部34b、及び、導出部35を有し、導入部32bの構成が導入部32と相違し、霧化部33bの構成が霧化部33と相違し、拡散部34bの構成が拡散部34と相違する(
図7参照)。
【0141】
導入部32bは、タンク本体部31内側の開口部に設けた、第1通気部321を有する。第1通気部321は、略鉢形であって、鉢口縁がタンク本体部31の天板側内面に固着され、鉢底部分がタンク本体部31中央方向に向き、後述する霧化部33bの回転軸333上端を支持し、側部周壁に形成された通気孔がタンク本体部31内に開口した構造である。
【0142】
拡散部34bは、タンク本体部31内側の導出部35上方に設けた、第2通気部344を有する。第2通気部321は、略伏鉢形であって、鉢口縁がタンク本体部31の底板側内面に固着され、鉢底部分がタンク本体部31中央方向に向き、後述する霧化部33bの回転軸333下端を支持し、側部周壁に形成された通気孔がタンク本体部31内に開口した構造である。
【0143】
霧化部33bは、導入部32bと拡散部34bの間の領域に配置された風車構造である。霧化部33bは、上端が第1通気部321に支持されると共に下端が第2通気部322に支持された回転軸333と、回転軸333に回動可能且つ等間隔に取り付けられた複数枚(本変形例では4枚)の風車羽根334とを有する構造である。風車羽根334は、第1通気部321からの処理前流体を受ける態様で、斜め方向に下り傾斜(本変形例では、第1通気部321と風車羽根334が正対する位置を0度として-45度となる傾斜角度)した形状に設けられている。
【0144】
エアタンク体3bによれば、導入部32bを介してタンク本体31内に導入された処理前流体は、霧化部33bに衝突し、風車羽根334が回転する。風車羽根334は、その回転の際に、衝突する処理前流体を衝撃によって霧化させ、処理後流体と成す。更に、風車羽根334は、タンク本体部31内における処理後流体の拡散効率を向上させ、タンク本体部31内において、処理後流体と処理前流体は、その比率が略均等となるように調整される。拡散部34bは、その上面形状に沿うようにして、処理後流体をタンク本体31内に拡散させることができる。
【0145】
〔変形例3〕
図8(a)に示す拡散部34aは、
図3(b)に示す拡散部34の他の態様(変形例3)であり、
図8(a)を参照して変形例3について説明する。なお、拡散部34aは、後述する相違点を除き、第1実施形態の拡散部34と同様であるため、その構造及び作用効果の説明は省略する。
【0146】
(拡散部34a)
拡散部34aは、略高杯形状であって、処理後流体が衝突可能な形状である反射部分341と、脚部分342を有する。なお、脚部分342は、については、第1実施形態の拡散部34と同様であるため、その構造及び作用効果の説明は省略する。
【0147】
反射部分341は、上方に向けて開口した椀状であり、開口部分を覆う面状のメッシュである二次霧化部343aが設けられている。二次霧化部343aによれば、第1実施形態の二次霧化部343と異なり、反射部分341上面に加工を施す構造ではないため、より簡易な構造で生産効率が向上している。なお、第1実施形態の拡散部34に対して、本変形例に係る二次霧化部343aを更に設ける態様を除外するものではなく、この場合、構造は複雑化するものの、より水分が微細化する。
【0148】
〔変形例4〕
図8(b)に示すアウターケーシング本体20aは、
図1~2に示すアウターケーシング本体20の他の態様(変形例4)であり、
図8(b)を参照して変形例4について説明する。なお、アウターケーシング本体20aは、後述する相違点を除き、第1実施形態のアウターケーシング本体20と同様であるため、その構造及び作用効果の説明は省略する。
【0149】
(アウターケーシング本体20a)
アウターケーシング本体20aは、その側部外周面に4本のフラットバー201が設けられている。各フラットバー201は、アウターケーシング本体20aの外周面よりも高く突設され、アウターケーシング本体20aの軸方向に亘って直線状に形成されている。4本のフラットバー201は、アウターケーシング本体20aの外周面の周方向において等間隔に配置されている。
【0150】
アウターケーシング本体20aは、
