IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ コーニング インコーポレイテッドの特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-02-27
(45)【発行日】2024-03-06
(54)【発明の名称】蓋をされ金属化されたビアの形成方法
(51)【国際特許分類】
   C23C 28/00 20060101AFI20240228BHJP
   H01L 21/3205 20060101ALI20240228BHJP
   H01L 21/768 20060101ALI20240228BHJP
   H01L 23/522 20060101ALI20240228BHJP
   H01L 23/532 20060101ALI20240228BHJP
   H01L 23/32 20060101ALI20240228BHJP
   H01L 25/07 20060101ALI20240228BHJP
   H01L 25/065 20230101ALI20240228BHJP
   H01L 25/18 20230101ALI20240228BHJP
【FI】
C23C28/00 C
H01L21/88 J
H01L21/88 R
H01L23/32 D
H01L25/08 C
【請求項の数】 8
(21)【出願番号】P 2021532001
(86)(22)【出願日】2019-11-25
(65)【公表番号】
(43)【公表日】2022-01-28
(86)【国際出願番号】 US2019062935
(87)【国際公開番号】W WO2020117514
(87)【国際公開日】2020-06-11
【審査請求日】2022-11-21
(31)【優先権主張番号】62/776,101
(32)【優先日】2018-12-06
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】397068274
【氏名又は名称】コーニング インコーポレイテッド
(74)【代理人】
【識別番号】100073184
【弁理士】
【氏名又は名称】柳田 征史
(74)【代理人】
【識別番号】100123652
【弁理士】
【氏名又は名称】坂野 博行
(74)【代理人】
【識別番号】100175042
【弁理士】
【氏名又は名称】高橋 秀明
(72)【発明者】
【氏名】サブバイヤン,ナヴァニータ クリシュナン
(72)【発明者】
【氏名】トルトナ,ウィリアム リチャード
【審査官】池ノ谷 秀行
(56)【参考文献】
【文献】特開2008-192753(JP,A)
【文献】米国特許出願公開第2014/0264920(US,A1)
【文献】米国特許第09236274(US,B1)
【文献】国際公開第2018/142720(WO,A1)
【文献】特開2010-147308(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C23C 26/00-30/00
C23C 18/00-18/54
H01L 25/00-25/16
(57)【特許請求の範囲】
【請求項1】
物品形成方法において、
第1の金属および第2の金属を含む第1の合金を含むものである伝導材料、ウエハのビアの少なくとも一部を超音波半田付け、注入、流入、又は加圧により充填する工程と、
前記伝導材料を、第3の金属のイオンを含む溶液と接触させ、前記第3の金属の前記イオンが、前記第1の合金から前記第2の金属の一部をガルバニ置換して、前記第1の金属で第2の合金を形成する工程と
を含み、
前記第1の金属は、In、および、Wの少なくとも一方を含むものであり、
前記第2の金属は、Zn、Sn、Bi、Pb、Fe、および、Mnの少なくとも1つを含むものである方法。
【請求項2】
前記ウエハは、ガラス、ガラスセラミック、セラミック、または、ケイ素を含むものである、請求項1に記載の方法。
【請求項3】
前記第3の金属は、Cu、Ag、Au、Co、Pt、Ni、Pd、および、Crの少なくとも1つを含むものである、請求項1または2に記載の方法。
【請求項4】
前記第2の合金は、前記ビアに、該ビアの入口から20μm以下の深さまで延伸するキャップ層を形成するものである、請求項1から3のいずれか1項に記載の方法。
【請求項5】
前記第2の合金は、前記第1の合金より高い融点を有するものである、請求項1から4のいずれか1項に記載の方法。
【請求項6】
物品形成方法において、
第1の金属および第2の金属を含む第1の合金を含むものである導電材料で、ウエハのビアの少なくとも一部を超音波半田付け、注入、流入、又は加圧により充填する工程と、
第3の金属のイオンを含む溶液を、前記導電材料に塗布する工程と、
前記第1の合金の一部を、前記第3の金属の前記イオンの一部とガルバニ交換して、第2の合金を含み前記導電材料と接触するキャップ層を形成する工程と
を含み、
前記第3の金属の標準還元電位は、前記第2の金属の標準還元電位より、少なくとも0.15V高いものであり、
前記第1の金属は、In、および、Wの少なくとも一方を含むものであり、
前記第2の金属は、Zn、Sn、Bi、Pb、Fe、および、Mnの少なくとも1つを含むものである方法。
【請求項7】
前記導電材料の融点は、100℃から300℃である、請求項6に記載の方法。
【請求項8】
物品形成方法において、
ガラスウエハの表面から前記ガラスウエハの本体に延伸するビアを形成する工程と、
In、および、第2の金属を含む導電材料で、前記ビアの少なくとも一部を超音波半田付け、注入、流入、又は加圧により充填する工程と、
第3の金属のイオンを含む溶液を、前記ウエハの前記表面および前記導電材料に塗布する工程と、
前記第3の金属の前記イオンの一部を前記導電材料の一部とガルバニ交換して、該導電材料と接触し、前記ウエハの前記表面に近接した前記ビアを封止するキャップ層を形成する工程と
を含み、
前記導電材料の一部と前記第3の金属の間の前記交換のセル電位は、0.3V以上であり、
前記第2の金属は、Zn、Sn、Bi、Pb、Fe、および、Mnの少なくとも1つを含むものである方法。
【発明の詳細な説明】
【関連出願の相互参照】
【0001】
本願は、2018年12月6日出願の米国仮特許出願第62/776101号の優先権の利益を主張し、その内容は依拠され、全体として参照により本明細書に組み込まれる。
【技術分野】
【0002】
本開示は、物品のビアに関し、より具体的には、蓋部を有し、物品を通る金属化されたビアに関する。
【背景技術】
【0003】
貫通孔接続は、細いケイ素ビア(TSV)および細いガラスビア(TGV)を用いた技術を可能にし、高い実装密度、短い信号路、広い信号帯域幅、低い実装費用、および、小型化されたシステムを提供する。ビアを銅で充填するのに用いうる従来の処理は、ペースト充填および電気メッキ処理を含む。
【0004】
ビアを銅で充填して、実装の気密性を確実にし、関連した利用例を切り換えるのに、様々な取組みが行われてきた。銅で充填されたTGVは、銅ビアの形成が困難である上に、銅とガラスの熱膨張率(CTE)の不一致により、信頼性が低い。更に、銅のケイ素およびガラスへの接着性が低いことは、TGVの信頼性を低下させうる。
【発明の概要】
【0005】
本開示の少なくとも1つの特徴によれば、物品形成方法は、第1の金属および第2の金属を含む第1の合金を含むものである伝導材料を、ウエハのビア内に挿入する工程と、伝導材料を、第3の金属のイオンを含む溶液と接触させ、第3の金属のイオンが、第1の合金から第2の金属の一部をガルバニ置換して、第1の金属で第2の合金を形成する工程とを含む。
【0006】
本開示の他の特徴によれば、物品形成方法は、第1の金属および第2の金属を含む第1の合金を含むものである導電材料を、ウエハのビア内に挿入する工程と、第3の金属のイオンを含む溶液を、導電材料に塗布する工程と、第1の合金の一部を、第3の金属のイオンの一部とガルバニ交換して、第2の合金を含み導電材料と接触するキャップ層を形成する工程とを含み、第3の金属の標準還元電位は、第2の金属の標準還元電位より、少なくとも0.15V高いものである。
【0007】
本開示の他の特徴によれば、物品形成方法は、ガラスウエハの表面からガラスウエハの本体に延伸するビアを形成する工程と、In、および、第2の金属を含む導電材料を、ビア内に挿入する工程と、第3の金属のイオンを含む溶液を、ウエハの表面および導電材料に塗布する工程と、第3の金属のイオンの一部を、導電材料の一部とガルバニ交換して、導電材料と接触し、ウエハの表面に近接したビアを封止するキャップ層を形成する工程とを含み、導電材料の一部と第3の金属の間の交換のセル電位は、約0.3V以上である。
【0008】
当業者は、次の明細書、請求項、および、添付を参照することによって、本開示のこれら、および、他の特徴、利点、および、目的を、更に理解し分かるだろう。
【0009】
次に、添付の図面を説明する。図は、必ずしも縮尺通りではなく、明瞭で簡潔に示すために、ある特徴、および、ある図を、縮尺を誇張するか、または、概略的に示すことがありうる。
【図面の簡単な説明】
【0010】
図1】少なくとも1つの例による物品の断面図である。
図2】少なくとも1つの例による物品の製作方法のフローチャートである。
図3A】複数の半田充填された孔を基板に有するウエハの上面図である。
図3B図3Aのウエハの底面図である。
図3C図3Aのウエハの断面図であり、砂時計状の輪郭を有する複数の孔を示している。
図3D】基板の充填された孔、および、充填されていない孔の断面図である。
図4】ウエハに形成され、インジウム半田で充填された先細の孔の断面図である。
図5A】インジウム半田で充填され、銅で蓋をされた孔の上面図である。
図5B】インジウム半田で充填され、銅で蓋をされた孔の底面図である。
図6A】硫酸銅溶液に浸漬された半田ワイヤの顕微鏡写真である。
図6B図6Aの半田ワイヤのエネルギー分散型X線スペクトロスコピー(EDS)ライン走査の結果を示し、様々な成分の原子パーセントと位置の関係を示している。
【発明を実施するための形態】
【0011】
本発明の更なる特徴および利点を以下の詳細な記載に示し、それは、当業者には、その記載から明らかであるか、以下の詳細な記載、請求項および図面に記載の発明を実施することで分かるだろう。
【0012】