図12に示すロータリーテーブル装置Rを使用した掘削方法において好適に使用される。ロータリーテーブル装置Rは、その回転駆動部に設けられた回転ブッシュに4条の係合溝が形成され、該各係合溝と各フラットバー201とが係合し、アウターケーシング本体20aを適用した掘削装置1に回転力を付与する構造(図示省略)である。なお、ロータリーテーブル装置Rは、例えば、特開2011-26955に開示されている回転駆動装置と同等の公知構造であるため、構造及び作用の説明は上記概略の説明に止め、詳細については省略する。
【0151】
つまり、アウターケーシング本体20aによれば、これを適用した掘削装置1をロータリーテーブル装置Rへ回転可能に取り付けることができ、掘削装置1をロータリーテーブル装置Rによって回転させながら行う掘削方法(以下、同様の掘削方法を「回転式掘削方法」という)を実施することができる。
【0152】
〔変形例5〕
図8(c)に示す拡散部は、アウターケーシング本体20bは、
図1~2に示すアウターケーシング本体20の他の態様(変形例5)であり、
図8(c)を参照して変形例5について説明する。なお、アウターケーシング本体20bは、後述する相違点を除き、第1実施形態のアウターケーシング本体20と同様であるため、その構造及び作用効果の説明は省略する。
【0153】
(アウターケーシング本体20b)
アウターケーシング本体20bは、その側部外周面に螺旋羽根202が設けられている。螺旋羽根202は、アウターケーシング本体20bの外周面よりも高く突設され、アウターケーシング本体20bの軸方向に亘って、略等間隔なピッチで螺旋状に形成されている。
【0154】
螺旋羽根213には、
図12に示すロータリーテーブル装置Rの回転ブッシュに設けた係止凸条部(図示省略)へスライドさせて係止可能な複数の係止凹部203が形成されている。係止凹部203は、螺旋羽根202一巻きにおいて等間隔で4箇所に形成され、アウターケーシング本体20bの軸方向へ直列となるように形成されている。
【0155】
アウターケーシング本体20bは、ロータリーテーブル装置Rを使用した掘削方法において好適に使用される。ロータリーテーブル装置Rは、その回転駆動部に設けられた回転ブッシュの係止凸条部と各係止凹部203とが係合し、アウターケーシング本体20bを適用した掘削装置1に回転力を付与する構造(図示省略)である。なお、ロータリーテーブル装置Rは、前述の通り公知構造であるため、構造等の詳細については省略する。
【0156】
つまり、アウターケーシング本体20bによれば、これを適用した掘削装置1をロータリーテーブル装置Rへ回転可能に取り付け、回転式掘削方法を実施することができる。
【0157】
更に、アウターケーシング本体20bは、これを適用した掘削装置1をロータリーテーブル装置Rに取り付けた際に、前述した係止凸条部と、螺旋羽根213の係止凹部203とがスライド可能に係止され、これによって、ロータリーテーブル装置Rに取り付けた掘削装置1は、その自重により下降可能な状態となる。この係止凸条部と係止凹部203との係止状態において、ロータリーテーブル装置Rは、その駆動力を掘削装置1に付与し、掘削装置1を水平方向に回転駆動させることができる。また、螺旋羽根213は、この回転駆動による掘削作業の際に生じたスライムを、掘削孔の開口部へ揚げる効果を更に向上させる。
【0158】
〔第2実施形態〕
(掘削装置1a)
図9~
図12に示す掘削装置1aは、本発明の他の実施形態(第2実施形態)である。掘削装置1aは、アウターケーシング装置2a及びマルチハンマユニット体5を備える。
図9~
図12を参照して、掘削装置1aについて以下詳述する。なお、前述した第1実施形態の掘削装置1と同様の構造及びその作用効果については説明を省略する。
【0159】
アウターケーシング装置2aは、アウターケーシング本体20及びエアタンク体3を有し、アウターケーシング本体20のスカート部210に形成された中空部212が、マルチハンマユニット体5を挿着可能な広さに設けられ、挿着時においてスカート部210はマルチハンマユニット体5の外周を覆う態様となる以外は、第1実施形態に係るアウターケーシング装置2と同様の構造であるため、その他の構造及びその作用効果については説明を省略する。
【0160】