本明細書で用いるように、「および/または」という用語を、2つ以上の項目を列挙して用いた場合には、列挙した項目の任意の1つを、それのみで用いうること、または、列挙した項目の2つ以上の組合せを用いうることを意味する。例えば、組成物を、A、B、および/または、Cの成分を含むものとして記載した場合には、組成物は、Aのみ、Bのみ、Cのみ、AとBの組合せ、AとCの組合せ、BとCの組合せ、または、AとBとCの組合せを含みうる。
【0013】
本明細書において、第1および第2、最上部および底部などの相対的用語は、1つの物または作用を、他の物または作用から区別するだけに用いられており、必ずしも、そのような物または作用の任意の実際の関係または順序を必要とするものでも、含意するものでもない。
【0014】
当業者には、記載した開示および他の構成要素の構成が、任意の特定の材料に限定されないことが分かるだろう。本明細書において別段の記載がない限りは、本明細書に開示した本開示の他の例示的な実施形態を、広範囲の様々な材料から形成しうる。
【0015】
本開示を行うために、(連結、連結する、連結されたなど、全ての形の)「連結された」という用語は、概して、2つの(電気的または機械的)構成要素を、直接または間接的に互いに接続することを意味する。そのような接続は、静止性または移動性でありうる。そのような接続は、2つの(電気的または機械的)構成要素を用いて実現され、任意の更なる中間部材が、互いに、または、2つの構成要素と一体に、単一の一体物として形成されうる。別段の記載がない限りは、そのような接続は、永久的であるか、除去または解除自在でありうる。
【0016】
本明細書で用いるように、「約」という用語は、量、サイズ、調合、パラメータ、並びに、他の量および特徴が、厳密でないか、その必要がなく、近似値でありか、および/または、許容度、換算係数、四捨五入、測定誤差など、および、当業者に知られた他の要因を反映して、望ましいように大きいか、または、小さくてもよいことを意味する。「約」という用語を、値、または、範囲の端点を記載するのに用いた場合、本開示は、その特定の値または端点を含むものであると理解すべきである。本明細書において、数値または範囲の端点を「約」を付けて記載したかに関わらず、数値または端点は、「約」で修飾した実施形態と、「約」で修飾しない実施形態の2つの実施形態を含むことを意図する。更に、各範囲の端点は、他方の端点との関係でと、他方の端点とは独立にとの両方で重要なことが分かるだろう。
【0017】
「略」、「実質的に」、および、それらの変化形は、本明細書で用いるように、記載した特徴が値または記載した内容に等しいか、または、概して等しいことを表すことを意図する。例えば、「実質的に平坦な」表面は、平坦または概して平坦な表面を表すことを意図する。更に、「実質的に」という用語は、2つの値が等しいか、または、概して等しいことを表すことを意図する。いくつかの実施形態において、「実質的に」とは、値が互いに約10%以内であることを表しうる。
【0018】
ここで図1を参照すると、第1の表面22および第2の表面26を画定する本体18を有するウエハ14を含む物品10を示している。ウエハ14は、第1の表面22と第2の表面26の間に本体18を通って延伸するビア表面34を有するビア30を画定する。ウエハ14は、第1の入口32Aを第1の表面22で画定し、第2の入口32Bを第2の表面26で画定する。伝導材料38は、ビア30内に配置され、第1の合金で構成される。ビア30は、伝導材料38の最上部の上に第1の表面22に近接して位置する第1のキャップ層42で蓋をされ、伝導材料38の下に第2の表面26に近接して位置する第2のキャップ層46で蓋をされうる。第1および第2のキャップ層42、46は、第2の合金から形成されうる。
【0019】
ウエハ14は、第1および第2の表面22、26を画定する本体18を有する。ウエハ14、および/または、本体18は、更に、その縁部に沿って位置する1つ以上の非主面を画定しうることが分かるだろう。ウエハ14は、実質的に平坦なシートでありうるが、物品10の他の例は、湾曲した、または、他の態様で形成または成形されたウエハ14を用いうる。更に、本明細書の教示を逸脱することなく、ウエハ14は、厚さ、幅、および/または、長さがウエハ14に亘って変化しうる。
【0020】
様々な例によれば、ウエハ14は、電気絶縁材料から構成されうる。例えば、ウエハ14は、ガラス材料、ガラスセラミック材料、セラミック材料、ケイ素系半導体材料、ケイ素、ポリマー材料、および/または、それらの組合せから構成されうる。ガラス系ウエハ14の例は、ソーダライムガラス、フロートガラス、フッ化物ガラス、アルミノケイ酸ガラス、リン酸ガラス、ホウ酸ガラス、ホウケイ酸ガラス、カルコゲナイドガラス、酸化アルミニウム、酸化された表面を有するケイ素、アルカリアルミノケイ酸ガラス、含アルカリホウケイ酸ガラス、アルカリアルミノホウケイ酸ガラス、および/または、それらの組合せを含みうる。ガラスウエハ14の例において、ウエハ14は強化されるか、強固でありうる。例えば、ガラスウエハ14の例は、(例えば、強固なウエハ14について)熱強化されるか、(例えば、強化されたウエハ14について)イオン交換された領域を有しうる。更に、ウエハ14は、サファイア材料を含みうる。セラミックウエハ14の例において、ウエハ14は、少なくとも部分的に、アルミナ、べリリア、セリア、ジルコニア酸化物、バリウム系セラミックス(例えば、BaTiO)、および/または、それらの組合せを含みうる。更に、セラミックウエハ14の例は、カーバイド、ホウ化物、窒素、および、ケイ化物などの非酸化物セラミックスを含みうる。ポリマーウエハ14の例において、ウエハ14は、少なくとも部分的に、(スチレンコポリマーおよび混合物を含む)ポリスチレン(PS)を含む熱可塑物質、(コポリマーおよび混合物を含む)ポリカーボネート(PC)、(コポリマーおよび混合物を含む、ポリエチレンテレフタレートおよびポリエチレンテレフタレートコポリマーを含む)ポリエステル、ポリオレフィン(PO)および環状ポリオレフィン(環状PO)、ポリ塩化ビニル(PVC)、(コポリマーおよび混合物を含む)ポリメタクリル酸メチル(PMMA)を含むアクリルポリマー、熱可塑性ウレタン(TPU)、ポリエーテルイミド(PEI)、並びに、これらのポリマー同士の混合物から構成されうる。他の例示的なポリマーは、エポキシ、スチレン樹脂、フェノール樹脂、メラミン樹脂、シリコーン樹脂、および/または、それらの組合せを含みうる。
【0021】
ウエハ14は、実質的に、半透明、清澄、透明であるか、および/または、光散乱のないものでありうる。例えば、ウエハ14は、約100ナノメートルと約1,200ナノメートルの間の範囲、または、約250ナノメートルと約1,100ナノメートルの間の範囲の波長を有する光に対して光学的に透明でありうる。いくつかの例において、ウエハ14の光の透過率は、その光の波長に応じたものでありうる。例えば、ウエハ14は、可視光波長帯域(例えば、約400nmの波長から約700nmの波長)に亘って光学的に不透明または半透明で、一方、非可視光波長では、実質的または完全に透過性であるか、または、その逆でありうる。
【0022】
様々な例によれば、ウエハ14は、約50μmから約5mmの範囲の厚さ(つまり、第1の表面22から第2の表面26まで測定した厚さ)を有しうる。ウエハ14の例示的な厚さは、約1μmから約1000μm、または、約100μmから約1000μm、または、約100μmから約500μmの範囲である。例えば、ウエハ14は、約1μm、約5μm、約10μm、約20μm、約30μm、約40μm、約50μm、約60μm、約70μm、約80μm、約90μm、約100μm、約200μm、約300μm、約400μm、約500μm、約600μm、約700μm、約800μm、約900μm、約1000μm、約2000μm、約3000μm、約4000μm、または、約5000μm、若しくは、それらの間の任意および全ての値、並びに、範囲の厚さを有しうる。更に、または、その代わりに、ウエハ14の厚さは、美的、および/または、機能的理由により、寸法の1つ以上に沿って変化しうる。例えば、ウエハ14の縁部は、ウエハ14の中心に近い領域と比べて厚いか、または、その逆でありうる。ウエハ14の長さ、幅、および、寸法も、物品10の利用例または使用例に応じて異なりうる。
【0023】
ウエハ14の本体18は、ビア30を画定するか、含む。ウエハ14は、単一のビア30を画定するか、または、複数のビア30を画定しうる。ビア30は、ウエハ14中の所定の位置で画定されるか、および/または、ランダムに配置されうる。例えば、ビア30は、パターン、印、および/または、テキストを形成しうる。様々な例によれば、ビア30のパターンは、電気回路またはチップに対応しうる。ビア30、および/または、本体18は、ビア30の周りに延伸するビア表面34を画定する。ビア30は、不規則形、円形、楕円、三角形、正方形、矩形、または、それより多辺の多角形の断面形状を有しうる。本明細書の教示を逸脱することなく、ビア30は、互いに異なる断面形状を有しうることが分かるだろう。ビア30がウエハ14の本体18を通って延伸する際に、ビア30は、本体18の厚さと同じ長さを有しうる。換言すれば、ビア30は、約1μm、約5μm、約10μm、約20μm、約30μm、約40μm、約50μm、約60μm、約70μm、約80μm、約90μm、約100μm、約200μm、約300μm、約400μm、約500μm、約600μm、約700μm、約800μm、約900μm、約1000μm、約2000μm、約3000μm、約4000μm、または、約5000μmの長さを有しうる。ウエハ14の厚さが位置により変化する例において、ビア30の長さも変化して、異なるビア30は異なる長さを有しうることが分かるだろう。ビア30の長さは、長さがビア30の軸長さとなるように、ビア30の中心軸に沿って測定されることが分かるだろう。
【0024】
ビア30の断面における直径または最長寸法は、約1μmから約300μm、または、約5μmから約200μm、または、約10μmから約100μmでありうる。例えば、ビア30は、約10μm、約20μm、約30μm、約40μm、約50μm、約60μm、約70μm、約80μm、約90μm、または、約99μmの直径を有しうる。ビア30の直径は、ビア30の長さに亘って変化しうることが分かるだろう。換言すれば、ビア30の1つ以上は、先細でありうる。ビア30は、互いに異なる直径、または、互いに異なる程度の先細度を有しうることが分かるだろう。
【0025】
ビア30は、約1:1から約30:1、または、約2:1から約20:1、または、約3:1から約15:1の(例えば、ビア30の長さとビア30の幅の比率として表した)アスペクト比を有しうる。例えば、ビア30は、約1:1以上、約2:1以上、約3:1以上、約4:1以上、約5:1以上、約6:1以上、約7:1以上、約8:1以上、約9:1以上、約10:1以上、約11:1以上、約12:1以上、約13:1以上、約14:1以上、約15:1以上、約16:1以上、約17:1以上、約18:1以上、約19:1以上、約20:1以上、並びに、それらの間の任意および全ての値、並びに、範囲のアスペクト比を有しうる。ビア30のアスペクト比は、互いに異なるか、ビア30のアスペクト比は同じでありうることが分かるだろう。
【0026】
様々な例によれば、ビア30の1つ以上は、第1の表面22と第2の表面26の間に角度を成して形成されうる。換言すれば、ビア30の中心軸は、第1および第2の表面22、26に直交しないものでありうる。そのような例において、ビア30の中心軸は、第1および第2の表面22、26に直交する軸から約0°から約40°の角度でありうる。ビア30の角度は、互いに異なるか、または、同じでありうることが分かるだろう。
【0027】
ビア30は、様々な断面形状を有しうる。例えば、ビア30の1つ以上は、一方の端部から他方の端部へ先細であるか(例えば、第1の表面22に近接したビア30の直径は、第2の表面26に近接したビア30の直径より大きいか)、砂時計状か(つまり、ビア30は、ウエハ14の本体18内に位置する最小直径部に向かって細くなるか)、他の形状であるか、および/または、それらの組合せでありうる。
【0028】
上記のように、伝導材料38は、ウエハ14のビア30内に位置する。様々な例によれば、伝導材料38は、ビア30のビア表面34と直に接触する。本明細書で用いるように、「直に接触」という用語は、ビア表面34と伝導材料38が、それらの間に介在する層なしで、互いに接触することを意味する。伝導材料38は、ビア表面34の一部、大部分、実質的に全て、または、全てと接触しうる。例えば、伝導材料38は、ビア表面34の約5%、または、約10%、または、約15%、または、約20%、または、約25%、または、約30%、または、約35%、または、約40%、または、約45%、または、約50%、または、約55%、または、約60%、または、約65%、または、約70%、または、約75%、または、約80%、または、約85%、または、約90%、または、約95%、または、約96%、または、約97%、または、約98%、または、約99%と接触しうる。それらの所定の値の間の任意および全ての値、並びに、範囲を企図していることが分かるだろう。
【0029】
伝導材料38は、ビア30の軸長さの一部、大部分、実質的に全て、または、全てに延伸しうる。換言すれば、伝導材料38は、第1の表面22と第2の表面26の間の距離に延伸し、第1および/または第2のキャップ層42、46が残りの距離を充填しうる。例えば、伝導材料38は、ビア30の軸長さの約5%、または、約10%、または、約15%、または、約20%、または、約25%、または、約30%、または、約35%、または、約40%、または、約45%、または、約50%、または、約55%、または、約60%、または、約65%、または、約70%、または、約75%、または、約80%、または、約85%、または、約90%、または、約95%、または、約96%、または、約97%、または、約98%、または、約99%に延伸しうる。それらの所定の値の間の任意および全ての値、並びに、範囲を企図していることが分かるだろう。
【0030】
伝導材料38は、ビア30の容積の一部、大部分、実質的に全て、または、全てを充填しうる。換言すれば、伝導材料38は、ビア30の第1の容積を、第1および/または第2のキャップ層42、46がビア30の残りの容積を充填した状態で充填しうる。例えば、伝導材料38は、ビア30の容積の約5%、または、約10%、または、約15%、または、約20%、または、約25%、または、約30%、または、約35%、または、約40%、または、約45%、または、約50%、または、約55%、または、約60%、または、約65%、または、約70%、または、約75%、または、約80%、または、約85%、または、約90%、または、約95%、または、約96%、または、約97%、または、約98%、または、約99%を充填しうる。それらの所定の値の間の任意および全ての値、並びに、範囲を企図していることが分かるだろう。
【0031】
伝導材料38は、第1の合金から構成される。様々な例によれば、伝導材料は、導電性、および/または、熱伝導性でありうる。第1の合金は、第1の金属および第2の金属を含みうる。伝導材料の第1の合金は、In、Zn、Hf、Zr、Sn、Bi、Ag、Fe、Cr、Pb、Sb、Ti、Si、Cu、希土類元素(例えば、Ce、La、Lu)、他の元素、および/または、それらの組合せを含みうる。第1の合金は、In、Zn、Hf、Zr、W、Sn、Bi、Ag、Fe、Cr、Pb、Sb、Ti、Si、および/または、Cuの任意の1つを、約10モル%以上、または、約15モル%以上、または、約20モル%以上、または、約25モル%以上、または、約30モル%以上、または、約35モル%以上、または、約40モル%以上、または、約45モル%以上、または、約50モル%以上、または、約55モル%以上、または、約60モル%以上、または、約65モル%以上、または、約70モル%以上、または、約75モル%以上、または、約80モル%以上、または、約85モル%以上、または、約90モル%以上、または、約95モル%以上、若しくは、それらの所定の値の間の任意および全ての値、並びに、範囲の量で含みうる。更に、第1の合金は、In、Zn、Hf、Zr、Sn、Bi、Ag、Fe、Cr、Pb、Sb、Ti、Si、および/または、Cuの任意の1つを、約50モル%以下、または、約45モル%以下、または、約40モル%以下、または、約35モル%以下、または、約30モル%以下、または、約25モル%以下、または、約20モル%以下、または、約15モル%以下、または、約10モル%以下、または、約9モル%以下、または、約8モル%以下、または、約7モル%以下、または、約6モル%以下、または、約5モル%以下、または、約4モル%以下、または、約3モル%以下、または、約2モル%以下、または、約1モル%以下、若しくは、それらの間の任意および全ての値、並びに、範囲の量で含みうる。第1の合金の第1の金属は、InおよびWの少なくとも一方を含み、第1の合金の第2の金属は、Zn、Sn、Bi、Pb、Fe、Mnの少なくとも1つを含みうる。
【0032】
本明細書の教示を逸脱することなく、1つ以上のビア30の伝導材料38は、異なる組成物を有しうることが分かるだろう。例えば、伝導材料38で充填されたビア30の第1の部分集合は、伝導材料38で充填されたビア30の第2の部分集合と異なる組成物を有しうる。更に、伝導材料38で充填された1つ以上のビア30の組成物は、ビア30の長さに亘って変化しうる。例えば、伝導材料38で充填された1つ以上のビア30は、第1の組成物を、第1の表面22に近接して有し、第1の組成物とは異なる第2の組成物を、第2の表面26に近接して有しうる。
【0033】
様々な例によれば、伝導材料38の第1の合金は、In、および/または、Wを含みうる。In、および/または、Wを伝導材料38に用いることは、InおよびWがウエハ14の材料(例えば、ガラス)と強固に結合する点で有利でありうる。換言すれば、第1の金属は、ウエハ14に化学的に(例えば、共有結合により)結合する。更に、より詳細に後述するように、伝導材料38の形成/配置/挿入中のウエハの超音波処理により、ビア表面34上にOH分子を生じ、それが、伝導材料38の成分と反応し、それにより、ウエハ14とのより固い結合を形成しうる。そのような特徴は、ビア表面34上の従来の接着、および/または、バリア層の除去を容易にする点で利点を有する。換言すれば、伝導材料38は、介在する接着、および/または、バリア層なしで、ビア表面34と直に接触しうる。
【0034】
伝導材料38、第1のキャップ層42、および、第2のキャップ層46は、各々、融点を有しうる。本明細書において、伝導材料38の融点を、材料融点と称し、第1および/または第2のキャップ層42、46の融点をキャップ融点と称するものとする。材料融点は、第1の合金の融点でもあることが分かるだろう。本明細書で用いるように、「融点」という用語は、材料の組成物の一部または全部が、固体状態から液体状態に転移し始める温度のことを称し、純粋材料が液体に転移する温度、および、合金、または、材料の組合せが、固体から液体へのある程度の転移を示す温度の両方を含む。合金の例において、融点は、伝導材料38、第1のキャップ層42、および/または、第2のキャップ層46の一部が溶融し始め、その他の部分は固体のままである固体温度である。純粋材料の例において、融点は、伝導材料38、第1のキャップ層42、および/または、第2のキャップ層46の実質的に全てが溶融し始める温度である。
【0035】
伝導材料38の材料融点は、約80℃、または、約90℃、または、約100℃、または、約110℃、または、約120℃、または、約130℃、または、約140℃、または、約150℃、または、約160℃、または、約170℃、または、約180℃、または、約190℃、または、約200℃、または、約210℃、または、約220℃、または、約230℃、または、約240℃、または、約250℃、または、約260℃、または、約270℃、または、約280℃、または、約290℃、または、約300℃、または、約310℃、または、約320℃、または、約330℃、または、約340℃、または、約350℃、若しくは、それらの所定の値の間の任意および全ての値、並びに、範囲でありうる。例えば、伝導材料38の材料融点は、約80℃から約220℃、または、約100℃から約350℃、または、約100℃から約300℃、または、約100℃から約200℃、または、約100℃から約180℃、または、約100℃から約160℃、または、約100℃から約150℃でありうる。
【0036】
様々な例によれば、第1のキャップ層42および第2のキャップ層46は、ビア30の両端部を封止するように構成される。換言すれば、第1および第2のキャップ層42、46は、各々、ビア30の第1および第2の入口32A、32Bを封止するように構成される。本明細書で用いるように、「封止」という用語は、第1および/または第2のキャップ層42、46をウエハ14(つまり、ビア表面34、第1の表面22、および/または、第2の表面26)に十分な強度および密封度で接着して、伝導材料38が材料融点以上の場合でもビア30から自由に流出しないようにすることを称する。例えば、第1のキャップ層42は、第1の表面22に近接したビア30の第1の入口32Aを封止するように構成され、第2のキャップ層46は、第2の表面26に近接したビア30の第2の入口32Bを封止するように構成される。様々な例によれば、第1および/または第2のキャップ層42、46は、伝導材料38と接触する。例えば、第1および/または第2のキャップ層42、46は、伝導材料38と一体に形成されるか、伝導材料38上に直に形成されうる。