(マルチハンマユニット体5)
マルチハンマユニット体5は、スカート部210に挿着されると共に導出部35に接続されており、円筒形であるケーシング501内に複数のシリンダー50が格納され、シリンダー50毎に格納されたピストン(図示省略)、及び、シリンダー50の先部毎に取り付けられた掘削ビット52を有する。
【0161】
そして、マルチハンマユニット体5は、各シリンダー50内に供給される処理後流体を作動流体として駆動する各ピストンの打撃を以て、各掘削ビット52がシリンダー50の軸方向に進退動し、処理後流体が掘削ビット52の先部から吐出される構造である。なお、個々のシリンダー50は、シングルハンマユニット体4とほぼ同様の構造で、径小であるため、その他の構造及びその作用効果については説明を省略する。
【0162】
マルチハンマユニット体5は、圧縮空気の圧力を上げると各ピストンの往復動の速度が速く(即ち、打撃速度が速く)なる一方、圧縮空気の圧力を下げるとピストンの往復動の速度が遅く(即ち、打撃速度が遅く)なる構造であり、打撃速度を容易に調節することができる。
【0163】
(作 用)
図9~12を参照して、掘削装置1aの作用効果及び掘削装置1aを使用した掘削方法を説明する。なお、
図12に示す掘削装置1aを使用した掘削方法において使用されるクレーン車8、及び、コンプレッサーC、水タンクW及び気液混合器Mは、掘削装置1に使用するものと同じであるため、その構造及び作用効果の説明を省略する。
【0164】
掘削装置1aは、アウターケーシング装置2aとマルチハンマユニット体5と組み合わせることにより、エアタンク体3を備える掘削装置として運用することができる(
図9~10参照)。そして、掘削装置1aは、掘削装置1と同様、アウターケーシング装置2aとマルチハンマユニット体5とが着脱可能であり、分離による運搬時重量の軽減できると共に、保管時や運搬時に長手方向の嵩を小さくでき、更に、分解メンテナンスがしやすく、故障の際にアウターケーシング装置2a又はマルチハンマユニット体5のいずれか一方のみの交換で済むために運用効率が良い。
【0165】
アウターケーシング装置2aの中空部212にマルチハンマユニット体5を挿着する。これにより、スカート部210がマルチハンマユニット体5の外周を覆い、直接露出しないように保護し磨損が防止される。内蔵されたエアタンク体3についても同様である(
図12参照)。
【0166】
掘削装置1aのエアタンク体3に係る導入部32、霧化部33、拡散部34及び導出部35は、掘削装置1と同様であるため、説明を省略する。なお、中空領域301内には、掘削装置1と同様に不凍液が充填され、静粛性を向上させている。
【0167】
導出された処理後流体は、導出部35に接続されたマルチハンマユニット体5に供給される。より詳しくは、導出部35とマルチハンマユニット体5の間に配置された分岐路53により、処理後流体が各シリンダー50に分配され、供給される。
【0168】
そして、マルチハンマユニット体5は、シリンダー50内にピストンを格納し、供給直後の処理後流体はシリンダー50外に漏出しない。また、ピストンは、処理後流体を動力源とし、シリンダー50内を軸方向に往復動する。往動したピストンは、掘削ビット52を打撃して打撃力を伝達する。そして、打撃後のピストンは、処理後流体によってシリンダー50の基端方向に復動する。このピストンの往復動は、高速且つ連続的に行われる。掘削ビット52は、シリンダー50の軸方向に進退動作し、その先部によって地面や掘削孔の底(つまり、掘削対象物)を打撃する。なお、シリンダー50に流入した処理後流体の流通による各部の動作は、掘削装置1と同様であるため、説明を省略する。
【0169】
処理後流体に含まれる気体は、作動流体としてマルチハンマユニット体5のピストンを駆動させる。一方、処理後流体に含まれる霧化した液体は、駆動によって熱を持ったピストン等のマルチハンマユニット体5の構成部品を冷却し、且つ、潤滑作用を奏する。特に、処理後流体に含まれる液体が水であるので、潤滑油と比較して調達容易であると共に、周辺環境を汚染する可能性を更に低減することができる。つまり、前述したエアタンク体3を備える掘削装置1a(アウターケーシング装置2a)によれば、マルチハンマユニット体5に対して、冷却能及び潤滑能を有すると共に環境負荷が低減された作動流体を供給することができる。