【0037】
第1および/または第2のキャップ層42、46は、ビア30内に延伸するか、ビア30の上に位置しうる。例えば、伝導材料38がビア30を完全には充填しない場合(例えば、伝導材料38の最上面または底面が、ウエハ14の第1の表面22または第2の表面26と同じ高さではない場合)、第1および/または第2のキャップ層42、46は、ビア30内に延伸しうる。そのような例において、第1および/または第2のキャップ層42、46は、ビア30が封止されるように、ビア表面34と接触しうる。第1および/または第2のキャップ層42、46は、ウエハ14の第1および/または第2の表面22、26上へと延伸しうるものであり、第1および/または第2のキャップ層42、46がビア30内に延伸する程度が、厚さである。
【0038】
第1および/または第2のキャップ層42、46は、約0.1μm、または、約0.2μm、または、約0.3μm、または、約0.4μm、または、約0.5μm、または、約0.6μm、または、約0.7μm、または、約0.8μm、または、約0.9μm、または、約1.0μm、または、約2.0μm、または、約3.0μm、または、約4.0μm、または、約5.0μm、または、約6.0μm、または、約7.0μm、または、約8.0μm、または、約9.0μm、または、約10μm、または、約15μm、または、約20μm、または、約50μm、若しくは、それらの所定の値の間の任意および全ての値、並びに、範囲の厚さを有しうる。例えば、第1および第2のキャップ層42、46の少なくとも一方は、約0.1μmから約20μm、または、約0.1μmから約10μm、または、約0.1μmから約9μm、または、約0.1μmから約8μm、または、約0.1μmから約7μm、または、約0.1μmから約6μm、または、約0.1μmから約5μm、または、約0.1μmから約4μm、または、約0.1μmから約3μm、または、約0.1μmから約2μm、または、約0.1μmから約1μmの厚さを有しうる。更に、第1および/または第2のキャップ層42、46は、ビア30において、ビア30の入口(例えば、第1または第2の入口32A、32B)から、約20μm以下、または、約10μm以下、または、約5μm以下、または、約1μm以下の深さに延伸しうる。
【0039】
より詳細に後述するように、第1および/または第2のキャップ層42、46の第2の合金は、少なくとも部分的に、溶液内の第3の金属のイオンが、伝導材料38の第1の合金の第1および第2の金属とガルバニ置換されることを通して形成されうる。したがって、第1および/または第2のキャップ層42、46の厚さは、第1および/または第2のキャップ層42、46の最外点と、伝導材料38と第1または第2のキャップ層42、46との界面の間の最大距離として測定され、界面で、第1および/または第2のキャップ層42、46の第2の合金の主成分(例えば、Cu)が、伝導材料38の第1の合金の主成分の濃度と同じ濃度になる。
【0040】
上記のように、第1および/または第2のキャップ層42、46は、第2の合金から形成されうる。例えば、第1および/または第2のキャップ層42、46の第2の合金は、Cu、Ag、Au、Co、Pt、Ni、Pd、Cr、他の金属、および/または、それらの組合せの少なくとも1つを含みうる。そのような例において、第1および/または第2のキャップ層42、46の第2の合金は、Cu、Ag、Au、Co、Pt、Ni、Pd、および/または、Crの任意の1つを、約10モル%以上、または、約15モル%以上、または、約20モル%以上、または、約25モル%以上、または、約30モル%以上、または、約35モル%以上、または、約40モル%以上、または、約45モル%以上、または、約50モル%以上、または、約55モル%以上、または、約60モル%以上、または、約65モル%以上、または、約70モル%以上、または、約75モル%以上、または、約80モル%以上、または、約85モル%以上、または、約90モル%以上、または、約95モル%以上、または、約96モル%以上、または、約97モル%以上、または、約98モル%以上、または、約99モル%以上、若しくは、それらの所定の値の間の任意および全ての値、並びに、範囲の量で含みうる。更に、第1および/または第2のキャップ層42、46の第2の合金は、Cu、Ag、Au、Co、Pt、Ni、Pd、および/または、Crの任意の1つを、約50モル%以下、または、約45モル%以下、または、約40モル%以下、または、約35モル%以下、または、約30モル%以下、または、約25モル%以下、または、約20モル%以下、または、約15モル%以下、または、約10モル%以下、または、約9モル%以下、または、約8モル%以下、または、約7モル%以下、または、約6モル%以下、または、約5モル%以下、または、約4モル%以下、または、約3モル%以下、または、約2モル%以下、または、約1モル%以下、若しくは、それらの間の任意および全ての値、並びに、範囲の量で含みうる。
【0041】
様々な例によれば、第1および/または第2のキャップ層42、46の第2の合金は、伝導材料38とは異なる金属(つまり、第3の金属)を含む。例えば、伝導材料38の第1の合金は、実質的に、In、Sn、Pb、Zn、または、Sbから形成され、一方、第1および/または第2のキャップ層42、46の第2の合金は、実質的に、Cu、Ag、Au、Co、Pt、Ni、Pd、および/または、Crから形成される。
【0042】
上記のように、第1および/または第2のキャップ層42、46の第2の合金は、キャップ融点を示しうる。第1および/または第2のキャップ層42、46の第2の合金のキャップ融点は、約150℃、または、約200℃、または、約250℃、または、約300℃、または、約350℃、または、約400℃、または、約450℃、または、約500℃、または、約550℃、または、約600℃、または、約650℃、または、約700℃、または、約750℃、または、約800℃、または、約850℃、または、約900℃、または、約950℃、または、約1000℃、または、約1050℃、または、約1100℃、または、約1150℃、または、約1200℃、または、約1250℃、または、約1300℃、または、約1400℃、または、約1500℃、または、約1600℃、または、約1700℃、または、約1800℃、若しくは、それらの所定の値の間の任意および全ての値、並びに、範囲でありうる。様々な例によれば、第1および/または第2のキャップ層42、46の第2の合金のキャップ融点は、伝導材料38の材料融点より高い。より詳細に後述するように、そのような特徴は、物品10を、伝導材料38および第1の合金の材料融点より高いが、第1および/または第2のキャップ層42、46の第2の合金のキャップ融点より低い温度で処理する際に、利点を有する。
【0043】
ここで、図2を参照すると、物品10の形成方法60を示している。方法60は、ウエハ14の第1の表面22または第2の表面26からウエハ14の本体18へと延伸するビア30を形成する工程64で始まりうる。上記のように、ビア30は、ウエハ14を完全に通って(つまり、第1の表面22から第2の表面26へ)延伸するか、ウエハ14の本体18へ部分的にのみ延伸しうる。ビア30がウエハ14の本体18に部分的にのみ延伸するビア30の例において、そのようなビア30を、「ブラインドビア」と称しうる。そのようなブラインドビアの例において、ビア30は、単一の入口のみ(例えば、第1の入口32Aまたは第2の入口32Bのいずれか一方)を有しうる。ビア30が第1の表面22から第2の表面26まで延伸する例において、そのようなビア30を、「スルービア」と称しうる。ビア30は、ウエハ14の本体18で、様々な態様で形成されうる。例えば、ビア30は、最初に、レーザによる破損をウエハ14に生じ、次に、エッチング処理を行って形成されうる。レーザ破損処理の間、パルスレーザを用いて、1つ以上の破損経路をウエハ14の本体18内に形成しうる。
【0044】
(例えば、ベッセルビームの形態の)パルスレーザを用いることを通して、1つ以上の高エネルギーパルス、または、高エネルギーパルスの1つ以上のバーストを用いて、ウエハ14に微小破損経路を生成することが可能である。破損経路は、レーザによって改質されたウエハ14の材料の領域である。レーザによる改質は、ウエハ14の材料の構造を、レーザからのエネルギー伝達により大きく変化させる。構造変化は、圧縮、溶融、材料除去、再配列、および/または、結合分離を含む。破損経路は、ウエハ14の内部に延伸し、レーザの断面形状と一致する(例えば、概して、円形の)断面形状を有する。破損経路が異なる形状を有する例において、破損経路は、ウエハ14および/またはレーザを移動または平行移動させながら、多数のパルスを通して形成されうる。したがって、レーザ源とウエハ14とが相対的に移動して、破損経路が互いに隣接して、何らかの望ましいパターンで配置されうる。
【0045】
更に、または、その代わりに、破損経路は、ウエハ14に、レーザ振動穴あけを通して形成されうる。振動穴あけは、適した波長および強度を有するレーザを用いて行われ、レーザスポットサイズが、最終的な破損経路サイズを決定する。用いうる波長は、約100nmから約1070nmの範囲、または、約150nmから約400nmの範囲でありうる。いくつかの例によれば、レーザは、約355nmの波長を有する紫外線レーザビームを用いうる。更に他の例において、レーザは、約1000nm以上、約2000nm以上、または、約3000nm以上など、より長い波長で動作しうる。
【0046】
レーザは、パルス状で、ウエハ14上の同じ位置を繰り返し照射する。レーザパルス持続時間は、約1nsと約100nsの間、特に、約10nsと約25nsの間である。具体的な例において、レーザビームパルスは、約100ps以下のパルス幅を有しうる。レーザは、毎秒約50,000パルスから毎秒約150,000パルスが可能でありうる。各パルスで、材料の一部がウエハ14から除去され、破損経路が形成され始める。破損経路がウエハ14に形成される時に、破損経路は、レーザビームを閉じ込め、ウエハ14を通り抜ける細長い孔を生成する。レーザは、破損経路がウエハ14内の望ましい深さになるまでパルス状に発せられて、次に、レーザは停止される。
【0047】
レーザを用いて、ウエハ14に破損経路を形成した後に、エッチング液をウエハ14に塗布しうる。エッチング液を用いることで、材料は、ウエハ14の残りの部分と比べて、破損経路から優先的に溶解または除去されうる。エッチング液をウエハ14に塗布し、破損経路を広くし、ウエハ14にビア30を形成しうる。ウエハ14の例示的なエッチング液は、フッ化水素酸を含みうる。
【0048】
次に、伝導材料38をビア30内に挿入する工程68を行う。様々な例によれば、工程68は、伝導材料38をビア30内に挿入する工程、および、伝導材料38をビア表面34と直に接触させる工程を含みうる。伝導材料38を挿入する前に、ガラスを含むウエハ14の例を、30分間、30質量%のNHOH、30質量%のH、および、水の混合液に浸漬させるか、それを塗布し、次に、30分間、35質量%のHCl、30質量%のH、および、水の混合液に浸漬させて洗浄しうることが分かるだろう。洗浄後に、ウエハ14を脱イオン水ですすぎうる。
【0049】
伝導材料38をウエハ14のビア30内へ、様々な態様で挿入しうる。第1の例において、伝導材料38を、ビア30内に、超音波半田付けを通して挿入しうる。したがって、伝導材料38のビア30内への挿入は、伝導材料38とウエハ14の少なくとも一方を超音波振動させる工程を含みうる。超音波半田付けは、超音波エネルギーを熱エネルギーと共に用いて、半田(例えば、伝導材料38)をホスト基板(例えば、ウエハ14)に接合する半田付け処理である。超音波半田付け処理は、ビア30毎の処理によって、若しくは、複数のビア30を同時に、または、実質的に同時に充填するバッチ処理で行いうる。ビア30毎の処理において、超音波半田付けは、超音波エネルギー源に連結されて加熱された半田付け鉄先端を含む超音波半田付け鉄を用いうる。バッチ処理において、伝導材料38の浴を、超音波生成部に連結するか、および/または、ウエハ14を超音波生成部に連結しうる。方法に関わらず、圧電性結晶を用いて、高周波数音波を、溶融または液体状の伝導材料38内、および、ビア表面34上で生成しうる。音エネルギーは、ビアで伝導材料38のキャビテーションを生じ、それが、溶融伝導材料38の表面およびビア表面34上に形成される酸化物を機械的に破壊する。高周波数音波は、約10kHzから約80kHz、または、約20kHzから約60kHzの範囲でありうる。次に、溶融伝導材料38における振動およびキャビテーションは、伝導材料38をウエットな状態にして、ビア表面34に接着させる。ウエハ14が、ガラス、ガラスセラミックまたはセラミック材料から構成された例において、溶融伝導材料38は、In、Ti、Hf、Zr、および、希土類元素(例えば、Ce、La、Lu)などの活性元素を含みうる。そのような「活性元素」を伝導材料38に含むことは、ウエハ14のガラス、ガラスセラミック、または、セラミックビア表面34の酸化物を、伝導材料38に直に接合するのに有利でありうる。超音波半田付け処理の間に、溶融伝導材料38は、約80℃から約550℃、または、約100℃から約500℃、または、約150℃から約450℃、若しくは、それらの所定の範囲内の任意および全ての値の温度まで加熱されうる。
【0050】
更に、または、その代わりに、伝導材料38をビア30に注入しうる。そのような例において、溶融伝導材料38は、ビア30の1つ以上へと流れるか、および/または、加圧されて押し込まれうる。第1および第2の表面22、26の一方または両方を覆って、溶融伝導材料38が注入される時に、伝導材料38がビア30内に主に留まり、固化されるようにしうる。ビア30を順に充填するか、多数のビア30を一度に充填しうる。
【0051】
様々な例によれば、伝導材料38は、ビア30の1つ以上を完全に(つまり、第1および/または第2の表面22、26と同じ高さに)充填するか、伝導材料38は、ビア30の1つ以上を部分的にのみ充填しうる(つまり、伝導材料38は、第1および第2の入口32A、32Bの一方にのみ存在しうる)。より詳細に後述するように、伝導材料38の一部は交換または置換されて、第2の合金を第1および/または第2のキャップ層42、46の形態で形成し、ビア30を封止しうる。
【0052】
上記のように、伝導材料38は、第1の金属および第2の金属を含む第1の合金から構成される。様々な例によれば、第1および第2の金属の一方または両方は、第3の金属のイオンと交換自在または置換自在である。本明細書で用いるように、「イオン」という用語は、酸化状態を変化させることが可能で、ガルバニ置換またはガルバニ交換で交換されうる原子および/または分子を包含する。第1の合金の第1の金属は、In、および、Wの少なくとも一方を含み、第1の合金の第2の金属は、Zn、Sn、Bi、Fe、および、Mnの少なくとも1つを含みうる。様々な例によれば、第1および/または第2の金属は、0V未満の標準還元電位(E)を有しうる。本明細書で用いるように、標準還元電位は、溶液中の媒質が1モル/Lの有効濃度で、気体が25℃で1atm(約1013.25hPa)の分圧で、金属が純粋状態における化学種の還元傾向を測定したものである。
【0053】
第1および/または第2の金属についての標準還元電位は、約-0.01V、または、約-0.02V、または、約-0.04V、または、約-0.06V、または、約-0.08V、または、約-0.10V、または、約-0.12V、または、約-0.14V、または、約-0.16V、または、約-0.18V、または、約-0.20V、または、約-0.22V、または、約-0.24V、または、約-0.26V、または、約-0.28V、または、約-0.30V、または、約-0.32V、または、約-0.34V、または、約-0.36V、または、約-0.38V、または、約-0.40V、または、約-0.45V、または、約-0.50V、または、約-0.55V、または、約-0.60V、または、約-0.65V、または、約-0.70V、または、約-0.75V、または、約-0.80V、または、約-0.85V、または、約-0.90V、または、約-0.95V、または、約-1.00V、または、約-1.05V、または、約-1.10V、または、約-1.15V、または、約-1.20V、または、約-1.25V、若しくは、それらの所定の値の間の任意および全ての値、並びに、範囲でありうる。例えば、第1および/または第2の金属についての標準還元電位は、約-0.01Vから約-1.25V、または、約-0.01Vから約-1.10V、または、約-0.01Vから約-1.00V、または、約-0.01Vから約-0.90V、または、約-0.01Vから約-0.75V、または、約-0.01Vから約-0.5V、または、約0.01Vから約-0.40V、または、約-0.01Vから約-0.30V、または、約-0.01Vから約0.25V、または、約-0.01Vから約-0.20V、または、約-0.01Vから約-0.15V、または、約-0.01Vから約-0.10V、または、約-0.01Vから約-0.05Vの範囲でありうる。
【0054】
表1は、例示的な第1および第2の金属、並びに、関連した標準還元電位(E)の一覧を示している。
【0055】
【表1】
【0056】
様々な例によれば、第1の金属についての標準還元電位は、第2の金属についての標準還元電位より高いことがありうる。例えば、第1の金属の標準還元電位は、第2の金属の標準還元電位より、約0.10V以上、または、約0.15V以上、または、約0.20V以上、または、約0.25V以上、または、約0.30V以上、または、約0.35V以上、または、約0.40V以上高いものでありうる。それらの値の間の任意および全ての値、並びに、範囲を企図していることが分かるだろう。例えば、In(例えば、第1の金属)は、Zn(例えば、第2の金属)より、0.42V高い標準還元電位を有する。そのような特徴は、第2の金属を第3の金属と優先的にガルバニ置換させるのに有利でありうる。
【0057】
伝導材料38をビア30内に挿入する工程68の間、または、その後に、第1および/または第2の表面22、26上で固化し冷却された任意の残りの伝導材料38を、擦り取るか、他の方法で除去して、再利用しうる。更に、ウエハ14を、脱イオン水、および/または、溶媒で洗浄して、更に、(例えば、Nを用いて)乾燥させうる。
【0058】
伝導材料38をビア30に配置する工程68を完了すると、第3の金属のイオンを含む溶液を伝導材料38に塗布する工程72を行いうる。様々な例によれば、溶液を伝導材料38のみに塗布し、他の例においては、溶液をウエハ14の表面(例えば、第1および/または第2の表面22、26)と伝導材料38の両方に塗布しうる。例えば、伝導材料38を含むウエハ14を、溶液中に浸漬させうる。溶液をウエハ14の別々の部分に(例えば、伝導材料38を含むビア30の部分集合に)塗布するか、および/または、ウエハ14を、部分的または完全に溶液中に浸漬させて、伝導材料38を含む全てのビア30が溶液に曝されるようにしうる。
【0059】
溶液は、第3の金属のイオンが中に位置する電解質を含む。電解質は、水、酸、他の電解質、および/または、それらの組合せを含みうる。様々な例によれば、第3の金属のイオンは、Cu、Ag、Ni、Au、Pt、Pb、Cd、Cr、Co、Rh、Sn、Zn、および/または、それらの組合せを含みうる。第3の金属のイオンを、電解質に、硫酸、硝酸、シアン化物、および/または、塩化物として導入しうる。電解質は、約0.000lモル/L以上、または、約0.5モル/L以上、または、約0.8モル/L、若しくは、それらの間の任意および全ての値、並びに、範囲の第3の金属のイオンの濃度を有しうる。
【0060】
様々な例によれば、第3の金属は、約0.10V、または、約0.15V、または、約0.20V、または、約0.25V、または、約0.30V、または、約0.35V、または、約0.40V、または、約0.45V、または、約0.50V、または、約0.55V、または、約0.60V、または、約0.65V、または、約0.70V、または、約0.75V、または、約0.80V、または、約0.85V、または、約0.90V、または、約0.95V、または、約1.00V、または、約1.05V、または、約1.10V、または、約1.15V、または、約1.20V、または、約1.25V、または、約1.30V、または、約1.35V、または、約1.40V、または、約1.45V、または、約1.50V、または、約1.55V、または、約1.60V、または、約1.65V、または、約1.70V、または、約1.75V、または、約1.80V、または、約1.85V、または、約1.90V、または、約1.95V、または、約2.00V、若しくは、それらの所定の値の間の任意および全ての値、並びに、範囲の標準還元電位(E)を有しうる。例えば、第3の金属についての標準還元電位は、約0.20Vから約2.0V、または、約0.20Vから約1.50V、または、約0.20Vから約1.20V、または、約0.20Vから約0.9V、または、約0.20Vから約0.350Vの範囲でありうる。