【0170】
そして、掘削ビット52の先部から吐出される処理後流体は、その霧化した液体が、掘削中の孔内において掘削屑等と結合して掘削屑等がスライム状になり、掘削孔外への粉塵の発生、浮遊又は飛散を抑制する(
図12参照)。
【0171】
このように、掘削装置1aによれば、エアタンク体3に処理前流体と処理後流体が一時貯留される構造であるため、掘削装置1aと作動流体の供給源(特にコンプレッサーC)との距離が長く空いたとしても、マルチハンマユニット体5を稼働させるために必要な量且つ圧力の作動流体を安定的に供給することができ、これによってマルチハンマユニット体5の安定的な作動が確保される。
【0172】
併せて、掘削装置1aによれば、コンプレッサーCの複数台使用が不要で、必要な燃料の低減化、調達及び運搬のコストの軽減、設置に必要な土地面積の低減を図ることができる。更に、掘削装置1aによれば、作動流体のコンプレッサーCに加わる負荷と無負荷のサイクルのバランスが整い、コンプレッサーCの故障可能性を低減することができる。
【0173】
なお、本実施形態では、
図12に示すように、掘削装置1aは、ロータリーテーブル装置Rを使用して掘削装置1aを回転させて作業し、複数の掘削ビット52の打撃力を以て地面や掘削孔の底を満遍なく掘削する。これにより、同じ掘削面積を掘削可能なシングルハンマ体での施工と比較して、掘削能力がより高く、掘削時の振動及び騒音が低減する。
【0174】
〔第3実施形態〕
(掘削装置1b)
図13(a)に示す掘削装置1bは、本発明の他の実施形態(第3実施形態)である。掘削装置1bは、アウターケーシング部6内に、エアタンク体3及びシングルハンマユニット体4を備える。
図13(a)を参照して、掘削装置1bについて以下詳述する。なお、前述した第1実施形態の掘削装置1と同様の構造及びその作用効果については説明を省略する。
【0175】
掘削装置1bは、有蓋円筒状のアウターケーシング部6内に、エアタンク体3及びシングルハンマユニット体4を格納した構造である。エアタンク体3は、アウターケーシング部6内の基端寄り(
図13(a)で上部)の領域に格納されている。シングルハンマユニット体4は、アウターケーシング部6内の先端寄り(
図13(a)で下部)の領域に格納されている。
【0176】
アウターケーシング部6は、その基端側(
図13(a)で上部)端面に、六角柱状の連結ジョイント620が固着されており、先部に開口部621が形成されている。また、連結ジョイント620内には、その軸方向に沿って通気可能な通気路622が設けられ、通気路622の一端は開口部621であり、他端はエアタンク体32の導入部32内と連通している。アウターケーシング部6は、その基端側(
図13(a)で下部)に、掘削ビット42が取り付けられている。
【0177】
エアタンク体3及びシングルハンマユニット体4は、前述した第1実施形態の掘削装置1と同様の構造であるため、その構造及びその作用効果については説明を省略する。
【0178】
掘削装置1bは、エアタンク体3及びシングルハンマユニット体4が、一のケーシング体の内部に収納されて、外観上一体化し、エアタンク体3及びシングルハンマユニット体4の外周がアウターケーシング部6により覆われた態様であるため、エアタンク体3及びシングルハンマユニット体4の側部周面が直接露出しないように保護される。これにより、特に、掘削作業中に、孔の内壁との摩擦によってエアタンク体3及びシングルハンマユニット体4の側部周面が磨損することを防止することができる。
【0179】
加えて、掘削装置1bは、外周面にエアタンク体3とシングルハンマユニット体4の接続部分が外周に現れないので、例えば回転式掘削方法を行った場合に、孔の内壁との摩擦によって前記接続部分に対する剪断力が生じず、剪断力によってエアタンク体3とシングルハンマユニット体4の接続部分から破断する事故を抑制することができる。
【0180】
なお、掘削装置1bは、アウターケーシング部6は、スパイラル部やフラットバーを設けた態様であってもよい。フラットバーを設けた場合は、ロータリーテーブル装置を使用した回転式掘削工法を効率よく行うことができる。スパイラル部を設けた場合は、スライム状の掘削屑等を掘削孔から排出する機能を付与又は更に向上させることができる。