【0061】
表2は、例示的な第3の金属、および、関連した標準還元電位の一覧を示している。
【0062】
【表2】
【0063】
第1および/または第2の金属と第3の金属の標準還元電位の差は、約0.15V以上、または、約0.20V以上、または、約0.25V以上、または、約0.30V以上、または、約0.35V以上、または、約0.40V以上、または、約0.45V以上、または、約0.50V以上、または、約0.55V以上、または、約0.60V以上若しくは、それらの所定の値の間の任意および全ての値、並びに、範囲でありうる。例えば、第1および/または第2の金属と第3の金属の標準電極電位の差は、約0.15Vから約0.60V、または、約0.20Vから約0.50V、または、約0.30Vから約0.50V、または、約0.35Vから約0.45Vの範囲でありうる。
【0064】
工程72について概説したように、第3の金属のイオンを含む溶液が伝導材料38と接触すると、第1および/または第2の金属の一部が第3の金属のイオンの一部と交換されて、第2の合金(つまり、第1および/または第2のキャップ層42、46のいずれか)を形成する工程76が行われる。容易に、かつ、明瞭に示すために、工程72と工程76を別々の工程として記載したが、本明細書の教示を逸脱することなく、工程72と工程76を実質的に同時に行いうることが分かるだろう。様々な例によれば、第3の金属と第1および/または第2の金属とのイオン交換は、ガルバニ置換、または、ガルバニ交換を通して行われる。ガルバニ置換は、反応性がより高い(例えば、不活性が低い)金属(例えば、第2の金属)が、反応性がより低い(例えば、不活性が高い)金属(例えば、第3の金属)のイオンを含む溶液に接触した時に生じる。ガルバニ置換は、結果的に生じるEセルで表されるセル電位が正である限り生じる。セル電位は、電気化学セル反応における2つの半セル反応間の電位差を測定したものであり、次の式1を用いて計算される:
セル=E正極-E負極 (式1)。
式1の正極の部分は、第3の金属の標準還元電位を表し、式1の負極の部分は、第1または第2の金属の標準還元電位を表すことが分かるだろう。所定の反応について、正のEセルの値は、ガルバニ置換反応を熱力学的に可能にし、外部から電界もエネルギーも加えられることなく、反応が進行する。様々な例によれば、ガルバニ置換の進行を可能にするには、Eセルの値は、約0.3V以上でありうる。
【0065】
第3の金属のイオンを含む溶液と、第1の金属および第2の金属を含む伝導材料38の間で確立されるセル電位は、約0.10V、または、約0.15V、または、約0.20V、または、約0.25V、または、約0.30V、または、約0.35V、または、約0.40V、または、約0.45V、または、約0.50V、または、約0.55V、または、約0.60V、または、約0.65V、または、約0.70V、または、約0.75V、または、約0.80V、または、約0.85V、または、約0.90V、または、約0.95V、または、約1.00V、または、約1.05V、または、約1.10V、または、約1.15V、または、約1.20V、または、約1.25V、または、約1.30V、または、約1.35V、または、約1.40V、または、約1.45V、または、約1.50V、または、約1.55V、または、約1.60V、または、約1.65V、または、約1.70V、または、約1.75V、または、約1.80V、または、約1.85V、または、約1.90V、または、約1.95V、または、約2.00V、または、約2.50V、または、約3.00V、若しくは、それらの所定の値の間の任意および全ての値、並びに、範囲でありうる。
【0066】
式2~5に、第3の金属と第1または第2の金属の交換を通して生じる例示的なガルバニ置換反応、および、関連したセル電位(Eセル)の値を、表1、2の標準還元電位の値に基づいて示している:
Cu+2(溶液)+Zn(固体)→Zn+2(溶液)+Cu(固体)
=1.10V (式2);
3Cu+2(溶液)+2In(固体)→2In+3(溶液)+3Cu(固体)
=0.66V (式3);
Cu+2(溶液)+Sn(固体)→Sn+2(溶液)+Cu(固体)
=0.46V (式4);
Cu+2(溶液)+Pb(固体)→Pb+2(溶液)+Cu(固体)
=0.44V (式5)。
【0067】
上記のように、第1および/または第2の金属と第3の金属のイオンとの反応が、約0.3Vのセル電位Eセルを生じる例において、ガルバニ置換が、更なる電気エネルギーを必要とせずに、自発的に生じうる。したがって、ガルバニ置換は、溶液にも、伝導材料38にも、外部から電位が加えられることなく行われうる。
【0068】
溶液が伝導材料38と接触すると、第3の金属のイオンの一部が伝導材料(つまり、第1および第2の金属の1つ以上)と交換されて、第1および/または第2のキャップ層42、46として第2の合金が形成され、それにより、第1および/または第2の表面22、26に近接したビア30が封止されうる。換言すれば、第2の合金は、第1および第2のビア入口32A、32Bの1つ以上に近接したビア30を封止しうる。上記のように、第1および/または第2のキャップ層42、46の第2の合金を、第1および/または第2の金属と第3の金属の間のガルバニ置換を通して形成することで、第1および/または第2のキャップ層42、46が伝導材料38一体に形成され、ビア30のビア表面34に密着されうる。
【0069】
物品10の構成に応じて、異なる組成(つまり、異なる第3の金属のイオン、または、異なる量の第3の金属のイオン)を有する溶液を、異なるビア30の異なる伝導材料38に塗布しうる。そのような特徴は、異なる組成の第2の合金(つまり、第1および/または第2のキャップ層42、46)を、表面の一方または両方(つまり、第1および/または第2の表面22、26)に亘って生成するのに有利でありうる。更に、第1の表面22に塗布する溶液は、第2の表面26に塗布する溶液と異なるもので、第1のキャップ層42の第2の合金が、第2のキャップ層46の第2の合金と異なる組成、深さ、または、他の物性を有しうる。
【0070】
第1および/または第2のキャップ層42、46の第2の合金が伝導材料38上に形成され、ビア30を封止すると、伝導材料38並びに第1および/または第2のキャップ層42、46の第2の合金を含むウエハ14を、伝導材料38の融点より高い温度まで加熱する工程80を行いうる。温度は、約100℃、または、約200℃、または、約300℃、または、約400℃、または、約500℃、または、約600℃、または、約700℃、または、約800℃、または、約900℃、または、約1000℃、若しくは、それらの所定の値の間の任意および全ての値、並びに、範囲でありうる。最終物品10の用途に応じて、物品10を高温に曝す1つ以上の処理(例えば、加熱処理、熱処理、回路形成など)を行いうる。そのような処理は、伝導材料38の融点より高い温度で行われうることが多い。従来の設計では、そのような後段の熱処理が金属化されたビアを破損し、その結果、金属化されたビアの溶融、流出、または、層間剥離を基板に生じうる。第1および/または第2のキャップ層42、46の第2の合金に、伝導材料38より高い融点を有する材料を使用する本開示を用いることは、第1および/または第2のキャップ層42、46の第2の合金を用いて伝導材料38をビア30内に保持しながら、伝導材料38を溶融させる傾向がありうる後段の熱処理を可能にする点で有利でありうる。換言すれば、第2の合金を有する第1および/または第2のキャップ層42、46は、後段の熱処理工程の間に、伝導材料38がビア30から漏れるのを防ぎうる。
【0071】
いくつかの例によれば、方法60は、第1および/または第2のキャップ層42、46の厚さを増加させる工程84を更に含みうる。第1および/または第2のキャップ層42、46の厚さを、様々な態様で増加させうる。
【0072】
第1の例において、第1および/または第2のキャップ層42、46の厚さを、第1および/または第2のキャップ層42、46の一方の上に電気メッキを行うことを通して増加させうる。第1および/または第2のキャップ層42、46が形成されると、第1および/または第2のキャップ層42、46上に成膜される金属のイオンを含む電解質が、第1および/または第2のキャップ層42、46と接触して配置され、次に、電流および/または電圧を加えることによって、第1および/または第2のキャップ層42、46上の金属粒子に、イオンの電気化学還元を行う。電気化学成膜処理を、第1および/または第2のキャップ層42、46が望ましい厚さになるまで継続する。金属イオンは、Cu、Ag、Ni、Au、Pt、Pb、Cd、Cr、Rh、Sn、Zn、および/または、それらの組合せを含みうる。金属イオンを、電解質に、硫酸、硝酸、シアン化物、および/または、塩化物として導入しうる。電解質は、約0.000lモル/L以上のイオン濃度を有しうる。電流、電圧、または、それらの組合せを、電解質と伝導材料38との間に加えて、第1および/または第2のキャップ層42、46に負の定電流を提供する。第1および/または第2のキャップ層42、46と電解質との間の電流密度は、約0.001mA/cmから約1A/cmの範囲であり、約-0.001Vから約-20Vの範囲の電圧を提供しうる。第1および/または第2のキャップ層42、46と電解質との間に電流または電圧が加えられると、金属イオンは、メッキを始め、第1および/または第2のキャップ層42、46が厚くなる。電解質と第1および/または第2のキャップ層42、46との界面において、電子が金属イオンに移動し還元して、次の式6に示すように、第1および/または第2のキャップ層42、46になる。式6は、Cuを用いて示しているが、本明細書の教示を逸脱することなく、他のメッキ可能金属を用いうることが分かるだろう:
Cu2+ 電解質+2e→Cuキャップ層 (式6)。
【0073】
第2の例において、第1および/または第2のキャップ層42、46の厚さを増加させる工程84は、物理蒸着を通して行われうる。そのような例において、伝導材料38、並びに、第1および/または第2のキャップ層42、46を含むウエハ14を、真空室内の基板台に配置しうる。任意で遮蔽部を用いて、第1および/または第2のキャップ層42、46のみに成膜されるようにするか、遮蔽部を用いずに、全面(例えば、第1および/または第2の表面22、26)に成膜されるようにしうる。真空室は、(例えば、約10-3Torr(約0.133Pa)の圧力まで)真空にしうる。真空室を真空にした後に、Cu、Ag、Ni、Au、Pt、Pb、Cd、Cr、Rh、Sn、Zn、および/または、それらの組合せを成膜しうる。成膜は、カソードアーク成膜、電子ビーム物理蒸着、蒸着成膜、パルスレーザ成膜、スパッタリング成膜、パルス電子成膜、および/または、昇華を通して生じうる。成膜は、第1および/または第2のキャップ層42、46が望ましい厚さになるまで行われうる。
【0074】
工程84を、第1および/または第2のキャップ層42、46の第2の合金と同じ組成物を用いて行うか、または、異なる組成物でありうることが分かるだろう。例えば、第1および/または第2のキャップ層42、46の組成は、厚さ(つまり、第2の合金)を通して一定であるか、工程84は、第2の合金とは異なる組成の材料を成膜しうる。
【0075】
本開示を用いることで、様々な利点を提供しうる。第1に、開示した方法60は、スケールの変更が可能でありうる。従来の金属化されたビアの製造では、スケールの変更が難しく非常に集約的製造技術であるという問題があることが多く、したがって、専門器具および長い処理時間を必要としうるものだった。本開示は、超音波浸漬被膜を用いて、多数のウエハ14を、同時に、短い製造時間で処理するのを可能にし、更に、関連した費用を削減しうる。更に、異なる寸法のビア30を含むウエハ14を同時に処理しうるので、製造時間、および、関連した費用の更なる削減を実現しうる。
【0076】
第2に、本明細書に概説したような組成を有する伝導材料38を用いることで、ビア表面34と伝導材料38の間の強い接着を可能にする。従来の金属化されたビアは、金属化されたビアと周囲の基板との間の接合を容易にするために、接着層の使用に依存することが多い。金属化されたビアの(例えば、金属)結合の種類と、基板の(例えば、共有結合である)結合の種類とが異なることから、接着層が必要なことが多い。本開示の伝導材料38を用いることで、時間が掛かり高い費用の接着層成膜処理も行わずに、伝導材料38をビア表面34と化学的に結合することが可能である。更に、本明細書において概略した伝導材料38の組成物は、ビア30を容易に完全に充填するのに有利でありうる低い融点を提供する。
【0077】
第3に、本明細書において概説したような組成を有する伝導材料38を用いることで、ビア30に充填された伝導材料38を形成することが可能であり、結果的に応力を低下させ、ウエハ14の亀裂を防ぐことになる。In含有合金は、従来のCu系の金属化されたビアと比べて延性が高いので、熱負荷により生じるウエハ14への応力により、ウエハ14が破損する可能性が低い。
【0078】
第4に、第1および/または第2のキャップ層42、46を用いて、伝導材料38に蓋をすることで、伝導材料38を配置した後に、ウエハ14に熱処理するのを可能にしうる。金属化されたビアの生成後に、基板に熱処理が必要なことが多く、それにより、金属化されたビアに用いうる材料が制限される。本明細書に開示の第1および/または第2のキャップ層42、46の第2の合金を用いることで、伝導材料38がビア30から漏れたり、流出する虞がなく、ウエハ14は、伝導材料38の融点より高い温度に達することが可能にする。
【0079】
第5に、第3の金属のイオンと、第1および/または第2の金属とのガルバニ置換は、外部から電気エネルギーが加えらなくても自発的に反応可能なので、本開示の方法60は、製造時間および費用を削減しうる。更に、第1および/または第2のキャップ層42、46の形成は、自発的に行われうるので、電位を溶液および伝導材料38に加えるのに関連した更なる器具および時間を省きうる。
【0080】
第6に、本開示の処理を用いることで、ウエハ14を、広範囲の材料の組から構成し、組成により広範囲の物性を有するようにさせることが可能になりうる。例えば、組成の変化を制御することで、機械的、熱的、電気的、光学的、更に、化学的耐久性など、物品10の様々な物性を、要求に合わせるようにしうる。ケイ素から形成された基板を含む従来の物品10と比べて、本開示のガラスのウエハ14の例は、熱膨張率(CTE)を変えることが可能で、それにより、CTEの不一致による積層物の反りが信頼性を大きく損なう異なる利用例について、ガラスを有望な材料にしうる。
【0081】
第7に、本開示は、消費者向け電子機器、高性能プロセッサ、微小電気機械装置(MEMS)、タッチセンサ、生物医学装置、高容量メモリ、自動車用電子機器、および、航空宇宙用部品において、広範囲の利用例を有する。
【実施例
【0082】
次に、本開示による実施例を示す。
【0083】
ここで、図3A~3Dおよび図4を参照すると、基板(例えば、ウエハ14)の孔(例えば、ビア30)内に配置されたインジウム合金(例えば、伝導材料38の第1の合金)の画像を示している。インジウム合金は、セラソルザインジウム合金という名称で販売されているインジウム系半田だった。インジウム合金は、亜鉛を含むものだった。インジウム合金を、超音波半田付け鉄を用いて、孔に加えた(例えば、工程68)。図3A~3Dの孔は、砂時計状の輪郭を有するものだった。図から分かるように、砂時計状の輪郭であることに関わらず、インジウム合金が孔を完全に充填したのを示している。孔は、80μmの表面直径を有し、基板は、300μmの厚さだった。図3Dの上側の2つの孔は、インジウム合金で充填されず、下側の2つの孔は、インジウム合金で充填されている。図4の孔は、先細で、孔の一方の端部で20μmの直径を有し、他方の端部で12μmから15μmの直径を有していた。基板の厚さは、約100μmだった。図から分かるように、先細の孔と砂時計状の孔の両方が、超音波半田付けにより、インジウム合金で完全に充填された。
【0084】
ここで、図5A、5Bを参照すると、図3A~4に関連して記載したのと略同様に生成されたインジウム合金が充填された基板の孔を示している。図5A、5Bの基板は、銅のキャップ部(例えば、第1および第2の層42、46の第2の合金)を、インジウム合金が充填された孔の上に含む。インジウム合金が充填された孔を含む基板を硫酸銅混合液(例えば、第3の金属のイオンを含む溶液)に浸漬させることによって、銅のキャップ部を形成した。硫酸銅混合液は、0.5モル/Lから0.8モル/Lの濃度の硫酸銅を有し、硫酸は、0.75モル/Lだった。インジウム合金に存在する亜鉛が硫酸銅溶液に浸漬されると(例えば、工程68)、ガルバニ置換を通して、銅のキャップ部がインジウム合金の上に形成され始めること(例えば、72)が観察された。銅のキャップ部が形成される理由は、インジウム合金の様々な成分(例えば、亜鉛、インジウムなど)が酸化して混合液に入り、その間に、混合液の銅イオンが還元されて(例えば、第2の合金を形成する)インジウム合金の中および上に置換されるからである。換言すれば、インジウム合金の成分(例えば、第1および第2の金属)は、混合液の銅(例えば、第3の金属のイオン)とガルバニ置換される。
【0085】
ここで図6A、6Bを参照すると、0.5モル/Lから0.8モル/Lの濃度の硫酸銅を有し、硫酸は0.75モル/Lである硫酸銅混合液に浸漬させたセラソルザインジウム合金半田ワイヤの顕微鏡写真(図6A)、および、エネルギー分散型X線分析(EDS)ライン走査(図6B)を示している。EDSライン走査から分かるように、Sn、In、および、Sbが存在することは、全て、銅の存在を劇的に減少させ、Sn、In、SbとCuとの間でガルバニ置換が起きたことを示している。ガルバニ置換により、銅被膜の外縁部から銅濃度が半田ワイヤ中の銅濃度に達した位置まで測定した約10μmの厚さを有する銅被膜が半田ワイヤ上に形成された。
【0086】
本開示の項目1は、
物品形成方法において、
第1の金属および第2の金属を含む第1の合金を含むものである伝導材料を、ウエハのビア内に挿入する工程と、
伝導材料を、第3の金属のイオンを含む溶液と接触させ、第3の金属のイオンが、第1の合金から第2の金属の一部をガルバニ置換して、第1の金属で第2の合金を形成する工程とを含む方法を網羅する。
【0087】
本開示の項目2は、
ウエハは、ガラス、ガラスセラミック、セラミック、または、ケイ素を含むものである、項目1に記載の方法を網羅する。
【0088】
本開示の項目3は、
第1の金属は、In、および、Wの少なくとも一方を含むものである、項目1または2に記載の方法を網羅する。
【0089】
本開示の項目4は、
第2の金属は、Zn、Sn、Bi、Pb、Fe、および、Mnの少なくとも1つを含むものである、項目1から3のいずれか1つに記載の方法を網羅する。
【0090】
本開示の項目5は、
第3の金属は、Cu、Ag、Au、Co、Pt、Ni、Pd、および、Crの少なくとも1つを含むものである、項目1から4のいずれか1つに記載の方法を網羅する。
【0091】
本開示の項目6は、
第1の金属は、ウエハに化学的に結合されたものである、項目1から5のいずれか1つに記載の方法を網羅する。
【0092】
本開示の項目7は、
第1の金属の標準還元電位は、第2の金属の標準還元電位より、少なくとも0.05V高いものである、項目1から6のいずれか1つに記載の方法を網羅する。
【0093】
本開示の項目8は、
第1の金属の標準還元電位は、第2の金属の標準還元電位より、少なくとも0.10V高いものである、項目1から7のいずれか1つに記載の方法を網羅する。
【0094】
本開示の項目9は、
第3の金属の標準還元電位は、第2の金属の標準還元電位より、少なくとも0.15V高いものである、項目1から8のいずれか1つに記載の方法を網羅する。
【0095】
本開示の項目10は、
第3の金属の標準還元電位は、第2の金属の標準還元電位より、少なくとも0.50V高いものである、項目1から9のいずれか1つに記載の方法を網羅する。
【0096】
本開示の項目11は、
第2の合金は、ビアに、ビアの入口から約20μm以下の深さまで延伸するキャップ層を形成するものである、項目1から10のいずれか1つに記載の方法を網羅する。
【0097】
本開示の項目12は、
第2の合金は、ビアに、ビアの入口から約10μm以下の深さまで延伸するキャップ層を形成するものである、項目1から10のいずれか1つに記載の方法を網羅する。