【0181】
〔第4実施形態〕
(掘削装置1c)
図13(b)に示す掘削装置1cは、本発明の他の実施形態(第4実施形態)である。掘削装置1cは、アウターケーシング部6a内に、エアタンク体3及びマルチハンマユニット体5を備える。
図13(b)を参照して、掘削装置1cについて以下詳述する。なお、前述した第2実施形態の掘削装置1aと同様の構造及びその作用効果については説明を省略する。
【0182】
掘削装置1bは、有蓋円筒状のアウターケーシング部6a内に、エアタンク体3及びマルチハンマユニット体5を格納した構造である。エアタンク体3は、アウターケーシング部6a内の基端寄り(
図13(b)で上部)の領域に格納されている。マルチハンマユニット体5は、アウターケーシング部6a内の先端寄り(
図13(b)で下部)の領域に格納されている。
【0183】
アウターケーシング部6aは、その基端側(
図13(b)で上部)端面に六角柱状の連結ジョイント620aが固着され、その軸方向に沿って通気可能な通気路622aが内部に設けられ、通気路622aの一端は開口部621aであり、他端はエアタンク体32の導入部32内と連通している。アウターケーシング部6aは、その基端側(
図13(b)で下部)に、掘削ビット52が取り付けられている。
【0184】
エアタンク体3及びマルチハンマユニット体5は、前述した第2実施形態の掘削装置1aと同様の構造であるため、その構造及びその作用効果については説明を省略する。
【0185】
掘削装置1cは、エアタンク体3及びマルチハンマユニット体5が、一のケーシング体の内部に収納されて、外観上一体化し、エアタンク体3及びマルチハンマユニット体5の外周がアウターケーシング部6により覆われた態様であるため、エアタンク体3及びマルチハンマユニット体5の側部周面が直接露出しないように保護される。これにより、特に、掘削作業中に、孔の内壁との摩擦によってエアタンク体3及びマルチハンマユニット体5の側部周面が磨損することを防止することができる。
【0186】
加えて、掘削装置1cは、外周面にエアタンク体3とマルチハンマユニット体5の接続部分が外周に現れないので、例えば回転式掘削方法を行った場合に、孔の内壁との摩擦によって前記接続部分に対する剪断力が生じず、剪断力によってエアタンク体3とマルチハンマユニット体5の接続部分から破断する事故を抑制することができる。
【0187】
なお、掘削装置1cについても、掘削装置1bと同様、アウターケーシング部6aにスパイラル部やフラットバーを設けた態様であってもよい。
【0188】
本明細書及び特許請求の範囲で使用している用語と表現は、あくまでも説明上のものであって、なんら限定的なものではなく、本明細書及び特許請求の範囲に記述された特徴及びその一部と等価の用語や表現を除外する意図はない。また、本発明の技術思想の範囲内で、種々の変形態様が可能であるということは言うまでもない。
【符号の説明】
【0189】
1、1a、1b、1c 掘削装置
2、2a アウターケーシング装置
20、20a、20b アウターケーシング本体
201 フラットバー
202 螺旋羽根
203 係止凹部
210 スカート部
211 開口部
212 中空部
220 連結ジョイント
221 開口部
222 通気路
3、3a、3b エアタンク体
301 中空領域
31 タンク本体部
32、32b 導入部
321 第1通気部
33、33a、33b 霧化部
331 管部
332、332a メッシュ部
333 回転軸
334 風車羽根
34、34b 拡散部
341 反射部分
342 脚部分
343、343a 二次霧化部
344 第2通気部
35 導出部
4 シングルハンマユニット体
40 シリンダー
41 ピストン
42 掘削ビット
421 接続軸
5 マルチハンマユニット体
501 ケーシング
50 シリンダー
52 掘削ビット
53 分岐路
6、6a アウターケーシング部
620、620a 連結ジョイント
621、621a 開口部
622、622a 通気路
8 クレーン車
81 ブーム
82 吊下軸体
83 車体
C コンプレッサー
W 水タンク
M 気液混合器
H1 ホース
R ロータリーテーブル装置
G 地面