【0098】
本開示の項目13は、
第2の合金は、第1の合金より高い融点を有するものである、項目1から12のいずれか1つに記載の方法を網羅する。
【0099】
本開示の項目14は、
物品形成方法において、
第1の金属および第2の金属を含む第1の合金を含むものである導電材料を、ウエハのビア内に挿入する工程と、
第3の金属のイオンを含む溶液を、導電材料に塗布する工程と、
第1の合金の一部を、第3の金属のイオンの一部とガルバニ交換して、第2の合金を含み導電材料と接触するキャップ層を形成する工程と
を含み、
第3の金属の標準還元電位は、第2の金属の標準還元電位より、少なくとも0.15V高いものである方法を網羅する。
【0100】
本開示の項目15は、
キャップ層は、ビアの入口を封止するものである、項目14に記載の方法を網羅する。
【0101】
本開示の項目16は、
導電材料の融点は、約100℃から約300℃である、項目14または15に記載の方法を網羅する。
【0102】
本開示の項目17は、
導電材料を挿入する工程は、導電材料を、ビアの大部分に亘ってビア表面と直に接触するように配置する工程を含むものである、項目14から16のいずれか1つに記載の方法を網羅する。
【0103】
本開示の項目18は、
導電材料をビア内に挿入する工程は、導電材料およびウエハの少なくとも一方を超音波振動させる工程を含むものである、項目14から17のいずれか1つに記載の方法を網羅する。
【0104】
本開示の項目19は、
導電材料を挿入する工程は、導電材料がビアの容積の約95%以上を充填するように、導電材料をビア内に挿入する工程を含むものである、項目14から18のいずれか1つに記載の方法を網羅する。
【0105】
本開示の項目20は、
物品形成方法において、
ガラスウエハの表面からガラスウエハの本体に延伸するビアを形成する工程と、
In、および、第2の金属を含む導電材料を、ビア内に挿入する工程と、
第3の金属のイオンを含む溶液を、ウエハの表面および導電材料に塗布する工程と、
第3の金属のイオンの一部を導電材料の一部とガルバニ交換して、導電材料と接触し、ウエハの表面に近接したビアを封止するキャップ層を形成する工程と
を含み、
導電材料の一部と第3の金属の間の交換のセル電位は、約0.3V以上である方法を網羅する。
【0106】
本開示の項目21は、
導電材料およびキャップ層を含むウエハを、導電材料の融点より高い温度まで加熱する工程を更に含む、項目20に記載の方法を網羅する。
【0107】
本開示の項目22は、
キャップ層の厚さを増加させる工程を、
更に含む、項目20または21に記載の方法を網羅する。
【0108】
本開示の項目23は、
キャップ層の厚さを増加させる工程は、キャップ層上に電気メッキを行って、キャップ層の厚さを増加させる工程を含むものである、項目22に記載の方法を網羅する。
【0109】
本開示の項目24は、
キャップ層の厚さを増加させる工程は、キャップ層上に物理蒸着を行って、キャップ層の厚さを増加させる工程を含むものである、項目22に記載の方法を網羅する。
【0110】
当業者、並びに、本開示の製造または使用者は、本開示の変更を行うだろう。したがって、図面に示し、ここまでに記載した実施形態は、例示に過ぎず、本開示の範囲を制限することを意図しないと理解すべきであり、本開示の範囲は、添付の請求項を、均等論を含む特許法の原理により解釈して画定される。
【0111】
例示的な実施形態に示した本開示の構成および構成要素の配列は、例示にすぎないことに注意することも重要である。本開示において、本発明のいくつかの実施形態のみを詳細に記載したが、当業者には、本開示を検討すれば、記載した主題の新たな教示および利点を実質的に逸脱することなく、多数の変更(例えば、サイズ、寸法、構造、様々な構成要素の形状および割合、パラメータの値、載置配列、使用材料、色、向きなどを変えること)が可能なことが容易に分かるだろう。例えば、一体に形成されて示した要素を多数の部分で形成するか、多数の部分で示した要素を一体に形成するか、インターフェースの動作を逆にするか、他の態様で変化させるか、構造物および/または部材、接続部、若しくは、システムの他の要素の長さ、または、幅を変化させるか、更に、要素の間の調節位置の性質または数を変化させうる。システムの要素、および/または、アセンブリは、十分な強度または耐久性を提供する任意の広範囲の様々な材料から、任意の広範囲の様々な色、質感、および、それらの組合せで構成されうることに留意すべきである。したがって、そのような全ての変更が、本発明の範囲に含まれることを意図する。本発明の精神を逸脱することなく、望ましい他の例示的な実施形態の設計、動作条件、および、配列において、その他の置換え、変更、変形、および、省略を行いうる。
【0112】
以下、本発明の好ましい実施形態を項分け記載する。
【0113】
実施形態1
物品形成方法において、
第1の金属および第2の金属を含む第1の合金を含むものである伝導材料を、ウエハのビア内に挿入する工程と、
前記伝導材料を、第3の金属のイオンを含む溶液と接触させ、前記第3の金属の前記イオンが、前記第1の合金から前記第2の金属の一部をガルバニ置換して、前記第1の金属で第2の合金を形成する工程と
を含む方法。
【0114】
実施形態2
前記ウエハは、ガラス、ガラスセラミック、セラミック、または、ケイ素を含むものである、実施形態1に記載の方法。
【0115】
実施形態3
前記第1の金属は、In、および、Wの少なくとも一方を含むものである、実施形態1または2に記載の方法。
【0116】
実施形態4
前記第2の金属は、Zn、Sn、Bi、Pb、Fe、および、Mnの少なくとも1つを含むものである、実施形態1から3のいずれか1つに記載の方法。
【0117】
実施形態5
前記第3の金属は、Cu、Ag、Au、Co、Pt、Ni、Pd、および、Crの少なくとも1つを含むものである、実施形態1から4のいずれか1つに記載の方法。
【0118】
実施形態6
前記第1の金属は、前記ウエハに化学的に結合されたものである、実施形態1から5のいずれか1つに記載の方法。
【0119】
実施形態7
前記第1の金属の標準還元電位は、前記第2の金属の標準還元電位より、少なくとも0.05V高いものである、実施形態1から6のいずれか1つに記載の方法。
【0120】
実施形態8
前記第1の金属の標準還元電位は、前記第2の金属の標準還元電位より、少なくとも0.10V高いものである、実施形態1から7のいずれか1つに記載の方法。
【0121】
実施形態9
前記第3の金属の標準還元電位は、前記第2の金属の標準還元電位より、少なくとも0.15V高いものである、実施形態1から8のいずれか1つに記載の方法。
【0122】
実施形態10
前記第3の金属の標準還元電位は、前記第2の金属の標準還元電位より、少なくとも0.50V高いものである、実施形態1から9のいずれか1つに記載の方法。
【0123】
実施形態11
前記第2の合金は、前記ビアに、該ビアの入口から約20μm以下の深さまで延伸するキャップ層を形成するものである、実施形態1から10のいずれか1つに記載の方法。
【0124】
実施形態12
前記第2の合金は、前記ビアに、該ビアの入口から約10μm以下の深さまで延伸するキャップ層を形成するものである、実施形態1から10のいずれか1つに記載の方法。
【0125】
実施形態13
前記第2の合金は、前記第1の合金より高い融点を有するものである、実施形態1から12のいずれか1つに記載の方法。
【0126】
実施形態14
物品形成方法において、
第1の金属および第2の金属を含む第1の合金を含むものである導電材料を、ウエハのビア内に挿入する工程と、
第3の金属のイオンを含む溶液を、前記導電材料に塗布する工程と、
前記第1の合金の一部を、前記第3の金属の前記イオンの一部とガルバニ交換して、第2の合金を含み前記導電材料と接触するキャップ層を形成する工程と
を含み、
前記第3の金属の標準還元電位は、前記第2の金属の標準還元電位より、少なくとも0.15V高いものである方法。
【0127】
実施形態15
前記キャップ層は、前記ビアの入口を封止するものである、実施形態14に記載の方法。
【0128】
実施形態16
前記導電材料の融点は、約100℃から約300℃である、実施形態14または15に記載の方法。
【0129】
実施形態17
前記導電材料を挿入する工程は、該導電材料を、前記ビアの大部分に亘ってビア表面と直に接触するように配置する工程を含むものである、実施形態14から16のいずれか1つに記載の方法。
【0130】
実施形態18
前記導電材料を前記ビア内に挿入する工程は、該導電材料および前記ウエハの少なくとも一方を超音波振動させる工程を含むものである、実施形態14から17のいずれか1つに記載の方法。
【0131】
実施形態19
前記導電材料を挿入する工程は、該導電材料が前記ビアの容積の約95%以上を充填するように、該導電材料を該ビア内に挿入する工程を含むものである、実施形態14から18のいずれか1つに記載の方法。
【0132】
実施形態20
物品形成方法において、
ガラスウエハの表面から前記ガラスウエハの本体に延伸するビアを形成する工程と、
In、および、第2の金属を含む導電材料を、前記ビア内に挿入する工程と、
第3の金属のイオンを含む溶液を、前記ウエハの前記表面および前記導電材料に塗布する工程と、
前記第3の金属の前記イオンの一部を前記導電材料の一部とガルバニ交換して、該導電材料と接触し、前記ウエハの前記表面に近接した前記ビアを封止するキャップ層を形成する工程と
を含み、
前記導電材料の一部と前記第3の金属の間の前記交換のセル電位は、約0.3V以上である方法。
【0133】
実施形態21
前記導電材料および前記キャップ層を含む前記ウエハを、該導電材料の融点より高い温度まで加熱する工程を、
更に含む、実施形態20に記載の方法。
【0134】
実施形態22
前記キャップ層の厚さを増加させる工程を、
更に含む、実施形態20または21に記載の方法。
【0135】
実施形態23
前記キャップ層の前記厚さを増加させる工程は、該キャップ層上に電気メッキを行って、該キャップ層の該厚さを増加させる工程を含むものである、実施形態22に記載の方法。
【0136】
実施形態24
前記キャップ層の前記厚さを増加させる工程は、該キャップ層上に物理蒸着を行って、該キャップ層の該厚さを増加させる工程を含むものである、実施形態22に記載の方法。
【符号の説明】
【0137】
14 ウエハ
30 ビア
38 導電材料
42、46 キャップ層
図1
図2
図3A
図3B
図3C
図3D
図4
図5A
図5B
図6A
図6B